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Why knowledge graphs for nuclear systems?

What is a knowledge Graph

•A knowledge graph is a data structure that represents real-world entities and 
their relationships.

• It's like a network where nodes are entities and edges are connections 
between them.

•A map of information, where the connections reveal insights and patterns

Key Benefits

•Natural Representation: Mirrors how humans think and understand complex 
relationships.

•Human-Centric: Combines data with domain expertise, making information 
more accessible and understandable.

•Data-Driven Insights: Enables powerful data analysis and discovery of hidden 
connections.

Why they’re key for critical Infrastructure

•Ongoing shift from time based to condition-based maintenance

•Need for explainable decision making

• Importance of knowledge preservation in the long term

- By setting data into contextual relationships, 
we produce knowledge

- By applying or discerning some ontology of 
types we can develop and apply logical rules 
about data
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Real-world application & asset maintenance 
context

• Currently relies on time-based maintenance.

• Filters degrade during use, not over time.

• Degradation is measured through differential pressure, which 
can be monitored using existing sensors.

Real-World Application: Heavy water filters in CANDU reactors

• Challenges:

• Misreading's in data and data gaps from system outages.

• Subjectivity in asset lifespan assessments.

• Filters often replaced early or surpassing expected pressure limits.

• Data Issues:

• Lack of segmented data for individual asset life.

• Hard-coded decisions limit adaptability.

Asset maintenance overview

Raw data from asset
Differential pressure across filter, showcasing challenge in 

segmenting and identifying individual filter lives
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Maintenance strategies & knowledge 
approaches

• Failure-Based Maintenance: Corrective action after 
failure.

• Planned Preventative Maintenance: Scheduled 
actions at fixed intervals.

• Condition-Based Maintenance: Real-time monitoring 
and predictive analytics.

• Intelligent Condition Monitoring: Leveraging sensor 
data, predictive modelling, and domain expertise.

Maintenance 
Strategies

• Expert Knowledge Capture: Encodes engineering 
insights for decision-making.

• Data Integration: Combines sensor data, historical 
records, and expert analysis.

• Decision Support: Provides actionable insights, 
reduces subjectivity, and enhances flexibility

Maintenance 
Approach 

Using 
Knowledge 

Graphs

A single filter life
Differential pressure across the lifespan of a single filter 

falls into broadly two stages a stable region, then an 
exponential degradation, these degrade with use
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Knowledge-driven insights for filter life 
optimization

Leveraging 
Knowledge Graphs

• Make engineering expertise 
implementation-agnostic.

• Model and predict filter degradation and 
remaining useful life.

• Tailor maintenance actions using 
comprehensive analysis of sensor data and 
expert insights.

Expected Benefits

• Improved reliability through precise 
maintenance.

• Reduced over-maintenance and failures.

• Enhanced ability to adapt strategies to 
evolving operational conditions

Temporal data in the graph
The graph holds time series data in 

relation to station and filter 

Clustering and path traversing
Can use clustering to find how pressure 

values relate across stations and 
quadrants
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Capturing expert knowledge

 Knowledge Elicitation Process

 Expertise is gathered from domain experts (e.g., thresholds for 
normalized pressure or operational rules in reactors). Interviews 
or literature help define key entities, relationships, and 
constraints.

 Converting Expertise to Graph Structure

 Expert knowledge is represented as nodes (e.g., 
DomainExpertise, Rule, DataPoint), attributes (e.g., thresholds, 
conditions), and relationships (e.g., TRIGGERED, RESULTED_IN).

 Types of Captured Knowledge

 Includes domain concepts (e.g., "normal pressure range"), rules 
(e.g., "pressure > 0.7 triggers alarm"), and functions (e.g., data 
normalization, classification).

 Validation Mechanisms

 Patterns in data are tested against rules (Rule nodes) to validate 
accuracy, ensuring that alarms or classifications align with 
domain knowledge.

