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Abstract
Quantum key distribution (QKD) promises everlasting security based on the laws of physics. Most
common protocols are grouped into two distinct categories based on the degrees of freedom used
to carry information, which can be either discrete or continuous, each presenting unique
advantages in either performance, feasibility for near-term implementation, and compatibility with
existing telecommunications architectures. Recently, hybrid QKD protocols have been introduced
to leverage advantages from both categories. In this work we provide a rigorous security proof for a
protocol introduced by Qi in 2021, where information is encoded in discrete variables as in the
widespread Bennett Brassard 1984 protocol but decoded continuously via heterodyne detection.
Security proofs for hybrid protocols inherit the same challenges associated with
continuous-variable protocols due to unbounded dimensions. Here we successfully address these
challenges by exploiting symmetry. Our approach enables truncation of the Hilbert space with
precise control of the approximation errors and lead to a tight, semi-analytical expression for the
asymptotic key rate under collective attacks. As concrete examples, we apply our theory to compute
the key rates under passive attacks, linear loss, and Gaussian noise.

1. Introduction

Quantum key distribution (QKD) exploits quantum optics to establish secret keys between distant users over
an insecure communication channel [1]. Unlike software-based solutions such as the
Rivest–Shamir–Adleman (RSA) protocol [2] and post-quantum cryptography [3], QKD promises
informational-theoretical security under a well-defined set of assumptions [4]. This means that keys
obtained through QKD protocols bear the property of everlasting security; they remain secure against any
future development in algorithms, supercomputers, and quantum computers [5]. Most QKD protocols
cluster into two categories: discrete-variable (DV) QKD and continuous-variable (CV) QKD, which differ in
the degrees of freedom used to encode information. DV protocols, such as the celebrated (Bennett and
Brassard, 1984 (BB84)) [6] use discrete degrees of freedom, such as polarisation or time-bin coding and
decode information through direct detection [7, 8]. CV QKD protocols instead exploit the continuous
amplitude and phase quadratures of the optical field to encode information, and coherent detection, such as
homodyne and heterodyne detection, for decoding [9–11].

Both categories of QKD protocols have separate features that lend themselves to different
applications [12]. DV protocols are generally more robust to channel losses, which permits their
implementation in long-range (≳100 km) quantum communications such as satellite-based
networks [13–16]. This has been showcased through recent landmark satellite-based QKD experiments and
quantum networking demonstrations [17], with the current state of the art for entanglement distribution
being over 1200 km [18]. However, DV protocols rely on high-efficiency photon detectors, which are
currently costly and bulky owing to their need for cryogenics [19]. CV QKD protocols find more widespread
implementation in terrestrial networks (≲100 km) given their compatibility with existing telecommunication
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infrastructures and tolerance to co-propagation with classical signals [20]. While the feasibility of CV
protocols on greater ranges have been explored [21], distances with CV protocols are typically shorter than
with DV protocols since security requires very low noise during transmission and detection [22].

With DV and CV protocols offering distinct advantages, a hybrid protocol that merges the salient features
of both may offer a promising route to enable longer-range quantum networking. Specifically, this hybrid
protocol would operate with low-cost photodiodes at room temperature and improved compatibility with
existing telecommunication architectures. Additionally, by benefiting from mature security proofs, hybrid
protocols could contribute to advancing the state-of-the-art in networked quantum communications over
global scales. Developing such hybrid protocols for QKD has recently gained traction, where information is
encoded in discrete variables of light and decoded through coherent detection [23, 24].

The asymptotic key rate, obtained after a large number of transmitted signals, is regularly used as a proxy
for upper bounding the performance of QKD protocols and to provide straightforward comparison between
protocols. A severe bottleneck is that security proofs require a theoretical model that precisely matches the
physical devices used in an implementation. Hybrid protocols additionally inherit technical challenges
associated with CV protocols due to an infinite-dimensional Hilbert space. There have been a number of
approaches to overcome these challenges to simplify security analyses and the key rate calculations. First, by
coarse-graining measurement outcomes from heterodyne detection, the DVs encoded in the input signals
can be inferred at the expense of increased noise [23]. Heterodyne detection also enables full reconstruction
of the photon number distribution of received signals, which can be exploited to bound the number of bits
leaked to the environment [25, 26]. Second, lower bounds have been exploited to reduce the key-rate
calculation to a semi-definite program [24], an approach also suitable to encompass decoy states [27–29].

Hybrid QKD has been explored with single photons, employing either polarisation or time bin
encoding [23], decoy states [24], and discrete modulation phase-shift keying [30]. In this work, we explore
the potential of single-photon-based hybrid QKD for practical implementation and deployment across
quantum-secured networks. Specifically, we improve the security analysis within the collective attack
framework to establish a tight lower bound on the asymptotic key rate. The tightness of our method enables
higher key rates and increased robustness to noise over the previous single-photon based hybrid protocol. We
quantify this improvement within an experimentally feasible parameter space, providing insights into the
current readiness for implementation. Additionally, we compare the performance of hybrid protocols with
DV and CV protocols to discuss their current viability for applications in quantum networking, which
remains an open question in the field. Section 1.1 provides an executive summary of our results, with an
outline of the paper provided in section 1.2.

1.1. Summary of results
In this work, we provide the first rigorous security proof that yields a tight lower bound on the key rate. We
obtain a semi-analytical expression for the asymptotic key rate under collective attacks, where attacks from
an eavesdropper on transmitted signals are identical and statistically independent. It is likely that methods
developed in the context of DV or CV QKD [30–35] can be adapted and applied to hybrid protocols too.

To explore the performance of hybrid QKD, we outline a general approach to exploit state symmetries to
establish invariant states with reduced parameterisation. Note that security proofs against general attacks
often introduce a symmetrisation step to endow composite systems with permutation invariance. CV QKD
protocols have been shown to additionally exhibit Lie group invariance. The symmetry we appeal to is the
invariance of two-party composite states under (U⊗U∗) transformations, where U belongs to the SU(2) Lie
group that physically represents a linear-optics passive (LOP) unitary acting on the two polarisation modes.
The resulting invariant states we derive have a significantly reduced parameterisation; one that scales linearly
with the Hilbert space dimension, compared with the quadratic scaling of the original composite states. This
reduced parameterisation permits efficient numerical calculation of the secret key rate.

Inspired by the numerical approach developed in [36–38], we use our invariant states to construct a
constrained key rate optimisation that is closely aligned to an experimental implementation of the protocol.
In particular, we constrain the optimisation according to error parameters that can be directly measured,
including the gain Q and the quantum bit error rate (QBER). Our work therefore provides a route towards
an experimental realisation of the hybrid QKD analysed in this work. Most notably, this procedure allows us
to perform an exact numerical optimisation with full control of the error due to finite-dimensional cut-off of
the otherwise infinite-dimensional Hilbert space that characterises CV QKD systems.

By exploring the performance of a pure loss channel, we find the asymptotic key rate for our hybrid
protocol scale as O(η2), where η is the attenuation factor. Most DV and CV protocols are characterised by a
linear scaling O(η). The worse scaling of hybrid protocols than DV ones is due to decreasing gain with
increasing range, and is the penalty to pay for improved compatibility with terrestrial networks. This work is
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the first to quantify this tradeoff that would be instrumental in guiding future research into the use of hybrid
protocols for quantum networking.

For passive attacks, our theory provides higher rates and can tolerate higher channel losses than what
estimated by previous security analyses. When Gaussian noise is introduced the key rate decreases rapidly,
highlighting high sensitivity of hybrid protocols to excess noise in the detector; a feature inherited from CV
protocols. For an excess noise variance of N= 10−4 (in shot-noise units), we demonstrate our hybrid scheme
can tolerate losses up to∼17 dB, making it suitable to deliver high-rate QKD in terrestrial or free-space
quantum networks over metropolitan scales. However, the key rates are lower than those achieved with CV
protocols. This suggests that the hybrid approach is not always advantageous in terms of robustness to noise.

Before concluding, we note that our hybrid QKD protocol significantly eases implementation over DV
and CV protocols. First, in contrast to DV QKD, our hybrid protocol allows for the use of faster receivers and
does not require sifting since a single decoding measurement applies to both encoding bases. Second, in
contrast to CV QKD, our hybrid protocol does not require a shared local oscillator or a pilot tone. This
significantly reduces transmitter and receiver complexity and the potential for side-channel attacks [39, 40].
Combined with a key rate optimiser that is closely aligned to an experimental implementation, our work
provides a feasible route towards practical implementation of the protocol.

1.2. Outline of paper
The paper develops as follows. In section 2 we review the protocol introduced in [23] based on independent
detection of two polarisation modes. In section 3 we lay the foundation of our security analysis, which is
inspired by the work in [36–38]. A first case study is presented in section 4, which explores a pure-loss
communication channel. Section 5 extends our approach to most general collective attacks. Here we
introduce symmetry in the protocol and exploit it to simplify the security analysis. In section 6 we show how
symmetry allows us to control the error introduced by the truncation of the Hilbert space in view of the
numerical optimisation. This approach is developed in section 7 to study in detail the case of Gaussian noise.
This noise model may be used to describe electronic noise in heterodyne detection. Conclusions and
discussions are presented in section 8, where we summarise the motivations for our work and the most
important take-home messages. Further details and a number of technical results are reported in the
appendix.

2. BB84 with heterodyne detection—independent detection

The subject of our analysis is one of the hybrid protocols introduced by Qi in [23]; one that is based on
independent detection of the two optical modes used to encode quantum information. To make the
presentation more concrete, we assume that these modes represent polarisation, though other degrees of
freedom could be equivalently considered.

We first start with a review of the hybrid protocol in the prepare-and-measure (PM) representation. The
schematic setup of our protocol is shown in figure 1 and the protocol is as follows:

1. State preparation. First, as in BB84, the sender (Alice) encodes one bit of information by preparing a
single-photon state with either horizontal (H) or vertical (V) polarisation. Alternatively, Alice may use
diagonal (D) or anti-diagonal (A) polarisation. The choice of polarisation basis is random; without loss
of generality we assume equal probabilities. For each transmission round, Alice sends her prepared states
to Bob through an insecure quantum channel.

2. Measurement. The hybrid protocol differs from standard BB84 in the measurement procedure. In
standard BB84 the receiver (Bob) applies photon-detection to decode received signals. Instead, we assume
coherent decoding by heterodyne detection, which is a CV measurement defined on a single mode of the
quantum electromagnetic field [41]. Bob receives two optical modes, characterised by the canonical
bosonic annihilation and creation operators {bH,b†H} and {bV,b†V}, which corresponds to H/V
polarisation. The canonical operators for the D/A polarisation are obtained from the latter as

bD = (bH + bV)/
√
2 , (1)

bA = (bH − bV)/
√
2 . (2)

Bob performs a heterodyne measurement on the state, which is described by a continuous family of
positive operator-valued measurement (POVM) elements

Λ(β) =
1

π
|β〉〈β| , (3)
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Figure 1. Schematic setup of the protocol: the transmitter (Alice) prepares polarisation states in the rectilinear (H/V) or diagonal
(D/A) bases. After the quantum channel, the receiver (Bob) performs a heterodyne measurement on received states. The inset
illustrates the receiver in detail: a polarising beam splitter (PBS) sorts the beam according to polarisation, then each beam is
measured using heterodyne detection.

where |β〉 is the coherent state of amplitude β = (q+ ip)/
√
2 of the optical mode being measured. Recall

that the coherent states satisfy the completeness relation, from which we obtain

ˆ
d2βΛ(β) = I , (4)

where I is the identity operator and d2β := dqdp/2.
Alice and Bob repeat the state preparation and measurement stagem times.

3. Basis announcement. Alice announces her choices for the polarisation basis. According to this
information Bob will adapt his inference strategy. However, as remarked below, no sifting is necessary.

4. Inference. To infer the bit value encoded by Alice, Bob compares the output of mode-wise heterodyne to a
given threshold value τ > 0 that is decided before executing the protocol. Consider the operators

R0 =

ˆ
|β|2⩽τ

d2βΛ(β) , (5)

R1 =

ˆ
|β|2>τ

d2βΛ(β) . (6)

Bob then establishes a key map through a threshold detection obtained by combining these operators on
the two modes. For example, to discriminate between H and V polarisation, we need to combine the
above operators applied to each mode of polarisation, denoted as RH

0 , R
H
1 and RV

0 , R
V
1 . The threshold

detection corresponds to the POVM elements

MH = RH
1 ⊗RV

0 , (7)

MV = RH
0 ⊗RV

1 . (8)

To obtain a complete set, one also needs to introduce the null operator

M0 = I−MH −MV , (9)

in such a way thatMH +MV +M0 = I. Successful detection is associated to measurement outcomesMH

(in which case Bob infers a horizontally polarised photon) orMV (Bob infers vertical polarisation).
Events corresponding to the null outcomeM0 are discarded. The analogous construction applied to D/A
polarisation leads to the definition of the operatorMD,MA.

The above describes the quantum part of the QKD protocol. Alice and Bob use the data collected to
determine the secret key rate by solving the optimisation problem in equation (32). The protocol is aborted if
no secret key can be generated, otherwise, they proceed. The raw keys are finally post-processed for
parameter estimation, error correction, and privacy amplification. The post-processing procedures are
equivalent to standard BB84.

