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Abstract

The aim of this paper is to study the predefined-time synchronization of coupled
competitive neural networks (NNs) as well as the impacts of time-varying delays
on the predefined-time synchronization performance. First, the models for drive and
response systems of coupled competitive NNs with and without coupling delays are
established for the first time in this work. After that, the predefined-time synchroniza-
tion of the proposed network models is investigated, and some new predefined-time
synchronization conditions for the considered drive and response systems are derived
by designing novel bilayer controllers and using some inequality techniques. It is
worth mentioning that the desired convergence time can be adjusted by presetting the
parameters in the controllers in advance. Moreover, the synchronization is achieved
in the predefined time regardless of the initial value of the coupled competitive NNs.
At last, the proposed synchronization conditions are validated through two examples.
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1 INTRODUCTION

In the last few decades, neural networks (NNs) have become an enduring research topic in both theory and practice due to its
widespread applications in image processing, optimization, fixed-point computations, associative memory, and so on. Therefore,
there is a great number of studies examining the working mechanism of NNs especially their dynamical behaviors [1, 2, 3, 4, 5,
6, 7]. In particular, the fixed/predefined-time synchronization problem of delayed memristive NNs was studied in [6].
In 1983, Cohen and Grossberg [8] first introduced the model of competitive NNs with the purpose of simulating cell inhi-

bition in the field of neurobiology. This class of NN not only describes the slow unsupervised synaptic corrections which is
known as long-term memory (LTM), but also represents the fast neural activity which is known as short-term memory (STM).
Since competitive NNs have two distinct time scales and can handle information through inhibition, competition, coordination,
and excitation between neurons, this class of network has extensive applications in control theory, modern biomedicine and
optimization, etc [9, 10, 11]. In consequence, the dynamical behaviors of competitive NNs have evolved as an important topic
and some meaningful results on synchronization of competitive NNs have been published [12, 13, 14, 15, 16]. For instances,
the authors in [12] obtained several conditions to guarantee the fixed-time and finite-time synchronization of memristor-based
competitive NNs with distinct time scales by constructing appropriate controllers. Rajchakit et al. [13] analyzed the stability
and passivity problems for a class of memristor-based fractional-order competitive NNs by using Caputo’s fractional derivation.
It is well-known that coupled competitive NNs are formed from a slew of single competitive NNs, each is connecting to others.
Nowadays, coupled competitive NNs have received much more attention than the traditional NNs because of their collective
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dynamics and applications in areas such as secure communication [17, 18]. To cope with the complexity of coupled competitive
NNs, the authors in [18] attempted to obtain a series of sufficient conditions in conjunction with new Lyapunov functions and
comparison system for achieving synchronization in a finite settling time of coupled competitive NNs.
In the current literature, the synchronization process is mostly examined in infinite time. However, many practical applications

are usually supposed to reach synchronization state within finite time [19, 20, 21]. For example, in chaotic secure communication
networks, synchronization between the primary and secondary networks is often required in a limited time for security reasons.
In 1953, Kamenkov [19] first introduced the definition of finite-time stability. Ahmad et al. [20] developed a novel nonlinear
finite-time synchronization control algorithm for the multi-switching synchronization between two externally perturbed chaotic
systems. The authors in [21] proposed a new finite-time controller that realized multi-switching synchronization of chaotic sys-
tems with bounded disturbances using the drive and response system synchronization arrangement. Moreover, some sufficient
conditions were derived to ensure that the competitive NNs can realize synchronization in a settling time [22]. However, the
settling time of finite-time synchronization relies on the initial state of the drive-response systems. Whereas, obtaining accurate
initial values in practical systems is challenging. Thus, to address this challenge, a concept called fixed-time stability was pre-
sented. In [23], a new criterion for fixed-time synchronization of competitive NNs was derived to ensure that the settling time
is independent of the initial state of the network. Unfortunately, the relationship between settling convergence time and drive-
response system’s parameters in fixed-time synchronization is normally ambiguous. However, the designer wants to recover
the encoded message in any predetermined short enough time during the process of secure communication, so it is essential
to develop an innovative control strategy that can realize synchronization within an arbitrary given time, so as to allocate the
synchronization’s time in advance based on the designer’s requirements. In order to achieve this goal, predefined-time stability
as depicted by Sánchez-Torres [24] was presented in which the convergence time can be adjusted by tuning parameters. Com-
pared with finite-time synchronization and fixed-time synchronization, predefined-time synchronization has the advantage that
the settling time of synchronization does not depend on any initial value and it can be configured as a controller parameter. On
this basis, some novel research findings about the predefined-time stability of dynamic systems were obtained [25, 26, 27]. For
example, the predefined-time synchronization of competitive NNs was studied in [26]. Unfortunately, the coupling term has not
been taken into consideration in their network model. Therefore, there has been no research conducted on predefined-time syn-
chronization for coupled competitive NNs up to now to the best of our knowledge, which motivates the work presented in this
paper.
Inspired by the aforementioned research, the objective of this research is to analyze the predefined-time synchronization of

coupled competitive NNs with and without time-varying delays. The key findings and main contributions of this work can
be summarized as follows. (1) The drive-response network models of coupled competitive NNs encompassing both the case
with time-varying delays and the one without time-varying delays are firstly proposed. (2) Different from some existing control
method, two novel bilayer predefined-time controllers are designed for two-layer structure of the considered drive and response
systems. (3) Several predefined-time synchronization criteria are derived for the proposed coupled competitive NNs respectively.
Moreover, the controllers’ parameters can be preset to achieve the desired convergence time, enabling synchronization within a
predefined time irrespective of the initial values of the coupled competitive NNs. (4) Numerical experiments are conducted to
verify the effectiveness of the obtained results.

2 PRELIMINARIES

2.1 Notations
Denote ℝ = (−∞,+∞), ℝn is a n-dimensional real vector space, ℝn×m represents the collection of all real n × m matrices.
AT means the transpose of matrix of A. For any vector b(�) = (b1(�), b2(�),⋯ , bn(�))T ∈ ℝn, let ‖b(�)‖ =

√

∑n
i=1 b

2
i (�). ⊗

represents the Kronecker product.
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2.2 Network model of single competitive NN
A single competitive NN can be described by the following set of differential equations:

⎧

⎪

⎨

⎪

⎩

STM ∶ "ẏs(�) = − &sys(�) +
n
∑

j=1
dsjfj(yj(�)) + Gs

p
∑

�=1
ws�(�)v� ,

LTM ∶ ẇs�(�) = − �sws�(�) + �sv�fs(ys(�)),
(1)

where s = 1, 2, ⋯ , n; ys(�) is current activity level of neuron; (ws1(�), ws2(�),⋯ , wsp(�))T represents the synaptic vector of
neuron, which is going through the external stimulus v = (v1, v2,⋯ , vp)T ; &s > 0 means the self-inhibition rate of neuron; dsj
represents the connection weight between neurons; each element in f (y(�)) = (f1(y1(�)), f2(y2(�)),⋯ , fn(yn(�)))T stands for
the activation function; Gs > 0 represents the intensity of the external stimulus, " stands for some time scale in STM; �s > 0
and �s represent disposable scaling constants. Moreover, the system (1) satisfies the following initial conditions: fs(0) ∈ ℝ and
ws�(0) ∈ ℝ.
Let ‖v‖2 = v21 + v

2
2 + ⋯ + v2p be a constant and �s(�) =

∑p
�=1ws�(�)v� , s = 1, 2,⋯ , n. Without loss of generality, let’s

assume that the input stimulus vector v is normalized to have a magnitude of ‖v‖2 = 1. Then, the single competitive NN (1)
can be rewritten as:

⎧

⎪

⎨

⎪

⎩

STM ∶ "ẏs(�) = −&sys(�) +
n
∑

j=1
dsjfj(yj(�)) + Gs�s(�),

LTM ∶ �̇s(�) = −�s�s(�) + �sfs(ys(�)).
(2)

2.3 Definitions and lemmas
Definition 1. The y(�) = 0 is referred to be finite-time stable if there is a constant �∗ ≥ 0 satisfying y(�) = 0 for ∀� > �∗,
∀y(0) ∈ ℝn. For ∀y(0) ∈ ℝn, T (y(0)) = inf{�∗ ∶ y(�) = 0,∀� > �∗} is called the settling time function.