Extract of plot showing low- 
and high-pressure extremes

Datapoints are marked and annotated

Knowledge Graph Capturing 
logic around annotation

Knowledge Graph doesn’t just capture 
data but the decision making structure 

as well
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Dynamic functionality

 Nodes hold references to 

 data

 functions

 rules

 subgraphs 

 These nodes hold a record of data 
processing

 Explainability through traceability

 Functions pull information from the 
nodes within the graph produce new 
nodes

  Rules evaluated logical conditions within 
the graph, allow graph modification

 In this case rules within the graph allow 
us to mark up the existing data based on 
queries and functions.

Analysis then annotation

We query the graph to identify key features and traits and 
annotate nodes with descriptions of those features

Station Quadrant Data point
Data 

annotation
Annotated 

Plot
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Explainable data pipelines

 Pipeline structure

 Data flows through a chain of functions 

 In this example : 

 Normalization -> Spike detection -> Rule evaluation

 Traceability 

 Each step is represented by nodes and 
relationships

 Queryable database of decisions 

 Connection to domain concepts

 Rule nodes link back to domain knowledge, rules 
are aligned with experts in the field. 

 Real-time explanations

 Clear paths for explaining decisions can be traced 
through graph

Explainability through traceability 

We can trace explainability through the graph. The reason 
some point is marked as the end of the filter is based on a 

record of functions and logic
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Integrating reasoning into maintenance

 Knowledge is used to find insights

 Generates Clear recommendations linked 
directly to detected issues

 Enables operators to focus on prioritized 
maintenance tasks

 Dynamic rule management 

 Rules can be adjusted dynamically within the 
system allowing flexibility

 Complex multi-condition rules can model 
real world problems more effectively

 Domain-ppecific adaptability

 The system supports specialized domains 
(e.g., nuclear reactors) by encoding expert 
knowledge into rules and thresholds.

 Easily scalable for other industries with 
complex monitoring needs.

#

A single filter life

Finally we have isolated the single filter life, using the graph 
structure we can trace decisions from inception to finally 

raising the alarm 
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Benefits for the nuclear sector

Enhanced safety through better monitoring

• Continuous data collection and real-time anomaly detection reduce the risk of unexpected failures.

• Complex rules (e.g., pressure and temperature thresholds) enable early identification of potential issues.

• Alerts and insights support quick, informed decision-making during critical situations

Improved maintenance scheduling

• Proactive identification of asset degradation allows maintenance to be planned ahead of time.

• Reduces downtime by ensuring components are replaced or repaired only when necessary.

• Historical data and trends support optimization of maintenance schedules for efficiency and cost savings

Knowledge preservation

• Expert rules and thresholds are encoded in the graph, ensuring they are preserved even as staff changes occur.

• The graph structure enables training and onboarding of new personnel, providing them with a clear view of decision 
pathways.

• Historical records of events and insights create a valuable resource for continuous improvement and regulatory 
compliance.
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Future potential

NeuroSymbolic integration

• Combine symbolic reasoning from 
the knowledge graph with machine 
learning to enhance interpretability 
and adaptability.

• Use the graph to encode explicit 
domain knowledge (e.g., rules, 
thresholds) alongside learned 
patterns from neural networks.

• Facilitate hybrid decision-making 
where rules guide the machine 
learning process and ML models 
handle complex, non-linear 
patterns

Graph learning elements

• Leverage the graph structure for 
advanced learning tasks like Graph 
Neural Networks (GNNs).

• Predict asset degradation trends by 
learning directly from graph-
structured data.

• Use relationships (e.g., CONTAINS, 
TRIGGERS, RESULTED_IN) to 
understand system-wide impacts 
and interactions

Guiding model building

• Input Design: Use graph 
relationships to define features and 
inputs for ML models.

• Example: Incorporate "normalized 
pressure" and "temperature" 
thresholds as constraints for 
learning algorithms.

• Model Interpretation: Use graph 
pathways to explain how machine 
learning models arrive at 
predictions.

• Feedback Integration: Dynamically 
adjust graph rules and structures 
based on ML outputs to improve 
accuracy over time.
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Thank you!
5 minutes for Q+A
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