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Abstract. Femtosecond laser nanomachining represents a frontier in 

precision manufacturing, excelling in micro- and nanopatterning across 

diverse materials. However, its wider adoption is hindered by unintended 

surface damage or modifications stemming from complex non-linear laser-

material interactions. Moreover, traditional effective process optimisation 

effort to mitigate these issues typically necessitate extensive and time-

consuming trial-and-error testing. In this scenario, machine learning (ML) 

has emerged as a powerful solution to address these challenges. This paper 

provides an overview of ML’s contributions to making femtosecond laser 

machining a more deterministic and efficient technique. Leveraging data 

from laser parameters and both in-situ and ex-situ imaging of processing 

outcomes, ML techniques—spanning supervised learning, unsupervised 

learning, and reinforcement learning—can significantly enhance process 

monitoring, process modeling and prediction, parameter optimisation, and 

autonomous beam path planning. These developments propel femtosecond 

laser towards an essential tool for micro- and nanomanufacturing, enabling 

precise control over machining outcomes and deepening our understanding 

of the laser machining process. 

1 Introduction 

 

Femtosecond laser, with pulse durations of 10-15 seconds, plays a pivotal role in micro- and 

nanomanufacturing. Through its interacting with materials, various micro- and 

nanostructures can be created through direct ablation or the interference of laser and laser-

excited electric field. The ultra-short pulse widths and exceptionally high peak intensities of 

femtosecond lasers can enable high spatial resolution, minimal heat-affected zones, and non-

contact processing, offering advantages over traditional techniques like nanoimprinting, ion 

beam processing, and electron beam lithography in terms of flexibility, speed, cost-

effectiveness, and environmental impact [1]. However, femtosecond laser machining faces 

challenges in unintended surface damage and modifications, particularly at high intensities 

or due to suboptimal parameters. Consequently, surfaces machined with femtosecond lasers 

may exhibit lower quality and structural consistency, resulting in diminished functional 
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performance [2,3]. At its core, this issue stems from the highly nonlinear and complex 

interactions between the laser and material properties, leading to unpredictable outcomes. 

Conventional physical models often fall short in explaining these microscale non-linear 

phenomena, and atomistic simulations struggle to accurately represent the results due to the 

challenges of scaling and multiple interacting variables [4,5]. Consequently, extensive trial-

and-error experimentation and significant expertise are required for effective process 

monitoring, control, and optimisation, which can compromise laser machining efficiency and 

ease of use [6].  

To counter these challenges, it is imperative to incorporate advanced process control and 

monitoring methods, such as real-time monitoring, process modelling, path planning, and 

parameter optimisation. These measures foster a quick comprehension of manufacturing 

conditions, interpret parametric dependence, bolster predictability, and enable active and 

autonomous execution with minimal need for human intervention. These approaches not only 

addresses the limitations of traditional theoretical models and simulations, but also eliminates 

the dependency on trial-and-error tests, signifying a move towards a more robust 

femtosecond laser machining platform. Achieving this heightened control necessitates 

strategic process control methodologies complemented by swift feedback through in-situ or 

ex-situ imaging, to precisely understand and steer the manufacturing process of micro- and 

nanostructures. Moreover, the intricate processes involved in femtosecond laser machining, 

coupled with the deployment of advanced monitoring and feedback control technologies, 

often result in the generation of vast volumes of data. Machine learning (ML) stands out as a 

pivotal solution to perform data analysis and interpretation. By harnessing ML’s capability 

to automatically learn from data, it facilitates feature extraction, classification, and data 

generation, thus providing an effective and efficient route to navigate these challenges. 

Despite its great potential, the advancements and application of ML in femtosecond laser 

machining have been scarcely discussed. This paper aims to bridge this gap by providing an 

overview of ML applications in process control and monitoring within femtosecond laser 

manufacturing, highlighting aspects like feature identification, in-situ monitoring, predictive 

modelling, parameter optimisation, and autonomous beam path planning. This review aims 

to underscore the transformative impact of ML, driving the future of high-quality and 

efficient femtosecond laser machining for micro- and nanostructures. 