Definition 2. The y(�) = 0 is called to be fixed-time stable if it is finite-time stable as well as the settling time function T (⋅) is
uniformly bounded, i.e. there exists a scalar Tmax > 0 such that T (y(0)) ≤ Tmax for ∀y(0) ∈ ℝn.

Definition 3. The y(�) = 0 is called to be predefined-time stable if it is fixed-time stable as well as for ∀Tc > 0, T (y(0)) ≤ Tc
for ∀y(0) ∈ ℝn, where Tc is the predefined time which is not associated with the initial value. In other words, Tc serves as an
adjustable parameter in the control design.

Lemma 1. If there is a continuous, radially unbounded Lyapunov functionW (�) which meets

Ẇ (�) ≤ − �
�Tc

(W 1+(�∕2)(�) +W 1−(�∕2)(�)),

in which Tc > 0 is a predefined-time constant given in advance and � ∈ (0, 1) is a real constant. Then, the origin of the error
system exhibits global stability within the predefined-time Tc .

Lemma 2. If a1, a2,⋯ , an ≥ 0, 0 < 
1 ≤ 1, 
2 > 1, then
n
∑

�=1
a
1� ≥

( n
∑

�=1
a�

)
1

,
n
∑

�=1
a
2� ≥ n1−
2

( n
∑

�=1
a�

)
2

.

Lemma 3. For any vectors �, � ∈ ℝn and n × n square matrix G > 0, the following matrix inequality holds:

2�T� ≤ �TG� + �TG−1�.
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3 PREDEFINED-TIME SYNCHRONIZATION OF COUPLED COMPETITIVE NNS

This section considers the following coupled competitive NNs consisting ofM single competitive NNs (2) under the assumption
of " = 1:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

STM ∶ ẏ�(�) = − Cy�(�) +Df (y�(�)) +G��(�) + �
M
∑

i=1
Q�iW yi(�),

LTM ∶ �̇�(�) = −A��(�) + Bf (y�(�)) + %
M
∑

i=1
H�i��i(�),

(3)

where � = 1, 2,⋯ ,M ; C = diag (&1, &2,⋯ , &n); D = (dsj)n×n ∈ ℝn×n is a constant matrix; y�(�) = (y�1(�), y�2(�),⋯, y�n(�))T
∈ ℝn; f (y�(�)) = (f1(y�1(�)), f2(y�2(�)),⋯ , fn(y�n(�)))T ; G = diag (G1, G2,⋯ , Gn); ��(�) = (��1(�), ��2(�),⋯, ��n(�))T ; A =
diag (�1, �2,⋯ , �n);B = diag(�1, �2,⋯ , �n); the positive constants � and %mean the overall coupling strengths;W ∈ ℝn×n > 0
and � ∈ ℝn×n > 0 represent the inner coupling matrix. The coupling configuration matricesQ = (Q�i)M×M andH = (H�i)M×M
have the following definitions:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Q�i =Qi� > 0, if there exists a connection between node ι and node i(ι ≠ i),
Q�i =Qi� = 0, otherwise (ι ≠ i),

Q�� = −
M
∑

i=1
i≠�

Q�i, � = 1, 2,⋯ ,M,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

H�i =Hi� > 0, if node ι and node i(ι ≠ i)are connected ,
H�i =Hi� = 0, otherwise (ι ≠ i),

H�� = −
M
∑

i=1
i≠�

H�i, � = 1, 2,⋯ ,M.

Assumption 1. Throughout this paper, it is assumed that the nonlinear function fo(⋅)(o = 1, 2,⋯ , n) satisfies the Lipschitz
condition. Namely, there is a positive constant$o such that

|fo(r1) − fo(r2)| ≤ $o|r1 − r2|

for any r1, r2 ∈ ℝ. For convenience, denote 	 = diag($2
1 , $

2
2 ,⋯ , $2

n ) ∈ ℝn×n.

If the coupled competitive NNs (3) is considered as drive system, then the construction of the corresponding response system
is achieved as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

STM ∶ ż�(�) = − Cz�(�) +Df (z�(�)) + �
M
∑

i=1
Q�iW zi(�) +G��(�) + u�(�),

LTM ∶ �̇�(�) = −A��(�) + Bf (z�(�)) + %
M
∑

i=1
H�i��i(�) +m�(�),

(4)

where � = 1, 2,⋯ ,M ; z�(�) = (z�1(�), z�2(�), ⋯ , z�n(�))T ∈ ℝn; f (z�(�)) = (f1(z�1(�)), f2(z�2(�)),⋯ , fn(z�n(�)))T ∈ ℝn;
��(�) = (��1(�), ��2(�),⋯ , ��n(�))T , u�(�) = (u�1(�), u�2(�),⋯ , u�n(�))T ∈ ℝn and m�(�) = (m�1(�), m�2(�),⋯ , m�n(�))T ∈ ℝn are
the controllers to be designed; C , A, B, D, G, %, �,H�i, �, Q�i andW have the same definitions as in system (3).
Let us define error system e�(�) = z�(�) − y�(�) and ê�(�) = ��(�) − ��(�). Then

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ė�(�) = − Ce�(�) +D[f (z�(�)) − f (y�(�))] +Gê�(�) + �
M
∑

i=1
Q�iW ei(�) + u�(�),

̇̂e�(�) = −Aê�(�) + B[f (z�(�)) − f (y�(�))] +m�(�) + %
M
∑

i=1
H�i�êi(�),

(5)

where e�(�)=(e�1(�), e�2(�),⋯ , e�n(�))T , ê�(�) = (ê�1(�), ê�2(�),⋯ , ê�n(�))T .
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The controllers in network (4) are selected as
{

u�(�) = − c1X

1
2 sign(e�(�))|e�(�)|1+
1 − V �e�(�) − c2X

− 
1
2 sign(e�(�))|e�(�)|1−
1 ,

m�(�) = − c1X

1
2 sign(ê�(�))|ê�(�)|1+
1 − V �ê�(�) − c2X

− 
1
2 sign(ê�(�))|ê�(�)|1−
1 ,

(6)

where V � ∈ ℝn×n, 0 < 
1 < 1, c1 =
�(nM)


