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Hydrodynamic instabilities of propagating interfaces under Darcy’s law
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The hydrodynamic instabilities of propagating interfaces in Hele-Shaw channels or
porous media under the influence of an imposed flow and gravitational acceleration are
investigated within the framework of Darcy’s law. The stability analysis pertains to an
interface between two fluids with different densities, viscosities, and permeabilities, which
can be susceptible to Darrieus-Landau, Saffman-Taylor, and Rayleigh-Taylor instabilities.
A theoretical analysis, treating the interface as a hydrodynamic discontinuity, yields a
simple dispersion relation between the perturbation growth rate s and its wave number k in
the form s = (ak − bk2)/(1 + ck), where a, b, and c are constants determined by problem
parameters. The constant a characterizes all three hydrodynamic instabilities, which are
long wave in nature. In contrast, b and c, which characterize the influences of local
curvature and flow strain on interface propagation speed, typically provide stabilization
at short wavelengths comparable to the interface’s diffusive thickness. The theoretical
findings for Darcy’s law are compared with a generalization of the classical work by Joulin
and Sivashinsky, which is based on a Euler-Darcy model. The comparison provides a con-
ceptual bridge between predictions based on Darcy’s law and those on Euler’s equation and
offers valuable insights into the role of confinement on interface instabilities in Hele-Shaw
channels. Numerical analyses of the instabilities are carried out for premixed flames using
a simplified chemistry model and Darcy’s law. The numerical results corroborate with
the explicit formula with a reasonable accuracy. Time-dependent numerical simulations of
unstable premixed flames are carried out to gain insights into the nonlinear development of
these instabilities. The findings offer potential strategies for control of interface instabilities
in Hele-Shaw channels or porous media. Special emphasis is given to the critical role
played by the imposed flow in destabilizing or stabilizing the interface, depending on its
direction relative to the interface propagation.

DOI: 10.1103/PhysRevFluids.10.013201

I. INTRODUCTION

Premixed flames have long been known to exhibit two familiar hydrodynamic instabilities:
the Darrieus-Landau (DL) instability and the Rayleigh-Taylor (RT) instability. The DL instabil-
ity [1,2] is experienced by a premixed flame, or any interface, propagating towards a denser
fluid, while the RT instability [3,4] occurs when gravity points away from the denser fluid. In
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addition to these instabilities, flames propagating in narrow geometries such as a Hele-Shaw
channel or in a porous medium are prone to another hydrodynamic instability, namely, the
Saffman-Taylor (ST) instability. First described by Saffman and Taylor [5] for a material liquid
interface, the ST instability is encountered when a less viscous fluid displaces a more viscous
fluid.

The role of Saffman-Taylor instability for a propagating interface such as a premixed flame
was first studied by Joulin and Sivashinsky [6]. Their analysis, as well as subsequent ones in
combustion theory, e.g., Refs. [7–9], are not based on Darcy’s law as in Saffman-Taylor’s original
analysis, but use the so-called Euler-Darcy equation, which combines Darcy’s law with the inertial
terms of the Euler equation. Such models have been proposed based on heuristic arguments and
approximation, see, e.g., [10–12] and references therein. They do not have, however, a solid
foundation based on a consistent asymptotic derivation, unlike the case of Darcy’s law which can
be derived, in a Hele-Shaw channel for example, from the Navier-Stokes equation in the asymptotic
limit of zero channel width. In other words, Darcy’s law without the additional ad hoc terms used
in Euler-Darcy type equations, is the appropriate equation to use for an asymptotically correct,
leading-order description of the flow field in a narrow channel. This observation is supported by
recent combustion investigations [13–16] featuring Darcy’s law. In this paper we shall revisit the
theoretical analysis developed in [6] using the more appropriate Darcy’s law as well as relax-
ing some of the restrictions adopted therein. As we shall demonstrate, this will lead to a more
transparent description of the interface hydrodynamic instabilities in narrow channels or porous
media.

Another important motivation for this study is to clarify the critical role played by an imposed
flow in destabilizing or stabilizing the propagating interface, depending on the flow direction relative
to the direction of propagation. The effect of the direction of a parallel flow relative to that of
flame propagation on the effective propagation speed has been addressed in [17] both for wide
and narrow channels. Its effect on hydrodynamic flame stability has been studied recently in [9]
based on the Euler-Darcy model, leading to a dispersion relation generalizing that in [6]. Outside
the field of combustion, the stability of chemical fronts propagating in Hele-Shaw cells or porous
media using Darcy’s law has been addressed in several studies [18–21]. These have been conducted,
however, for freely propagating interfaces, that is, in the absence of an imposed flow, which has a
crucial role when considering the Saffman-Taylor instability, as we shall demonstrate. Therefore, it
is important to distinguish between the stability of freely propagating interfaces, such as the flames
investigated in the Hele-Shaw channel experiments of Ronney, Almarcha, and others [13,22–25],
from interfaces subjected to an imposed flow. Failure to appreciate this distinction may lead to
erroneous interpretation of experimental and numerical findings when comparing with theoretical
results. It is worth pointing out, for example, that the stability dispersion relation derived by Joulin
and Sivashinsky corresponds in a Hele-Shaw channel to a single specific value of the mean flow, the
value which allows an undisturbed (depth-averaged) planar flame front to be stationary with respect
to the channel walls. Strictly speaking, their results are not applicable to freely propagating flames,
which are commonly considered in the literature [16,26]. In this paper we shall provide a simple
dispersion relation combining the effect of the various hydrodynamic instabilities aforementioned
and accounting for the presence of an imposed flow.

The paper is structured as follows. A theoretical analysis is developed in Sec. II, accounting for
the interaction of the three hydrodynamic instabilities of a propagating interface in the presence of
an imposed flow and gravitational acceleration. In Sec. III, a brief review of the results based on the
Euler-Darcy model is carried out for the purpose of comparison with the pioneering work by Joulin
and Sivashinsky [6] and the recent work by Miroshnichenko et. al. [9]. In principle, the content of
Secs. II and III is of general validity and not restricted only to combustion applications. Section IV
presents a numerical study based on Darcy’s law focusing on premixed flame instabilities. Numer-
ical simulations are reported, including eigenvalue computations and direct numerical simulations,
which are used to validate and extend the analytical results.
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FIG. 1. (a) Schematic illustration, in the laboratory frame, of an unperturbed planar interface (solid line),
which separates two media with different physical properties and propagates with a speed S0

L (with respect
to upstream fluid 1). With respect to the laboratory, the speed of the planar interface is S0

L − V . Dashed line
indicates perturbed interface, which may propagate at a different speed due to kinematic and curvature-induced
effects. (b) The corresponding illustration of the situation in the frame moving with the planar interface.

II. DARRIEUS-LANDAU AND SAFFMAN-TAYLOR INSTABILITIES
BASED ON DARCY’S LAW: THEORETICAL ANALYSIS

A. Formulation

Consider an interface propagating with respect to the fluid below it (fluid 1) with local normal
propagation speed SL, as illustrated Fig. 1(a). The fluid is assumed to be flowing upwards from y =
−∞ with velocity u = V ey in the laboratory frame. The density ρ, viscosity μ, and permeability κ

are constant and equal to ρ1, μ1, κ1 in the lower fluid and ρ2, μ2, κ2 in the upper. For Hele-Shaw
channels, κ1 = κ2 = h2/12, where h is the channel width. The flow field u in the laboratory frame
is assumed to follow Darcy’s law, so that on each side of the interface,

∇ · u = 0, u = − κ

μ
∇(p + ρgy), (1)

from which it follows that the pressure field p satisfies Laplace’s equation, ∇2 p = 0.
In the unperturbed state, the interface is flat and SL = S0

L, where S0
L is assumed to be a known

constant. In the laboratory frame, the interface therefore propagates downwards with constant speed
S0

L − V . It is convenient to choose a moving frame in which the unperturbed planar interface is
stationary, assumed to be located at y = 0, as illustrated in Fig. 1(b). In this frame the flow field is
given by v = u + (S0

L − V )ey, and we shall write v = (u, v) to define its components. In the moving
frame, the governing equations are given by

∇ · v = 0, v = − κ

μ
∇(p + ρgy) + (

S0
L − V

)
ey, ∇2 p = 0 (2)

on both sides of the interface, and v = S0
L ey as y → −∞ as indicated in Fig. 1(b).