4



Quantum Sci. Technol. 10 (2025) 025012 J S Sidhu et al

Figure 2. Eigenvalues of R1 operator: the coefficients λn in equation (14) plotted vs the threshold value τ , from bottom to top,
n= 0,1,2,3,4.

Remark 1. One interesting feature of this hybrid protocol is that Bob only needs to apply heterodyne detection
to infer both theH/V andD/Amodes of polarisation. This is because from equations (1) and (2) the outcomes
βD, βA of heterodyne detection in theD/A polarisationmodes can be obtained exactly from the outcomes βH ,
βV of heterodyne detection in the H/Vmodes,

βD = (βH +βV)/
√
2 , (10)

βA = (βH −βV)/
√
2 . (11)

This implies that no data is discarded, in contrast to the sifting phase in standard BB84. The price to pay, as
highlighted in [23], is an additional error in the inference compared to direct detection.

We conclude this section by presenting the expansion of the operators R0, R1 in the number basis. From
the expression of the coherent state, |β〉= e−|β|2/2∑∞

n=0β
n/
√
n!|n〉, we obtain

R0 =
∞∑
n=0

(1−λn) |n〉〈n| , (12)

R1 =
∞∑
n=0

λn |n〉〈n| , (13)

where

λn :=
Γ[1+ n, τ ]

n!
(14)

and Γ is the incomplete gamma function. Figure 2 shows a plot of these coefficients versus the threshold
value τ .

3. Security analysis

The security of our hybrid protocol is better assessed using its equivalent entanglement-based (EB)
representation. We emphasise that the EB representation provides a useful mathematical tool but the physical
implementation of the protocol in general follows the PM representation.

In the EB representation Alice prepares a pair of photons that are entangled in polarisation,

|ϕ〉AA′ = (|H〉A|H〉A′ + |V〉A|V〉A′)/
√
2 . (15)

Alice sends photon A′ to Bob and keeps photon A for herself. Alice eventually measures photon A′ in either
the H/V basis or in the conjugate D/A basis, thus conditionally preparing the other photon in the same state
of polarisation.

A noisy communication channelNA′→B maps the state |ϕ〉AA′ into

ρAB = IA ⊗NA′→B (|ϕ〉〈ϕ|) , (16)
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where IA is the identity channel acting on photon A. In this work, we consider collective attacks, where the
eavesdropper applies i.i.d. noise to each signal transmission. Hence, form photons sent by Alice, the state
shared with Bob is simply given by the tensor power ρ⊗m

AB . In the limit ofm→∞, the asymptotic secret key
rate rate, expressed in secret bits per photon sent can be expressed as [36–38]

r(ρAB) = D [G (ρAB)‖Z (G (ρAB))]− leakEC , (17)

where D [ρ‖σ] = Tr(ρ logρ)−Tr(ρ logσ) is the quantum relative entropy (log denotes the logarithm in base
2, whereas ln is used for natural logarithm), and the maps G and Z will be defined below. The relative
entropy term quantifies the number of secret bits per photons that can be extracted from the raw key after
privacy amplification. The final secret key rate is then determined by subtracting the term leakEC, which is
the number of bits per photon leaked for error correction. Here we assume reverse reconciliation.

The map G in equation (17), dubbed key map, is a partial isometry that gives a coherent representation of
the measurement and decoding applied by the receiver. It takes as input a state of the B system and outputs a
state of the composite system BB1, where B1 is an auxiliary qubit:

G (ρAB) = (I⊗K)ρAB
(
I⊗K†) , (18)

where

K= |H〉B1 ⊗
√
MH + |V〉B1 ⊗

√
MV , (19)

withMH andMV as in equations (7) and (8). The state G(ρAB) is in general not normalised. Its trace
determines the gain Q such that

Q= Tr [G (ρAB)] = Tr
[(
I⊗K†K

)
ρAB
]

(20)

= Tr [(MH +MV)ρB] . (21)

The gain is the probability that Bob obtains a valid measurement output and can be estimated in an
experimental implementation of the protocol.

The map Z in equation (17) applies the pinching map to the auxiliary system B1, inducing complete
dephasing in the basis {|H〉B1 , |V〉B1},

Z (G (ρAB)) = |H〉B1〈H|G (ρAB) |H〉B1〈H|+ |V〉B1〈V|G (ρAB) |V〉B1〈V| . (22)

An analogous definition may be introduced for the D/A polarisation modes. However, as in our discussion
we will only consider symmetric states, it is sufficient to consider the H/V basis.

The calculation of the relative entropy is simplified using proposition:

Proposition 1. The relative entropy equals the difference of two entropies:

D [G (ρAB)‖Z (G (ρAB))] = S [Z (G (ρAB))]− S [G (ρAB)] , (23)

where S[σ] =−Tr(σ logσ) is the von Neumann entropy.

Proof. Note that equation (22) implies

log [Z (G (ρAB))] = |H〉B1〈H| log [Z (G (ρAB))]|H〉B1〈H|+ |V〉B1〈V| log [Z (G (ρAB))]|V〉B1〈V| . (24)

Therefore

Tr{G (ρAB) log [Z (G (ρAB))]}
= Tr{(|H〉B1〈H|G (ρAB) |H〉B1〈H|+ |V〉B1〈V|G (ρAB) |V〉B1〈V|) log [Z (G (ρAB))]} (25)

= Tr{Z (G (ρAB)) log [Z (G (ρAB))]} . (26)

To simplify the notation for the rest of the paper, we denote

D [ρAB] := D [G (ρAB)‖Z (G (ρAB))] . (27)
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Besides the gain Q, another parameter that can be estimated experimentally is the QBER E. First consider
the quantity

c :=
1

2
Tr [(|H〉〈H| ⊗MV + |V〉〈V| ⊗MH)ρAB] . (28)

From c and Q we obtain the QBER

E=
2c

Q
=

Tr [(|H〉〈H| ⊗MV + |V〉〈V| ⊗MH)ρAB]

Tr [(MH +MV)ρB]
, (29)

such that QE= 2c. In turn, from the QBER we estimate the error correction term in the key rate,

leakEC = Qh2 (E) , (30)

where h2(x) =−x logx− (1− x) log(1− x) is the binary Shannon entropy. This expression follows from the
model of symmetric binary channel [42].

Finally, we remark that in QKD we do not assume complete knowledge of the state ρAB, therefore one
should consider the worst-case scenario that is compatible with the experimental data. In our setup, the
experimental data allows Alice and Bob to estimate the parameters Q and c. Furthermore, as discussed
in [25], heterodyne detection allows Bob to estimate the photon-number distribution of the unknown state
ρAB,

Pj :=

j∑
a=0

Tr [(|a〉H〈a|+ |j − a〉V〈j − a|)ρB] . (31)

In conclusion, the asymptotic key rate is obtained by solving the following constrained minimisation
problem

min
ρAB∈S

D [ρAB]−Qh2 (E) , (32)

given experimental estimates for Q and E, and the set S of feasible states defined through the following
conditions:

1. The reduced state of Alice photon is maximally mixed:

ρA = TrB (ρAB) = I/2=
|H〉〈H|+ |V〉〈V|

2
. (33)

2. The experimentally estimated error parameter c. In full generality, one should distinguish between errors
in the H/V basis and those in the D/A basis. Here, for simplicity we assume that they are independent of
the polarisation direction. We will use and expand this symmetry assumption below.

Tr [(|H〉〈H| ⊗MV)ρAB] = Tr [(|V〉〈V| ⊗MH)ρAB]

= Tr [(|D〉〈D| ⊗MA)ρAB] = Tr [(|A〉〈A| ⊗MD)ρAB]

= c . (34)

3. The experimental estimated gain Q. As for c, we should make a distinction between the two polarisation
bases. For simplicity we assume equal value for both.

Tr [(MH +MV)ρB] = Tr [(MD +MA)ρB] = Q . (35)

4. The experimental estimates Pj for the photon number distribution, up to a certain photon number k. For
j = 0, . . . ,k:

j∑
a=0

Tr [(|a〉H〈a|+ |j − a〉V〈j − a|)ρB] = Pj . (36)

Note the final three constraints originate from experimental informed parameters, providing a route to
physical implementation of the protocol. In addition, the asymptotic key rate in equation (32) can be further
maximised by optimising over the detector threshold τ > 0.
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Figure 3. Asymptotic key rate for pure loss: (a) asymptotic rate as a function of the detector threshold τ for independent
detection scheme, computed from equation (42). Solid line corresponds to lossless transmission, dashed to loss case with strength
η, from bottom to top η = 0.2,0.4,0.6,0.8. The optimal values for the detector threshold depend on the noise: For transmissivity
η= 1, τopt = 0.8012, η= 0.8, τopt = 0.9458, η= 0.6, τopt = 1.0779, η= 0.4, τopt = 1.2159, and η= 0.2, τopt = 1.3768. (b)
Asymptotic rate as a function of the pure loss strength η, computed for different values of τ .

4. Pure-loss channel

As a first example, here we determine the asymptotic secret key rate for a pure-loss channel. The
communication channelN is a wiretap channel that induces polarisation-independent loss with
transmissivity factor η ∈ [0,1]. In the Heisenberg picture, the canonical operators are transformed as follows

bH →√
η bH +

√
1− η eH , (37)

bV →√
η bV +

√
1− η eV , (38)

where eH, eV are auxiliary vacuum modes.
In the Schrödinger picture, the input state (15) is transformed according to equation (16) into

ρAB = η|ϕ〉AB〈ϕ|+
(1− η)

2
IA ⊗ |0〉B〈0| . (39)

where |0〉B is the vacuum state on Bob’s side. From this expression we compute

D [ρAB] = 2(1− η)(1−λ0)λ0 + η (λ0 +λ1 − 2λ0λ1) , (40)

c=
λ0

2
[1− (1− η)λ0 − ηλ1] . (41)

As expected for a pure-loss channel, all qubits that reach to Bob are secure, therefore we also obtain
Q= D[ρAB].

Finally, the asymptotic secret key rate is obtained using equations (17) and (30):

r= Q(1− h2 (E)) , (42)

with

E=
2c

Q
=

λ0 [1− (1− η)λ0 − ηλ1]

2(1− η)λ0 (1−λ0)+ η (λ0 +λ1 − 2λ0λ1)
. (43)

The key rate is illustrated in figure 3(a) as a function of the threshold value τ for various transmissivity η.
Note that the optimal detector threshold has a weak dependency on η. These optimal values are summarised
in the caption to figure 3. In figure 3(b) we illustrate the dependence of the key rate on η, taking different
values for τ .

It is interesting to investigate the limit of large communication distance, i.e. when η � 1. We obtain

r' η2 (λ0 −λ1)
2

4λ0 (1−λ0) ln2
=

η2τ 2

(eτ − 1) ln16
. (44)

This shows that the key rate is of order O(η2). The ultimate repeaterless Pirandola–Laurenza–Ottaviani–
Banchi (PLOB) bound scales as O(η) [43]. The same O(η) scaling is commonly achieved by both DV and CV
protocols. The sub-optimal scaling of the hybrid protocol is attributed to a decrease in the rate as the distance

8



Quantum Sci. Technol. 10 (2025) 025012 J S Sidhu et al

increases, which is driven by two independent mechanisms. First, it becomes increasingly unlikely that Bob
receives transmitted photons, leading to a decrease in the gain Q. Second, the QBER E increases with the
distance even for a pure-loss channel. Use of hybrid protocols must therefore address the tradeoff between
sub-optimal scaling and increased compatibility. Finally, from equation (44) we obtain that in the limit of
long distance the optimal threshold value is τ ' 1.59.

5. General collective attacks: exploiting symmetry

To assess the security of the hybrid protocol beyond the pure-loss channel, we must address two challenges:

1. The Hilbert space associated with the receiver is infinite-dimensional. To implement the optimisation in
equation (32) numerically, a cutoff into a finite-dimensional subspace is required, together with a
method to control the cutoff error introduced.

2. For a Hilbert space cutoff of up to k photons on Bob side, the joint state ρAB would lives in a space of
dimensions (k+ 1)(k+ 2) [44]. This quadratic scaling with k presents a bottleneck for efficient
numerical optimisation.

Here we solve both issues by exploiting symmetry. Symmetry allows us to reduce the number of free
parameters from quadratic to linear in the cutoff photon number k, also providing a way to control the error
introduced by the Hilbert-space truncation.

The symmetry group is of the form U⊗U∗, where the unitary U is applied on Alice’s system, and U∗ on
Bob’s. Here U denotes a LOP unitary [45] acting on the two polarisation modes, and U∗ is its
complex-conjugate. Note that the Bell state in equation (15) is invariant under U⊗U∗ transformations.