2  ML in laser machining 

ML, as a subfield of artificial intelligence, is normally referred as the “Field of study that 

gives computers the ability to learn without being explicitly programmed” [7]. Practically, 

such approaches and algorithms allow the automatic learning of properties directly from data 

without relying on explicit theoretical descriptions based on fundamental physical 

mechanisms [8]. This broad field can advance laser machining in a variety of aspects, 

including process monitoring, parameter optimisation, process modelling, and path planning. 

These tasks can be achieved through three types of ML methods: supervised learning, 

unsupervised learning, and reinforcement learning (RL) as shown in Figure 1.  

Supervised learing aims to establish the relationships between labelled input and labelled 

output parameters. Typically, supervised learning can be used to classify the machining 

results by identifying the laser-induced modifications, material types, and machining depth. 

A popular example is the convolutional neural networks (CNNs), which is primarily used in 

analysing visual imagery, characterised by their use of convolutional layers that 

automatically and adaptively learn spatial hierarchies of features from input images. Also, 

supervised learning (typically a classifier) can help to build the relationships between the 

input parameters and labelled results of laser manufacturing process. This method can model 

and predict processing results, obtain the optimised laser machining parameters, and facilitate 
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the understanding of laser machining mechanisms. Unsupervised learning deals with 

unlabelled data, with the ability to identify inherent patterns and relationships in data, the 

characteristics of which might be partially or entirely unknown. Based on these features, 

unsupervised learning, especially the generative networks (GANs), offer an alternative 

instant process modelling method that can model the laser machined results using in-situ 

obtained images. Reinforcement learning (RL) is a different type of ML than other 

approaches, as it implements an agent to learn how to behave in an environment by taking 

actions and receiving rewards or penalties [9,10]. The goal of the agent is to maximise the 

cumulative reward over time. Through this method, laser machining path can be 

autonomously generated. In some cases, combinations of these ML algorithms are necessary 

to achieve a higher level of advancement of laser machining. 

 
Figure 1. A schematic showing the application of ML in laser machining. 

3 Femtosecond laser machining 

This section will detail ML methods, in enhancing femtosecond laser machining in process 

monitoring, process modelling and prediction, parameter optimisation, and laser beam path 

planning. 

3.1 Computer vision enabled process monitoring  

Fast and reliably acquiring the laser machined result is critical to understand the laser 

machining process, further providing guidance for process control. CNNs were widely used 

to achieve process real-time detection and monitoring of laser machining through extracting 

features from images of laser machined surfaces. Xie et al. [11] applied CNNs for system 

monitoring via real-time visual observation of the workpiece during laser processing. 

Through their ML algorithms, unintended laser beam modifications were automatedly 

detected and quantified. They also performed the CNNs-based depth detection, further 

allowing the feedback-controlled laser processing at certain thicknesses. Similarly, Mills et 

al. [12] used CNNs in visual observation (see Figure 2 (a)) to demonstrate the process 

monitoring by identifying the type of material, laser influence and the number of pulses from 

a single image of the sample. These parameters could be determined within ten milliseconds 

through a single sample image. Through both of their studies, the visual observation assisted 

by CNNs demonstrate great potentials in the development of automated and feedback-

controlled laser machining processes through integrating pattern identification and in-situ 

process monitoring. 
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Figure 2. Schematic for using ML for laser machining. (a) CNNs for the identification of laser 

machining parameters. Reprinted with permission from Ref [12]. CC BY 3.0 (2019). (b) GANs for 

process prediction. Reprinted with permission from Ref [13]. CC BY 4.0 (2018). (c) RL for autonomous 

motion control. Reprinted with permission from Ref [14]. CC BY 4.0 (2022). 

3.2 Parameter optimisation 

Traditionally, optimizing processing parameters for laser machining has heavily relied on 

expert knowledge and extensive, time-consuming experiments. ML introduces efficient and 

intelligent alternatives for rapid parameter optimisation, addressing the significant impact of 

the intricate dynamics between laser processing parameters and material properties on the 

quality of laser-machined surfaces. Wang et al. [15] introduced a hybrid ML approach to 

pinpoint the optimal processing window for laser-induced periodic surface structures (LIPSS) 

using femtosecond laser. First, they employed an unsupervised k-means clustering to 

dimension reduced image data to classify laser machined nanostructures into the categories 

of good or bad quality. Then, they compared a range of classification ML algorithms, 

including hybrid ML, artificial neural networks (ANNs), random forest (RF), decision tree, 

support vector machine (SVM), K-Nearest Neighbors (KNNs), and the Naive Bayesian 

Classifier (NBC) to train the input laser parameters and SEM images for the prediction of 

laser machined results. The decision tree stood out for its high accuracy, achieving a 96.7% 

success rate in predicting laser processing outcomes. Velli et al. [16] undertook training and 

evaluation of ML-based probabilistic classifier on the prediction of outcome (including 

roughness, ripples, grooves, and spikes) based on laser’s fluence and number of pulses for 

