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In recent years, the hardware implementation of neural networks, leveraging physical coupling and analog
neurons has substantially increased in relevance. Such nonlinear and complex physical networks provide
significant advantages in speed and energy efficiency, but are potentially susceptible to internal noise when
compared to digital emulations of such networks. In this work, we consider how additive and multiplicative
Gaussian white noise on the neuronal level can affect the accuracy of the network when applied for specific
tasks and including a softmax function in the readout layer. We adapt several noise reduction techniques to
the essential setting of classification tasks, which represent a large fraction of neural network computing. We
find that these adjusted concepts are highly effective in mitigating the detrimental impact of noise.

I. INTRODUCTION

Artificial neural networks (ANNs) have revolutionized
the field of machine learning, showing remarkable success
in various computational tasks, from image recognition1

to language processing2. They are loosely inspired by the
structure and function of the brain’s neurons, with each
neuron modeled as a usually highly simplified mathemat-
ical unit, the perceptron3. This abstraction has been in-
credibly effective, mostly when such models are applied
to computational tasks, however slightly less so when
applied to computational neuroscience where ANNs are
to aid in understanding biological processes. Conven-
tional ANNs deviate significantly from the mechanisms
observed in biological neural networks, and as such also
fail in efficiently exploiting hardware in a similarly, more
neuromorphic way4. Spiking neural networks (SNNs)
potentially represent a closer approximation to biologi-
cal systems5. Neurons in SNNs only spike when an in-
put exceeds a certain threshold, mirroring the way neu-
rons in the brain communicate through discrete elec-
trical impulses. The temporal aspects of spikes not
only brings SNNs closer to biological reality but also
enables them to process information in a more event-
driven, energy-efficient manner6. Despite these advan-
tages, SNNs are not yet widely leveraged for comput-
ing applications, among others due to challenges in their
training methods7 and a lack of large scale as well as
parallel hardware implementation8,9.

Unlike traditional ANN with their instantaneous re-
sponse according to a nonlinear map, SNNs consist of
dynamical units, where neurons’ activations evolve over
time. This allows SNNs to process and represent time-
varying information inherently, making them especially
suited for tasks involving dynamical inputs, such as
speech, video, and sensory data. In SNNs, different
encoding schemes can be used to represent informa-

tion, with two common approaches being rate-based and
temporal encoding. Rate encoding conveys information
through the frequency of spikes over a time window, while
temporal encoding uses the precise timing of individual
spikes. Temporal encoding schemes offer several advan-
tages: (i) they are more expressive, often requiring fewer
spikes to represent the same information, (ii) they are
more energy-efficient and faster10 (iii) they have a natu-
ral connection to sparsity10.

At the single-neuron level, numerous neuromorphic de-
vices have been developed to emulate spiking behav-
iors. For instance, memristors and spintronic devices
have been explored for mimicking neuronal excitabil-
ity, offering compact, low-power alternatives for spik-
ing units11. At the larger scale, dedicated hardware
like IBM’s TrueNorth12 and Intel’s Loihi chip13 have
demonstrated the potential for CMOS-integrated SNNs,
although these systems still face limitations in scalabil-
ity and parallelism. A particularly exciting avenue for
SNN hardware lies in the field of photonics. Optical
systems inherently offer advantages in terms of speed14

and parallelism15, as light can propagate and hence can
transduce signals with very little latency and energy
dissipation16. In this context, photonic excitable units
have been proposed as candidates for mimicking spiking
neurons. Examples include optoelectronic components17,
semiconductor lasers with saturable absorbers18,19 or in
other compounded configurations20 as well as optically
injected semiconductor lasers21. However, despite these
promising developments, no large photonic SNN compris-
ing many individual photonic spiking units has yet been
demonstrated, nor an optical SNN that leverages spar-
sity.