1
2

2
2−
1
2 
1Tc

, c2 =
�

2
1Tc
, sign(e�(�)) = diag (sign(e�1(�)), sign(e�2(�)), ⋯ , sign(e�n(�))),

|e�(�)|1+
1 = (|e�1(�)|1+
1 , |e�2(�)|1+
1 ,⋯ , |e�n(�)|1+
1)T , |e�(�)|1−
1 = (|e�1(�)|1−
1 , |e�2(�)|1−
1 ,⋯ , |e�n(�)|1−
1)T , sign(ê�(�)) =
diag (sign(ê�1(�)), sign(ê�2(�)),⋯ , sign(ê�n(�))), |ê�(�)|1+
1 =(|ê�1(�)|1+
1, |ê�2(�)|1+
1,⋯,|ê�n(�)|1+
1)T, |ê�(�)|1−
1=(|ê�1(�)|1−
1 ,
|ê�2(�)|1−
1 , ⋯ , |ê�n(�)|1−
1)T , 0 < X = diag (X1, X2, ⋯ , Xn) ∈ ℝn×n, X


1
2 = diag(X


1
2
1 , X


1
2
2 , ⋯ , X


1
2
n ), X− 
1

2 = diag(X
− 
1

2
1 ,

X
− 
1

2
2 ,⋯ , X

− 
1
2

n ).

Remark 1. In the most existing works on NNs, there is only one type of state variables of the neurons. In 1983, a class of compet-
itive NNs was first introduced [8]. Afterwards, Meyer-Bäse et al. [9] extended the previous model into two distinct time scales
on competitive NNs which usually are composed of two types of state variables including STM and LTM, where STM reflects
rapidly changing dynamics of neurons while LTM represents slow activities of unsupervised synaptic modifications. Because
competitive NNs have two different time scales and can handle information through inhibition, competition, coordination, and
excitation between neurons, this class of network has great application value in image processing, modern biomedicine, opti-
mization and especially secure communication. For example, the encrypted signals should be decrypted within an arbitrary short
enough time regardless of the initial values of the systems during the process of secure communication. However, the theories of
traditional and finite/fixed-time synchronization cannot solve the above-mentioned problem. Fortunately, predefined-time syn-
chronization overcome this difficulty perfectly which can adjust the convergence time in advance according to the designer’s
requirements by tuning controller’s parameters. Moreover, coupled competitive NNs comprise of multiple interconnected sin-
gle competitive NNs, and their intricate dynamic behaviors have attracted considerable interest [17, 18]. However, the current
studies about coupled competitive NNs mainly focus on traditional synchronization or finite/fixed-time stability. Although the
predefined-time synchronization of competitive NNs was investigated in [26], the coupling term has not been taken into con-
sideration in their network model, which inspires the work presented in this paper. To the best of our knowledge, this is the first
study to investigate predefined-time synchronization of coupled competitive NNs.

Theorem 1. The network (5) achieves predefined-time synchronization under the action of the bilayer controllers (6) if there
exist two matrices 0 < X = diag(X1, X2,⋯ , Xn) ∈ ℝn×n and V = diag(V 1,V 2,⋯ ,V M ) ∈ ℝnM×nM such that

{

IM ⊗ �1 − (IM ⊗X)V − V T (IM ⊗X) + �Q⊗ (XW +W TX) < 0,
IM ⊗ �2 − (IM ⊗X)V − V T (IM ⊗X) + %H ⊗ (X� + �TX) < 0, (7)

where �1 = −2XC +XDDTX + 2	 +XG, �2 = −2XA +XBBTX +XG.

Proof. For system (5), construct the following Lyapunov functional

P (�) = P1(�) + P2(�),

where

P1(�) =
M
∑

�=1
eT� (�)Xe�(�), P2(�) =

M
∑

�=1
ê�(�)Xê�(�).

Therefore, it can be stated that

Ṗ (�) =2
M
∑

�=1
eT� (�)Xė�(�) + 2

M
∑

�=1
êT� (�)X ̇̂e�(�)

=2
M
∑

�=1
eT� (�)X

[

− Ce�(�) +Df (z�(�)) −Df (y�(�))

+ �
M
∑

i=1
Q�iW ei(�) − c1X


1
2 sign(e�(�))|e�(�)|1+
1

− c2X
− 
1

2 sign(e�(�))|e�(�)|1−
1 − V �e�(�) +Gê�(�)
]
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+ 2
M
∑

�=1
êT� (�)X

[

−Aê�(�) + B(f (z�(�)) − f (y�(�)))

+ %
M
∑

i=1
H�i�êi(�) − c1X


1
2 sign(ê�(�))|ê�(�)|1+
1

− c2X
− 
1

2 sign(ê�(�))|ê�(�)|1−
1 − V �ê�(�)
]

. (8)

Obviously,

2eT� (�)XD(f (z�(�)) − f (y�(�))) ≤ e
T
� (�)(XDD

TX +	)e�(�), (9)

2êT� (�)XB(f (z�(�)) − f (y�(�))) ≤ ê
T
� (�)XBB

TXê�(�) + eT� (�)	e�(�). (10)

In addition,

2
M
∑

�=1
eT� (�)XGê�(�) ≤2

M
∑

�=1

n
∑

s=1
|e�s(�)|XsGs|ê�s(�)|

≤
M
∑

�=1

n
∑

s=1
XsGs(e2�s(�) + ê

2
�s(�))

=
M
∑

�=1

n
∑

s=1
XsGse

2
�s(�) +

M
∑

�=1

n
∑

s=1
XsGsê

2
�s(�)

=
M
∑

�=1
eT� (�)XGe�(�) +

M
∑

�=1
êT� (�)XGê�(�). (11)

From Lemma 2, one has

2c1
M
∑

�=1
eT� (�)X

2+
1
2 sign(e�(�))|e�(�)|1+
1=2c1

M
∑

�=1

n
∑

s=1
X

2+
1
2

s |e�s(�)|2+
1

≥2
c1
n

1
2

M
∑

�=1

( n
∑

s=1
Xse

2
�s(�)

)

2+
1
2

=2
c1
n

1
2

M
∑

�=1

(

eT� (�)Xe�(�)
)

2+
1
2 . (12)

2c2
M
∑

�=1
eT� (�)X

2−
1
2 sign(e�(�))|e�(�)|1−
1 =2c2

M
∑

�=1

n
∑

s=1
X

2−
1
2

s |e�s(�)|2−
1

≥2c2
M
∑

�=1

( n
∑

s=1
Xse

2
�s(�)

)

2−
1
2

=2c2
M
∑

�=1
(eT� (�)Xe�(�))

2−
1
2 . (13)

Similarly,

2c1
M
∑

�=1
êT� (�)X

2+
1
2 sign(ê�(�))|ê�(�)|1+
1=2c1

M
∑

�=1

n
∑

s=1
X

2+
1
2

s |ê�s(�)|2+
1

≥2
c1
n

1
2

M
∑

�=1

( n
∑

s=1
Xsê

2
�s(�)

)

2+
1
2

=2
c1
n

1
2

M
∑

�=1

(

êT� (�)Xê�(�)
)

2+
1
2 . (14)
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2c2
M
∑

�=1
êT� (�)X

2−
1
2 sign(ê�(�))|ê�(�)|1−
1 =2c2

M
∑

�=1

n
∑

s=1
X

2−
1
2

s |ê�s(�)|2−
1

≥2c2
M
∑

�=1

( n
∑

s=1
Xsê

2
�s(�)