Let the (perturbed) interface be described by the equation y = f (x, t ) with unit normal n pointing
towards fluid 2. By definition, the local propagation speed SL (with respect to fluid 1) is given by
SL = (v − U) · n|y= f − , where U is the local interface velocity in the moving frame. In terms of f ,
we have

n = (− fx, 1)(
1 + f 2

x

) 1
2

, U · n = ft(
1 + f 2

x

) 1
2

. (3)
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At the interface, the continuity of mass flux and pressure and the definition of SL require

[[v · n]] =
(

ρ1

ρ2
− 1

)
SL, [[p]] = 0, SL = v − u fx − ft

(1 + f 2
x )

1
2

∣∣∣∣∣
y= f −

, (4)

with the notation [[ϕ]] ≡ ϕ|y= f + − ϕ|y= f − . The first condition follows from the conservation of
mass requirement [[ρ(v − U) · n)]] = 0 and the definition of SL. As for the second condition, this
is obtained upon integrating, across the interface, Darcy’s equation (which is also valid within the
interface).

To close the problem formulation, it is important to define the local propagation speed SL of the
curved interface appropriately. Following Markstein [27], we shall assume that the deviation of SL

from S0
L (the propagation speed of the unperturbed planar interface) has a linear dependence on the

local interface curvature of the form
SL

S0
L

= 1 + L∇ · n (5)

involving a Markstein length L. Such dependence on curvature has not been taken into account in
[6], where it was assumed that SL = S0

L and where the physical meaning of the planar value S0
L is

discussed, at least in the context of flame propagation in a Hele-Shaw channel. As emphasized in
this reference, S0

L need not be the usual so-called laminar flame speed but rather an effective (depth-
averaged) value thereof, which accounts for flame curvature along the Hele-Shaw channel wall’s
normal direction, as well as heat losses. In principle, S0

L may also depend on the effective (depth-
averaged) flow, V in our notation, an assumption which was adopted in [9]. The latter dependence
is, however, negligible in the asymptotic limit of zero channel width and hence will not be adopted
in our study.

More importantly, we note that the Markstein model (5), although phenomenological in nature, is
highly attractive due to its simplicity and its ability to realistically capture the effect of the interface
curvature on its propagation speed. Therefore, this model will be adopted in most parts of this
investigation. It must be emphasized, however, that other somewhat more complex models may be
used which are based on asymptotic analysis accounting for the inner structure of the interface as
well as local flow nonuniformities. This significant aspect is discussed in Sec. II D.

B. Linear stability of the planar interface

The basic solution (v, p, f ) = (v, p, f ) corresponds to a stationary flat interface with f = 0 and

v = S0
Ley, −p = ρ1gy + μ1

κ1
V y for y < 0, (6)

v = ρ1

ρ2
S0

Ley, −p = ρ2gy + μ2

κ2

[
V +

(
ρ1

ρ2
− 1

)
S0

L

]
y for y > 0, (7)

which satisfies clearly the governing equations and auxiliary conditions. To the basic solution
(v, p, f ) we add small perturbations such that (v, p, f ) = (v, p, f ) + (v′, p′, f ′), where the primed
quantities satisfy the linearized governing equations

∇ · v′ = 0, v′ = − κ

μ
∇p′, ∇2 p′ = 0.

In terms of p′ and f ′, the linearized interfacial conditions at y = 0 can be written as[[
κ

μ
p′

y

]]
=

(
ρ1

ρ2
− 1

)
S0

LL f ′
xx, [[p′]] = α f ′, f ′

t = − κ1

μ1
p′

y

∣∣∣∣
y=0−

+ S0
LL f ′

xx, (8)

where

α =
(

μ2

κ2
− μ1

κ1

)
V + (ρ2 − ρ1)g + μ2

κ2

(
ρ1

ρ2
− 1

)
S0

L. (9)
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The final linear stability problem is given by ∇2 p′ = 0, to be solved in the domains y > 0 and y < 0,
subject to the interfacial conditions (8) at y = 0 and the boundary condition p′ → 0 as y → ±∞.

Since the stability problem does not depend explicitly on x and t , we look for normal modes in
the form

p′ = p̂(y) exp (st + ikx) and f ′ = C exp (st + ikx),

where s is in general complex, k real, and C a constant. Then the equation ∇2 p′ = 0 implies that
p̂yy − k2 p̂ = 0, and hence, using the requirement p′ = 0 as y → ±∞, we have

p̂ =
{

Ae−ky for y > 0,

Beky for y < 0,

where A and B are constants and the wave number k is assumed positive. Upon imposing the three
interfacial conditions (8), we obtain⎡

⎣kκ2/μ2 kκ1/μ1 −(ρ1/ρ2 − 1)S0
LLk2

1 −1 −α

0 kκ1/μ1 s + S0
LLk2

⎤
⎦

⎡
⎣A

B
C

⎤
⎦ = 0. (10)

The solvability of this system of homogeneous equations yields the required dispersion relation:

s = αk

μ1/κ1 + μ2/κ2
− (μ2/κ2)(ρ1/ρ2) + μ1/κ1

μ1/κ1 + μ2/κ2
S0

LLk2, (11)

where α is as given in (9). A nondimensional form of this dispersion relation is obtained by
multiplying all terms by δ0

L/S0
L, where δ0

L is the diffusive thickness of the flat interface, and
introducing the nondimensional growth rate and wave number s̃ = sδ0

L/S0
L and k̃ = kδ0

L, as well
as the parameters

r = ρ1

ρ2
, m = μ1/κ1

μ2/κ2
, V = V

S0
L

, G = ρ2gκ2

S0
Lμ2

, M = L
δ0

L

. (12)

We thus obtain, dropping the tildes, the nondimensional dispersion relation

s = ak − bk2, where a = r − 1

1 + m
+ 1 − m

1 + m
V + 1 − r

1 + m
G and b = r + m

1 + m
M. (13)

C. Implication of the dispersion relation

We are now able to discuss the stability of the interface implied by the dispersion relations (11)
or (13). Since the ratios r and m are positive numbers, the stability is determined only by the two
nondimensional parameters a and M, or equivalently, by the dimensional parameters α and L.
Clearly, instability occurs when a > 0 (α > 0) or when M < 0 (L < 0). The second instability
condition, M < 0, corresponds to a Turing-type instability known as the diffusive-thermal instabil-
ity in combustion. This instability, whose investigation requires the analysis of the inner diffusive
zone of the interface, will not be considered in this paper. Therefore, we shall assume henceforth
that the Markstein length L and the Markstein number M are positive. It follows that the necessary
and sufficient condition for instability is that a > 0 (α > 0), with the instability being hydrodynamic
in nature. Specifically, the interface is prone to three hydrodynamic instabilities corresponding to
the three terms in a (or α). The first term leads to the Darrieus-Landau instability when the density
ratio r > 1, the second term to the Saffman-Taylor instability when (1 − m)V > 0, and the third
term to the Rayleigh-Taylor instability when (r − 1)G < 0. It is interesting to note that these three
instabilities combine in a simple and transparent manner in the expression of a. When a > 0, the
range of unstable modes is k ∈ (0, b/a), with the most unstable mode having growth rate s = a2/4b
and wave number k = a/2b. A graphical illustration is provided in Fig. 2 for selected values of a. It
is worth specializing the discussion to the case of flame propagation in Hele-Shaw channels which
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s

FIG. 2. Schematic illustration of the formula s = ak − bk2 for a > 0, a = 0, and a < 0, all with b > 0.

have been actively investigated recently [13,22,24,25]. In this configuration, κ1 = κ2 = h2/12,
where h is the channel width, and the dispersion relation (11) takes the form

s =
[
μ2(ρ1 − ρ2)S0

L

ρ2(μ2 + μ1)
+ (μ2 − μ1)V

μ2 + μ1
+ h2(ρ2 − ρ1)g

12(μ2 + μ1)