LOP unitaries are defined as unitary transformations that, in the Heisenberg picture, act linearly on the
canonical bosonic operators, without mixing the creation and the annihilation operators. Consider for
example Alice’s system, which is associated to the bosonic operators {aH,a†H}, {aV,a

†
V} for horizontal and

vertical polarisation respectively. A LOP unitary transforms the operators as follows

aH → UaHU
† = αaH +β aV , (45)

aV → UaVU
† =−β∗ aH +α∗ aV , (46)

where α, β are complex number such that |α|2 + |β2|= 1. On Bob side, the application of U∗ yields

bH → U∗bH (U
∗)

†
= α∗ bH +β∗ bV , (47)

bV → U∗bV (U
∗)

†
=−β bH +αbV . (48)

We remark that LOP unitaries preserve the total photon number, i.e.

U
(
a†HaH + a†VaV

)
U† = a†HaH + a†VaV , (49)

U∗
(
b†HbH + b†VbV

)
UT = b†HbH + b†VbV . (50)

This implies that states that are invariant under the action of the symmetry group U⊗U∗ are block-diagonal
in the total photon number both on Alice and on Bob side.

Note that in our protocol there is only one photon on Alice side, whereas for a generic attack there could
be an arbitrary distribution of photon number on Bob side. This leads to the following form for a state that is
invariant under the symmetry group:

ρ(inv)AB =
∞∑
j=0

Pjρ
(inv)
1:j , (51)

where ρ(inv)1:j is an invariant state with one photon on Alice side and j photons on Bob side, and Pj is the
probability of having j photons on Bob side.

In appendix A we derive explicit expressions for the invariant states ρ(inv)1:j . We show that for each j> 0

there exists a one-parameter family of invariant states, ρ(inv)1:j ( fj), with fj ∈ [0,1], whereas for j= 0 the

invariant state is unique. Note that for any j 6= j ′ the states G(ρ(inv)1:j ) and G(ρ(inv)1:j ′ ) have orthogonal support, as

well as Z(G(ρ(inv)1:j )) and Z(G(ρ(inv)1:j ′ )). This implies that the relative entropy in equation (17) reads

9
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D
[
ρ(inv)AB

]
= P0D

[
ρ(inv)1:0

]
+

∞∑
j=1

PjD
[
ρ(inv)1:j

(
fj

)]
. (52)

For each j we can define the corresponding parameter cj( fj). By linearity, we have

c= P0c0 +
∞∑
j=1

Pjcj
(
fj

)
. (53)

An analogous decomposition holds for the gain Q, i.e.

Q=
∞∑
j=0

Qj , (54)

where Qj is the gain subject to Bob receiving exactly j photons. Following [23], for each j we write

Qj = PjYj , (55)

where Yj is the yield for given j. The feasible range and expressions for Yj, cj are computed explicitly in
appendices B and C, where we also note that Y j does not depend on fj. By combining these parameters we
obtain the QBER conditioned on Bob receiving j photons,

Ej =
2cj
Yj

, (56)

such that

E=

∑
jQjEj

Q
. (57)

5.1. A modified protocol
Symmetry is commonly exploited to assess the security of QKD protocols. Examples are found in the
literature for both DV [46–49] and CV [31, 32, 50–52] systems.

To justify our use of the U⊗U∗ symmetry, we introduce a modified protocol that includes an active
symmetrisation step. First we note that the hybrid BB84 protocol requires Alice and Bob to share a reference
frame in order to agree on the orientation of the H/V and D/A polarisation states. In the original protocol it
is implicitly assumed that this reference frame is fixed. To make the protocol explicitly invariant under
U⊗U∗ symmetry we need to modify it in such a way that Alice and Bob randomly change the shared
reference frame at each photon transmission. In the EB representation, this invariance is equivalent to
applying a random local LOP transformation of the form U⊗U∗, mapping any joint state ρAB into an
invariant state,

ρAB → ρ(inv)AB =

ˆ
dµU (U⊗U∗)ρAB (U⊗U∗)

†
, (58)

where dµU is the Haar measure on the group.

Remark 2. It was proven in [49] (see also [32]) that if a QKD protocol is invariant under a symmetry group,
then one can assume without loss of generality that the state shared by Alice and Bob in the EB representation
of the protocol is also invariant under the very same symmetry group. By applying this result in our setup
to the modified protocol, we can restrict the minimisation of the relative entropy in equation (32) to states
that are invariant under transformations of the formU⊗U∗. This restriction comes with no loss of generality
because the modified protocol is indeed invariant under U⊗U∗ transformations. The advantage we gain in
doing this is that the invariant states are block-diagonal in the number basis and can be decomposed as in
equation (51).

Note that in fact only Alice needs to physically apply the unitary U. For Bob it is sufficient to always apply
the same measurements and simply modify the inference strategy according to the unitary U (and to the
basis choice communicated by Alice). It may be possible to prove that invariant states are optimal even
without introducing the active symmetrisation on Alice side, in a way similar to [51]. However, we do not
address this question here leaving it to future work.

10
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5.2. Passive attacks
In this section, we apply our modified protocol to passive attacks, where the eavesdropper does not add
photons into the channel. This limits the minimisation of the relative entropy to the vacuum and the sector
of the Hilbert space with one photon:

ρ(inv)AB = (1− η)ρ(inv)1:0 + ηρ(inv)1:1 ( f1) , (59)

where η is the channel transmissivity. The explicit form of the states ρ(inv)1:j and of the parameters Yj, c1:j are
presented in appendix C. We obtain

Q= 2(1− η)λ0 (1−λ0)+ η (λ0 +λ1 − 2λ0λ1) . (60)

This sets the range of feasibility for the gain,

Q ∈ [Qmin,Qmax] , (61)

with

Qmin =min{2λ0 (1−λ0) ,λ0 +λ1 − 2λ0λ1} , (62)

Qmax =max{2λ0 (1−λ0) ,λ0 +λ1 − 2λ0λ1} . (63)

In an experimental implementation,Q can be estimated from the data, from which one in turn determines η,

η =
Q− 2λ0 (1−λ0)

(1− 2λ0)(λ1 −λ0)
(64)

Similarly, the parameters c reads

c= (1− η)
1

2
λ0 (1−λ0)+ η

(
2f+ 1

6
(1−λ1)λ0 +

1− f

3
(1−λ0)λ1

)
. (65)

Given η, the range of c is given by

c ∈ [cmin, cmax] , (66)

with

cmin = (1− η)
λ0 (1−λ0)

2
+ η

λ0 (1−λ1)

2
, (67)

cmax = (1− η)
λ0 (1−λ0)

2
+ η

(
λ0 (1−λ1)

6
+

λ1 (1−λ0)

3

)
. (68)

The feasible region for key rates compatible with our protocol is illustrated (for different values of the
threshold τ ) by the shaded regions in the Q-c plane in figure 4.

Note that the error parameter c can be estimated from the experimental data, which in turn determines
the parameter f 1 uniquely,

f1 =
3(1− η)λ0 (1−λ0)

2η (λ1 −λ0)
+

λ0 + 2λ1 − 3λ0λ1

2(λ1 −λ0)
− 3c

η (λ1 −λ0)
. (69)

In conclusion, the experimental estimates of c and Q completely determine the state with no
minimisation required to compute the key rate. It remains to compute the relative entropy and hence the rate
for given values of these two parameters. The asymptotic rate can then be written as

r= (1− η)D
[
ρ(inv)1:0

]
+ ηD

[
ρ(inv)1:1 ( f1)

]
−Qh2 (E) , (70)

with E= 2c/Q. By using the above expressions for η and f 1, the key rate is entirely determined by the
experimental estimates of Q and c. In figure 4, the blue line at the bottom boundary corresponds to the
pure-loss channel, in which case the key rate reduces to equation (42).

Our results can be directly compared with those of Qi in [23]. We first need to recall that Qi introduced a
model of virtual detectors to provide an upper bound on the key rate as a function of the detector
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Figure 4. Feasible key rate region: the shaded regions illustrates feasible values for Q and c that are compatible with our model
with up to one photon on Bob side for different detector threshold values τ . The feasible region for τ = 1 is illustrated in darkest
gray. Lighter shades of gray are for τ = 1.5 and τ = 2.0. The blue lines on the bottom boundaries correspond to passive attacks
(for varying values of the loss factor η), in which case the key rate reduces to equation (42).

misalignment, quantified by the parameter Ed. Leveraging this virtual detection model, the QBER
corresponding to Bob detecting a single-photon is [23]

EQi1 =
(Edτ + 1)e−τ − (τ + 1)e−2τ

(τ + 2)e−τ − 2(τ + 1)e−2τ
. (71)

The key rate in [23] can then be written using our notation,

rQi = Q0 +Q1 (1− h2 (Ed))−Qh2 (E) , (72)

with

Q0 = 2(1− η)λ0 (1−λ0) , (73)

Q1 = η (λ0 +λ1 − 2λ0λ1) , (74)

Q= Q0 +Q1 , (75)

E=
Q0E0 +Q1E

Qi
1

Q
=

Q0/2+Q1E
Qi
1

Q
. (76)

Now, to compare the key rate in equation (72) with our formalism in equation (70), we determine an
expression for f 1 using our expression for the QBER conditioned on Bob receiving a single photon

E1 =
2c1
Y1

=
1

3

λ0 + 2λ1 − 3λ0λ1 − 2f1 (λ1 −λ0)

λ0 +λ1 − 2λ0λ1
. (77)

By equating this to EQi1 , we find

f1 = 1− 3Ed
2

, (78)

which is independent of the detector threshold, τ . Note that for Ed = 0 we obtain f 1 = 1 and our key rate
recovers the rate for passive attacks and matches the result of Qi. For non-zero Ed, figure 5 illustrates a
comparison of the rates achieved with our formalism with [23]. Our theory provides higher rates and can
tolerate higher channel losses.
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Figure 5. Protocol comparison: comparison of asymptotic rates (bits/pulse) vs loss (dB) according to our theory (solid lines) and
to the theory of Qi [23] (dotted lines), for different values of the error probability, Ed. The black line on the top of the figure
corresponds to the PLOB repeaterless bound [43].

6. Controlled minimisation of the relative entropy

In general, there is no guarantee that the state obtained by Bob involves only one photon or even a bounded
number of photons. However, Bob can estimate the photon number distribution using the output of
heterodyne detection [25]. In practice, only a few parameters Pj in the expansion (51) will be realistically
estimated with a reasonable small error, say from j= 0 up to j= k. The limited information on the parameters
Pj is still useful to obtain a lower bound on the relative entropy. In fact from equation (52) we obtain

D
[
ρ(inv)AB

]
⩾ P0D

[
ρ(inv)1:0

]
+

k∑
j=1

PjD
[
ρ(inv)1:j

(
fj

)]
. (79)

Since Alice and Bob can estimate the parameters Q, c, and Pj for j between 0 and k from their
experimental data, a lower bound on the relative entropy is obtained by solving the constrained
minimisation:

D
[
ρ(inv)AB

]
⩾ P0D

[
ρ(inv)1:0

]
+ min

f1,...,fk

k∑
j=1

PjD
[
ρ(inv)1:j

(
fj

)]
, (80)

where the minimisation is subject to the constraint

P0c0 +
k∑

j=1

Pjcj
(
fj

)
⩽ c . (81)

Since we expect the relative entropy to decrease monotonically with increasing c, we may replace this
inequality with an equality. Note that the optimisation in equation (80) is over k parameters fj ∈ [0,1], for
j = 1, . . . ,k. Therefore, the complexity of the optimisation is reduced from quadratic to linear in the photon
number cutoff.

Alternatively, one can use the estimated QBER in the constrained minimisation instead of the parameter
c, yielding

2
P0c0 +

∑k
j=1Pjcj

(
fj

)
Q(k)

⩽ E , (82)

where Q(k) is an upper bound for Q. As shown in appendix B, a suitable upper bound is

Q(k) =
k∑

j=0

PjYj +

1−
k∑

j=0

Pj

Yk+1 . (83)
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7. Application: assessing the robustness to electronic noise

We apply our theory to assess the robustness of the hybrid protocol against electronic noise in heterodyne
detection. Electronic noise is one of the most significant challenges for QKD protocols based on coherent
detection. We model the electronic noise as Gaussian noise with zero mean and variance N, with the
following representation as a quantum channel acting on each mode of the field:

ρ→
ˆ

d2α

πN
e−|α|2/ND (α)ρD (α)

†
, (84)

whereD(α) is the displacement operator. Note that when applied to the two modes received by Bob, this
map preserves the U⊗U∗ symmetry.