LIPSSs on a range of materials. The surveyed predictive models include KNNs, Gaussian 

Naive Bayes (GNB), Logistic Regression Model (LRM), Support Vector Classifier (SVC), 

and Gradient Boosting Classifier (GBC). These models effectively linked the laser input 

variables with the resulting material structures, and their accuracy was further enhanced when 

using more sampling points by integrating with simulation data. Their research demonstrated 

that an ML approach could streamline the calibration of laser parameters, thereby 

accelerating the process optimisation and enhancing its reliability over traditional trial-and-

error methods.  

3.3 Process modelling and prediction  

Generative networks offer alternative methods to model and predict the laser machining 

processes. Unlike traditional methods that rely on theoretical understanding derived from 

first principles, neural networks can directly model the process based on data from laser 

machining experiment. This data-driven approach ensures the inclusion of all physical effects, 

even those not fully understood, within the ML algorithm. Mills et al. [13] utilised a 
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conditional GAN (cGAN) algorithm to predict outcomes in the laser machining process with 

schematic showing in Figure 2 (b). They trained the cGAN on paired datasets, which 

comprised laser spatial intensity profiles from digital micromirror device (DMD) alongside 

their corresponding SEM images of laser-machined targets. Through post-training, the 

algorithm established a model linking the two, enabling simulation and visualisation of laser 

machining results for any given laser spatial intensity profile. McDonnell et al. [17] also 

demonstrated the possibility of cGAN to predict multi-exposed pattern. Similarly, Heath et 

al. [18] used a conditional adversarial network (CAN) to achieve the prediction of the laser-

machined surfaces based on the training between interferometrical 3D profiles and DMD 

profiles. Grant-Jacob et al. [19] applied cGAN for the prediction of laser-machined surface. 

Through the training among laser pulse energies, visualised surface, and images of plasma, 

they found the images of plasma can identify the laser pulse energy and the visualisation of 

sample surface. This work shows potentials for real-time visualisation of machined surface 

when direct observation is not possible. 

3.4 Path planning 

A crucial phase in laser nanomachining processes involves converting the intended design 

into coordinates or toolpaths compatible with the motion control hardware. This step is 

essential for ensuring efficient processing and achieving a high-quality finish. Despite 

assistance from proprietary software, toolpath design often demands significant skilled 

manual effort, which could be unreliable and time-consuming, hindering the mass production 

of laser machined products. This highlights the requirement for automated tool path planning 

with capabilities to perform detection and compensation for unintended actions. Xie et al. 

[14,20] introduced a novel laser machining approach with process controlled and supervised 

by RL as shown in Figure 2 (c). Through its training in a virtual environment, this approach 

can achieve automatic toolpath design and real-time computer vision-enabled feedback. The 

real-time monitoring was achieved by pinpointing where the next laser pulse should land 

based on real-time workpiece observations. This feedback, combined with the proximal 

policy optimisation algorithm’s inherent resilience to action variability, equipped the RL 

agent to auto-correct machining discrepancies, such as those from stage vibrations. The 

system’s robustness against such disturbances was showcased in a virtual setting by 

intentionally misplacing certain laser pulses. 

4 Conclusions 

In summary, femtosecond lasers, with their ultra-short pulses, are key to advanced micro- 

and nanomanufacturing, offering precision and minimal thermal impact. However, the 

unpredictability and complexity of their machining processes call for extensive expertise. To 

mitigate these challenges, integrating advanced process control and ML emerges as a pivotal 

advancement, enhancing efficiency, precision, and predictability in manufacturing micro- 

and nanostructures. 