]
k −

(
ρ1μ2 + ρ2μ1

ρ2μ1 + ρ2μ2

)
S0

LLk2. (14)

Again the combined effect of the three hydrodynamic instabilities is encapsulated in the coefficient
of k. In premixed flames, since the density of the unburnt gas ρ1 is larger than that of the burnt
gas ρ2, the first term in the square bracket is always destabilizing, which is at the root of the DL
instability. For the same reason, the third term is stabilizing if g > 0 and destabilizing otherwise,
which is at the root of the RT instability. Typically, this instability is comparatively weak in small
channels due to the factor h2 then being small. As for the second term, this is seen to be stabilizing
if V < 0 and destabilizing if V > 0, since μ2 > μ1 in flames, given that the dynamic viscosity μ is
an increasing function of temperature in gases. This term is at the root of the ST instability. When
this term is large, the ST instability is dominant compared to the DL instability. For V less than a
critical value Vc, the flame is stable. This critical value is given, using (12) with m = μ1/μ2 and
G = ρ2gh2/12S0

Lμ2 in this case, by

Vc

S0
L

= Vc = − r − 1

1 − m
(1 − G). (15)

For zero gravity, G = 0, and the typical values r = 6 and m = 0.3 for flames, we have stability when
V < Vc = −7.14. Therefore, premixed flames with M > 0 can be stabilized if V is sufficiently
negative in this case.

It is also worth noting from (13) that the growth rates of the DL and RT instabilities, as well as that
of the ST instability obviously, depend on the viscosity ratio m. When m = 1, corresponding to flame
models where the viscosity is assumed constant, μ2 = μ1, the ST instability represented by the
second term in (13) is, of course, absent. It is also absent when V = 0, that is, for freely propagating
flames. This is so even when viscosity variations are taken into account, i.e., m �= 1, with their
effects being still felt through the terms representing the DL and RT instabilities. Furthermore, it is
worth emphasizing that the analysis of Joulin and Sivashinsky [6] was carried out for the specific
case V = 1, where the dimensional imposed (mean) flow V is equal to S0

L. Their results are often
used in the literature for freely propagating flames for which V = 0. The difference in the growth
rates between these two cases is highlighted in the following formulas:

V = 0 : s = (r − 1)(1 − G)

1 + m
k − r + m

1 + m
Mk2 (16)

V = 1 : s = r − m − (r − 1)G

1 + m
k − r + m

1 + m
Mk2, (17)

which coincide when the assumption of constant viscosity, m = 1, is made.
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D. Improved model for the local propagation speed

In this section we revisit the linear stability analysis by highlighting the differences brought about
by adopting propagation speed models other than the simple phenomenological Markstein model
(5). Such models include those considered in flame studies accounting for the dependence of the
flame propagation speed, not only on its curvature, ∇ · n, as first introduced by Markstein [27], but
also on the stretching, −nn : ∇v, induced by the local flow field [[28], p. 132], as advocated by
Karlovitz et. al. [29], Eckhaus [30] and Markstein [31]. Therefore, in general, one may anticipate
an interface propagation model of the form

SL

S0
L

= 1 + Lc ∇ · n + Lsnn :
∇v
S0

L

∣∣∣∣
y= f −

, (18)

involving two Markstein lengths, namely, Lc associated with the interface curvature and equal to
L in formula (5), and Ls associated with the flow strain. It is worth mentioning, however, that the
effect of curvature and flow stretching have been shown, for flames modeled by one-step chemistry
[32,33], to combine into a single quantity known as the flame stretch, defined as the fractional
rate of change of a flame area element [34–36] and equal to −S0

L∇ · n − nn : ∇v. Under such
circumstances, formula (18) is to be applied with Lc = Ls = L.

It is important to point out that although model (18) is more general than model (5) and that it has
been derived rigorously using multiscale analysis at least for premixed flames [37], its applicability
to our problem is questionable. This is because it has been derived for flows obeying the Navier-
Stokes equation rather than Darcy’s equation. It is imperative, therefore, to examine the applicability
of model (18) in the context of a Darcy’s flow. To this end we have carried out a dedicated multiple-
scale analysis for premixed flames with one step chemistry, following the approach of [32,33,38–
40]. This rather lengthy analysis, which is presented elsewhere [41], demonstrates that formula (18)
is valid, but in marked contrast to the classical analyses of [32,33], Lc �= Ls in general. Furthermore,
Lc in Darcy’s model may also depend on V and G. In view of this finding, it is useful to revisit the
linear stability analysis using (18) instead of (5). The analysis proceeds exactly as above, except for
the following modifications. Specifically, the linearized interfacial conditions (8) at y = 0 now read

[[
κ

μ
p′

y

]]
=

(
ρ1

ρ2
− 1

)(
S0

LLc f ′
xx + κ1

μ1
Ls p′

yy

∣∣∣∣
y=0−

)
,

[[p′]] = α f ′, f ′
t = κ1

μ1
(Ls p′

yy − p′
y)

∣∣∣∣
y=0−

+ S0
LLc f ′

xx, (19)

which leads to the dispersion relation

s = α(k + Lsk2) − [(μ2/κ2)(ρ1/ρ2) + μ1/κ1]S0
LLck2

μ1/κ1 + μ2/κ2 + Ls(r − 1)kμ2/κ2
, (20)

replacing (11). Introducing the Markstein numbers Mc = Lc/δ
0
L and Ms = Ls/δ

0
L, the dispersion

relation takes the nondimensional form

s = ak − bk2

1 + ck
, where a = r − 1

1 + m
+ 1 − m

1 + m
V + 1 − r

1 + m
G,

b = r + m

1 + m
Mc + aMs, c = r − 1

1 + m
Ms, (21)

which reduces to (13) when Ms = 0 and Mc = M.
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FIG. 3. Schematic illustration of the formula s = (ak − bk2)/(1 + ck) for a > 0, a = 0, and a < 0, all with
b > 0 and c > 0. Here, kc = a/b, km = (

√
1 + ac/b − 1)/c, and sm = bk2

m.

A brief discussion of the main implications of the new dispersion relation (21) is now provided.
We first note the asymptotic behaviors

s = ak − k2(b + ac) + · · · as k → 0 and s = −b

c
k + 1

c2
(b + ac) + · · · as k → ∞,

(22)
which indicates that the parabolic behavior of the original dispersion relation (13) is retained for
small values of k, while a linear behavior is approached for larger values. We also note that the
parameters b and c have to be both non-negative, which we shall assume, since otherwise s(k) would
be unbounded from above for k ∈ [0,∞), leading to an ill-posed problem. A schematic illustration
of the dispersion curve s(k) is provided in Fig. 3 for positive values of b and c. Since b > 0 and
c > 0, the necessary and sufficient condition for instability corresponds to a > 0 as found earlier,
with the instability being hydrodynamic in nature. The maximum of the dispersion curve for the
unstable cases is reached at (k, s) = (km, sm), where

km = 1

c

(√
1 + ac

b
− 1

)
, sm = bk2

m. (23)

III. REVISITING JOULIN-SIVASHINSKY ANALYSIS BASED ON THE EULER-DARCY MODEL

A. Analysis and discussion

The pioneering analysis by Joulin and Sivashinsky [6] was based on a Euler-Darcy model
addressing the stability of a premixed flame. This has been extended recently by Miroshnichenko
et al. [9] who included curvature effects characterized by a Markstein number M while accounting
for the presence of an imposed flow, characterized in our notation by the nondimensional parameter
V . In the analysis of [9] gravity effects were neglected and the unburnt to burnt density ratio
(r in our notation) and viscosity ratio (m) were lumped together into a single parameter, which
somewhat obscures their relative contributions. We shall briefly revisit the Euler-Darcy model
relaxing the assumptions made in [6,9] to match those of the Darcy’s model of the previous
section. In this section we shall adopt, for simplicity, the Markstein model (5) and provide in this
context a short derivation of the dispersion relation along with a discussion of its implications. For
completeness, the dispersion relation corresponding to the improved propagation speed model (18)
will be provided in the following section.