Overall, we model the communication channel from Alice to Bob as a Gaussian channel obtained by first
applying a pure-loss channel of transmissivity η, followed by mode-wise application of the channel in
equation (84). In the Heisenberg picture, this is described by the map

bH →√
η bH +

√
1− η eH + z , (85)

bV →√
η bV +

√
1− η eV + z∗ , (86)

where z is a circularly symmetric, complex-valued Gaussian random variable with zero mean and variance N.
Using the expansion of the displacement operator in the number bases [53] (form⩾ n)

〈m|D (α) |n〉=
√

n!

m!
αm−ne−|α|2/2L(m−n)

n

(
|α|2

)
, (87)

where L(m−n)
n denotes the Laguerre polynomials, we are able to compute the invariant states. We truncate the

Hilbert space to three photons on Bob side. By repeated applications of equation (87) we obtain (details in
appendix D)

ρ(inv)AB = P0ρ
(inv)
1:0 +

3∑
j=1

Pjρ
(inv)
1:j

(
fj

)
, (88)

with

f1 =
2η+N2 − ηN+N

2(η+ 2N2 − 2ηN+ 2N)
, (89)

f2 =
3η+N2 − ηN+N

3(η+N2 − ηN+N)
, (90)

f3 =
3
(
4η+N2 − ηN+N

)
4(3η+ 2N2 − 2ηN+ 2N)

, (91)

and P0, P1, P2, P3 are given by the formula

Pj =
η

N+ 1

j∑
m=0

pm

(
N

N+ 1

)j−m

+( j+ 1)
1− η

(N+ 1)2

(
N

N+ 1

)j

(92)

where

pm :=

{ N
(N+1)2

if m= 0

1
N+1

(
N

N+1

)m
m+N2

N(N+1) if m⩾ 1
(93)

From this we obtain a lower bound on the relative entropy:

D
[
ρ(inv)AB

]
⩾ P0D

[
ρ(inv)1:0

]
+

3∑
j=1

PjD
[
ρ(inv)1:j

(
fj

)]
. (94)
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Figure 6. Comparison of asymptotic key rates as a function of loss (dB) for different excess noise variance N. Solid lines: our lower
bound for the hybrid protocol, computed using equation (97) after optimisation of the threshold value τ . Dashed lines: upper
bound for continuous-modulation CV QKD, obtained from the reverse coherent information in equation (98).

Note that the function Qh2[2c/Q] is monotonically increasing with both Q and c. Therefore, an upper bound
on the error correction leak is obtained from upper bounds on Q and c (these upper bounds are needed only
for our numerical simulation; in any experimental implementation the values of Q and c can be directly
estimated from the data).

As discussed in appendix B, suitable upper bounds are

Q(3) =
3∑

j=0

PjYj +

1−
3∑

j=0

Pj

Y4 , (95)

c(3) = P0c0 +
3∑

j=1

Pjcj
(
fj

)
+

1−
3∑

j=0

Pj

 1−λ0

2
. (96)

In conclusion, we obtain the following lower bound on the asymptotic key rate:

r⩾ P0D
[
ρ(inv)1:0

]
+

3∑
j=1

PjD
[
ρ(inv)1:j

(
fj

)]
−Q(3)h2

[
2c(3)
Q(3)

]
, (97)

this rate is expected to be tight if the variance N of the Gaussian noise is not too large, which in turn implies
a small value for the probability (1−

∑3
j=0Pj).

The key rate is illustrated in figure 6. The hybrid protocol is sensitive to excess noise in the detector with
N= 10−6 closely approximating the ideal scenario of no electronic noise. Suppression of excess noise down
to the 10−4 regime in CV-QKD is possible through carrier frequency switching [54]. In figure 6 we compare
the performance of our hybrid protocol with CV QKD. Following [55], an upper bound on the key rate
achievable in CV QKD with heterodyne detection and reverse reconciliation is given by the reverse coherent
information,

rCV ⩽ log

(
1

1− η

)
− g(N) , (98)

where g(N) := (N+ 1) log(N+ 1)−N logN. Note that for an excess noise of N= 10−4, our scheme can
tolerate losses up to∼17 dB, corresponding to an optical fibre transmission of 85 km. The protocol can
therefore deliver high-rate QKD in terrestrial or free-space quantum networks over metropolitan scales.

8. Conclusions

Security proofs in quantum cryptography are often limited to a specific protocol and generally require a
theoretical model that precisely matches the physical devices used in their implementation. Closing the
disparity between theory and implementation of DV and CV QKD has therefore been the subject of
significant effort [24, 51, 56]. Recent numerical approaches have provided easier implementation by enabling
reliable calculation of key rates that are robust to both device imperfections and changes in protocol
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structure [36–38]. An alternative research direction that offers a promising route towards implementation is
the development of hybrid QKD protocols that strive to assimilate the best features of both DV and CV
protocols [23, 24]. Most notable of these features is better range performance and mature security proofs
inherited from DV protocols and the scalability and compatibility with existing telecommunication
infrastructures inherited from CV protocols due to the use of coherent detection.

We explore the security of hybrid BB84 with heterodyne detection proposed by Qi in [23], where
information is encoded is in discrete variables (e.g. polarisation), and decoding is by heterodyne detection.
This variant offers two additional advantages. First, in contrast to DV QKD, it does not require sifting, as a
single decoding measurement applies to both encoding bases. Second, in contrast to CV QKD, it does not
require a shared local oscillator. However, this proposal requires a shared reference frame (though a
reference-frame free version could be envisaged along the lines of [57]). One outstanding challenge for
implementation is that our scheme requires multiple low-noise homodyne detectors.

Compared to the protocol of Qi, we add a symmetrisation step to make the protocol invariant under local
LOP transformations of the form U⊗U∗, such that Alice and Bob can randomly change the reference frame
at each photon transmission. By exploiting symmetry, our modified protocol takes advantage of invariant
states that are block-diagonal in the number basis with reduced complexity. Our modified protocol therefore
offers several advantages over previous protocols. First, it enables a simplified security analysis. Second, our
use of symmetry allows for semi-analytical expressions for the asymptotic key rate under collective attacks.
Finally, it enables an efficient numerical procedure to optimise the secret key rate with quadratic speedup. In
particular, we are able to perform an exact numerical optimisation with full control of the error due to
finite-dimensional cut-off of the otherwise infinite-dimensional Hilbert space typical of CV QKD protocols.

We apply our theory to a few examples of quantum channels connecting Alice to Bob, including linear
loss, passive attacks, and Gaussian noise. Our analysis sheds light on the salient features of hybrid QKD: (1)
the study of linear loss shows that the key rate scale as O(η2), where η is the attenuation factor, instead of the
linear scaling that characterises most DV and CV protocols; (2) when Gaussian noise is introduced the key
rate decreases rapidly, even when compared with CV protocols, this suggests that the hybrid approach is not
necessarily advantageous in terms of robustness to noise.

Returning to the original motivation of improving the implementation of QKD protocols, our work
achieves this by introducing a symmetrised hybrid QKD protocol. Our results pave the way for a number of
interesting research questions that may further improve the performance of hybrid protocols. First, our
theory can be directly extended to include decoy states. Second, it may be possible to prove that invariant
states are optimal without introducing active symmetrisation. Third, it would be interesting to introduced
post-selection in the protocol, which may increase the achievable distance, and to explore the differential
detection mode of [23]. Finally, our approach may be extended to reference-frame-independent QKD [57],
hence removing the need of maintaining a shared reference frame and paving the way to satellite-based
applications. In a broader context, our framework to establish invariant states provides a general utility that
can be applied to other use cases, such as semi-device-independent communication protocols.
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Appendix A. (U⊗U∗)-invariant states

Suppose that both Alice’s and Bob’s Hilbert spaces are endowed with SU(2) representations. For U ∈ SU(2),
Alice’s space transforms under U, and Bob’s space under U∗. Are there any states of the composite system that
are left invariant by these transformations? If yes, what is their most general form?We will informally refer to
such states as (U⊗U∗)-invariant. The purpose of this appendix is to answer some variations on the theme of
the previous questions.
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A.1. Preliminaries
In this section we will recall some basic notions, allowing us to give meaning to the problem in different
contexts, and study it in the framework of the representation theory of SU(2).

Addition of two spin angular momenta—Let Jα (α= A,B) be a spin-jα angular momentum, with basis
|jα,mα〉α, generating a unitary irreducible representation Dα of SU(2). The addition of the two angular
momenta, denoted by JA + JB, is an angular momentum, generating the jA × jB representation
DA ⊗DB : U 7→ DA(U)⊗DB(U), which is unitary and (completely) reducible.

The irreducible invariant subspaces—i.e. invariant subspaces with no invariant proper subspace; any
invariant subspace is a direct sum of irreducible ones—of JA + JB, or, which is the same, of DA ⊗DB, are
precisely the eigenspaces of (JA + JB)

2. The whole space is decomposed into min(2jA,2jB) = jA + jB − |jA − jB|
eigenspaces of (JA + JB)

2, labelled by the quantum number j, which varies by decreasing integer steps from
jA + jB to |jA − jB|. On each such eigenspace, JA + JB is a spin-j angular momentum, and there is an
orthonormal basis |j,m〉, withm (the eigenvalue of JA,z + JB,z) varying by decreasing integer steps from j to
−j. The vectors |j,m〉, with all possible values of j andm, form an orthonormal basis of the whole space.

A particular basis of this kind is singled out by the following conditions [58]:

|j,m〉=

√
( j+m)!

( j−m)! (2j)!
J j−m
− |j, j〉 , (A1)

A〈 jA,mA|B〈 jB,mB|j,m〉 > 0 . (A2)

Condition (A1), often called Condon–Shortley phase convention, yields the standard action of the ladder
operators, where the relative phase between |j,m± 1〉 and J±|j,m〉 is 1. If |j,m〉 is a basis for a spin-j angular
momentum, and equation (A1) holds, the matrix elements of the associated representation are the
corresponding coefficients of the Wigner matrix D( j)—hereafter, whenever we choose an arbitrary basis for a
spin angular momentum, the phase convention (A1) will always be assumed. In the present context,
condition (A1) allows us to obtain each j-multiplet |j,m〉 by repeated applications of the destruction operator
on |j, j〉, hence determining a basis up to an overall phase for each multiplet, and such phase is singled out by
condition (A2). The two conditions together ensure the reality of the Fourier coefficients of the basis vectors,
with respect to the product basis. In other words, the transition matrices between the two bases are not only
unitary but also orthogonal. The basis vectors determined by the above prescriptions are denoted as
|jA, jB; j,m〉, and their Fourier coefficients are called Clebsch–Gordan (CG) coefficients, and denoted by
C( jA,mA; jB,mB; j,m),

|jA, jB; j,m〉=
∑
mA,mB

C( jA,mA; jB,mB; j,m) |jA,mA〉A|jB,mB〉B. (A3)

It’s easy to see that the nontrivial CG coefficients must satisfy the selection rulemA +mB =m, hence the sum
on the right-hand side of equation (A3) has only one free index.

The irreducible invariant subspaces of DA ⊗DB—the (U⊗U)-invariant subspaces—can be expressed in
terms of the basis vectors (A3) as

V(2j+1)
2jA:2jB

= Span{|jA, jB; j,m〉 |m=−j, . . . , j} , (A4)

for integer j = jA + jB, . . . , |jA − jB|. The irreducible components of DA ⊗DB are obtained by restricting its
action to each irreducible invariant subspace,

DA (U)⊗DB (U) |jA, jB; j,m〉=
∑
m′

D( j)
m′m (U) |jA, jB; j,m

′〉. (A5)

Complex conjugation in SU(2)—Complex conjugation is an automorphism (i.e. an isomorphism of the
group to itself) of SU(2). Actually, this is true for all special unitary groups, since identities (AB)∗ = A∗B∗,
(A∗)∗ = A, (A∗)† = (A†)∗, detA∗ = (detA)∗, hold for square matrices A,B, of arbitrary order. Crucially,
complex conjugation is an inner automorphism of SU(2) [59],

U∗ =
(
−iσy

)
U
(
−iσy

)−1
, (A6)

that is, taking the complex conjugate of a SU(2) matrix is the same as taking its adjoint with respect to−iσy,
an element of the group. Observe that the SO(3) representation of−iσy is a rotation of 180 degrees around
the y axis, i.e. an inversion of the xz plane.
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These considerations extend to representations. If D is a SU(2) representation,

D̃ : U 7→ D (U∗) (A7)

is in turn a SU(2) representation, which is unitary if D is. These statements hold for all special unitary
groups. However, if D is a representation of SU(2), D and D̃ are isomorphic by equation (A6),

D̃ (U) = D
(
−iσy

)
D (U)

(
D
(
−iσy

))−1
, (A8)

and, in particular, unitarily equivalent if D is unitary.
If D is generated by a spin-j angular momentum J, by equation (A8), D̃ is generated by

J̃= D
(
−iσy

)
J
(
D
(
−iσy

))†
= exp

(
iπ Jy

)
J exp

(
−iπ Jy

)
=
(
−Jx, Jy,−Jz

)
, (A9)

in turn a spin-j angular momentum, related to J by a rotation of 180 degrees around the y axis. Moreover, if
|j,m〉 is a basis for J, D(−iσy)|j,m〉 is a basis for J̃.

Schwinger angular momentum—Let H be a Hilbert space of two independent bosonic modes, that is, with
creation and destruction operators a†k and ak, such that (k, ℓ= 1,2)

[ak,aℓ] = 0 ,
[
a†k ,a

†
ℓ

]
= 0 ,

[
ak,a

†
ℓ

]
= δkℓ1 , (A10)

with number operators Nk = a†kak, and total number operator N= N1 +N2. The vectors

|(n1,n2)〉=
a†1

n1
a†2

n2

√
n1!n2!

|0〉 (A11)

form an orthonormal basis of joint eigenstates of the number operators, where |0〉= |(0,0)〉 is the vacuum
state, ak|0〉= 0.