)

2−
1
2

=2c2
M
∑

�=1
(êT� (�)Xê�(�))

2−
1
2 . (15)

According to (9) - (15), one can get

Ṗ (�) ≤2
M
∑

�=1

M
∑

i=1
�Q�ieT� (�)XW e�(�) +

M
∑

�=1
êT� (�)(−2XA +XBB

TX +XG)ê�(�)

+ 2
M
∑

�=1

M
∑

i=1
%H�iê

T
� (�)X�ê�(�) +

M
∑

�=1
eT� (�)(−2XC +XDD

TX + 2	 +XG)e�(�)

− 2c1
M
∑

�=1
(eT� (�)Xe�(�))

2+
1
2 − 2c1

M
∑

�=1
(êT� (�)Xê�(�))

2+
1
2 − 2

M
∑

�=1
eT� (�)XV �e�(�)

− 2c2
M
∑

�=1
(eT� (�)Xe�(�))

2−
1
2 − 2c2

M
∑

�=1
(êT� (�)Xê�(�))

2−
1
2 − 2

M
∑

�=1
eT� (�)XV �ê�(�)

≤eT (�)
[

IM ⊗ (−2XC +XDDTX + 2	 +XG) − (IM ⊗X)V − V T (IM ⊗X)
+ �Q⊗ (XW +W TX)

]

e(�) + êT (�)
[

IM ⊗ (−2XA +XBBTX +XG)
− (IM ⊗X)V − V T (IM ⊗X) + %H ⊗ (X� + �TX)

]

ê(�)

− 2
c1
n

1
2

M
∑

�=1
(eT� (�)Xe�(�))

2+
1
2 − 2c2

M
∑

�=1
(eT� (�)Xe�(�))

2−
1
2

− 2
c1
n

1
2

M
∑

�=1
(êT� (�)Xê�(�))

2−
1
2 − 2c2

M
∑

�=1
(êT� (�)Xê�(�))

2−
1
2

≤ − 2
c1
n

1
2

M
∑

�=1
(eT� (�)Xe�(�))

2+
1
2 − 2c2

M
∑

�=1
(eT� (�)Xe�(�))

2−
1
2

− 2
c1
n

1
2

M
∑

�=1
(êT� (�)Xê�(�))

2+
1
2 − 2c2

M
∑

�=1
(êT� (�)Xê�(�))

2−
1
2

≤ − 2
c1

(nM)

1
2

( M
∑

�=1
eT� (�)Xe�(�)

)

2+
1
2

− 2
c1

(nM)

1
2

( M
∑

�=1
êT� (�)Xê�(�)

)

2+
1
2

− 2c2

( M
∑

�=1
eT� (�)Xe�(�)

)

2−
1
2

− 2c2

( M
∑

�=1
êT� (�)Xê�(�)

)

2−
1
2

= − 2
c1

(nM)

1
2

[

P
2+
1
2

1 (�) + P
2+
1
2

2 (�)
]

− 2c2

[

P
2−
1
2

1 (�) + P
2−
1
2

2 (�)
]

≤ −
2c1

(2nM)

1
2

[

P1(�) + P2(�)
]

2+
1
2 − 2c2

[

P1(�) + P2(�)
]

2−
1
2 .

Since c1 =
�(nM)


1
2

2
2−
1
2 
1Tc

and c2 =
�

2
1Tc
, one has

−
2c1

(2nM)

1
2

[

P1(�) + P2(�)
]

2+
1
2 − 2c2

[

P1(�) + P2(�)
]

2−
1
2

= − �

1Tc

(

P 1+

1
2 (�) + P 1−


1
2 (�)

)

. (16)
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It then follows from Lemma 1 that the drive and response systems (3) and (4) realize predefined-time synchronization with
predefined-time Tc under the action of the bilayer controllers (6).

Remark 2. To achieve better performance in synchronization, extensive research has been conducted on finite-time and fixed-
time synchronization as alternatives to conventional asymptotic and exponential synchronization [6, 7, 12, 15, 16, 18, 19, 20, 21,
22, 23]. However, the synchronization time in finite-time synchronization is the value of the settling time function which is easy
to changewith initial value.Moreover, it is difficult to obtain the exact initial value of the actual system. As a special case of finite-
time synchronization, fixed-time synchronization has a definite upper bound on the settling time, which is independent of the
initial value of the system. However, the convergence time in fixed-time synchronization is not convenient to regulate based on
the parameters of system and controller. Fortunately, predefined-time synchronization can solve the above problem, and in which
the settling time does not depend on any initial value and it can be configured as a controller parameter. As far as we know, only
the traditional synchronization [17] and finite-time synchronization [18] for coupled competitive NNs have been investigated
before, no research results have been reported on the predefined-time synchronization of this kind of network. In Theorem 1, a
novel predefined-time synchronization criterion is established for drive and response systems of coupled competitive NNs by
constructing a new bilayer controller.

4 PREDEFINED-TIME SYNCHRONIZATION OF COUPLED COMPETITIVE NNS WITH
TIME-VARYING DELAYS

This section is devoted to studying the coupled competitive NNs with time-varying delays, which is given by
⎧

⎪

⎪

⎨

⎪

⎪

⎩

STM ∶ ẏ�(�) = − Cy�(�) +Df (y�(�)) +G��(�) + �
M
∑

i=1
Q�iW yi(�),

LTM ∶ �̇�(�) = −A��(�) + Bf (y�(�)) + %
N
∑

i=1
H�i��i(�),

(17)

where � = 1, 2,⋯ ,M ; y�(�) = (y�1(�−�1(�)), y�2(�−�2(�)),⋯ , y�n(�−�n(�)))T ∈ ℝn, �s(�) (s = 1, 2,⋯ , n) is the time-varying
delay with 0 ≤ �s(�) ≤ �s ≤ � = max

s=1,2,⋯,n
{�j} and �̇s(�) ≤ �s < 1; f (y�(�)) = (f1(y�1(�−�1(�))), f2(y�2(�−�2(�))),⋯ , fn(y�n(�−

�n(�))))T ; fs(y�s(� − �s(�))) is the activation function of the s-th neuron at the time t − �s(t); y�(�),C ,D,G,��(�), �, Q�i,
W ,A,B, %,H�i,� have the same meanings as in Section 3. For convenience, denote � = diag( 1

1−�1
, 1
1−�2

,⋯ , 1
1−�n

).
In this section, let system (17) be a drive system, its corresponding response system can be represented by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

STM ∶ ż�(�) = − Cz�(�) +Df (z�(�)) + �
M
∑

i=1
Q�iW zi(�) +G��(�) + u�(�),

LTM ∶ �̇�(�) = −A��(�) + Bf (z�(�)) + %
M
∑

i=1
H�i��i(�) +m�(�),

(18)

where � = 1, 2,⋯ ,M ; z�(�) = (z�1(�−�1(�)), z�2(�−�2(�)),⋯ , z�n(�−�n(�)))T ∈ ℝn; f (z�(�)) = (f1(z�1(�−�1(�))), f2(z�2(�−
�2(�))),⋯ , fn(z�n(�−�n(�))))T ; fj(z�s(�−�s(�))) is the activation function of the s-th neuron at the time t−�s(�); u�(�) andm�(�)
are the controllers to be designed; z�(�),C ,A,B,D,G, ��(t), �, %, Q�i,H�i,�,W have the same meanings as in network (4).
Let e�(�) = z�(�) − y�(�) and ê�(�) = ��(�) −��(�), then the description of the error system can be expressed by the following

equations:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ė�(�) = − Ce�(�) +D[f (z�(�)) − f (y�(�))] +Gê�(�) + �
M
∑

i=1
Q�iW ei(�) + u�(�),

̇̂e�(�) = −Aê�(�) + B[f (z�(�)) − f (y�(�))] +m�(�) + %
M
∑

i=1
H�i�êi(�).