The analysis follows closely that of the previous section. The governing equations in the
laboratory frame, written on both sides of the interface, are now given by

∇ · u = 0, ρ
du
dt

= −∇(p + ρgy) − μ

κ
u, (24)
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instead of Darcy’s model (1). In the moving frame introduced above and illustrated in Fig. 1(b), the
equations, in terms of v = u + (S0

L − V )ey, take the form

∇ · v = 0, ρ
dv
dt

= −∇(p + ρgy) − μ

κ
[v − (S0

L − V )ey]. (25)

These are subject to the boundary condition v = S0
L ey as y → −∞, and the following familiar

interfacial conditions [42] at y = f (x, t ):

[[v · n]] =
(

ρ1

ρ2
− 1

)
SL, [[p]] = −

(
ρ1

ρ2
− 1

)
ρ1S2

L,

[[v × n]] = 0, SL = v − u fx − ft√
1 + f 2

x

∣∣∣∣∣
y= f −

. (26)

These conditions replace those in (4) and differ by the presence of the third condition, which
expresses the continuity of the tangential component of v, a requirement which is not needed
or enforceable for Darcy’s law. Furthermore, there is a jump in pressure across the interface
characterized by the second condition in (26), associated with the presence of the inertial term
on the left-hand side of (25); this jump is absent in (4).

The basic solution (v, p, f ) = (v, p, f ) corresponding to a stationary flat interface is given by
f = 0 and

v = S0
Ley, −p = ρ1gy + μ1

κ1
V y for y < 0, (27)

v = ρ1

ρ2
S0

Ley, −p = ρ2gy + μ2

κ2
V y +

(
ρ1

ρ2
− 1

)(
μ2

κ2
V y + ρ1S0

L

)
S0

L for y > 0. (28)

As shown in Appendix, the stability of this solution is found to be governed by the quadratic
dispersion relation,

(ρ1 + ρ2)s2 +
[
μ1

κ1
+ μ2

κ2
+ 2ρ1S0

L(1 + Lk)k

]
s − αk

+
[(

ρ1

ρ2

μ2

κ2
+ μ1

κ1

)
L −

(
ρ1

ρ2
− 1

)
ρ1S0

L

]
S0

Lk2 + 2ρ2
1 S0

L
2L

ρ2
k3 = 0, (29)

where α is as given in (9). A nondimensional form of this dispersion relation is obtained by
multiplying all terms by δ0

L
2
/ρ1S0

L
2 and introducing the nondimensional growth rate and wave

number s̃ = sδ0
L/S0

L and k̃ = kδ0
L and using the parameters defined in (12). Dropping the tildes,

we thus obtain the nondimensional dispersion relation

r + 1

r
s2 + [2(1 + Mk)k + ϕ]s − aϕk + (bϕ + 1 − r)k2 + 2rMk3 = 0, (30)

where a and b are as defined in (13) and

ϕ = 12Pr(1 + m)

ε2m
with ε =

√
12κ1

δ0
L

and Pr = μ1

ρ1D1
. (31)

We note that for a Hele-Shaw channel, κ1 = h2/12 so that ε = h/δ0
L. In the narrow channel limit

ε → 0, terms containing ϕ are dominant so that dropping all other terms implies s = ak − bk2,
which is the nondimensional dispersion relation (13) obtained above using Darcy’s law. In the
wide-channel limit, ε → ∞, ϕ → 0, leading to a classical result first obtained by Markstein [27] for
flames freely propagating in unconfined geometries. In the latter context, more accurate dispersion
relations are available, accounting for temperature dependence of all transport coefficients [42,43],
but these are not directly applicable in narrow confined channels which are our main focus.
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Furthermore, in wide channels the dependence of (the effective speed) SL in (5) on V cannot, strictly
speaking, be ignored [9,17] as we assumed herein [44].

To close this section, we derive now a simple stability criterion based on (30), assuming as before
that the Markstein number M > 0. Then the coefficients of s2 and s in (30) are clearly positive.
Therefore, by the Routh-Hurwitz criterion for the second-order polynomial in s, instability occurs if
and only if the constant coefficient of the quadratic equation is negative. This condition is equivalent
to finding whether the minimum value of the parabola,

g(k) = 2rMk2 + (bϕ + 1 − r)k − aϕ, (32)

in the interval k ∈ [0,∞) is negative. The minimum occurs at k = k∗ ≡ (r − 1 − bϕ)/4rM and its
value is g = g∗ ≡ −aϕ − 2rMk2

∗ . For stability, we then require g∗ > 0, i.e., aϕ < −2rMk2
∗ , and

this is applicable as long as k∗ > 0. When k∗ < 0, the condition for stability is simply given by
g(0) > 0, which requires a < 0. This second stability criterion coincides with the stability criterion
for Darcy’s law, whereas the first criterion pertains to cases with ϕ (or 1/ε) being sufficiently small,
leading to k∗ being positive when r > 1. This suggests that the predictions of the Darcy and Darcy-
Euler models agree with each other provided k∗ < 0, a condition which may be written as ε < εc,
where

ε2
c = 12Pr M(r + m)

m(r − 1)
. (33)

Note that both criteria may be combined to yield the necessary and sufficient condition for stability
in the form

a < ac ≡
{

0 for ε2 < ε2
c ,

− b(r−1)
8rM

ε2

ε2
c

(
1 − ε2

c
ε2

)2
for ε2 > ε2

c .
(34)

Note that the stability criterion is always a < ac = 0 when r < 1, since then km is clearly negative.
When r > 1 as for premixed flames, both cases in the stability criterion (34) occur. For premixed
flames, we can use the typical values Pr = 0.7, r = 6, and m = 0.3 to evaluate the coefficients in
(34), which implies that εc = 6

√
M and b(r − 1)/8rM = 0.5. The stability criteria can also be

written in terms of the critical velocity Vc below which the interface is stable. This critical value is
given by (15) for Darcy’s law, and this remains true for the Euler–Darcy model when ε < εc, which
always holds for r < 1. When ε > εc, Vc is to be computed using the second case in formula (34).
For r > 1 we thus find

Vc =
{− r−1

1−m (1 − G) for ε < εc,

− r−1
1−m

[
1 − G + r+m

8r
ε2

ε2
c

(
1 − ε2

c
ε2

)2]
for ε > εc.

(35)

We note that Vc → −∞ as ε → ∞, indicating that a flame in an infinitely wide channel is
impossible to stabilize by the flow.

B. The dispersion relation for Darcy-Euler with an improved interface-propagation model

The previous section was based on the dispersion relation (29) and its nondimensional form (30),
obtained when adopting the Markstein propagation speed model (5). In this section we provide for
completeness the dispersion relation corresponding to the improved propagation speed model (18),
whose derivation is briefly outlined at the end of Appendix. In dimensional form, the dispersion
relation is found to be given by

a2s2 + a1s + a0 = 0, (36)
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where

a2 = ρ1 + ρ2 + (ρ1 − ρ2)Lsk,

a1 = μ1

κ1
+ μ2

κ2
+

[
2ρ1S0

L + μ2

κ2

(
ρ1

ρ2
− 1

)
Ls

]
k + 2ρ1S0

L

[
Lc +

(
ρ1

ρ2
− 1

)
Ls

]
k2,

a0 = −αk+
[(

ρ1

ρ2

μ2

κ2
+μ1

κ1

)
S0

LLc+
(

1 − ρ1

ρ2

)
ρ1S0

L
2+αLs

]
k2+2ρ2

1 S0
L

2

ρ2

[
Lc+

(
1 − ρ2

ρ1

)Ls

2

]
k3.

As done above, a nondimensional form is obtained by multiplying all terms by δ0
L

2
/ρ1S0

L
2 and

introducing the nondimensional growth rate and wave number s̃ = sδ0
L/S0

L and k̃ = kδ0
L. Dropping

the tildes, we thus have

r + 1 + (r − 1)Msk

r
s2 + [2k{1 + [Mc + (r − 1)Ms]k} + ϕ(1 + ck)]s

−aϕk + (bϕ + 1 − r)k2 + [2rMc + (r − 1)Ms]k
3 = 0, (37)

where a, b, and c are as defined in (21), and ϕ, ε, Pr as defined in (31). It is worth noting that in the
narrow channel limit ε → 0, terms containing ϕ are dominant so that dropping all other terms leads
to the dispersion relation (21) derived for Darcy’s law. On the other hand, as ε → ∞, the terms
containing ϕ drop, and we obtain exactly the same dispersion relation as the one derived as Eq. (10)
in the paper by Creta and Matalon [45] provided Ms = Mc.