Here, we report the first large-scale photonic SNN com-
prising of 40.000 neurons, representing a significant step
toward realizing a generic proof of concept neuromorphic
computing systems based on light. Our hardware archi-
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FIG. 1. (a) Schematic of the optical setup. The spatial light
modulator (SLM) is illuminated by a single-mode fiber cou-
pled superluminescent diode (SLED) that collimated by L1,
polarization filters by a polarizing beam splitter (PBS). Lens
L2 and microscope objective MO1 image the SLED’s coli-
mated beam, illuminating ∼ 40000 SLM pixels. L3 and MO2

image the SLM on to a camera (CAM), and a diffractive op-
tical element introduced optical coupling between the pix-
els. (b) Excitable dynamics via the high-pass filtered Ikeda
map. We apply below excitation strength stimulus via in-
put u(5 : 55) = 0.5 (red shaded area) and above excitation
strength stimulus u(150 : 155) = 1 (green shaded area). The
neuron’s state variable s(t) exhibits an excitable dynamical
response only for the second input. Slow dynamics y(t) create
strong negative forcing only in the second case. (c) Concept
of excitability with slow, negative-feedback forcing an Ikeda
map. At rest, the system resides close to stable fixed-point A.
If an external perturbation pushes the state past the unsta-
ble fixed-point B, the system is attracted to the upper stable
fixed-point C, trajectory illustrated by green arrow. There,
the slow-feedback term builds up until it projects the system
back to stable fixed point A, trajectory illustrated by red ar-
row. Parameters were γ = 0.3, β = 0.45, δ = 0.1, Θ = −0.1π,
η = 0.995.

tecture is built using off-the-shelf components, making it
both cost-effective and easily scalable to much larger sys-
tems. We employ a liquid-crystal on silicon spatial light
modulator (SLM) in combination with a CMOS cam-
era, and both these devices now readily feature more
than 106 pixels. The hybrid nature of the setup, com-
bining digital control with analog photonic processing,
offers tremendous flexibility, allowing for straightforward
modifications to the governing dynamical equations and
adaptability to various computing tasks. At its core, the
system utilizes a photonic response modeled by an Ikeda
map22 that corresponds to an iterative map defined by
a feedback term and a trigonometric nonlinearity, which
provides the necessary nonlinearity and is a prominent
model system used to study complex dynamics. Similarly
to23 we introduce a second, slower dimension to the Ikeda
map acting as negative and hence inhibitory feedback,
which is the first time such a addition to the Ikeda map

has been proposed. This slow-fast, 2D system enables
excitability for first time with an Ikeda map, making our
photonic neurons respond only when an input exceeds a
threshold, akin to biological excitable dynamics.
We conduct the basic characterization of the system

and its excitable dynamics, determining its excitability
threshold, its excitability type, response latency as well
as refractory period. We then demonstrate its capability
to process information through photonic spikes, and we
employ two approaches for training it to the MNIST digit
recognition task: single-shot learning by ridge-regression
for training in the context of liquid state machines
(LSM)24, and the hardware-friendly black-box simultane-
ous perturbation stochastic approximation (SPSA) gra-
dient approximation technique25, ensuring efficient op-
timization without the need for access to internal vari-
ables. It is the first time SPSA is employed to train a
hardware neural network, and while here we exclusively
train offline, contrary to the LSM-based single-shot train-
ing the SPSA training can in principle be directly mi-
grated to photonic hardware. In a novel approach, we
utilize latency encoding, where each neuron computes us-
ing only a single spike per computation, maximizing effi-
ciency and minimizing power consumption. Additionally,
we implement sparsity in the network through a Rank
Order10 inspired coding scheme, which sparsifies the SNN
activity by only permitting activity for a first neurons
to spike, further enhancing the system’s efficiency and
speed. When the system is trained with the SPSA algo-
rithm we find that sparsity aids the SNN’s classification
accuracy, with the best results of 83.5% test accuracy
achieved using only 22% of the neurons. Most impor-
tantly, we find that under such conditions we can strongly
sparsify the network; using only 8.5% of all neurons we
still achieve a test classification accuracy of 77.5%. It
is the first time that photonic nonlinearity, excitability,
latency encoding and sparsity have been experimentally
leveraged for computing, and our proof of concept sys-
tems paves the way for future exploration of large-scale
photonic neuromorphic systems.