The Jordan map [58],

(Mkℓ)
2
k,ℓ=1 7→

2∑
k,ℓ=1

Mkℓ a
†
kaℓ , (A12)

is a Lie-algebra homomorphism, mapping matrices of order 2 to operators on H , that are bilinear in the
creation and destruction operators. Since the Hermitian conjugate of a matrix is mapped to the adjoint of the
corresponding operator, Hermitian matrices are mapped to observables. In particular, the spin- 12 angular
momentum σ/2, with ladder operators σ±/2= (σx ± iσy)/2, is mapped to the Schwinger angular
momentum [58, 60] J= (Jx, Jy, Jz), with ladder operators J± = Jx ± iJy, where

J+ = a†1a2 , J− = a†2a1 , Jz =
a†1a1 − a†2a2

2
=

N1 −N2

2
. (A13)

Remarkably, J yields all the irreducible representations of the Lie algebra su(2), and generates a
representation D yielding all the irreducible representations of the Lie group SU(2) [58]. Indeed, the square
of the angular momentum is related to the total number operator (corresponding to the image, through the
Jordan map, of the identity matrix) by

J2 =
N

2

(
N

2
+1

)
. (A14)

As a consequence, the eigenspace of J2 relative to the quantum number j coincides with the eigenspace H2j

of the total number operator N relative to the eigenvalue 2j, which is spanned by |(n1,n2)〉, with n1 + n2 = 2j.
Moreover, by equations (A13) and (A14), joint eigenvectors of N1 and N2, and joint eigenvectors of J2 and Jz
coincide, and the corresponding quantum numbers are related by

j =
n1 + n2

2
, m=

n1 − n2
2

. (A15)

Therefore, H2j is invariant under J, and the restriction of J to H2j is a spin-j angular momentum, with basis

|j,m〉= a†1
j+m

a†2
j−m√

( j+m)! ( j−m)!
|0〉, (A16)
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withm=−j, . . . , j, automatically satisfying the phase convention (A1). Then SU(2) can act on H under the
unitary representation D generated by J. In particular, its action on H2j is

D (U) |j,m〉=
∑
m′

D( j)
m′m (U) |j,m

′〉 . (A17)

In other words, the subrepresentation D ( j) : U 7→ D(U)|H2j , restricting the action of D to H2j, is a spin-j
representation on H2j, generated by the restriction of J to H2j.

As to complex conjugation, the representation D̃ defined by equation (A7) is generated by the rotated
angular momentum J̃= (−Jx, Jy,−Jz), the Schwinger angular momentum associated to the rotated spin-1/2
angular momentum σ̃/2= (−σx/2,σy/2,−σz/2). Then H2j is invariant under D̃ , and the spin-j

subrepresentations of D and D̃ on H2j are related by

D̃( j) (U) = D( j) (U∗) . (A18)

A.2. Abstract problem
Let us consider the simple case in which Alice’s and Bob’s representations are both irreducible, namely, let Jα
(α= A,B) be a spin-jα angular momentum on a Hilbert space Hα, with basis |jα,mα〉α, generating a
representation Dα of SU(2). Let us also keep in mind that the relevant case to our actual problem will be
jA = 1/2. While theoretical considerations will generally be carried out for a generic jA, we will generally look
for explicit expressions only for jA = 1/2.

A.2.1. General considerations
We know that DA ⊗DB and DA ⊗ D̃B are unitary representations of SU(2), acting on HA ⊗HB, generated
by the angular momenta JA + JB and JA +J̃B, respectively, and unitarily equivalent by equation (A8),

DA (U)⊗ D̃B (U) =
(
1A ⊗DB

(
−iσy

))
(DA (U)⊗DB (U))

(
1A ⊗DB

(
−iσy

))†
. (A19)

(U⊗U∗)-invariant subspaces from (U⊗U)-invariant subspaces—Since DA ⊗DB and DA ⊗ D̃B are
related by a unitary transformation, the (U⊗U∗)-invariant subspaces are all and only the images of the
(U⊗U)-invariant subspace through the unitary operator 1A ⊗DB(−iσy). Moreover, we are free to multiply
this unitary, on the left, by any unitary of the kind DA(U0)⊗DB(U∗

0 ), with U0 ∈ SU(2). Since we are
essentially interested to jA = 1/2, a suitable choice, allowing us to move the action of the identity map on the
higher spin, is U = DA(−iσy)⊗1B. Incidentally, U is the precise analogue of 1A ⊗DB(−iσy) for D̃A ⊗DB.
This fact should not come as a surprise: (U⊗U∗)-invariance and (U∗ ⊗U)-invariance coincide, after all.

By equation (A4), the whole space is decomposed into the irreducible (U⊗U∗)-invariant subspaces

W(2j+1)
2jA:2jB

= U V(2j+1)
2jA:2jB

= Span{U |jA, jB; j,m〉 |m=−j, . . . , j} , (A20)

with j = jA + jB, . . . , |jA − jB|.

Invariant states from invariant subspaces—We say that a density operator ρ of the bipartite system is a
(U⊗U∗)-invariant state if

ρ= DA (U)⊗DB (U
∗) ρ (DA (U)⊗DB (U

∗))
†
, (A21)

for all U ∈ SU(2), that is, if ρ commutes with DA ⊗ D̃B, or, which is the same, with each component of
JA +J̃B. Now, if ρ is an invariant state, each invariant subspace of DA ⊗ D̃B must be invariant under ρ.
Consequently, ρ is decomposed into a convex combination of states, each living in a different irreducible
invariant subspace of DA ⊗ D̃B. But then each such state is a scalar by Schur’s lemma [61]. As a result, the
following states are (U⊗U∗)-invariant:

ρ
(2j+1)
2jA:2jB

=
1

2j+ 1
P(2j+1)
2jA:2jB

, (A22)

where P(2j+1)
2jA:2jB

is the orthogonal projection ontoW(2j+1)
2jA:2jB

, and the most general invariant state is a convex
combination of states of the kind (A22).
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A.2.2. Discussion of the case 1
2 × jB

Let us assign the role of ‘computational basis’ to the product basis |jA,mA〉A|jB,mB〉B, and look for explicit
expressions of the (U⊗U∗)-invariant states. Since an invariant state is a linear combination of orthogonal
projections onto irreducible invariant subspaces, and, by equation (A20), such subspaces are spanned by
orthonormal vectors in the form U |jA, jB; j,m〉, all we have to do is decompose these vectors on the product
basis. To this end, we need the matrix elements of U = DA(−iσy), and the CG coefficients for jA × jB.

Hereafter we will show how to handle this problem in the case of our concern, jA = 1/2. First of all, our
notation for a spin-1/2 can be simplified by setting |±〉= | 12 ,±

1
2 〉. We know that the whole space is

decomposed as

HA ⊗HB = V(2jB+2)
1:2jB

⊕V(2jB)
1:2jB

=W(2jB+2)
1:2jB

⊕W(2jB)
1:2jB

, (A23)

that is, into two irreducible (U⊗U)-invariant subspaces, as well as two irreducible (U⊗U∗)-invariant
subspaces, of dimension 2jB + 2 and 2jB, related by

W(2jB+2)
1:2jB

= U V(2jB+2)
1:2jB

, W(2jB)
1:2jB

= U V(2jB)
1:2jB

. (A24)

The basis vectors of the irreducible (U⊗U)-invariant subspaces are precisely the two j-multiplets for 1
2 × jB

(j = jB ± 1/2), and are linear combinations of at most two product basis vectors,

| 12 , jB; jB ±
1
2 ,m〉= C

(
1
2 ,

1
2 ; jB,m− 1

2 ; jB ±
1
2 ,m

)
|+〉A |jB,m− 1

2 〉B
+ C

(
1
2 ,−

1
2 ; jB,m+ 1

2 ; jB ±
1
2 ,m

)
|−〉A |jB,m+ 1

2 〉B. (A25)

In our settings, DA can be identified with the defining representation. In particular, DA(−iσy)|±〉A =
±|∓〉A. As a result, the basis vectors of the irreducible (U⊗U∗)-invariant subspaces read

U | 12 , jB; jB ±
1
2 ,m〉= C

(
1
2 ,

1
2 ; jB,m− 1

2 ; jB ±
1
2 ,m

)
|−〉A |jB,m− 1

2 〉B
− C

(
1
2 ,−

1
2 ; jB,m+ 1

2 ; jB ±
1
2 ,m

)
|+〉A |jB,m+ 1

2 〉B. (A26)

The calculation the CG coefficients for 1
2 × jB is also rather straightforward, and will be shown below, in

order to make this appendix as self-consistent as possible. Actually, this task will be carried out by first
computing the CG coefficients, with the two highest values of j, for jA × jB, and then specializing the results
to jA = 1/2. Indeed, there would be no advantage in assuming jA = 1/2 right from the start; on the contrary,
while our math would not get any simpler, the resulting notation would become quite cumbersome.

Clebsch–Gordan coefficients for jA × jB, j = jA + jB—Throughout this paragraph, and the next one, jA
and jB are fixed; therefore we will write |mA〉|mB〉 instead of |jA,mA〉A|jB,mB〉B, and |j,m〉 instead of
|jA, jB; j,m〉. We will also set ȷ̂= jA + jB.

Let us start with the ȷ̂-multiplet. The eigenspace of JA,z + JB,z relative tom= ȷ̂ is spanned by |jA〉|jB〉.
Then, by condition (A2) we must set

|ȷ̂, ȷ̂〉= |jA〉|jB〉, (A27)

and, by condition (A1),

|ȷ̂,m〉=

√
(ȷ̂+m)!

(ȷ̂−m)! (2ȷ̂)!
Jȷ̂−m
− |jA〉|jB〉. (A28)

We first compute

Jȷ̂−m
− |jA〉|jB〉= (JA,− + JB,−)

ȷ̂−m |jA〉|jB〉

=
∑
mA,mB

mA+mB=m

(ȷ̂−m)!

( jA −mA)! ( jB −mB)!
JjA−mA

A,− |jA〉JjB−mB

B,− |jB〉

=
∑
mA,mB

mA+mB=m

[
(ȷ̂−m)!2 (2jA)! (2jB)!

( jA −mA)! ( jA +mA)! ( jB −mB)! ( jB +mB)!

] 1
2

|mA〉|mB〉, (A29)
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and then plug the result into equation (A28), to obtain the whole multiplet,

|ȷ̂,m〉=
∑
mA,mB

mA+mB=m

[
(ȷ̂+m)! (ȷ̂−m)! (2jA)! (2jB)!

(2ȷ̂)! ( jA −mA)! ( jA +mA)! ( jB −mB)! ( jB +mB)!

] 1
2

|mA〉|mB〉

=
∑
mA,mB

mA+mB=m

[( 2jA
jA−mA

)( 2jB
jB−mB

)( 2ȷ̂
ȷ̂−m

) ] 1
2

|mA〉|mB〉. (A30)

Observe that the coefficients with j = jA + jB − 1 are all non negative.

Clebsch–Gordan coefficients for jA × jB, j = jA + jB − 1—As to the (ȷ̂− 1)-multiplet, the eigenspace of
JA,z + JB,z, relative tom= ȷ̂− 1, is spanned by |jA〉|jB − 1〉 and |jA − 1〉|jB〉, and, by equation (A30),

|ȷ̂, ȷ̂− 1〉=

√
jB

jA + jB
|jA〉|jB − 1〉+

√
jA

jA + jB
|jA − 1〉|jB〉. (A31)

is one of the eigenstates. Therefore, by condition (A2), we must set

|ȷ̂− 1, ȷ̂− 1〉=

√
jA

jA + jB
|jA〉|jB − 1〉−

√
jB

jA + jB
|jA − 1〉|jB〉, (A32)

and, by condition (A1),

|ȷ̂− 1,m〉=

√
(ȷ̂− 1+m)!

(ȷ̂− 1−m)! (2ȷ̂− 2)!ȷ̂

[√
jA J

ȷ̂−m−1
− |jA〉|jB − 1〉−

√
jB J

ȷ̂−m−1
− |jA − 1〉|jB〉

]
. (A33)

The generic state of the multiplet is the sum of two terms. We first compute

Jȷ̂−m−1
− |jA〉|jB − 1〉= (JA,− + JB,−)

ȷ̂−m−1 |jA〉|jB − 1〉

=
∑
mA,mB

mB⩽jB−1
mA+mB=m

(ȷ̂−m− 1)!

( jA −mA)! ( jB −mB − 1)!
JjA−mA

A,− |jA〉JjB−mB−1
B,− |jB − 1〉

=
∑
mA,mB

mB⩽jB−1
mA+mB=m

[
(ȷ̂−m− 1)!2 (2jA)! (2jB − 1)! ( jB −mB)

( jA −mA)! ( jA +mA)! ( jB −mB − 1)! ( jB +mB)!

] 1
2

|mA〉|mB〉

=
∑
mA,mB

mA+mB=m

[
(ȷ̂−m− 1)!2 (2jA)! (2jB − 1)! ( jB −mB)

2

( jA −mA)! ( jA +mA)! ( jB −mB)! ( jB +mB)!