This review underscores the significant roles of ML in revolutionising femtosecond laser 

machining. By leveraging ML to navigate the intricate data, variables, and images obtained 

in laser machining, femtosecond laser machining can reach a greater determinism and 

efficiency through assisting process monitoring, process modelling and prediction, parameter 

optimisation and autonomous beam path planning. Continued exploration of machine 

learning’s capabilities is expected to drive further advancements in micro- and nanoscale 

manufacturing technologies, heralding a bright future for femtosecond laser applications. 

However, there are challenges hindering further application of ML in femtosecond laser 

machining. Key issues include the need to incorporate a broader range of structural 
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parameters like laser polarisation and material composition, limited data availability and high 

testing costs, the opaque "black box" nature of deep learning models hindering user 

understanding and control, challenges in achieving model interpretability, and difficulties in 

accurately modelling and predicting three-dimensional features. Addressing these challenges 

is essential for advancing femtosecond laser nanomachining technology. 

Acknowledgements 

The authors would like to thank UKRI Fellowship programme (EP/X021963/1), Royal 

Society Research Grant (RGS\R1\231486), and EPSRC (EP/K018345/1, EP/T024844/1, 

EP/V055208/1) to provide financial support to this research. 

References 

1. T. c. Chong, M. h. Hong, and L. p. Shi, Laser & Photonics Reviews 4, 123 (2010). 

2. J. Gao, X. C. Luo, F. Z. Fang, and J. N. Sun, Int. J. Extrem. Manuf. 4, 012001 (2021). 

3. B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, Journal of Physics D 50, 

193001 (2017). 

4. J. A. Grant-Jacob, B. Mills, and R. W. Eason, J. Phys. D: Appl. Phys. 47, 055105 (2014). 

5. Z. Lin, L. V. Zhigilei, and V. Celli, Physical Review B 77, 075133 (2008). 

6. I. H. Chowdhury and X. Xu, Numerical Heat Transfer Part A-Applications 44, 219 

(2003). 

7. A. L. Samuel, IBM Journal of Research and Development 3, 210 (1959). 

8. T. Wuest, D. Weimer, C. Irgens, and K.-D. Thoben, Production & Manufacturing 

Research 4, 23 (2016). 

9. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, Second edition 

(The MIT Press, Cambridge, Massachusetts, 2018). 

10. P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, Proceedings 

of the AAAI Conference on Artificial Intelligence 32, (2018). 

11. Y. Xie, D. J. Heath, J. A. Grant-Jacob, B. S. Mackay, M. D. T. McDonnell, M. Praeger, 

R. W. Eason, and B. Mills, J. Phys. Photonics 1, 035002 (2019). 

12. B. Mills, D. J. Heath, J. A. Grant-Jacob, Y. Xie, and R. W. Eason, J. Phys. Photonics 1, 

015008 (2018). 

13. B. Mills, D. J. Heath, J. A. Grant-Jacob, and R. W. Eason, Optics Express 26, 17245 

(2018). 

14. Y. Xie, M. Praeger, J. Grant-Jacob, R. Eason, and B. Mills, Optics Express 30, 20963 

(2022). 

15. B. Wang, P. Wang, J. Song, Y. C. Lam, H. Song, Y. Wang, and S. Liu, Journal of 

Materials Processing Technology 308, 117716 (2022). 

16. M.-C. Velli, G. D. Tsibidis, A. Mimidis, E. Skoulas, Y. Pantazis, and E. Stratakis, 

Journal of Applied Physics 128, 183102 (2020). 

17. M. D. T. McDonnell, J. A. Grant-Jacob, B. Mills, Y. Xie, B. S. Mackay, M. Praeger, 

and R. W. Eason, Optics Express 28, 14627 (2020). 

18. D. J. Heath, J. A. Grant-Jacob, Y. Xie, B. S. Mackay, J. A. G. Baker, Robert W. Eason, 

Benjamin Mills, and Ben Mills, Optics Express 26, 21574 (2018). 

19. J. Grant-Jacob, B. Mills, and M. Zervas, Optics Continuum 2, 1678 (2023). 

20. Y. Xie, M. Praeger, J. A. Grant-Jacob, R. W. Eason, and B. Mills, in Conference on 

Lasers and Electro-Optics (2022). 

 

MATEC Web of Conferences 401, 04004 (2024)

ICMR2024
https://doi.org/10.1051/matecconf/202440104004

6