II. THE PHOTONIC SPIKING NEURAL NETWORK

Our experiment allows for the optical emulation of a
SNN, and the core component is a SLM, which is a dy-
namically reconfigurable optical device akin to an opti-
cal display. However, instead of emitting light, SLMs
are operated with an external illuminating light source,
whose amplitude or phase profile they modulate spatially
and temporally. Their spatial modulation happens with
discrete pixels of ∼10 µm size, and today SLMs readily
host beyond 106 pixels that can be modulated on 50 µs
to 1 s timescales. This equips SLMs with an astonish-
ing level of parallelism, and as a result, they have driven
extensive research in the fields of optical processing and
computing15,26.
The experimental setup is schematically illustrated in
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Fig. 1. Here, we use a liquid-crystal on silicon SLM
(Santec SLM-200) with a pixel pitch of ∼ 8.0µm and a
total of 1920 × 1200 pixels. The illumination source is
a super-luminescent diode (SLED, Thorlabs SLD850S-
A20W, λ = 850 nm), which is collimated by an achro-
matic lens (L1, Thorlabs AC254-075-B-ML) and polar-
ization filtered via a polarizing beam splitter (PBS, Thor-
labs CCM1-PBS252/M) in whose transmission direction
the illumination propagates towards the SLM. The SLM
is operated in the intensity modulation mode by adjust-
ing the illumination’s polarization to 45◦ relative to its
slow and fast axis via a half-waveplate (λ/2, Thorlabs
AHWP10M-980). In order to illuminate a large SLM-
area, an achromatic lens (L2, Thorlabs AC254-035-B-
ML) and a microscope objective (MO1, Olympus LM-
PLN10XIR) image the SLED’s collimated beam onto the
SLM surface, creating an illuminated area spanning more
than 200×200 pixels, and the illumination field for pixel
i is E0

i . While the SLM is generically a 2D plane, we here
simplify the notation and use index i to allocate pixels
according to their position within the 2D SLM state that
is flattened to a vector. The optical field reflected off the
SLM passes again the PBS to divert the signal to the
camera (CAM, IDS UI-3042SE-M), and the associated
polarization filtering introduces a nonlinearity according
to

Ei(t) = E0
i sin

(
2π

xi(t) + Φi

κSLM
i

)
, (1)

where xi(t) is the grayscale value of SLM pixel i, Φi is a
constant phase offset specific to the device and its pixels;
κSLM is a conversion factor relating SLM grayscale to the
optical polarization’s angle, and t is an integer time.

In order to create coupling between SLM pixels and
hence our neurons, a diffractive optical element (DOE)
can be positioned between the PBS and the camera. For
more details about this concepts and resulting network
topology please see27,28. Finally, the camera, positioned
at the focal plane of the second microscope objective
(MO2, Olympus LMPLN10XIR) records the normalized
optical intensity

Ii(t) ∝ |
N∑
j=1

WDOE
i,j Ej(t)|2, (2)

whereWDOE is the optical coupling via the DOE In prac-
tice, the optical intensity is scaled with optical attenua-
tors such that the camera image, normalized between 0
and 1, is maximally leveraging the camera’s 8-bit res-
olution. Here, the illumination of the SLM’s surface is
not uniform but follows a Gaussian intensity distribution.
Furthermore, there are small yet notable local differences
in phase offset Φ and conversion factor κSLM. In order to
account for these non-idealities, we measure the nonlinear
transfer function of each pixel individually and determine
all 40.000 I0i = |Ei|2, Φi and κSLM

i through fitting the re-
sponses to the squared version of Eq. 1. These we then

use to normalize the amplitude dynamics, to compensate
for the variations in offset and gray-scale to phase change
coefficient for each single pixel.
In order to create a nonlinear dynamical map we use

the camera state at time t to define the SLM’s state at
time t + 1. This loop is established by a standard dig-
ital computer, via which we also add input information
u(t+ 1) as well as a potential bias term Θ, creating the
governing equations according to

x(t+ 1) = βI(t) + γW inju(t+ 1) +Θ, (3)

s(t+ 1) = sin2(2π
x(t+ 1)

κSLM
). (4)

The SLM’s state is updated at each time t + 1 using
x(t + 1) of Eq. (3). The feedback as well as the infor-
mation input strengths are linearly scaled with β and
γ, respectively, and Winj are the input connections with
randomly distributed values between 0 and 1. Finally,
Θ = Θ0 + Φ allows including a bias independently for
each neuron via the additional phase offset Θ0. These
equations correspond to a discrete Ikeda map, which in
the past has extensively been used for implementing pho-
tonic NNs22. As our photonic SNN’s state we use s(t+1)
of Eq. (4) is calculated at each time t+1. In our experi-
ment, the time of one update is 800 ms. However, in the
following we will set time as unit-less since here we re-
port proof of concept results and want to allow for direct
comparability between simulations and experiment.

