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A partial order ≺ on [n] is naturally labelled (NL) if x ≺ y
implies x < y. We establish a bijection between {3, 2+2}-free
NL posets and 12–34-avoiding permutations, determine func-
tional equations satisfied by their generating function, and use
series analysis to investigate their asymptotic growth, presenting
evidence of stretched exponential behaviour. We also exhibit bi-
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determine their generating function. The connection between
our results and a hierarchy of combinatorial objects related to
interval orders is described.
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1. Introduction

A partial order ≺ on [n] is said to be natural [2] or naturally labelled [12,34,36] if ≺ is a suborder
of the normal linear order on the integers. That is, ≺ is naturally labelled if x ≺ y implies x < y. For
revity, we often use NL as an abbreviation for ‘‘naturally labelled’’.
The study of NL posets goes back to Richard Stanley’s PhD Thesis [34], and independently a few

ears later, to Kreweras [30]. One nice application is Stanley’s result [35] that the evaluation of the
hromatic polynomial of a graph at −1 gives the number of its acyclic orientations. NL posets also
ppear in the literature in connection with the celebrated Neggers–Stanley conjecture on the real-
ootedness of so-called W -polynomials [6,32,39,40]. For more on NL posets, see Gessel’s survey [25].
The counting sequence for NL posets on [n] is A006455 in the OEIS [33], and their asymptotic
enumeration is given by Brightwell, Prömel and Steger [7].
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Fig. 1. The Hasse diagram of a 3-free NL poset, and the corresponding Stanley graph.

Much research on posets has considered restricted classes, yielding many interesting results,
erhaps most notably in [5] on (2+2)-free posets and related structures. Our focus in this work is

on NL posets that are 3-free (having no 3-element chain), such as that on the left in Fig. 1.
In Section 2 we present bijections between 3-free NL posets and a number of other equinumerous

ombinatorial objects before deducing their generating function. Section 3 is the heart of the paper
nd concerns 3-free NL posets which are also (2+2)-free (having no induced subposet consisting

of two disjoint 2-element chains). Our main result is a bijection between {3, 2+2}-free NL posets
nd permutations avoiding the vincular pattern 12–34. We also exhibit bijections with other
quinumerous objects. Definitions are given in the relevant sections. The enumeration of these
bjects is also investigated, yielding functional equations satisfied by their generating function, a
ower bound on the exponential term in their asymptotics, and (using series analysis) a conjecture
hat their number behaves asymptotically like

A · (log 4)−n
· µn1/3

· nβ
· n!,

where estimates are given for the constants A, µ and β .
Finally, Section 4 places our new results in the context of a hierarchy of combinatorial objects

elated to interval orders. This hierarchy, presented in Figs. 12 and 13, provides a frame of reference
and additional motivation for this line of research. At its heart is a collection of bijections between
quinumerous combinatorial objects, primarily classes of posets, families of matrices, pattern-
voiding permutations, and types of ascent sequence. We extend the hierarchy by exhibiting
ijections between objects of these sorts that are equinumerous to {3, 2+2}-free NL posets. Avenues
or future research are suggested. For further details, see the discussion in Section 4.

Given a partial order ≺ on [n], its incidence matrix or poset matrix is the n× n binary matrix M≺

n which M≺(i, j) = 1 if and only if i ≼ j. There is a natural bijection between posets of [n] and their
oset matrices. The following proposition characterises the incidence matrices of NL posets. See [10]
or a characterisation of which NL poset matrices can be represented as binary Riordan matrices.

Proposition 1. Naturally labelled posets on [n] are in bijection with upper-triangular n × n binary
matrices with each entry on the main diagonal equal to one that have no

(
1 0
1 1

)
submatrix whose lower

left entry (shown in bold) is on the main diagonal.

Proof. Reflexivity implies that each entry on the main diagonal of a poset matrix is equal to
ne. A partial order ≺ is NL if and only if its poset matrix is upper-triangular since i > j implies

M≺(i, j) = 0. Being upper-triangular automatically entails antisymmetry: if i ̸ = j then M≺(i, j) = 1
implies M≺(j, i) = 0. Finally, M≺ contains

(
1 0
1 1

)
as a submatrix with its lower left entry on the main

diagonal if and only if there exist i < j < k such that M≺(i, j) = 1 and M≺(j, k) = 1 but M≺(i, k) = 0,
or equivalently, if i ≺ j and j ≺ k, but i ⊀ k, contradicting transitivity. □

2. 3-free naturally labelled posets

A poset is 3-free if it has no 3-element chains. That is, ≺ is 3-free if there are no three elements
x ≺ y ≺ z. Every element of a 3-free poset is thus either minimal or maximal (with isolated elements
being both minimal and maximal). See Fig. 1 for an example.
2
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In this section, we consider 3-free NL posets. We exhibit bijections between these posets and
certain matrices and certain graphs, before determining the generating function for these objects.
We conclude by establishing the generating function for those 3-free NL posets without any isolated
elements.

The following proposition characterises the incidence matrices of 3-free NL posets.