(19)

Design the following bilayer controllers for the network (19):
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⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u�(�) = − c1X

1
2 sign(e�(�))|e�(�)|1+
1 − c1X−1

n
∑

s=1

⎛

⎜

⎜

⎝

$2
s

1 − �s

t

∫
�−�s(�)

e2�s(ℎ)dℎ
⎞

⎟

⎟

⎠

2+
1
2

e�(�)
‖

‖

e�(�)‖‖
2

− c2X−1
n
∑

s=1

⎛

⎜

⎜

⎝

$2
s

1 − �s

t

∫
�−�s(�)

e2�s(ℎ)dℎ
⎞

⎟

⎟

⎠

2−
1
2

e�(�)
‖

‖

e�(�)‖‖
2
− c2X

− 
1
2 sign(e�(�))|e�(�)|1−
1 − V �e�(�),

m�(�) = −
c1
2

1
2

X

1
2 sign(ê�(�))|ê�(�)|1+
1 − V �ê�(�) − c2X

− 
1
2 sign(ê�(�))|ê�(�)|1−
1 ,

(20)

where c1 =
�(nM)


1
2

21−
1 
1Tc
, c2, X, X


1
2 , X− 
1

2 , 
1, sign(es(�)), |es�)|1+
1 , |es(�)|1−
1 , V � have the identical meanings as in (6).

Remark 3. In this paper, two novel bilayer controllers (6) and (20) are well designed for achieving predefined-time synchroniza-
tion of the drive-response error systems (5) and (19) respectively. Actually, these controllers are designed by improving some
existing controllers in [7, 12, 16, 23, 26] for finite/fixed/predefined-time synchronization and utilizing the own characteristics
of our network models. The innovation of our proposed controllers (6) is mainly reflected in the following two aspects: (i) the
coefficient or parameter before each item in the controller is different from some existing controllers; (ii) our controller is two-
layer. More precisely, in view of the bilayer structure of coupled competitive NNs, bilayer predefined-time controller should
be designed for STM and LTM respectively. Actually, they are designed by leveraging the unique structural characteristics of
coupled competitive NNs, allowing for more effective management of interactions between STM and LTM, which is crucial
for achieving synchronization. Compared to single-layer controller, bilayer controller can enhance control efficacy, ultimately
leading to more effective synchronization outcomes. Furthermore, for achieving predefined-time synchronization of the con-
sidered networks, the controller’s parameters must be designed as functions of the predefined time so that it can be configured
in advance according to different requirements. For coupled competitive NNs with time-varying delays, the controllers (20) is
designed by adding two new terms which relate to the bound of the derivative of time-varying delay based on controllers (6).
Note that the term e�(�)

‖
e�(�)‖

2 is contained in these new added terms in controller u�(�) of (20). As all nodes must synchronize to

the target during the synchronization process, i.e., e�(�) → 0, the magnitude of e�(�)

‖
e�(�)‖

2 will approach infinity, which lead to
singularity and abruptness easily. To avoid the occurrence of these undesirable phenomena in practice, a sufficient small posi-
tive constant � can be added to the denominator as in some existing works, i.e., e�(�)

‖
e�(�)‖

2 is replacing by
e�(�)

‖
e�(�)‖

2+�
. Additionally,

the term sign(e�s(�)) in diagonal matrix sign(e�(�)) of the designed controllers (6) and (20) is discontinuous, which will lead to
some undesirable chattering phenomenon in reality. In practical applications, these discontinuous term sign(e�s(�)) is usually
approximated by e�s(�)

e�s(�)+�
, where � > 0 is a sufficiently small constant.

Theorem 2. Under the bilayer controllers (20), the network (19) achieves predefined-time synchronization if there are two
matrices 0 < X = diag(X1, X2,⋯ , Xn) ∈ ℝn×n, V = diag(V1, V2,⋯ , VM ) ∈ ℝnM×nM such that

{

IM ⊗ �̂1 − (IM ⊗X)V − V T (IM ⊗X) + �Q⊗ (XW +W TX) < 0,
IM ⊗ �̂2 − (IM ⊗X)V − V T (IM ⊗X) + %H ⊗ (X� + �TX) < 0, (21)

where �̂1 = −2XC +XDDTX +	� +	 +XG, �̂2 = −2XA +XBBTX +XG.

Proof. For error system (19), the Lyapunov functional is constructed as follows:

P̂ (�) = P̂1(�) + P̂2(�), (22)

where

P̂1(�) =
M
∑

�=1
eT� (�)Xe�(�) +

M
∑

�=1

n
∑

s=1

$2
s

1 − �s

t

∫
�−�s(�)

e2�s(ℎ)dℎ,

P̂2(�) =
M
∑

�=1
êT� (�)Xê�(�).
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Consequently, one obtains

̇̂P (�) =2
M
∑

�=1
eT� (�)Xė�(�) +

M
∑

�=1

n
∑

s=1

$2
s

1 − �s
e2�s(�) + 2

M
∑

�=1
êT� (�)X ̇̂e�(�)

−
M
∑

�=1

n
∑

s=1

$2
s

1 − �s
e2�s(� − �s(�))(1 − �̇s(�))

≤2
M
∑

�=1
eT� (�)X

[

− Ce�(�) +D(f (z�(�)) − f (y�(�))) +Gê�(�)

− c1X

1
2 sign(e�(�))|e�(�)|1+
1 − c2X

− 
1
2 sign(e�(�))|e�(�)|1−
1

− c1X−1
n
∑

s=1

⎛

⎜

⎜

⎝

$2
s

1 − �s

t

∫
�−�s(�)

e2�s(ℎ)dℎ
⎞

⎟

⎟

⎠

2+
1
2

e�(�)
‖

‖

e�(�)‖‖
2

− c2X−1
n
∑

s=1

⎛

⎜

⎜

⎝

$2
s

1 − �s

t

∫
�−�s(�)

e2�s(ℎ)dℎ
⎞

⎟

⎟

⎠

2−
1
2

e�(�)
‖

‖

e�(�)‖‖
2

− V �e�(�) + �
M
∑

i=1
Q�iW ei(�)

]

+
M
∑

�=1
eT� (�)	�e�(�)

−
M
∑

�=1
eT� (�)	e�(�) + 2

M
∑

�=1
êT� (�)X

[

−Aê�(�) − V �ê�(�)

+ B(f (z�(�)) − f (y�(�))) −
c1
2

1
2

X

1
2 sign(ê�(�))|ê�(�)|1+
1

− c2X
− 
1

2 sign(ê�(�))|ê�(�)|1−
1 + %
M
∑

i=1
H�i�êi(�)