Illustrative results based on the dispersion relation (37) are shown in Fig. 4 for the parameter
values r = 6, m = 0.3, Pr = 0.7, and G = 0. The three subfigures in the top row are characterized
by the Markstein numbers Mc = 1 and Ms = 0, which correspond to cases using the Markstein
model (5) where the effect of strain on the interface propagation speed is ignored. In each subfigure,
the value of V is prescribed for selected values of ε. When ε → 0, the curve corresponding to the
dispersion relation (13) based on Darcy’s law and dependent on V is approached, while as ε → ∞,
the curves tend to that of the classical Darrieus-Landau instability, which is independent of V . The
effect of confinement is prominent for moderate and smaller values of ε, being destabilizing for
larger positive values of V .

Turning now to the middle row of Fig. 4, the effects of curvature and strain are both retained,
corresponding to the improved propagation speed model, Eq. (18), with Mc = Ms = 1. Comparing
with the top row, two observations are in order. First, the range of unstable modes and the maximum
growth rates are now significantly reduced. Second, the parabolic shape of the dispersion curves of
the first row is now strongly modified for larger values of k, in line with the discussion at the end
of Sec. II D. This change in shape is intimately associated with nonzero values of Ms and cannot
be avoided by adjusting the curvature Markstein number Mc while using the Markstein model,
Eq. (5). This is evident in the dispersion curves presented in the bottom row. These curves were
calculated for Ms = 0, with Mc adjusted to maintain the same range of unstable modes observed
in the middle row subfigures.

IV. DARRIEUS-LANDAU AND SAFFMAN-TAYLOR INSTABILITIES BASED ON
DARCY’S LAW: NUMERICAL RESULTS FOR A PREMIXED FLAME

A. Problem formulation

In the theoretical analysis of the previous sections, the interface is treated as a hydrodynamic
discontinuity in the spirit of the original studies of the Darrieus-Landau and Saffman-Taylor
instabilities [1–5]. The analysis also accounted for local curvature effects of the interface, following
the phenomenological approach of Markstein [27]. Strictly speaking, a more elaborate description
of curvature effects is possible, accounting for the internal structure of the interface, as found for
premixed flames in [33,39]. In the remainder of the paper we shall present a numerical investigation
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FIG. 4. The growth rate s versus the wave number k based on the dispersion relation (37). All calculations
are performed with the parameter values r = 6, m = 0.3, G = 0, and Pr = 0.7. The three cases in the top row
have Markstein numbers Mc = Ms = 1. The cases in the bottom row have all Ms = 0 and Mc, as indicated
in each subfigure. The dispersion curves correspond to three values of V , namely 0, 1, and −5, and selected
values of ε, as indicated. The axes of the subfigures in each row have the same horizontal and vertical length
scales and labels.

focusing on the hydrodynamic instabilities of premixed flames in order to complement and validate
the theoretical results of the Darcy’s law model.

We shall adopt a 2D configuration for our investigation as illustrated in Fig. 1, which may be as-
sociated with a depth-averaged description of flames in a Hele-Shaw channel. In this configuration,
fluid 1 corresponds to an unburnt reacting mixture and fluid 2 to a burnt gas mixture. For simplicity,
the unburnt gas is assumed to be deficient in a reactant which is consumed with a reaction rate
per unit volume given by an Arrhenius law ρBYRe−E/RT . Here, B is the pre-exponential factor,
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YR the reactant mass fraction, T the gas temperature, E the activation energy of the reaction, and
R the universal gas constant. For this model we may define the adiabatic flame temperature by
T2 = T1(1 + q), where q quantifies the amount of heat released by the reaction and T1 the unburnt
gas temperature. A nondimensional measure of the activation energy is then given by the Zeldovich
number β = E (T2 − T1)/RT 2

2 . Further, we shall assume that the thermal diffusivity D is equal to
the reactant diffusion coefficient, i.e., a unit Lewis number, so as to eliminate diffusive-thermal
(Turing-like) instabilities. We shall also ignore heat losses, whether these are by radiation or by
conduction to walls. These assumptions are adopted for simplicity in order to focus on the flame
hydrodynamic instabilities. Under these conditions, the temperature T and the mass fraction YR are
not independent but are related by the equation YR/YR,1 = 1 − (T/T1 − 1)/q, where YR,1 is the mass
fraction in the unburnt gas. Finally, the density is assumed to depend on temperature according to
the ideal gas law, while the transport coefficients are assumed to follow a power-law temperature
dependence. Specifically,

ρT = ρ1T1,
μ

μ1
= ρD

ρ1D1
=

(
T

T1

)n

with n = 0.7.

For convenience, we introduce the following nondimensional variables and parameters:

t∗ = tS0
L

δL
, x∗ =

(
x

δL
,

y

δL

)
, ρ∗ = ρ

ρ1
, u∗ = u

S0
L

, p∗ = h2 p

12μ1D1
, θ = T − T1

T2 − T1
,

μ∗ = μ

μ1
, λ = ρD

ρ1D1
, V = V

S0
L

, G = ρ2gh2

12μ2S0
L

, r = ρ1

ρ2
, m = μ1

μ2
, S = S0

L

S0
L,∞

,

where δL = D1/S0
L is the laminar flame thickness, and S0

L,∞ = [2β−2BD1(ρ2
2 D2)/(ρ2

1 D1)e−E/RT2 ]1/2

is the asymptotic formula for S0
L derived in the limit β → ∞ [[46], p.164]. The value of S, which

must approach unity as β → ∞, will be determined [by solving Eq. (48) below] numerically for the
typical finite value β = 10, adopted herein. Dropping the asterisks for t∗, x∗, ρ∗, u∗, p∗, and μ∗, the
two-dimensional governing equations in the laboratory frame can be written as

∂ρ

∂t
+ ∇ · (ρu) = 0, (38)

−μu = ∇p + rG

m
ρ ey, (39)

ρ
∂θ

∂t
+ ρu · ∇θ = ∇ · (λ∇θ ) + ω, (40)

ρ(1 + qθ ) = 1, μ = λ = (1 + qθ )n, (41)

where

ω = β2

2S2
(1 + q)1−nρ(1 − θ ) exp

[
β(θ − 1)

1 + q(θ − 1)/(1 + q)

]
. (42)

From Eq. (41), it follows that the density ratio r = 1 + q and the viscosity ratio m = 1/(1 + q)n,
since θ → 1 in the burnt gas as y → +∞ and θ → 0 in the unburnt gas as y → −∞.

B. Linear stability of the planar flame

In the laboratory frame the planar flame propagates in the negative y direction with a constant
nondimensional speed 1 − V since u = Vey as y → −∞; see Fig. 1. To study the stability of this
planar flame, it is advantageous to shift to a coordinate system moving with the flame front by
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using the coordinate transformation (x, y, t ) �→ [x, y + (1 − V )t, t]. Introducing further v = u +
(1 − V )ey, we have v = ey as y → −∞ and the governing equations may be written as

−1

q
∇ ·

(∇p

μ

)
− rG

mq

∂

∂y

(
ρ

μ

)
= ∇ · (λ∇θ ) + ω, (43)

−μv + μ(1 − V )ey = ∇p + rG

m
ρ ey, (44)

ρ
∂θ

∂t
+ ρv · ∇θ = ∇ · (λ∇θ ) + ω, (45)

ρ(1 + qθ ) = 1, μ = λ = (1 + qθ )n. (46)

Instead of the continuity equation, we have introduced the Poisson equation (43) for the pressure
field, which is obtained by combining the continuity equation ∂ρ/∂t + ∇ · (ρv) = 0, the tempera-
ture equation (45), and the equation of state given in (46).