A. Creating excitability

While the Ikeda map exhibits a wide range of com-
plex behavior, it does not provide excitability. This is
the same for the McCulloch and Pitts neuron in its time-
discrete form29, however, by simple addition of an inte-
grating term, such maps can become excitable30,31. In
order to achieve this, we amend the internal state of our
neurons according to

x(t+ 1) = −δy(t) + βI(t) + γWinju(t+ 1) +Θ, (5)

y(t+ 1) = ηy(t) + x(t+ 1), (6)

where y(t+ 1) is the second, slow dimension of our sys-
tem whose retainment of previous states is scaled by η.
The slow dynamics of Eq. (6) act upon our Ikeda system
of Eq. 5 through negative feedback with strength δ. Pa-
rameters for our following initial evaluation were γ = 0.3,
β = 0.45, δ = 0.1, Θ = −0.1π and η = 0.995.
Figure 1(b) shows the consequence of slow term y(t)

with negative forcing on the fast dimension s(t). First,
we perturb the system with a below excitability thresh-
old input u(50 : 55) = 0.5 (dashed blue data), and one
can see that the response of the system s(t) < 0.1 re-
mains small. However, this changes drastically for the
following perturbation u(150 : 155) = 1, and the sys-
tem responds with a single, large amplitude spike with
s(t) > 0.8. The principle underlying our excitability is

A spiking photonic neural network of 40.000 neurons, trained with rank-order coding for leveraging sparsity



4

50 100 150 2000
0

0.2

0.4

0.6

0.8

1

0

0.15

0.3

0.45

50 100 150 2000

S
p
ik

e
 a

m
p
lit

u
d
e

Time t Time t

In
je

ct
io

n
 s

tr
e
n
g
th

 γ

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Numerics
Experiment

Injection strength γ

S
p
ik

e
 a

m
p
lit

u
d
e

(a) (b) (c)

N
u
m

e
ri

cs

E
x
p
e
ri

m
e
n

t
FIG. 2. Response to a short perturbation, with u(500 : end) =
1. (a) Excitability of x(t + 1) in Eq. (5) as a function of
injection strength γ. An excitable response is attained for
γ > 0.25. (b) Experimental data agrees exceptionally well to
the numerical model. (c) Maximum amplitude of a response
versus γ displays the almost ideal all-or-nothing response of
the slow-negative feedback forced Ikeda map.

illustrated in Fig. 1(c). For sufficiently small feedback
β, the system is non chaotic, and we chose offset Θ such
that it resides close and left to its lower stable fixed-point
A. From there, external stimulus u(t + 1) can perturb
it such that it either remains below or that it passes un-
stable fixed-point B. If the system remains below B, it
will directly relax back to around A with some damped
oscillatory behavior. However, should perturbation u(t)
push the system passed unstable fixed point B, then s(t)
will continue towards upper stable fixed-point C. This is
where the slow forcing of Eq. 6 starts to matter. While
close to point A, the high-pass filtered, i.e. integral term
of y(t) remains small. However, this integral term rapidly
grows if the system resides around fixed-point C due to
the large s(t) amplitudes. After a short buildup, y(t) is
of sufficient strength to force the system to again passed
the unstable fixed-point B, from where it relaxes back
into its resting state near point A.