]

. (23)

Based on Assumption 1 and Lemma 3, one gets

2eT� (�)XD(f (z�(�)) − f (y�(�))) ≤ e
T
� (�)XDD

TXe�(�) + (f (z�(�)) − f (y�(�)))T (f (z�(�)) − f (y�(�)))

= eT� (�)XDD
TXe�(�) +

n
∑

s=1
(fs(z�s(�)) − fs(y�s(�)))2

≤ eT� (�)XDD
TXe�(�) +

n
∑

s=1
$2
s (z�s(�) − y�s(�))

2

= eT� (�)XDD
TXe�(�) +

n
∑

s=1
$2
s e�s(�)

2

= eT� (�)XDD
TXe�(�) + eT� (�)	e�(�). (24)

Moreover,

2
c1
2

1
2

M
∑

�=1
êT� (�)X

2+
1
2 sign(ê�(�))|ê�(�)|1+
1

= 2
c1
2

1
2

M
∑

�=1

n
∑

s=1
X

2+
1
2

s |ê�s(�)|2+
1

≥ 2
c1

(2n)

1
2

M
∑

�=1

( n
∑

s=1
Xsê

2
�s(�)

)

2+
1
2

= 2
c1

(2n)

1
2

M
∑

�=1

(

êT� (�)Xê�(�)
)

2+
1
2 . (25)
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From (10)-(15) and (24)-(25), one can acquire

Ṗ2(�) ≤
M
∑

�=1
eT� (�)(−2XC +XDD

TX +	 +	� +XG)e�(�) − 2
M
∑

�=1
eT� (�)XV �e�(�)

+
M
∑

�=1
êT� (�)(−2XA +XBB

TX +XG)ê�(�) − 2
c1
n

1
2

M
∑

�=1
(eT� (�)Xe�(�))

2+
1
2

− 2c2
M
∑

�=1
(eT� (�)Xe�(�))

2−
1
2 + 2

M
∑

�=1

M
∑

i=1
�Q�ieT� (�)XW ei(�) − 2

M
∑

�=1
êT� (�)XV �ê�(�)

− 2
c1
n

1
2

M
∑

�=1

⎛

⎜

⎜

⎝

n
∑

s=1

$2
s

1 − �s

�

∫
�−�s(�)

e2�s(ℎ)dℎ
⎞

⎟

⎟

⎠

2+
1
2

− 2
c1

(2n)

1
2

M
∑

�=1
(êT� (�)Xê�(�))

2+
1
2

− 2c2
M
∑

�=1
(êT� (�)Xê�(�))

2−
1
2 + 2

M
∑

�=1

M
∑

i=1
%H�iê

T
� (�)X�êi(�)

− 2c2
M
∑

�=1

⎛

⎜

⎜

⎝

n
∑

s=1

$2
s

1 − �s

�

∫
�−�s(�)

e2�s(ℎ)dℎ
⎞

⎟

⎟

⎠

2−
1
2

≤eT (�)[IM ⊗ (−2XC +XDDTX +	� +	 +XG) − (IM ⊗X)V − V T (IM ⊗X)
+ �Q⊗ (XW +W TX)]e(�) + êT (�)[IM ⊗ (−2XA +XBBTX +XG)
− (IM ⊗X)V − V T (IM ⊗X) + %H ⊗ (X� + �TX)]ê(�)

− 2
c1
n

1
2

[ M
∑

�=1

⎛

⎜

⎜

⎝

n
∑

s=1

$2
s

1 − �s

�

∫
�−�s(�)

e2�s(ℎ)dℎ
⎞

⎟

⎟

⎠

2+
1
2

+
M
∑

�=1
(eT� (�)Xe�(�))

2+
1
2

]

− 2c2

[ M
∑

�=1
(eT� (�)Xe�(�))

2−
1
2 +

M
∑

�=1

⎛

⎜

⎜

⎝

n
∑

s=1

$2
s

1 − �s

t

∫
�−�s(�)

e2�s(ℎ)dℎ
⎞

⎟

⎟

⎠

2−
1
2 ]

− 2
c1

(2n)

1
2

M
∑

�=1
(êT� (�)Xê�(�))

2+
1
2 − 2c2

M
∑

�=1
(êT� (�)Xê�(�))

2−
1
2

≤ −
2
2−
1
2 c1

(nM)

1
2

( M
∑

�=1
êT� (�)Xê�(�)

)

2+
1
2

− 2c2

( M
∑

�=1
êT� (�)Xê�(�)

)

2−
1
2

−
2c1

(nM)

1
2

[

⎛

⎜

⎜

⎝

M
∑

�=1

n
∑

s=1

$2
s

1 − �s

�

∫
�−�s(�)

e2�s(ℎ)dℎ
⎞

⎟

⎟

⎠

2+
1
2

+

( M
∑

�=1
eT� (�)Xe�(�)

)

2+
1
2
]

− 2c2

[( M
∑

�=1
eT� (�)Xe�(�)

)

2−
1
2

+
⎛

⎜

⎜

⎝

M
∑

�=1

n
∑

s=1

$2
s

1 − �s

�

∫
�−�s(�)

e2�s(ℎ)dℎ
⎞

⎟

⎟

⎠

2−
1
2 ]

≤ −
2
2−
1
2 c1

(nM)

1
2

( M
∑

�=1
êT� (�)Xê�(�)

)

2+
1
2

− 2c2

( M
∑

�=1
êT� (�)Xê�(�)

)

2−
1
2

−
2
2−
1
2 c1

(nM)

1
2

( M
∑

�=1

n
∑

s=1

$2
s

1 − �s

�

∫
�−�s(�)

e2�s(ℎ)dℎ +
M
∑

�=1
eT� (�)Xe�(�)

)

2+
1
2
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− 2c2

( M
∑

�=1
eT� (�)Xe�(�) +

M
∑

�=1

n
∑

s=1

$2
s

1 − �s

t

∫
�−�s(�)

e2�s(ℎ)dℎ

)

2−
1
2

= −
2
2−
1
2 c1

(nM)

1
2

[

P̂
2+
1
2

1 (�) + P̂
2+
1
2

2 (�)
]

− 2c2

[

P̂
2−
1
2

1 (�) + P̂
2−
1
2

2 (�)
]

≤ −
21−
1c1
(nM)


1
2

[

P̂1(�) + P̂2(�)
]

2+
1
2 − 2c2

[

P̂1(�) + P̂2(�)
]

2−
1
2 .

According to c1 =
�(nM)


1
2


1Tc21−
1
, c2 =

�
2
1Tc

, one has

−
21−
1c1
(nM)


1
2

[

P̂1(�) + P̂2(�)
]

2+
1
2 − 2c2

[

P̂1(�) + P̂2(�)
]

2−
1
2

= − �

1Tc

(

P̂ 1+

1
2 (�) + P̂ 1−


1
2 (�)

)

.

Based on Lemma 1, the drive-response systems (17) and (18) reach predefined-time synchronization under the control of (20).