The basic solution, corresponding to the planar flame, is governed by Eqs. (43)–(46) in which
the time and x derivatives are set to zero. Denoted with an overbar, it is given by

ρ v = ey, −d p

dy
= μ

1 − ρ

ρ
+ μV + rG

m
ρ, (47)

along with ρ = 1/(1 + qθ ) and μ = λ = (1 + qθ )n, where θ satisfies

dθ

dy
= d

dy

(
λ

dθ

dy

)
+ ω(θ ), θ (−∞) = 0, θ (+∞) = 1. (48)

The temperature field θ (y) and the unknown parameter S which appears in the definition of ω in
(42), are independent of V and G, and are computed numerically for the typical values n = 0.7,
q = 5, and β = 10; for these values, S = 0.929.

The stability of the planar flame is investigated by introducing infinitesimal perturbations such
that [

θ

p

]
=

[
θ (y)
p(y)

]
+

[
θ̂ (y)
p̂(y)

]
est+ikx, (49)

where k is the real wave number of the perturbation and s its growth rate, which is to be obtained
as an eigenvalue. Substituting (49) into (43)–(46) and linearizing about the base solutions (47)–(48)
results in the linearized system of equations

sρθ̂ + d θ̂

dy
+ ρ(v̂y − qθ̂ )

dθ

dy
= d

dy

(
λ

d θ̂

dy
+ λ̂

dθ

dy

)
− k2λθ̂ + ω̂, (50)

−1

q

d

dy

(
1

μ

d p̂

dy
− μ̂

μ2

d p

dy

)
+ k2 p̂

qμ
− rG

mq

d

dy

(
ρ̂

μ
− ρμ̂

μ2

)
= d

dy

(
λ

d θ̂

dy
+ λ̂

dθ

dy

)
− k2λθ̂ + ω̂. (51)

Here, ρ̂ = −qρ2θ̂ , μ̂ = nqρ μθ̂ , λ̂ = nqρ λθ̂ , −μv̂y = d p̂/dy + μ̂(qθ + V ) + ρ̂rG/m, and

ω̂ = β2(1 + q)1−n

2S2

[
ρ̂(1 − θ ) − ρθ̂ + +ρ(1 − θ )β(1 + q)2θ̂

(1 + qθ )2

]
exp

[
β(θ − 1)

1 + q(θ − 1)/(1 + q)

]
.

(52)

Solving the linear eigenvalue problem given by Eqs. (50)–(51) subject to the boundary conditions
θ̂ = d p̂/dy = 0 as y → ±∞, yields numerically the required dispersion relation

s = s(k;V, G). (53)
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FIG. 5. Dispersion curves s(k) represented as solid lines computed for q = 5, n = 0.7, and β = 10 (i.e.,
r = 6 and m = 0.29). Left figure (a) corresponds to G = 0 and selected values of V . Right figure (b) cor-
responds to V = 0 and selected values of G. The dashed lines correspond to the theoretical formula s =
(ak − bk2)/(1 + ck), with a evaluated from equation (21), while b and c are evaluated using the relations
b = sm/k2

m and c = a/sm − 2/km, where (km, sm ) corresponds to the maximum point of the numerical dispersion
relation. The numbers inside the parentheses for each curve correspond to the resulting values of Mc and Ms

extracted from b and c.

C. The dispersion relation computed numerically and its implications

The dispersion relation (53) is computed numerically for the typical values q = 5, n = 0.7, and
β = 10. The computations are carried out using the eigenvalue solver in comsol multiphysics, as
done in our earlier works [47–50]. Illustrative numerical results showing the growth rate s versus
the wave number k for selected values of the parameters V and G are plotted in Fig. 5 as solid lines.
Figure 5(a) corresponding to cases without gravity (G = 0), shows that the perturbation growth
rate increases with increasing values of V . As V is decreased, the maximum growth rate decreases
and the range of unstable wave numbers shrinks. For V = −6, s(k) < 0 except for values of k in
a tiny range (difficult to see in the figure) around k = 0. For lower values of V , the growth rate is
nonpositive for all wave numbers. This demonstrates the existence of a critical value of V below
which the flame is stable, as predicted theoretically in formula (15) of Sec. II. A similar trend can
also be observed in Fig. 5(b), where G is varied while maintaining V = 0, which corresponds to
freely propagating flames. Here, as expected, an increase in the value of G is stabilizing, and there
exists a critical value of G above which the flame is stable, again in agreement with the theoretical
results discussed in Sec. II C.

The dashed lines in Fig. 5 represent the theoretical formula s = (ak − bk2)/(1 + ck), where a is
evaluated using the formula given in (21). As for the parameters b and c, which are also defined in
(21), their evaluation requires the values for the two Markstein numbers Mc and Ms, which are not
readily available from existing theories, as the latter applicability to Darcy’s flows has not been es-
tablished. The determination of these Markstein numbers, which may also be influenced by V and G
in the context of Darcy’s flows as a preliminary analysis suggests, requires dedicated investigations,
say multiple-scale analysis accounting for the flame’s inner structure or numerical/experimental
approaches. For the sake of assessing the ability of our theory to predict flame instability, we shall
herein evaluate these parameters directly from the numerical dispersion relation itself, as sometimes
done in experimental studies [22]. To this end, we shall assume b = sm/k2

m and c = a/sm − 2/km,
with (km, sm) corresponding to the maximum location of the numerical dispersion curve, so that
the growth rates from the theoretical formula s = (ak − bk2)/(1 + ck) and from the numerical
dispersion relation (53) coincide at the maximum location. It follows that Ms = c(1 + m)/(r − 1)
and Mc = (b − aMs)(1 + m)/(r + m), and these are reported in Fig. 5 inside the parentheses for
each curve. As can be inferred then from Fig. 5, the numerical results corroborate the theoretical
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FIG. 6. Dispersion curves s(k) computed for V = 0 and G = 0. The curves correspond to different approx-
imations of the functions μ(θ ) and λ(θ ).

formula reasonably well, once the location of the maximum of the numerical and theoretical growth
rates are fitted. In particular, the shape of the numerical dispersion curve is well reproduced by
the theory. Note, however, that the agreement between the solid and dashed curves appears to
be less satisfactory for larger values of k in the two cases of Fig. 5(b) corresponding to G = −1
and G = −0.5. This deterioration of the agreement is not surprising, given that our modeling of
the flame as a hydrodynamic discontinuity is, strictly speaking, valid when k � 1, that is, for
perturbations with wavelength larger than the flame thickness. More importantly, the parameter
a, which characterizes the slope of s(k) at k = 0, is very well predicted by the theory, and this is
so independently of the values of b and c (or of the Markstein numbers). This indicates that our
theoretical model correctly captures the key aspects of the three hydrodynamic instabilities, which
are the primary focus of this paper.

Before concluding this section, we would like to emphasize the significance of incorporat-
ing the temperature-dependent transport coefficients in the numerical dispersion relation. While
μ(θ ) = λ(θ ) in typical reacting gaseous mixtures, the two functions play distinct roles. For instance,
assuming constant viscosity (μ = 1) eliminates the influence of the mean flow V , as the term
μ(1 − V )ey = (1 − V )ey in the governing equation (44) can then be absorbed into the pressure
definition. Conversely, λ(θ ) affects the diffusive transport within the inner flame zone, as evident
from (45); since λ increases with θ , accounting for this increase generally leads to larger flame speed
and thickness. Figure 6 illustrates how the dispersion curves are modified by these two functions
when V = 0 and G = 0. The black curve, computed for temperature-dependent μ and λ, provides
the most accurate description, whereas the red curve, computed with μ = λ = 1, provides the least
accurate description.

D. Illustrative time-dependent numerical simulations

In this section, time-dependent numerical simulations are presented to highlight the role of V and
G on the full development of the hydrodynamic instabilities of premixed flames. The computations
are initiated from conditions corresponding to the planar flame solution of Eqs. (47)–(48) upon
which small amplitude random disturbances are superimposed. In order to keep the propagating
flame within the computational domain, the coordinate system is shifted at each time step, as done
in [15,51,52], with the speed ST (t ) defined by

ST (t ) = 1

Lx

∫ Ly

0

∫ Lx

0
ω dxdy , (54)
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FIG. 7. Instantaneous temperature fields and streamlines, with G = 0, seen from a frame moving with the
flame speed ST (t ). The upper row of figures correspond to V = 0, the middle row to V = 2, and the lower to
V = −2. The horizontal nondimensional domain size shown in each figure is 100 and its vertical extent 180.

where (0, Lx ) × (0, Ly) is the computational domain. We note that ST (t ) is a measure of the global
propagation flame speed with respect to fluid 1 at y = −∞ and quantifies the total instantaneous
burning rate per unit transverse flame length. Given our nondimensionalization and initial condition
corresponding to a planar flame, ST (0) = 1.