] 1
2

|mA〉|mB〉, (A34)

so that the term in Jȷ̂−m−1
− |jA〉|jB − 1〉 is√

(ȷ̂− 1+m)!jA
(ȷ̂− 1−m)! (2ȷ̂− 2)!ȷ̂

Jȷ̂−m−1
− |jA〉|jB − 1〉

=
∑
mA,mB

mA+mB=m

[
(ȷ̂−m− 1)! (ȷ̂−m+ 1)! (2jA)! (2jB − 1)!jA ( jB −mB)

2

(2ȷ̂− 2)! ( jA −mA)! ( jA +mA)! ( jB −mB)! ( jB +mB)!ȷ̂

] 1
2

|mA〉|mB〉

=
∑
mA,mB

mA+mB=m

[( 2jA
jA−mA

)( 2jB
jB−mB

)( 2ȷ̂−2
ȷ̂−m−1

) ] 1
2
jA ( jB −mB)√

2jAjBȷ̂
|mA〉|mB〉. (A35)

The term in Jȷ̂−m−1
− |jA − 1〉|jB〉 is obtained by substituting A↔ B in the coefficients of the above linear

combination. Plugging these results into equation (A33) yields the whole multiplet,

|ȷ̂− 1,m〉=
∑
mA,mB

mA+mB=m

[( 2jA
jA−mA

)( 2jB
jB−mB

)( 2ȷ̂−2
ȷ̂−m−1

) ] 1
2
jBmA − jAmB√

2jAjBȷ̂
|mA〉|mB〉. (A36)
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The coefficients with j = jA + jB − 1 have the sign ofmA/jA −mB/jB, hence can be negative.

Clebsch–Gordan coefficients for 12 × jB—By equation (A30), the nontrivial CG coefficients with
j = jB + 1/2 are in the form

C
(
1
2 ,±

1
2 ; jB,m∓ 1

2 ; jB +
1
2 ,m

)
=

(
1

1
2 ∓

1
2

) 1
2
(

2jB
jB −m± 1

2

) 1
2
(

2jB + 1

jB −m+ 1
2

)− 1
2

=

√
1

2
± m

2jB + 1
, (A37)

form= jB + 1/2, . . . ,−jB − 1/2. They are all non negative; form=±( jB + 1/2) one sign choice yields 0
(and the other 1, as it should be); for any other value ofm, both choices lead to nontrivial coefficients.
Likewise, by equation (A36), the nontrivial CG coefficients with j = jB − 1/2 are in the form

C
(
1
2 ,±

1
2 ; jB,m∓ 1

2 ; jB −
1
2 ,m

)
=±

(
1

1
2 ∓

1
2

) 1
2
(

2jB
jB −m± 1

2

) 1
2
(

2jB − 1

jB −m− 1
2

)− 1
2 jB ∓m+ 1

2√
2jB (2jB + 1)

=±

√
1

2
∓ m

2jB + 1
, (A38)

form= jB − 1/2, . . . ,−jB + 1/2. They are all non vanishing, and have the sign ofmA =±1/2.
As a result, the ( jB + 1/2)-multiplet is made up of two separable states,

| 12 , jB; jB +
1
2 ,±

(
jB +

1
2

)
〉= |±〉A|jB,±jB〉B, (A39)

corresponding to the highest and lowest values of JA,z + JB,z, and the 2jB entangled states

| 12 , jB; jB +
1
2 ,m〉=

√
1

2
+

m

2jB + 1
|+〉A|jB,m− 1

2 〉B +

√
1

2
− m

2jB + 1
|−〉A|jB,m+ 1

2 〉B, (A40)

withm= jB − 1/2, . . . ,−jB + 1/2. These 2jB + 2 states together generate V(2jB+2)
1:2jB

. On the other hand, the
( jB − 1/2)-multiplet is made up of

| 12 , jB; jB −
1
2 ,m〉=

√
1

2
− m

2jB + 1
|+〉A|jB,m− 1

2 〉B −

√
1

2
+

m

2jB + 1
|−〉A|jB,m+ 1

2 〉B, (A41)

withm= jB − 1/2, . . . ,−jB + 1/2. These 2jB entangled states generate V
(2jB)
1:2jB

.
If |j,±( j+ 1)〉= 0 is understood, equations (A39)–(A40) and (A41) can be put together, by saying that

V(2jB+1±1)
1:2jB

is spanned by the 2jB + 1± 1 orthonormal vectors

| 12 , jB; jB ±
1
2 ,m〉=

√
1

2
± m

2jB + 1
|+〉A|jB,m− 1

2 〉B ±

√
1

2
∓ m

2jB + 1
|−〉A|jB,m+ 1

2 〉B, (A42)

withm= jB ± 1/2, . . . ,−jB ∓ 1/2.

Irreducible (U⊗U∗)-invariant subspaces for 12 × jB—By equations (A24) and (A42),W(2jB+1±1)
1:2jB

is
generated by the 2jB + 1± 1 orthonormal vectors

U | 12 , jB; jB ±
1
2 ,m〉=

√
1

2
± m

2jB + 1
|−〉A|jB,m− 1

2 〉B ∓

√
1

2
∓ m

2jB + 1
|+〉A|jB,m+ 1

2 〉B, (A43)
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withm= jB ± 1/2, . . . ,−jB ∓ 1/2. Specifically,W(2jB+2)
1:2jB

is spanned by the 2jB + 2 vectors

|−〉A|jB, jB〉B,√
2jB

2jB + 1
|−〉A|jB, jB − 1〉B −

√
1

2jB + 1
|+〉A|jB, jB〉B,

...√
1

2jB + 1
|−〉A|jB,−jB〉B −

√
2jB

2jB + 1
|+〉A|jB,−jB + 1〉B,

−|+〉A|jB,−jB〉B,

(A44)

andW(2jB)
1:2jB

by the 2jB vectors

√
1

2jB + 1
|−〉A|jB, jB − 1〉B +

√
2jB

2jB + 1
|+〉A|jB, jB〉B,

...√
2jB

2jB + 1
|−〉A|jB,−jB〉B +

√
1

2jB + 1
|+〉A|jB,−jB + 1〉B.

(A45)

The above expressions allow us to write the orthogonal projection over each invariant subspace, hence, by
equation (A22), the corresponding invariant state.

A.3. Actual problem
Let us now consider two systems, each of two independent photonic modes, namely, the horizontal and the
vertical polarization. Alice’s system is described by a Hilbert space HA, with canonical bosonic annihilation
and creation operators {ak,a†k} for the optical modes k=H,V, determining the number operators Nk

A, the
total number operator NA = NH

A +NV
A, and the standard basis |(nHA ,nVA)〉A, as well as the Schwinger angular

momentum JA, with basis |jA,mA〉A, and generating the SU(2) representation DA. Likewise for Bob.
We look for the (U⊗U∗)-invariant states—defined as in equation (A21)—of the composite system, such

that Alice’s total number is 1, and Bob’s is n (an arbitrary, but fixed number).

A.3.1. General considerations
This problem is just a special case of the one we studied in section A.2. Indeed, in a Hilbert space of two
independent bosonic modes, eigenstates and eigenvalues of the number operators correspond to eigenstates
and eigenvalues of the Schwinger angular momentum. In particular, equations (A11) and (A15)–(A16) yield
j = n/2,m= nH − n/2, and |j,m〉= |(nH,n− nH)〉 (entailing |+〉= |H〉, and |−〉= |V〉). With this in mind,
a bipartite state such that Alice’s total number is 1, and Bob’s is n, lives in the finite-dimensional tensor
product space HA,1 ⊗HB,n, where Alice’s and Bob’s representations are both irreducible, with spin 1/2 and
n/2, respectively. But then such space is decomposed into two (U⊗U∗)-irreducible invariant subspaces,

HA,1 ⊗HB,n =W(n+2)
1:n ⊕W(n)

1:n , (A46)

and the most general invariant state is in the form of a convex combination, with one real parameter
f ∈ [0,1], of the corresponding invariant states,

ρ(inv)1:n ( f) = (1− f)ρ(n+2)
1:n + fρ(n)1:n =

1− f

n+ 2
P(n+2)
1:n +

f

n
P(n)1:n , (A47)

whereW(2j+1)
2jA:2jB

, ρ(2j+1)
2jA:2jB

, and P(2j+1)
2jA:2jB

have the same meaning as in equations (A20) and (A22).
Let us now turn our attention to the problem of expressing the irreducible invariant subspaces on the

product basis,

|H〉A|(n,0)〉B, . . . , |H〉A|(0,n)〉B, |V〉A|(n,0)〉B, . . . , |V〉A|(0,n)〉B. (A48)
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By equation (A44), the subspaceW(n+2)
1:n is spanned by the n+ 2 orthonormal states

|V〉A|(n,0)〉B,√
n

n+ 1
|V〉A|(n− 1,1)〉B −

√
1

n+ 1
|H〉A|(n,0)〉B,

...√
1

n+ 1
|V〉A|(0,n)〉B −

√
n

n+ 1
|H〉A|(1,n− 1)〉B,

−|H〉A|(0,n)〉B.

(A49)

And by equation (A45) the subspaceW(n)
1:n is spanned by the n orthonormal states√

1

n+ 1
|V〉A|(n− 1,1)〉B +

√
n

n+ 1
|H〉A|(n,0)〉B,

...√
n

n+ 1
|V〉A|(0,n)〉B +

√
1

n+ 1
|H〉A|(1,n− 1)〉B.

(A50)

A.3.2. Explicit solutions for the simplest cases
Hereafter, we will give a glance at the cases in which Bob has 1, 2, or 3 photons. Tensor products will be
written as Kronecker products. Matrix representations for linear operators on HA,1 ⊗HB,n shall always be
understood with respect to the product basis, ordered as in equation (A48)—i.e. first by decreasing values of
nHA , then by decreasing values of nHB . We will also emphasize the block structure brought about by the
Kronecker product with respect to the ordered basis (|H〉A, |V〉A) of HA,1. In this way, the density matrix is
partitioned into four square blocks, of order n+ 1, and its partial trace on Bob’s system is obtained by
replacing each block with its own trace.

Case n= 1—The 4-dimensional spaceHA,1 ⊗HB,1, corresponding to the case with one photon in each
system, is decomposed into invariant subspaces of dimension 3 and 1,

HA,1 ⊗HB,1 =W(3)
1:1 ⊕W(1)

1:1 . (A51)

The subspaceW(3)
1:1 is spanned by the orthonormal states

|V〉A|H〉B,
1√
2
(|V〉A|V〉B − |H〉A|H〉B) , −|H〉A|V〉B, (A52)

and corresponds to the invariant state

ρ
(3)
1:1 =

1

3


1/2 0 0 −1/2
0 1 0 0
0 0 1 0

−1/2 0 0 1/2

 . (A53)

The invariant pure state spanningW(1)
1:1 , (|HH〉+ |VV〉)/

√
2, yields the density matrix

ρ
(1)
1:1 =


1/2 0 0 1/2
0 0 0 0
0 0 0 0
1/2 0 0 1/2

 . (A54)

A generic invariant state is a convex combination of ρ(3)1:1 and ρ
(1)
1:1 , depending on f ∈ [0,1],

ρ(inv)1:1 ( f) = (1− f) ρ(3)1:1 + f ρ(1)1:1 =
1

6


2f− 1 0 0 4f− 1
0 2(1− f) 0 0
0 0 2(1− f) 0

4f− 1 0 0 2f− 1

 . (A55)

24



Quantum Sci. Technol. 10 (2025) 025012 J S Sidhu et al

Case n= 2—The 6-dimensional space HA,1 ⊗HB,2, corresponding to the case with one photon in Alice’s
system, and two in Bob’s, is decomposed into invariant subspaces of dimension 4 and 2,

HA,1 ⊗HB,2 =W(4)
1:2 ⊕W(2)

1:2 (A56)

The subspaceW(4)
1:2 has orthonormal basis

|V〉A|(2,0)〉B,√
2

3
|V〉A|(1,1)〉B −

1√
3
|H〉A|(2,0)〉B,

1√
3
|V〉A|(0,2)〉B −

√
2

3
|H〉A|(1,1)〉B,

−|H〉A|(0,2)〉B,

(A57)

and determines the invariant state

ρ
(4)
1:2 =

1

4



1/3 0 0 0 −
√
2/3 0

0 2/3 0 0 0 −
√
2/3

0 0 1 0 0 0
0 0 0 1 0 0

−
√
2/3 0 0 0 2/3 0
0 −

√
2/3 0 0 0 1/3

 . (A58)

The subspaceW(2)
1:2 has orthonormal basis

1√
3
|V〉A|(1,1)〉B +

√
2

3
|H〉A|(2,0)〉B,√

2

3
|V〉A|(0,2)〉B +

1√
3
|H〉A|(1,1)〉B,

(A59)

and determines the invariant state

ρ
(2)
1:2 =

1

2



2/3 0 0 0
√
2/3 0

0 1/3 0 0 0
√
2/3

0 0 0 0 0 0
0 0 0 0 0 0√
2/3 0 0 0 1/3 0
0

√
2/3 0 0 0 2/3

 . (A60)