In Fig. 2 we compare numerical simulations of
Eqs. (5,6) with our experimental findings. In the ex-
periment we removed the DOE in order to character-
ize the response of individual neurons that is not per-
turbed by the impact for SNN topology. We optimized
hyperparameters to β = 0.475, Θ = −0.35, δ = 0.1 and
η = 0.995, and here we subject the system to a single
perturbation of u(50 : 75) = 1. Figure 2(a,b) show the
response of the system for a range of γ ∈ [0, 0.5] for the
numerical model and the normalised experiment for one
neuron i = 20000, respectively. For too small injection
strength γ, the system is not pushed across unstable fixed
point B, and no excitable response is obtained. As soon
γ exceeds this threshold, which for this set of hyperpa-
rameters is at γ ≈ 0.23, the system does a full amplitude
excursion, passing from unstable fixed point B to C, fol-
lowed by forcing the system back again to stable fixed
point A. Figure 2(c) shows the maximum amplitude to
better illustrate the generic all-or-nothing response of an
excitable neuron for, both, the numerical model and the
normalized experiment for which we averaged all 40.000
SNN responses. Here, we see the damped oscillations fol-
lowing a perturbation that were observable in Fig. 1(b)
in detail. They are more pronounced in the experiment,
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FIG. 3. Spike rate and refractory period. (a) Continuous
stimulation with u(500 : end) = 1 results in a continuous
spike train as soon as the excitation threshold is crossed. (b)
The spike rate as a function of injection strength γ exhibits
classical type 1 excitability characteristics. (c) Numerical sim-
ulation. After an initial excitation with u(500 : 505) = 1 we
subject the neuron to a second spike at time u(506 + τ :
510 + τ) = 1 at γ = 0.3. For τ < 12 the neuron cannot be
re-excited, demonstrating the refractory period this modified
Ikeda map. All data are from the experiment.

which we assign to an asymmetry of the SLM’s nonlinear
function that varies from pixel to pixel.

Excitability type and refractory period

In the following we further inspect the nature of our
photonic spiking neurons. We here exclusively show ex-
perimental data, however, each data are exceptionally
well reproduced by the numerical model. We start by
subjecting the photonic SNN to a constant input stimu-
lus according to u(500 : end) = 1, and Fig. 3(a) shows
the representative response of a single photonic neuron.
Starting from a threshold around γ = 0.27 the neuron
abruptly starts to exhibit spike train responses with a
spike-rate of∼ 0.035 which increases with γ until it satu-
rates at 0.45, see Fig. 3(b).
The excitability behavior of neurons is broadly cate-

gorized by two classes of responses. Neuron excitabil-
ity type 1 refers to a response where a neuron can fire
spikes at arbitrarily low frequencies when the excitabil-
ity threshold is exceeded. It hence exhibits a continu-
ous transition from no spiking to spiking, meaning the
spike rate increases smoothly from zero as the stimulus
intensity increases. It is commonly associated with neu-
rons that exhibit a saddle-node bifurcation mechanism in
their firing dynamics. Neurons with excitability type 2
exhibit a sudden jump to a non-zero firing rate when the
excitability threshold is exceeded. In contrast to Type
1, neurons hence start spiking at a finite frequency. This
behavior is associated with a Hopf bifurcation in the neu-
ron’s dynamics. According to the experimental and nu-
merical data of our photonic SNN exhibits dynamics ac-
cording to Type 2 excitability.
Another characteristic property of neurons are their re-

fractory period. The refractory period refers to the time
following an preceding spike during which a neuron is
less or not excitable. Here, one again has to differentiate
between two distinct behaviors. An absolute refractory
period corresponds to a time during which a neuron is
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not excitable, regardless of the strength of an input stim-
uli. During a relative refractory period the neuron can
fire again, but only if the incoming stimulus is stronger
than usual. To investigate our photonic SNN’s refractory
behavior we subject its neurons to an initial input with
u(500 : 505) = 1, which is followed by a second stimulus
that is delayed by τ according to u(506+τ : 510+τ) = 1.
In Fig. 3(c) we show the response of a neuron as we tune
input delay τ , and this response is representative of all
neurons in the network. We can clearly see that after
the initial spike the neuron is incapable of spiking again
for a delay τ < 8. Importantly, when the strength of the
second stimulus is raised to u(506+ τ : 510+ τ) = 2 then
this refractory period window disappears entirely. Our
photonic SNN therefore harbors neurons that exhibit a
relative refractory period of 7 time steps, yet they do not
exhibit an absolute refractory period.