In the moving frame adopted, Eqs. (43), (45), and (46) are still valid provided v is redefined to
be v = u + (ST − V )ey, whereas Eq. (44) is replaced by −μv + μ(ST − V )ey = ∇p + (rG/m)ρey.
The problem is solved subject to periodic boundary conditions in the x direction along with the
conditions

v = ST (t ) ey, θ = 0 as y → −∞ and p = 0,
∂θ

∂y
= 0 as y → +∞. (55)

The computations are carried out using comsol multiphysics in a computation domain with size
Lx = 100 and Ly = 300. The initial planar flame is positioned around y = 100. More details on the
computations can be found in Refs. [15,51,52].

We begin by illustrating the effect of varying the imposed flow speed V in the absence of gravity,
G = 0. Shown in Fig. 7 is the temperature field θ (x, t ) at selected times for three cases pertaining
to V = 0, 2, and −2. The associated global propagation speed ST (t ) is plotted in Fig. 8(a). For
all three cases, it is observed that the flame develops two cusplike structures pointing towards the
burnt gas, which eventually coalesce into a single cusp, settling apparently into a stable steady state.
In Fig. 8(a), the event of coalescence into a single cusp coincides with the occurrence of a peak
in ST (t ) before the final asymptotic behavior. Such a behavior is characteristic of the nonlinear
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FIG. 8. Global propagation speed ST vs time t for G = 0 with selected values of V (left figure) and V = 0
with selected values of G (right figure).

development of Darrieus-Landau instability in flames and is qualitatively explainable using the
dynamics of pole solutions of the Michelson-Sivashinsky equation [53]; the final steady solution
we observe corresponds to the one-pole solution [42]. As for the influence of V , we first note that
that an increase in V has a destabilizing effect, in agreement with our linear stability analysis; this
can be inferred from the instability onsets observed in Fig. 8(a). Furthermore, it is seen that the
extent of the cusp structure (or the flame-wrinkling amplitude) increases with V , a behavior which
is typical of Saffman-Taylor instabilities known as viscous fingering [5]. This behavior leads to an
increase in the flame surface area with V , which explains the increase of the corresponding computed
steady-state values of ST . For a better appreciation of the full time evolution of the unstable flames,
the reader is referred to the Supplemental Material [54].

We now briefly examine the effect of varying the gravity parameter G for a freely propagating
flame, V = 0. The computed results are reported for two values of G, equal to −0.5 (upward flame
propagation) and 0.5 (downward flame propagation) in Figs. 9 and 8(b), and can be compared
with the gravity free case with V = 0 of Fig. 7. Shown in Fig. 9 is the temperature field θ (x, t ) at
selected times and in Fig. 8(b) the global propagation speed ST (t ). The figures illustrate the expected
stabilizing influence of gravity for downward flame propagation, G > 0, and destabilizing influence
for upward propagation. For both cases, the unstable flames settles ultimately again to single-cusp
structures, albeit with markedly different wrinkling amplitudes. We also observe that the onsets of
instability for the two cases are quite distinct, with the G = −0.5 case being characterized by an
earlier instability onset with shorter wavelength wrinkling compared to the G = 0.5 case. This is
consistent with the linear stability analysis, in particular with the predictions of Fig. 5(b). The reader
is referred to [55] for an interesting recent study on the effect of gravity on upward-propagating
flames.

It is insightful to examine the vorticity field,  = ∇ × v, in the context of Darcy’s law
used herein. This is obtained by taking the curl of the equation v − (ST − V )ey = −[∇p +
(rG/m)ρey]/μ, hence

� = ez = 1

μ2
∇μ × ∇p − r

m
∇

(
ρ

μ

)
× Gey. (56)

Since ρ and μ vary spatially only within the interface in our model, where heat loss and preferential
diffusion are ignored, the formula indicates that the vorticity is also confined within the interface.
Moreover, in the absence of gravity, G = 0, vorticity is produced only by viscous baroclinicity
associated with the misalignment of pressure and viscosity gradients, ∇μ × ∇p �= 0. This implies
that if viscosity is assumed constant and G = 0, but density is allowed to vary so as to induce
a Darrieus-Landau instability, then vorticity will still remain identically zero. This is in marked
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FIG. 9. Instantaneous temperature fields and streamlines, with V = 0, seen from a frame moving with the
flame speed ST (t ). The upper row of figures correspond to G = −0.5 (upward flame propagation) and the lower
to G = 0.5 (downward propagation). The horizontal nondimensional domain size shown in each figure is 100
and its vertical extent 180.

contrast with the usual Darrieus-Landau instability for flows governed by the Euler or Navier-Stokes
equations, where vorticity is present within the flame and in the burnt gas, and vorticity-based
arguments are sometimes proposed as a driving mechanism for the DL instability [42] instead of
simpler arguments using mass conservation [[46], p. 354]. Finally, it is worth pointing out that
Green’s theorem implies

∫ Ly

0

∫ Lx

0
 dxdy = 0, (57)

upon using the periodicity boundary condition in the x direction. This explains the alternating
regions of positive and negative vorticity within the flame seen in Fig. 10, pertaining to the case
V = 2 and G = 0 represented in the middle row of Fig. 7. As mentioned, no vorticity is expected
when viscosity is assumed constant in this case, as confirmed by computations which are not shown.

FIG. 10. Instantaneous vorticity fields and streamlines with G = 0 and V = 2, seen from a frame moving
with the flame speed ST (t ). The horizontal nondimensional domain size shown in each figure is 100 and its
vertical extent 180. The figure complements the temperature fields plotted in the middle row of Fig. 7.
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V. CONCLUDING REMARKS

Propagating interfaces in Hele-Shaw channels or porous media are typically subject to three
hydrodynamic instabilities, namely, the Darrieus-Landau, Saffman-Taylor, and Rayleigh-Taylor
instabilities. These instabilities are long wave in nature, while at small wavelengths comparable
to the interface diffusive thickness, stabilization often occurs due to the dependence of the inter-
face propagation speed on its local curvature and the flow strain. Using a Darcy’s flow model,
both the long-wave instabilities and the small-wavelength stabilization are captured by a simple
dispersion relation between the perturbation growth rate s and its wave number k of the form
s = (ak − bk2)/(1 + ck) given in Eq. (21). When the effect of the flow strain on the interface prop-
agation speed is ignored, the formula reduces to s = ak − bk2, as given in Eq. (13). The parameter
a characterizes the three hydrodynamic instabilities in a transparent way. A key conclusion from
the analysis is that a hydrodynamically unstable interface can be fully stabilized by controlling the
imposed flow.

In addition to these insightful results associated with Darcy’s law, a more complex dispersion
relation (30) is obtained within the so-called Euler-Darcy model, generalizing those obtained by
Joulin and Sivashinsky [6] and Miroshnichenko et al. [9]. The corresponding analysis provides a
conceptual bridge between the predictions based on Darcy’s law (ϕ → ∞) and those based on the
Euler’s equation (ϕ → 0), through the use of a new parameter ϕ defined in (31). In Hele-Shaw
channels, ϕ is proportional to the inverse of the channel width squared, and characterizes the effect
of confinement. In the limit ϕ → 0, the effect of confinement vanishes, and so does the Saffman-
Taylor instability, as expected.

The theoretical results have been complemented by a numerical stability analysis and time-
dependent simulations carried out in the specific case of propagating premixed flames in a Darcy
flow. The numerical results are found to be in good agreement with the dispersion relation s =
(ak − bk2)/(1 + ck), in particular, in determining the constant a which encapsulates the effects of
the three hydrodynamic instabilities. Furthermore, the numerical simulations revealed the dynamics
of unstable flames under the combined influence of DL and ST instabilities, including typical
associated phenomena such as viscous fingering, which significantly affects the overall burning
rates.