Remark 4. It follows from Theorems 1 and 2 that the coupled competitive NNs without and with time-varying delays achieve
synchronization in the predefined time Tc independently of the initial values. Moreover, the predefined time Tc can be adjusted
as a specific parameter in the designed bilayer predefined-time controllers. Thus, it can be an arbitrary positive constant. Based
on real-world requirements, the predefined time Tc (the upper bound of the synchronization time) can be tuned arbitrarily.
Therefore, predefined-time synchronization is superior to the other traditional synchronization methods, such as asymptotic
synchronization and finite/fixed-time synchronization.

Remark 5. In the course of this study, the design of appropriate controllers and the construction of suitable Lyapunov functionals
for the corresponding coupled competitive NNs are of primary importance for establishing predefined-time synchronization
conditions. These novel bilayer controllers designed in this paper involved extensive testing of parameter settings to achieve
synchronization in the desired convergence time. The necessity and advantages of designing bilayer controllers in this paper
have been discussed in Remark 3. Additionally, how to find an appropriate Lyapunov functional that satisfies the necessary
conditions for proving synchronization is also very challenging in this work. This paper constructs two Lyapunov functionals
P (�) and P̂ (�) for achieving predefined-time synchronization of coupled competitive NNs without and with time-varying delays
respectively, where P (�) is a single summation Lyapunov functional and P̂ (�) can be viewed as a double summation Lyapunov
functional because the first term of P̂ (�) is a single summation. Although a single summation in Lyapunov functional P (�)
may not capture all the intricacies of the system dynamics as effectively as higher-order summation terms, the proof based
on it is more intuitive and easier to understand in the process of theoretical analysis. Due to the introduction of time-varying
delays, a double summation Lyapunov functional P̂ (�) is designed to account for more elaborate time-delay and interaction
effects. In the context of this study, the constructed Lyapunov functionals could simplify the mathematical analysis and reduce
the computational complexity associated with deriving the predefined-time synchronization conditions, which have adequately
addressed the stability and performance criteria required for the drive-response systems under consideration.

5 NUMERICAL EXAMPLE

Example 5.1. Take the following drive and response systems of coupled competitive NNs into account:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

STM ∶ ẏ�(�) = − Cy�(�) +Df (y�(�)) +G��(�) + 0.5
6
∑

i=1
Q�iW yi(�),

LTM ∶ �̇�(�) = −A��(�) + Bf (y�(�)) + 0.8
6
∑

i=1
H�i��i(�),

(26)
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and
⎧

⎪

⎪

⎨

⎪

⎪

⎩

STM ∶ ż�(�) = − Cz�(�) +Df (z�(�)) + 0.5
6
∑

i=1
Q�iW zi(�) +G��(�) + u�(�),

LTM ∶ �̇�(�) = −A��(�) + Bf (z�(�)) + 0.8
6
∑

i=1
H�i��i(�) +m�(�),

(27)

where � = 1, 2,⋯ , 6, fo(�) =
|�+1|+|�−1|

5
(o = 1, 2, 3), C = diag(0.6, 0.9, 1.3), A = diag(1.3, 1.0, 1.5), B = diag(1.5, 0.9, 0.7),

G = diag(0.3, 0.5, 0.9). The matricesW , �, Q = (Q�i)6×6,H = (H�i)6×6 and D are selected as, respectively

W =
⎛

⎜

⎜

⎝

0.5 0.2 0
0.1 0.4 0
0 0.7 0.3

⎞

⎟

⎟

⎠

,� =
⎛

⎜

⎜

⎝

0.6 0.1 0.2
0 0.4 0
0.2 0 0.6

⎞

⎟

⎟

⎠

,D =
⎛

⎜

⎜

⎝

0.2 0 0.4
0.5 0.1 0.6
0 0.3 0.7

⎞

⎟

⎟

⎠

,

Q =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−0.8 0 0.2 0.2 0.3 0.1
0 −0.7 0.1 0.3 0.1 0.2
0.2 0.1 −0.6 0.3 0 0
0.2 0.3 0.3 −1.1 0.1 0.2
0.3 0.1 0 0.1 −0.8 0.3
0.1 0.2 0 0.2 0.3 −0.8

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−0.7 0.1 0.2 0 0.2 0.2
0.1 −0.6 0 0.2 0.3 0
0.2 0 −1.0 0.1 0.3 0.4
0 0.2 0.1 −0.6 0.1 0.2
0.2 0.3 0.3 0.1 −0.9 0
0.2 0 0.4 0.2 0 −0.8

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Evidently, fo(⋅) satisfies Assumption 1 with$o = 0.4. Take Tc , 
1, V = diag(0.3I3, 0.2I3, 0.4I3, 0.7I3, 0.6I3, 0.5I3) are selected
as Tc = 0.3 and 
1 = 0.6 such that 
1 < 1 hold. Thus, c1 and c2 can be calculated as c1 =

�(nM)

1
2

2
2−
1
2 
1Tc

= 25.5704 and c2 =
�

2
1Tc
=

8.7266. The following matrix X can be obtained through programming and calculating by MATLAB

X =
⎛

⎜

⎜

⎝

0.2998 0 0
0 0.3913 0
0 0 0.3392

⎞

⎟

⎟

⎠

,

which satisfies (7).
By Theorem 1, the drive-response systems (26) and (27) reach predefined-time synchronization within the predefined time

Tc = 0.3s under the bilayer controllers (6). When the predefined time Tc is set as 0.3s, Figures 1 and 2 present the evolution
progresses of the synchronization errors e�(�) = z�(�) − y�(�) of STM in drive-response systems (26) and (27) with and without
the bilayer controllers (6). Similarly, Figures 3 and 4 respectively depict the change processes of the errors ê�(�) = ��(�) −��(�)
of LTM in drive-response systems (26) and (27) with and without the bilayer controllers (6). Obviously, all the states of the
error variables e�(�) in Figure 1 and ê�(�) in Figure 3 are extremely close to 0 within the predefined time Tc = 0.3s, and
this state is maintained along with the increase in time under the bilayer controllers (6). In contrast, Figures 2 and 4 clearly
show that all error variables do not converge to zero as time increases.Thus, the drive and response systems (26) and (27) of
coupled competitive NNs under consideration cannot achieve predefined-time synchronization without the implementation of
the controllers. Therefore, the designed bilayer controllers (6) are effective, which also demonstrates the correctness of the result
obtained in Theorem 1.