Spike latency

As the final fundamental characterization we analyze
the latency in our photonic neurons’ responses as a func-
tion of input strength γ. In biological neurons a stronger
stimulus usually results in a shorter latency between the
input and the neuron’s spiking response, while weaker
stimuli may lead to longer delays. Figure 4(a) shows an
example for cat neurons in an auditory structure called
the central nucleus of the lateral lemniscus, for which the
spike-latency drops from 15 to 5 ms over the dynamic
range of the neuron’s input. Such spike latency is an im-
portant mechanism for coding concepts that use temporal
neuronal coding strategies with a particular relevance for
SNN concepts that leverage sparsity through rank-order
coding concepts. For our photonic SNN we characterized
latency ∆ between spike-response and input stimulus as
a function of injection strength γ, and our hyper param-
eters were same as mentioned previously. As a neuron’s
time we heuristically defined the moment when its am-
plitude crosses threshold s(t) > 0.6, and the photonic
SNN’s latency response curve ∆(γ) for all 40.000 neurons
is shown in Fig. 4(b). Just as for the biological neuron,
∆(γ) follows an exponential decay, here dropping from
∆(0.42) = 7 to ∆(γ > 1) = 2, which in turn enables
the photonic SNN to latency-encode its response to an
injected information with a resolution equivalent to 2.8
bits.

III. SPARSITY VIA RANK ORDER CODING FOR
MNIST DIGIT RECOGNITION

A. The sparse photonic SNN

A clear discrepancy between biological brains and cur-
rent NN concepts is that the brain leverages extreme
sparsity, with only a fraction of neurons spiking for each
reaction to sensory stimulus33. While the precise al-

FIG. 4. between applying an above threshold perturbation
and a neuron’s response. (a) Typical spike latency of a bio-
logical neuron, data from32. (b) Our experimental results of
spike latency δ exhibits very similar behavior.
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FIG. 5. (a) Spatio-temporal spike pattern responses of our
photonic SNN’s to MNIST examples of digits 2, 8 and 1.
Histogram of spike latencies ∆ for (b) ∆l = 1 and (c) for
∆l = 23. This corresponds to only allowing the earliest or
neurons to spike, respectively, resulting in corresponding spar-
sities of 98.98% and 18.5%.

gorithm leveraged by brains remains still unclear, one
path to exploit sparsity in neuron activity is using spike
latency10. Using latency as information encoding state
variable, neurons’ spike responses in a SNN are ranked
according to their spike latency ∆. As shown in Fig. 4(b),
latency is directly related to the strength of a neuron’s
input, and as such rank order coding via ∆ comes with
highly attractive prospects. Higher ranked neurons cor-
respond to the ones receiving the strongest input, estab-
lishing a straight forward mechanism to map an input’s
hierarchy to a time window in a SNN’s response. This
allows for a direct avenue for information compression, as
shown for the example of image reconstruction34. This
temporal hierarchy opens the possibility to easily enforc-
ing sparsity by only allowing a certain number of latencies
and hence neurons to spike before using lateral inhibition
to quench the SNN’s activity as a whole.
We apply the same concept to the MNIST handwritten

digits as input information. The so far scalar input u(t)
is now replaced with a vector containing the flattened
MNIST images, and as stated in Eq. 5, input connectivity
matrix Winj was randomly initialized between -1 and 1
and normalized by its largest eigenvalue. For 23 time
steps, input u(t) is associated to the same image in order
to give the photonic SNN time to respond. Furthermore,
sequential inputs are separated by 25 time steps during
which the input is clamped to zero, which prevents the
content of sequential images perturbing the response due
to transient dynamics in slow variable y(t). However,
this directly illustrates the potential of our concepts to
process the context of sequential images, i.e. movies.