We highlight now important points pertinent to the growth rates of long-wave perturbations (k �
1) for flames propagating in narrow channels, which are decisive in determining the conditions
for the hydrodynamic instabilities onset in the parameter space. Firstly, as we have seen, flames
propagating in Hele-Shaw channels can be stabilized by an imposed flow directed from the burnt
gas towards the unburnt gas (V < 0), and destabilized in the opposite case corresponding to V > 0.
Secondly, we reemphasize the distinction between a freely propagating flame for which V = 0 and a
flame opposed by an imposed flow with V = S0

L. The distinction is important because the Saffman-
Taylor instability which arises when V (μ2 − μ1) �= 0 is absent for a freely propagating planar flame.
However, viscosity can still affect the perturbation growth rate under these conditions. For instance,
in the absence of gravity and for large wavelengths (k � 1), the growth rates for the two cases are
given by

s

S0
Lk

= μ2(ρ1 − ρ2)

ρ2(μ2 + μ1)
when V = 0 and

s

S0
Lk

= ρ1μ2 − ρ2μ1

ρ2(μ2 + μ1)
when V = S0

L.

The second case (V = S0
L), originally studied by Joulin and Sivashinsky [6], is often mistakenly

assumed to apply for a freely propagating flame (V = 0) in the combustion literature.
As a final point, it is worth comparing the growth rate sDarcy based on Darcy’s law, which

is applicable under strong confinement, with the growth rate sDL corresponding to the classical
Darrieus-Landau analysis, which is applicable for unconfined flames. For k � 1 and in the absence
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FIG. 11. Regions in the q-V plane characterizing the effect of confinement on the flame hydrodynamic
instabilities in the absence of gravity. Note that sDL is always positive and independent of V , while sDarcy

changes with V and becomes negative in the unshaded region.

of gravity, the two growth rates are given by

sDarcy

S0
Lk

= ρ1μ2 − ρ2μ1V + ρ2μ2(V − 1)

μ1 + μ2
and

sDL

S0
Lk

= ρ1

ρ1 + ρ2

⎛
⎝

√
1 + ρ2

1 − ρ2
2

ρ1ρ2
− 1

⎞
⎠,

where V = V/S0
L. The comparison of sDarcy with sDL produces Fig. 11, which has a simple yet

important implication. Specifically, in the region below the solid curve, the effect of confinement
(attributable to momentum loss due to friction) has a stabilizing influence compared to the uncon-
fined case and a destabilizing influence in the region above the curve. Below the dashed curve, stable
flames are encountered under sufficiently strong confinement.
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APPENDIX: LINEAR STABILITY ANALYSIS BASED ON THE EULER-DARCY MODEL

The main aim of this Appendix is to provide a short derivation of the dispersion relation (29)
for the convenience of the reader. To this end, to the basic solution (v, p, f ) given by Eqs. (27) and
(28) and f = 0, we add small perturbations such that (v, p, f ) = (v, p, f ) + (v′, p′, f ′). The primed
quantities satisfy on both sides of the interface the linearized form of Eqs. (25), namely,

∇ · v′ = 0, ρ

(
∂v′

∂t
+ v̄

∂v′

∂y

)
= −∇p′ − μ

κ
v′, (A1)

from which it follows that ∇2 p′ = 0. We note that (A1) is a set of three independent scalar
equations for the components of v′ = (u′, v′) and p′, where one of the equations may be replaced
by ∇2 p′ = 0, such that

p′
xx + p′

yy = 0, u′
x + v′

y = 0, ρ(v′
t + v̄v′

y) = −p′
y − μ

κ
v′. (A2)
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The equations (A2) are subject to the interfacial conditions (26) linearized at y = 0, namely,

[[v′]] =
(

1 − ρ1

ρ2

)
S0

LL f ′
xx, [[p′]] = α f ′ + 2

(
ρ1

ρ2
− 1

)
ρ1S0

L
2L f ′

xx,

[[u′]] =
(

1 − ρ1

ρ2

)
S0

L f ′
x, f ′

t = v′∣∣
y=0− + S0

LL f ′
xx, (A3)

where α is given in (9), and use has been made of the assumption (5) which implies that SL =
S0

L(1 − L f ′
xx + · · · ). The linear stability problem is therefore given by Eq. (A2), to be solved in

the domains y > 0 and y < 0, subject to the interfacial conditions (A3) at y = 0 and the boundary
conditions p′ = u′ = v′ = 0 as y → ±∞.

Since the problem does not depend explicitly on x and t , we look for normal modes in the form

( f ′, p′, u′, v′) = [ f̂ , p̂(y), û(y), v̂(y)] exp (st + ikx),

where s is in general complex, k real, and f̂ = C a constant. Then, the stability problem reduces to

p̂yy − k2 p̂ = 0, ikû + v̂y = 0, ρ(sv̂ + v̄v̂y) = −p̂y − μ

κ
v̂, (A4)

applicable in the domains y > 0 and y < 0, subject to the interfacial conditions

[[v̂]] =
(

ρ1

ρ2
− 1

)
S0

LLk2 f̂ , [[ p̂]] =
[
α − 2

(
ρ1

ρ2
− 1

)
ρ1S0

L
2Lk2

]
f̂ ,

[[û]] = i

(
1 − ρ1

ρ2

)
S0

Lk f̂ ,
(
s + S0

LLk2
)

f̂ = v̂(0−) (A5)

at y = 0, and the boundary conditions p̂ = û = v̂ = 0 as y → ±∞. The solution to p̂yy − k2 p̂ = 0
vanishing as y → ±∞ is given by

p̂ =
{

Ae−ky for y > 0,

Beky for y < 0,

where A and B are constants and the wave number k is assumed positive. The solutions û(y) and
v̂(y) can then be determined, and these take the form

û = i

k

d v̂

dy
and v̂ =

{
Aγ2ke−ky + De−ky−y/γ2ρ1S0

L for y > 0,

− Bγ1keky for y < 0,
(A6)

after enforcing the boundary conditions as y → ±∞, and assuming Re(s) > 0, which is sufficient to
the ultimate goal of capturing the presence of unstable modes. Here, for brevity, we have introduced
γ1 = (ρ1s + μ1/κ1 + ρ1S0

Lk)−1 and γ2 = (ρ2s + μ2/κ2 − ρ1S0
Lk)−1. Using now the interfacial con-

ditions (A5), a linear homogeneous system of four equations for the unknown constants A, B, C,
and D is obtained, namely,⎡

⎢⎣
γ2k γ1k (1 − ρ1/ρ2 )S0

LLk2 1

1 −1 −α + 2(ρ1/ρ2 − 1)ρ1S0
L

2Lk2 0

γ2k −γ1k (1 − ρ1/ρ2 )S0
Lk 1 + 1/ρ1S0

Lγ2k

0 γ1k s + S0
LLk2 0

⎤
⎥⎦

⎡
⎢⎣

A

B

C

D

⎤
⎥⎦ = 0. (A7)

The solvability condition for this system, corresponding to its determinant being set to zero, leads
to dispersion relation (29), whose derivation is the main aim of this Appendix.

To close the Appendix, we note that the derivation of the dispersion relation (37), based on the
improved propagation speed model (18), can be obtained in a similar fashion. Without repeating the
details, the same procedure can be carried out in this case, leading ultimately to the linear stability
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system,⎡
⎢⎣

γ2k γ1k[1 + (ρ1/ρ2 − 1)Lsk] (1 − ρ1/ρ2 )S0
LLck2 1

1 −1 − 2γ1(ρ1/ρ2 − 1)ρ1S0
LLsk2 −α + 2(ρ1/ρ2 − 1)ρ1S0

L
2Lck2 0

γ2k −γ1k (1 − ρ1/ρ2 )S0
Lk 1 + 1/ρ1S0

Lγ2k

0 γ1k(1 − Lsk) s + S0
LLck2 0

⎤
⎥⎦

⎡
⎢⎣

A

B

C

D

⎤
⎥⎦ = 0, (A8)

whose solvability condition coincides with dispersion relation (37).
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