A generic invariant state is a convex combination of ρ(4)1:2 and ρ
(2)
1:2 , depending on f ∈ [0,1],

ρ(inv)1:2 ( f) = fρ(2)1:2 +(1− f) ρ(4)1:2

=
1

12



3f+ 1 0 0 0
√
2(3f− 1) 0

0 2 0 0 0
√
2(3f− 1)

0 0 3(1− f) 0 0 0
0 0 0 3(1− f) 0 0√

2(3f− 1) 0 0 0 2 0
0

√
2(3f− 1) 0 0 0 3f+ 1

 . (A61)

Case n= 3 —The 6-dimensional space HA,1 ⊗HB,3, corresponding to the case with one photon in Alice’s
system, and three in Bob’s, is the direct sum of a 5- and a 3-dimensional invariant subspaces, namely,

HA,1 ⊗HB,3 =W(5)
1:3 ⊕W(3)

1:3 . (A62)
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The subspaceW(5)
1:3 is spanned by the orthonormal vectors

|V〉A|(3,0)〉B,
√
3

2
|V〉A|(2,1)〉B −

1

2
|H〉A|(3,0)〉B,

1√
2
(|V〉A|(1,2)〉B − |H〉A|(2,1)〉B) ,

1

2
|V〉A|(0,3)〉B −

√
3

2
|H〉A|(1,2)〉B,

−|H〉A|(0,3)〉B,

(A63)

and yields the invariant state

ρ
(5)
1:3 =

1

5



1/4 0 0 0 0 −
√
3/4 0 0

0 1/2 0 0 0 0 −1/2 0
0 0 3/4 0 0 0 0 −

√
3/4

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

−
√
3/4 0 0 0 0 3/4 0 0
0 −1/2 0 0 0 0 1/2 0
0 0 −

√
3/4 0 0 0 0 1/4


. (A64)

The subspaceW(3)
1:3 , spanned by the orthonormal vectors

1

2
|V〉A|(2,1)〉B +

√
3

2
|H〉A|(3,0)〉B,

1√
2
(|V〉A|(1,2)〉B + |H〉A|(2,1)〉B) ,

√
3

2
|V〉A|(0,3)〉+

1

2
|H〉A|(1,2)〉B,

(A65)

determines the invariant state

ρ
(3)
1:3 =

1

3



3/4 0 0 0 0
√
3/4 0 0

0 1/2 0 0 0 0 1/2 0
0 0 1/4 0 0 0 0

√
3/4

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0√
3/4 0 0 0 0 1/4 0 0
0 1/2 0 0 0 0 1/2 0
0 0

√
3/4 0 0 0 0 3/4


. (A66)

A generic invariant state is a convex combination of ρ(5)1:3 and ρ
(3)
1:3 , depending on f ∈ [0,1],

ρ(inv)1:3 ( f) = fρ(3)1:3 +(1− f) ρ(5)1:3

=
1

60



12f + 3 0 0 0 0
√
3(8f − 3) 0 0

0 4f + 6 0 0 0 0 16f − 6 0

0 0 9− 4f 0 0 0 0
√
3(8f − 3)

0 0 0 12(1− f) 0 0 0 0

0 0 0 0 12(1− f) 0 0 0
√
3(8f − 3) 0 0 0 0 9− 4f 0 0

0 16f − 6 0 0 0 0 4f + 6 0

0 0
√
3(8f − 3) 0 0 0 0 12f + 3


.

(A67)
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Appendix B. Feasibility ranges and bounds for the parameters Y and c

In this section we study in more details the properties of the parameters Q and c. In particular, we
characterise their range and values on the invariant states.

Recall the definition of the gain Q,

Q := Tr
[(
RH
1 ⊗RV

0 +RH
0 ⊗RV

1

)
ρB
]
. (B1)

Therefore, the values of Q depends on the eigenvalues of the operator RH
1 ⊗RV

0 +RH
0 ⊗RV

1 . As shown in
equations (12) and (13), this operator is diagonal in the number basis,

RH
1 ⊗RV

0 +RH
0 ⊗RV

1 =
∞∑

a,b=0

[λa (1−λb)+ (1−λa)λb] |a〉H〈a| ⊗ |b〉V〈b| (B2)

=
∞∑

a,b=0

(λa +λb − 2λaλb) |a〉H〈a| ⊗ |b〉V〈b| . (B3)

Recall that eigenvalues depends on the threshold value τ . To make our analysis more concrete we assume
τ = 1, which is close to the optimal value that maximises the asymptotic key rate. By inspection of the
eigenvalues λa +λb − 2λaλb, we find that the smallest eigenvalue is zero, and is obtained when both
a= b→∞. The largest eigenvalues is 1−λ0 obtained when a= 0 and b→∞. This implies the following
range for the gain:

Q ∈ (0,1−λ0) . (B4)

Recall that Qj = PjYj. We now consider the value of Yj on the invariant state ρ(inv)1:j , with j photons on Bob
side. Since the invariant states commute with the photon number, the reduced state on Bob side is
proportional to the projector Pj into the subspace with j photons:

TrA
(
ρ(inv)1:j

)
=

Pj

Tr
(
Pj

) , (B5)

where

Pj =

j∑
a=0

|a〉H〈a| ⊗ |j− a〉V〈j− a| , (B6)

and

Tr
(
Pj

)
= j+ 1 . (B7)

We thus have

Yj =
1

j+ 1

j∑
a=0

λa +λj−a − 2λaλj−a . (B8)

The behaviour of Y j as a function of j is determined by the threshold value τ . If τ is sufficiently small, it is
a decreasing function of j. For example, if we put τ = 1, Y j is decreasing for any j ⩾ 1. If instead we put τ = 2,
Y j is decreasing for any j ⩾ 4. This means that with a careful choice of τ (not too large) and k (not too small),
we can bound the gain Q as follows,

k∑
j=0

PjYj ⩽ Q⩽
k∑

j=0

PjYj +

1−
k∑

j=0

Pj

Yk+1 . (B9)

Consider now the parameter c, defined in equation (28) as

c :=
1

2
Tr
[(
|H〉〈H| ⊗RH

0 ⊗RV
1 + |V〉〈V| ⊗RH

1 ⊗RV
0

)
ρAB
]
. (B10)

If we restrict to invariant states, we have

c= Tr
[(
|H〉〈H| ⊗RH

0 ⊗RV
1

)
ρ(inv)AB

]
. (B11)
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Using the fact that TrBρAB = I/2 this further simplifies to

c=
1

2
Tr
[(
RH
0 ⊗RV

1

)
ρ(inv)B (H)

]
, (B12)

where ρ(inv)B (H) = 〈H|ρ(inv)AB |H〉.
To bound the range of feasibility of the parameter c on invariant state we shall look at the eigenvalues of

the operator RH
0 ⊗RV

1 . We have

RH
0 ⊗RV

1 =
∞∑

a,b=0

(1−λa)λb|a〉H〈a| ⊗ |b〉V〈b| . (B13)

As above, we assume τ = 1. The smallest eigenvalues is zero and obtained in the limit a→∞. The largest
eigenvalues is 1−λ0 and is obtained in the limit of b→∞. In conclusion, this yields the following feasibility
interval for the parameter c on invariant states:

c ∈
(
0,
1−λ0

2

)
. (B14)

Similarly, if we consider the invariant state ρ(inv)1:j with j photons on Bob side, we obtain the following
bounds on the attainable values of c1:j:

1

2

(
1−λj

)
λ0 ⩽ cj

(
fj

)
⩽ 1

2
(1−λ0)λj . (B15)

We observe that with increasing j, the lower bound becomes smaller and the upper bound becomes larger,
yielding the interval (B14) in the limit of j →∞.

This observation allows us to bound the value of c using a finite number of parameters c1:j. We have

P0c0 +
k∑

j=1

Pjcj
(
fj

)
⩽ c⩽ P0c0 +

k∑
j=1

Pjcj
(
fj

)
+

1−
k∑

j=1

Pj

 1−λ0

2
. (B16)

Appendix C. Properties of the invariant states

In this section we present in details the invariant states ρ(inv)1:j such that there is one photon on Alice side, and j

photons on Bob side. We compute the coefficients Y j, cj and the relative entropy D[ρ
(inv)
1:j ].

C.1. Vacuum sector: the invariant state ρ(inv)
1:0

The simplest state corresponds to that with one photon on Alice side and zero photons on Bob side. The
unique invariant state is

ρ(inv)1:0 =
I

2
⊗ |0〉〈0|= |H〉〈H|+ |V〉〈V|

2
⊗ |0〉〈0| . (C1)

For this subspace we have

Y0 = 2λ0 (1−λ0) , (C2)

c0 =
1

2
λ0 (1−λ0) , (C3)

and the QBER is, as one would have expected, E0 = 2c0/Y0 = 1/2.
The relative entropy for the vacuum sector is

D [ρ1:0] = 2λ0 (1−λ0) . (C4)
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C.2. One-photon sector: the invariant states ρ(inv)
1:1 ( f1)

Using the expression for the invariant state in equation (A55) we compute

Y1 = λ0 +λ1 − 2λ0λ1 , (C5)

c1 = Tr
(
|H〉〈H| ⊗RH

0 ⊗RV
1

)
ρ(inv)1:1 (C6)

=
2f1 + 1

6
Tr
(
RH
0 ⊗RV

1

)
|H〉〈H|+ 1− f1

3
Tr
(
RH
0 ⊗RV

1

)
|V〉〈V| (C7)

=
2f1 + 1

6
(1−λ1)λ0 +

1− f1
3

(1−λ0)λ1 . (C8)

Defining

A1 :=
2f1 + 1

6
, B1 :=

4f1 − 1

6
, C1 :=

1− f1
3

, (C9)

we compute the entropic quantities

Tr
[
G
(
ρ(inv)1:1

)
logG

(
ρ(inv)1:1

)]
= (A1 −B1)(λ0 +λ1 − 2λ0λ1) log [(A1 −B1)(λ0 +λ1 − 2λ0λ1)]

+ (A1 +B1)(λ0 +λ1 − 2λ0λ1) log [(A1 +B1)(λ0 +λ1 − 2λ0λ1)]

+ 2C1 (λ0 +λ1 − 2λ0λ1) log [C1 (λ0 +λ1 − 2λ0λ1)] (C10)

= (A1 −B1)(λ0 +λ1 − 2λ0λ1) log(A1 −B1)

+ (A1 +B1)(λ0 +λ1 − 2λ0λ1) log(A1 +B1)

+ 2(A1 +C1)(λ0 +λ1 − 2λ0λ1) log(λ0 +λ1 − 2λ0λ1)

+ 2C1 (λ0 +λ1 − 2λ0λ1) logC1 (C11)

and

Tr
[
Z
(
G
(
ρ(inv)1:1

))
logZ

(
G
(
ρ(inv)1:1

))]
= F− log

F−
2

+ F+ log
F+
2

+ 2C1λ0 (1−λ1) log [C1λ0 (1−λ1)]

+ 2C1λ1 (1−λ0) log [C1λ1 (1−λ0)]

= F− logF− + F+ logF+ − 2A1 (λ0 +λ1 − 2λ0λ1)

+ 2C1λ0 (1−λ1) log [λ0 (1−λ1)]+ 2C1λ1 (1−λ0) log [λ1 (1−λ0)]

+ 2C1 (λ0 +λ1 − 2λ0λ1) logC1 , (C12)

where

F± = A1 (λ0 +λ1 − 2λ0λ1)±
√
A2
1 (λ0 −λ1)

2
+ 4B2

1λ0λ1 (1−λ0)(1−λ1) . (C13)

From them we finally obtain the relative entropy for the single-photon sector:

D1;1 =−F+ logF+ − F− logF−

− 2C1λ0 (1−λ1) log [λ0 (1−λ1)]− 2C1λ1 (1−λ0) log [λ1 (1−λ0)]

+ (A1 −B1)(λ0 +λ1 − 2λ0λ1) log(A1 −B1)

+ (A1 +B1)(λ0 +λ1 − 2λ0λ1) log(A1 +B1)

+ 2A1 (λ0 +λ1 − 2λ0λ1)

+ 2(A1 +C1)(λ0 +λ1 − 2λ0λ1) log(λ0 +λ1 − 2λ0λ1) . (C14)

C.3. Two-photon sector: the invariant states ρ(inv)
1:2 ( f2)

Consider the explicit form for the invariant state in equation (A61). Let us put

A2 :=
3f2 + 1

12
, B2 :=

√
2
3f2 − 1

12
, C2 :=

1

6
, D2 :=

1− f2
4

. (C15)

The first term in the expression of relative entropy is

Tr
[
G
(
ρ(inv)1:2

)
logG

(
ρ(inv)1:2

)]
= 2D2 (λ0 +λ2 − 2λ0λ2) log [D2 (λ0 +λ2 − 2λ0λ2)]+G+ log

G+

2
+G− log

G−

2
(C16)
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where

G± = A2 (λ0 +λ2 − 2λ0λ2)+ 2C2λ1 (1−λ1)

±
√
[A2 (λ0 +λ2 − 2λ0λ2)− 2C2λ1 (1−λ1)]

2
+ 8B2

2λ1 (1−λ1)(λ0 +λ2 − 2λ0λ2) (C17)

The second term in the expression of relative entropy is

Tr
[
Z
(
G
(
ρ(inv)1:2

))
logZ

(
G
(
ρ(inv)1:2

))]
= 2D2λ0 (1−λ2) log [D2λ0 (1−λ2)]+ 2D2λ2 (1−λ0) log [D2λ2 (1−λ0)]

+H+ log
H+

2
+H− log

H−

2
+ I+ log

I+
2

+ I− log
I−
2

, (C18)

where

H± = A2 (1−λ0)λ2 +C2λ1 (1−λ1)±
√
[A2 (1−λ0)λ2 −C2λ1 (1−λ1)]

2
+ 4B2

2 (1−λ0)λ1 (1−λ1)λ2 ,

(C19)

I± = A2 (1−λ2)λ0 +C2λ1 (1−λ1)±
√
[A2 (1−λ2)λ0 −C2λ1 (1−λ1)]

2
+ 4B2

2 (1−λ2)λ1 (1−λ1)λ0 .