A spiking photonic neural network of 40.000 neurons, trained with rank-order coding for leveraging sparsity
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Figure 5(a) shows temporal response of all neurons
in our photonic SNN to the injection of three different
MNIST examples of digits 2, 8 and 1. This spatio-
temporal response clearly reveals how latency encod-
ing translates the purely spatial features of the differ-
ent MNIST images into temporal features imprinted on
a diverse spatial distribution of latency delays ∆. The
sparsity-inducing procedure is the following. We start
counter c as soon as the first neuron spikes in response
to an input at time t0, and c increases until it reaches
its limit ∆l after which we switch the photonic SNN’s
energy supply off:

c(t) = t− t0, (7)

E0|c(t)>∆l = 0. (8)

We hence allow the photonic SNN to evolve according to
Eqs. (5,6) until c(t) > ∆l. At time t > t0 +∆l we would
switch the illuminating SLED diode off, corresponding
to strong lateral inhibition of all photonic SNN neurons.
This takes the equivalent role of clamping the photonic
SNN off its energy supply, and hence the energy con-
sumption of the SNN would be significantly reduced.

However, in our proof of concept experiments we let
our SNN run freely to record all spiking responses, and
we emulate the effect of such sparsity through lateral in-
hibition simply by only considering neurons that have
spiked a times c(t) ≤ ∆l; all other neurons are ignored
for the following analysis. Figure 5(b) and (c) show the
photonic SNN’s spike latency distribution histograms for
setting ∆l = 1 and ∆l = 23, respectively. For these val-
ues, 1.02% and 81.5% of neurons are allowed to spike,
corresponding to 98.98% and 18.5% sparsity. The sig-
nificant diversity of temporal responses in our photonic
SNN can be appreciated from the wide distribution of
spike delays in Fig. 5(b). There, we only allow the nar-
rowest latency window of ∆l = 1, yet measured across
6060 MNIST examples, latencies are spread across 12
time steps.

B. Using the sparse photonic SNN for MNIST digit
classification

In our final benchmark evaluation, we train our pho-
tonic SNN to classify the hand written digits of the
MNIST benchmark test in the context of a LSM, i.e.
only training the photonic SNN’s output weights Wout

in an offline procedure. A sparse network response was
used as the input, with sparsity defined by the sequen-
tial inclusion of neurons ranked by their spike delay. The
input dataset was initially formed by selecting neurons
with the shortest spike delays. Neurons with the next
shortest delays were then incrementally added, followed
by those with increasingly longer delays. This process
was repeated, resulting in a series of sparse network re-
sponses, each of which served as an input. As state-vector
for creating our photonic SNN’s prediction we used each
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FIG. 6. (a) Testing accuracy convergence during SPSA train-
ing, using a sparsity of 78.06%. (b) We achieve a constant
training accuracy of 100% until a sparsity of 78.06%. Most
importantly, the testing accuracy is highest at the same high
sparsity, and even a network operated with 98.08% sparsity
still achieves 63.11% testing accuracy. (c) Confusion matrix
for the highest test accuracy achieved with 78.06% sparsity.

neuron’s amplitude once it crossed si(t) > 0.6, which we
defined as threshold for registering a neuron’s response as
a spike. As loss function L we use the normalized mean
square error, and as training routing we restrict our-
selves to a hardware-friendly gradient estimation tech-
nique called Simultaneous Perturbation Stochastic Ap-
proximation (SPSA). This stochastic gradient descent
based method was introduced by J.C. Spall in 198735,
and it is excellently suited for hardware-based optimiza-
tion as per epoch it only requires two performance evalua-
tions to estimate the gradients for all weights. It is thus a
computationally highly efficient algorithm that has been
used to optimize simple NN controllers36. Each training
epoch, the SPSA algorithm perturbs and updates Wout

according to

g =
L(Wout + ϵΛ)− L(Wout − ϵΛ)

2ϵVAR(Λ)
Λ ≈ ∇L(Wout),

(9)

Wout ←Wout − ηg. (10)

Here, ϵ = 1/210 is a small constant that here we set
to the resolution of a 10-bit SLM. Furthermore, Λ is
a vector comprising elements randomly drawn at each
training epoch from the two integers +1 and -1. After
hyperparameter optimization we set the learning rate to
η = 10−4.
We trained our system using 5000 random examples of