Example 5.2. Let us consider the drive and response systems of coupled competitive NNs with time-varying delays described
below:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

STM ∶ ẏ�(�) = − Cy�(�) +Df (y�(�)) +G��(�) + 0.7
6
∑

i=1
Q�iW yi(�),

LTM ∶ �̇�(�) = −A��(�) + Bf (y�(�)) + 1.0
6
∑

i=1
H�i��i(�),

(28)
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FIGURE 1 The norm of error e�(�) = z�(�) − y�(�) of STM with bilayer controllers (6) in Example 5.1, � = 1, 2,⋯ , 6.
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FIGURE 2 The norm of error e�(�) = z�(�) − y�(�) of STM without bilayer controllers (6) in Example 5.1, � = 1, 2,⋯ , 6.

and
⎧

⎪

⎪

⎨

⎪

⎪

⎩

STM ∶ ż�(�) = − Cz�(�) +Df (z�(�)) + 0.7
6
∑

i=1
Q�iW zi(�) +G��(�) + u�(�),

LTM ∶ �̇�(�) = −A��(�) + Bf (z�(�)) + 1.0
6
∑

i=1
H�i��i(�) +m�(�),

(29)

where � = 1, 2,⋯ , 6, fo(�) =
|�+1|+|�−1|

10
(o = 1, 2, 3), C = diag(0.7, 1.0, 0.9), A = diag(0.8, 1.1, 1.5), B = diag(2.1, 1.6, 0.5),

G = diag(1.0, 0.6, 0.3). �s(�) =
1
2
− 1

3+s
e−t, � = 1

2
, �s =

1
3+s
, s = 1, 2, 3. The matricesW ,�,Q = (Q�i)6×6,H = (H�i)6×6 andD

are selected as, respectively

W =
⎛

⎜

⎜

⎝

0.9 0.6 0
0 0.6 0.4
0.3 0.4 0.4

⎞

⎟

⎟

⎠

,� =
⎛

⎜

⎜

⎝

0.7 0 0.3
0.1 0.4 0
0.3 0 0.5

⎞

⎟

⎟

⎠

,D =
⎛

⎜

⎜

⎝

0.2 0 0.7
0.4 0.1 0.6
0.2 0 0.8

⎞

⎟

⎟

⎠

,
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||ê6(λ)||

FIGURE 3 The norm of error ê�(�) = ��(�) − ��(�) of LTM with bilayer controllers (6) in Example 5.1, � = 1, 2,⋯ , 6.
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FIGURE 4 The norm of error ê�(�) = ��(�) − ��(�) of LTM without bilayer controllers (6) in Example 5.1, � = 1, 2,⋯ , 6.

Q =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−0.9 0.1 0 0.3 0.4 0.1
0.1 −0.8 0.2 0.1 0.2 0.2
0 0.2 −1.1 0.3 0.3 0.3
0.3 0.1 0.3 −0.8 0 0.1
0.4 0.2 0.3 0 −1.2 0.3
0.1 0.2 0.3 0.1 0.3 −1.0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−0.6 0.2 0.1 0.1 0.1 0.1
0.2 −0.9 0.2 0.2 0 0.3
0.1 0.2 −0.9 0.3 0 0.3
0.1 0.2 0.3 −1.0 0.2 0.2
0.1 0 0 0.2 −0.7 0.4
0.1 0.3 0.3 0.2 0.4 −1.3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Evidently, fo(⋅) satisfies Assumption 1 with $o = 0.2. Take Tc , 
1, V = diag(0.6I3, 0.3I3, 0.5I3, 0.7I3, 0.4I3, 0.6I3) are
selected as Tc = 1.2 and 
1 = 0.4 such that 
1 < 1 hold. Hence, c1 and c2 can be calculated as c1 =

�(nM)

1
2

21−
1 
1Tc
= 7.6974 and

c2 =
�

2
1Tc
= 3.2725. The following matrix X can be obtained through programming and calculating by MATLAB

X =
⎛

⎜

⎜

⎝

0.2260 0 0
0 0.2528 0
0 0 0.2469

⎞

⎟

⎟

⎠

,
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FIGURE 5 The norm of error e�(�) = z�(�) − y�(�) of STM with bilayer controllers (20) in Example 5.2, � = 1, 2,⋯ , 6.
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FIGURE 6 The norm of error e�(�) = z�(�) − y�(�) of STM without bilayer controllers (20) in Example 5.2, � = 1, 2,⋯ , 6.

which satisfies (21).
According to Theorem 2, the drive-response systems (28) and (29) achieve predefined-time synchronization within the pre-

defined time Tc = 1.2s under the implementation of the bilayer controllers (20). The norms of the synchronization errors
e�(�) = z�(�) − y�(�) of STM in drive-response systems (28) and (29) with and without the bilayer controllers (20) are revealed
respectively in Figures 5 and 6. In the same way, the varying processes of errors ê�(�) = ��(�) −��(�) of LTM in drive-response
systems (28) and (29) with and without the bilayer controllers (20) are showed as in Figures 7 and 8. When the predefined time
Tc is set as 1.2s, it is easy to see that all the states of error variables e�(�) in Figure 5 and ê�(�) in Figure 7 converge to 0 within
the predefined time Tc = 1.2s under the action of the bilayer controllers (20). However, without the action of the controllers
(20), all the states of the error variables in Figures 6 and 8 cannot converge to zero before the predefined time Tc = 1.2s. Con-
sequently, the drive and response systems (28) and (29) of coupled competitive NNs cannot achieve synchronization within
the predefined-time when the bilayer controllers (20) are not implemented, which demonstrates the validness of the designed
controllers (20) and the accuracy of the obtained result in Theorem 2.
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FIGURE 7 The norm of error ê�(�) = ��(�) − ��(�) of LTM with bilayer controllers (20) in Example 5.2, � = 1, 2,⋯ , 6.
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FIGURE 8 The norm of error ê�(�) = ��(�) − ��(�) of LTM without bilayer controllers (20) in Example 5.2, � = 1, 2,⋯ , 6.

Remark 6. In most cases, the drive-response systems of coupled competitive NNs could not achieve predefined-time synchro-
nization themselves. Therefore, it is necessary to adopt suitable control strategies to realize synchronization in the predefined
time for the considered network. As previously mentioned in Examples 5.1 and 5.2 and displayed in Figures 2, 4, 6 and 8, the
drive-response systems of coupled competitive NNs without and with time-varying delays cannot achieve predefined-time syn-
chronization without the action of the controllers (6) and (20). Thus, it is extremely important to design appropriate controllers
for achieving predefined-time synchronization of the considered coupled competitive NNs. In this paper, by designing novel
bilayer controllers, two sufficient predefined-time synchronization conditions are established respectively for coupled competi-
tive NNs without and with time-varying delays. To the authors’ knowledge, this is the first investigation on the synchronization
of coupled competitive NNs in predefined time.
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6 CONCLUSION

In this paper, two types of coupled competitive NNs without and with time-varying delays have been examined. Firstly, a
sufficient predefined-time synchronization condition has been obtained for the considered coupled competitive NNs based on the
some inequality theories and the proposed bilayer controllers. Moreover, time-varying delays are also considered in the given
networkmodel, by constructing new applicable Lyapunov functional and designing new appropriate controllers, another criterion
has been presented to enable coupled competitive NNs with time-varying delays in achieving predefined-time synchronization.
Finally, the effectiveness of the proposed approach has been proved through the demonstration of two numerical examples.
As a good candidate for the synapse, memristor is a novel type of nonlinear resistor with memory properties, which can be
applied in NNs to better simulate human brains. Recently, the memristor-based competitive NNs have been studied by more and
more scholars [12, 13, 17]. Therefore, it would be very interesting to incorporate memristive property into coupled competitive
NNs and study predefined-time synchronization of memristor-based coupled competitive NNs in the near future. Moreover, it
is known to all that fractional calculus is a theory that generalizes the concept of calculus from the integer order to arbitrary
order [1, 3, 13, 14]. For example, the authors investigated global Mittag-Leffler stability of fractional-order quaternion-valued
memristive neural networks in [3]. Motivated by these works, it would be also a very interesting problem of research to consider
the fractional operators in coupled competitive NNs and study predefined-time synchronization of this kind of fractional-order
network model.
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