(C20)

We then have

D
[
ρ(inv)1:2

]
= 2D2 [(λ0 +λ2 (1− 2λ0)) log [λ0 +λ2 (1− 2λ0)]−λ0 (1−λ2) log [λ0 (1−λ2)]

−λ2 (1−λ0) log [λ2 (1−λ0)]] +G+ logG+ +G− logG−

−H+ logH+ −H− logH− − I+ log I+ − I− log I− . (C21)

For the two-photon sector we obtain

Y2 = Tr
[
G
(
ρ(inv)1:2

)]
=

2

3

(
λ0 +λ1 +λ2 − 2λ0λ2 −λ2

1

)
, (C22)

c2 = Tr
(
|H〉〈H| ⊗RH

0 ⊗RV
1

)
ρ(inv)1:2 = A2λ0 (1−λ2)+C2 (1−λ1)λ1 +D2 (1−λ0)λ2 . (C23)

C.4. Three-photon sector: the invariant states ρ(inv)
1:3 ( f3)

Consider the invariant state in equation (A67). Defining

A3 :=
12f3 + 3

60
, B3 :=

√
3(8f3 − 3)

60
, C3 :=

4f3 + 6

60
, D3 :=

16f3 − 6

60
, E3 :=

9− 4f3
60

, F3 :=
12(1− f3)

60
.

(C24)

(note that D3 = 2B3/
√
3 and F3 = 3C3 − 2A3) such a state reads

ρ(inv)1:3 =



A3 0 0 0 0 B3 0 0
0 C3 0 0 0 0 D3 0
0 0 E3 0 0 0 0 B3

0 0 0 F3 0 0 0 0
0 0 0 0 F3 0 0 0
B3 0 0 0 0 E3 0 0
0 D3 0 0 0 0 C3 0
0 0 B3 0 0 0 0 A3


. (C25)

From this expression we compute the relative entropy,

D
[
ρ(inv)1:3

]
= (λ1 (1− 2λ2)+λ2) [(C3 −D3) log(C3 −D3)+ (C3 +D3) log(C3 +D3)+ 2C3 (1+ log(λ1 (1− 2λ2)+λ2))] (A66)

+ 2F3 [(λ0 +λ3 − 2λ0λ3) log(λ0 +λ3 − 2λ0λ3)−λ0 (1−λ3) log(λ0 (1−λ3))−λ3 (1−λ0) log(λ3 (1−λ0))]

(A66)

+ P− logP− + P+ logP+ −Q− logQ− −Q+ logQ+ −R− logR− −R+ logR+ − S− logS− − S+ logS+ , (C26)

30



Quantum Sci. Technol. 10 (2025) 025012 J S Sidhu et al

where

P± = A3 (λ0 +λ3 − 2λ0λ3)+ E3 (λ1 +λ2 (1− 2λ1))

±
√
[A3 (λ0 +λ3 (1− 2λ0))− E3 (λ1 +λ2 (1− 2λ1))]

2
+ 4B2

3 (λ3 +λ0 (1− 2λ3))(λ2 +λ1 (1− 2λ2)) ,

Q± = C3 (λ1 +λ2 (1− 2λ1))±
√
C2
3 (λ1 −λ2)

2
+ 4D2

3λ1λ2 (1−λ1)(1−λ2) ,

R± = A3λ0 (1−λ3)+ E3λ1 (1−λ2)±
√
[A3λ0 (1−λ3)− E3λ1 (1−λ2)]

2
+ 4B2λ0λ1 (1−λ2)(1−λ3) ,

S± = A3 (1−λ0)λ3 + E3 (1−λ1)λ2 ±
√
[A3(1−λ0)λ3 − E3(1−λ1)λ2]

2
+ 4B2(1−λ0)(1−λ1)λ2λ3 .

(C27)

Finally, for the three-photon sector we obtain

Y3 = Tr
[
G
(
ρ(inv)1:3

)]
=

1

2
(λ0 +λ1 +λ2 +λ3 − 2λ0λ3 − 2λ1λ2) , (C28)

c3 = Tr
(
|H〉〈H| ⊗RH

0 ⊗RV
1

)
ρ(inv)1:3 = A3λ0 (1−λ3)+C3λ1 (1−λ2)+ E3 (1−λ1)λ2 + F3 (1−λ0)λ3 .

(C29)

Appendix D. Invariant states under Gaussian noise

In this appendix we derive the invariant states for a communication channel characterised by loss η and
Gaussian noise with variance N.

In the EB representation, first the lossy channel is applied to state (15), yielding

η

2
(|H〉〈H| ⊗ |H〉〈H|+ |V〉〈V| ⊗ |V〉〈V|+ |H〉〈V| ⊗ |H〉〈V|+ |V〉〈H| ⊗ |V〉〈H|)+ (1− η)

2
I⊗ |0〉〈0| ⊗ |0〉〈0| .

(D1)

Second, a Gaussian-noise channel is applied to each mode belonging to Bob. Recall the action on each
mode of this noise:

ρ→
ˆ

d2α

πN
e−|α|2/ND (α)ρD (α)

†
, (D2)

whereD(α) is the displacement operator.
To compute the effect of this noise, we first apply independent displacements on the H and V modes,

obtaining the state

η

2

(
|H〉〈H| ⊗D (α) |H〉〈H|D (α)

†
+ |V〉〈V| ⊗D (β) |V〉〈V|D (β)

†

+|H〉〈V| ⊗D (α) |H〉〈V|D (β)
†
+ |V〉〈H| ⊗D (β) |V〉〈H|D (α)

†
)

+
(1− η)

2
I⊗D (α) |0〉〈0|D (α)

† ⊗D (β) |0〉〈0|D (β)
†
. (D3)

Finally, we will average over the displacement amplitudes α and β.
The result of the average is immediate for the terms of the kindD(β)|0〉〈0|D(β)†, where the

displacement is applied on the vacuum state. These terms yield thermal states with N mean photon number,

ρN =
1

N+ 1

∞∑
k=0

(
N

N+ 1

)k

. (D4)

Below we use the notation ρ
(H)
N and ρ

(V)
N to indicate a thermal state in horizontal or vertical mode of

polarisation.
To compute the other terms, we exploit the expansion in number basis of the displacement operator:

〈m|D (α) |n〉=
√

m!

n!
(−α∗)

n−m e−|α|2/2L(n−m)
m

(
|α|2

)
form< n . (D5)
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The only non-zero terms are:
ˆ

d2α

πN
e−|α|2/N〈0|D(α) |1〉〈1|D(α)

† |0〉= N

(N+ 1)2
(D6)

and
ˆ

d2α

πN
e−|α|2/N〈m|D(α) |1〉〈1|D(α)

† |m〉= 1

N+ 1

(
N

N+ 1

)m m+N2

N(N+ 1)
. (D7)

From this we define a probability distribution

pm :=

{ N
(N+1)2

if m= 0

1
N+1

(
N

N+1

)m
m+N2

N(N+1) if m⩾ 1
(D8)

For the off-diagonal terms, the only non-zero contributions come from

ˆ
d2α

πN
e−|α|2/N〈m+ 1|D(α) |1〉〈0|D(α)

† |n〉= 1

N+ 1

(
N

N+ 1

)m √
m+ 1

N+ 1
. (D9)

From this we define the coefficients

tm :=
1

N+ 1

(
N

N+ 1

)m √
m+ 1

N+ 1
. (D10)

In conclusion, the state after averaging over the noise realisation is

ρ(inv)AB =
η

2

(
|H〉〈H| ⊗

∑
m

pm|mH〉〈mH| ⊗ ρ
(V)
N + |V〉〈V| ⊗ ρ

(H)
N ⊗

∑
m

pm|mV〉〈mV|

+|H〉〈V| ⊗
∑
m

tm|m+ 1〉〈m| ⊗
∑
m′

tm′ |m ′〉〈m ′ + 1|+ h.c.

)

+(1− η)
I

2
⊗ ρ

(H)
N ⊗ ρ

(V)
N . (D11)

D.1. Invariant state in the vacuum sector for Gaussian noise
From equation (D11) we obtain the (not-normalised) invariant state with one photon on Alice side and the
vacuum on Bob side:

P0ρ
(inv)
1:0 =

I

2
⊗

(
η

p0
N+ 1

+(1− η)

(
1

N+ 1

)2
)
|0〉〈0| . (D12)

By computing the trace we obtain

P0 = η
p0

N+ 1
+(1− η)

(
1

N+ 1

)2

. (D13)

D.2. Invariant state in the one-photon sector for Gaussian noise
From equation (D11) we obtain the (not-normalised) invariant state with one photon on Alice side and one
photon on Bob side.

In the basis {|HH〉, |HV〉, |VH〉, |VV〉}, it reads

P1ρ
(inv)
1:1 ≡ η

2


p1

N+1 0 0 t20
0 p0

N+1
N

N+1 0 0

0 0 p0
N+1

N
N+1 0

t20 0 0 p1
N+1

+
1− η

2

(
1

N+ 1

)2 N

N+ 1


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

(D14)

The trace gives

P1 =
η

N+ 1

(
p0

N

N+ 1
+ p1

)
+ 2(1− η)

(
1

N+ 1

)2 N

N+ 1
. (D15)
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D.3. Invariant state in the two-photon sector for Gaussian noise
From equation (D11) we obtain the (not-normalised) invariant state with one photon on Alice side and two
photons on Bob side.

In the basis

{|H; (2,0)〉, |H; (1,1)〉, |H; (0,2)〉, |V; (2,0)〉, |V; (1,1)〉, |V; (0,2)〉} , (D16)

the (not-normalised) invariant state has the following matrix representation:

P2ρ
(inv)
1:2 ≡ η

2



p2
N+1 0 0 0 t0t1 0

0 p1
N+1

N
N+1 0 0 0 t0t1

0 0 p0
N+1

(
N

N+1

)2
0 0 0

0 0 0 p0
N+1

(
N

N+1

)2
0 0

t0t1 0 0 0 p1
N+1

N
N+1 0

0 t0t1 0 0 0 p2
N+1


+

1− η

2

(
1

N+ 1
N

N+ 1

)2

I6 ,

(D17)

where I6 is the 6× 6 identity matrix.
By computing the trace we obtain

P2 = η

(
p0

N+ 1

(
N

N+ 1

)2

+
p1

N+ 1

N

N+ 1
+

p2
N+ 1

)
+ 3(1− η)

(
1

N+ 1

N

N+ 1

)2

. (D18)

D.4. Invariant state in the three-photon sector for Gaussian noise
From equation (D11) we obtain the (not-normalised) invariant state with one photon on Alice side and
three photons on Bob side.

In the basis

{|H; (3,0)〉, |H; (2,1)〉, |H; (1,2)〉, |H; (0,3)〉, |V; (3,0)〉, |V; (2,1)〉, |V; (1,2)〉, |V; (0,3)〉} , (D19)

we have

P3ρ
(inv)
1:3 ≡

η

2



p3
N+1 0 0 0 0 t0t2 0 0

0 p2
N+1

N
N+1 0 0 0 0 t21 0

0 0 p1
N+1

(
N

N+1

)2
0 0 0 0 t0t2

0 0 0 p0
N+1

(
N

N+1

)3
0 0 0 0

0 0 0 0 p0
N+1

(
N

N+1

)3
0 0 0

t0t2 0 0 0 0 p1
N+1

(
N

N+1

)2
0 0

0 t21 0 0 0 0 p2
N+1

N
N+1 0

0 0 t0t2 0 0 0 0 p3
N+1


+

1− η

2

(
1

N+ 1

)2( N

N+ 1

)3

I8 , (D20)

where I8 is the 8× 8 identity matrix.
From the trace we obtain

P3 = η

(
p0

N+ 1

(
N

N+ 1

)3

+
p1

N+ 1

(
N

N+ 1

)2

+
p2

N+ 1
N

N+ 1
+

p3
N+ 1

)
+ 4(1− η)

(
1

N+ 1

)2( N
N+ 1

)3

.

(D21)

This concludes all the properties for each invariant state up to the three-photon subspace.
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