the MNIST data set, while we used further 1060 exam-
ples for testing that have not been part of the training
dataset. Figure 6(a) shows the convergence of our pho-
tonic SNN’s training and testing error when using an
inhibition at ∆l = 3, at which only 21.94% of all neurons
spike, corresponding to a sparsity of 78.06%. From train-
ing our photonic SNN we find that our system excellently
learns the data of the training set, reaching 100% training
accuracy after ≈ 105 training epochs. However, the test-
ing performance is slightly lower, reaching 83.49%. The
remains below the limit of a linear classifier (≈ 93%), and
this slightly low testing performance we assign firstly to
the still limited size of our training data set, and secondly
to the limit resolution in spike latency of only 2.8 bit.
Our most important finding is however the excellent

performance of our photonic SNN in the context of spar-
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sity, see experimental data in Fig. 6(b). The first relevant
finding is that sparsity helps the SNN’s expressivity, and
our testing accuracy systematically increases from 76.6%
to 83.49% when we augment the photonic SNN’s spar-
sity from 18.5% to 78.06%, respectively. The second and
most astonishing outcome is that testing accuracy re-
mains very robust against even more radical enforcing
of sparsity. For sparsities of 91.42% and even 98.08%
we still reach testing accuracies of 77.55% and 63.11%!
This opens powerful approaches to strongly reducing a
network’s energy consumption by adjusting the allowed
latency window ∆l to the difficulty of the task. Finally,
Fig. 6(c) shows the confusion matrix for our best opera-
tion conditions at 78.06% sparsity.

IV. CONCLUSION

In our work we have experimentally demonstrated the
implementation of an opto-electronic SNN comprising a
record of 40.000 neurons. Our proof-of-concept photonic
SNN is exclusively based on off-the-shelf components,
making it a prime candidate for wide exploration in pho-
tonic research. Using a LCOS-SLM operated in intensity
modulation we make the system excitable by introduc-
ing a slow variable via the digital control computer be-
fore closing the loop and sending the state recorded by a
CMOS camera back to the SLM. Based on this experi-
ment we are able to identify and characterize several key
metrics of biological neurons, such as excitability type
(here type 2), a relative refractory period of 6 times steps
as well as an exponentially decaying spike latency.

These attractive features we then leverage to study
SNN computing accuracy in the context of network spar-
sity. We systematically enforce sparsity in our photonic
SNN’s response by leveraging a lateral inhibition mecha-
nisms that is gated through time window ∆l in the con-
text of spike-latency driven rank order coding. Tuning
∆l from 1 to 23 dramatically changes the photonic SNN’s
sparsity when injected with MNIST hand written digit
data. For the shortest sparsity window with ∆l = 1 only
1.02% of all neurons spike, corresponding to a sparsity of
98.98%, while for ∆l = 23 these numbers correspondingly
increase to 81.5% spiking neurons and 18.5% sparsity.
Most fascinating in our finding is however the effect spar-
sity has on our photonic SNN’s classification accuracy.
Firstly, we find that sparsity has a beneficial impact upon
the system’s accuracy, which is expected due to associ-
ated increase in response expressivity, and the best clas-
sification test accuracy of 83.49% is achieved at 78.06%
sparsity. Secondly, via the simple gating mechanism in-
troduced through ∆l one now has a direct mechanism at
hand that enables to almost continuously optimize be-
tween the trade-off of task-accuracy versus response time
and energy consumption. The fastest and most efficient
reply, i.e. for ∆l, only requires counting the very first
neurons to spike, corresponding to 1.02% network activ-
ity or 98.98% sparsity. With this fast and highly efficient

network the photonic SNN still achieves a testing accu-
racy of 34.2%, more than three times above chance. This
is certainly far away from perfect, yet it allows ultra-fast
responses and efficiency, e.g. in the context reflex-like
fight-or-flight responses for artificial systems. Simply by
increasing ∆l one increases the system’s accuracy in con-
ditions where time and energy are not limited resources.
This is the first time such a powerful attention and re-
source regulating mechanism has been demonstrated in
a photonic SNN.
Finally, we would like to point out that the large size of

our photonic SNN is fundamentally required for efficient
rank-order coding. This temporal information embed-
ding concept fundamentally relies on sparsity, making use
of the increasing expressivity of geometric patterns when
only a small subset of states is allowed to be active. Sim-
ply replacing the 40.000 neuron’s we have implemented
with the 8560, corresponding to the activity of the best
performing 78.06% sparsity, would hence not create the
same performance.
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