Proposition 2. The 3-free naturally labelled posets on [n] are in bijection with upper-triangular
× n binary matrices with each entry on the main diagonal equal to one that contain no

(
1
1 1

)
partial

ubmatrix whose lower left (bold) entry is on the main diagonal.

Proof. By Proposition 1, the poset matrix of a NL partial order ≺ is upper-triangular with each
ntry on the main diagonal equal to one. The matrix M≺ contains

(
1
1 1

)
with its lower left entry on

he main diagonal if and only if there exist i < j < k such that M≺(i, j) = 1 and M≺(j, k) = 1, or
quivalently, if i ≺ j ≺ k. Thus the poset matrix of a NL partial order is

(
1
1 1

)
-free if and only if the

poset is 3-free. □

A labelled graph with vertex set [n] is a Stanley graph [37,38] if and only if no vertex v has both
eft neighbours (u < v) and right neighbours (u > v). Thus every Stanley graph is bipartite: every
dge connects a vertex with (only) right neighbours to a vertex with (only) left neighbours. There
s a natural bijection between 3-free NL posets and Stanley graphs since Stanley graphs are exactly
the Hasse diagrams of 3-free NL posets. See Fig. 1 for an example.

Proposition 3. The 3-free naturally labelled posets on [n] are in bijection with n-vertex Stanley graphs.

The following proposition presents enumerative results concerning 3-free NL posets, including a
ecurrence relation showing a relationship with a q-analogue of the Stirling numbers of the second
ind, and both a functional equation and an explicit expression for the generating function. The
ounting sequence for 3-free NL posets on [n] is A135922 in [33].

Proposition 4. Let p(n, k) be the number of 3-free naturally labelled posets on [n] with k minimal
lements. Then

p(n, k) = p(n − 1, k − 1) + (2k
− 1)p(n − 1, k) (1)

where p(0, 0) = 1, p(n, 0) = 0 if n ⩾ 1, and p(n, k) = 0 if n < k. Thus, p(n, k) = S2[n, k], where the
q[n, k] are the q-Stirling numbers of the second kind.
Suppose

F (z, y) =

∑
n⩾k⩾0

p(n, k)znyk (2)

is the corresponding bivariate generating function. Then F satisfies the functional equation

F (z, y) = 1 + z
(
F (z, 2y) − (1 − y)F (z, y)

)
, (3)

and can be expressed explicitly by

F (z, y) =

∑
k⩾0

zkyk∏k
i=1

(
1 − (2i − 1)z

) . (4)

Proof. The unique empty poset gives p(0, 0) = 1. Every nonempty poset has at least one minimum,
o p(n, 0) = 0 if n ⩾ 1, and no poset has more minima than elements, so p(n, k) = 0 if n < k.
The nonempty 3-free NL posets on [n] with k minima are of two types: (i) those in which n is

inimal, and (ii) those in which n is not minimal. In type (i), n is isolated. Thus, if we remove n we
btain a 3-free NL poset on [n−1] with k−1 minima. So there are p(n−1, k−1) posets of type (i).
Now consider a poset of type (ii). Since n is not minimal, if we remove n we obtain a 3-free NL

poset on [n − 1] with k minima. For every such poset, a non-minimal n can be added to cover any
3
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nonempty subset of the k minima, of which there are 2k
− 1. So there are (2k

− 1)p(n− 1, k) posets
f type (ii). Hence p(n, k) satisfies recurrence (1). This is identical to the recurrence of Carlitz for
-Stirling numbers of the second kind with q = 2 (see [8]):

Sq[n, k] = Sq[n − 1, k − 1] + [k]q · Sq[n − 1, k],

where [k]q = 1 + q + · · · + qk−1. Thus p(n, k) = S2[n, k] (see A139382 in [33]).
If we reverse our decomposition, and consider the process of adding a new maximal element

o a 3-free NL poset with k minima, then the new element may cover any subset of the k minimal
lements, so there are 2k ways of adding a new element. Exactly one of these (covering no minima)
ncreases the number of minima to k + 1; all the others leave k minimal elements.

Now, in F (z, y), each monomial znyk represents a 3-free NL poset on [n] with k minima. So the
process of adding a new maximal element is represented by the following operation on monomials:

znyk ↦ → zn+1(yk+1
+ (2k

− 1)yk
)

= zn+1((2y)k − (1 − y)yk
)
.

Thus, by extending to a linear operator on the generating function and including the empty poset
as the base case, we see that F (z, y) satisfies the functional equation (3).

If we let Pk(z) =
∑

n⩾0 p(n, k)z
n, then, for each k ⩾ 1, the recurrence relation (1) gives

Pk(z) = z
(
Pk−1(z) + (2k

− 1)Pk(z)
)
.

Thus,

Pk(z) =
zPk−1(z)

1 − (2k − 1)z
.

Iterating, with P0(z) = 1, gives, for each k ⩾ 0,

Pk(z) =
zk

(1 − z)(1 − 3z) . . . (1 − (2k − 1)z)
=

zk∏k
i=1

(
1 − (2i − 1)z

) .

The identity F (z, y) =
∑

k⩾0 Pk(z)y
k then yields the explicit expression (4) for F (z, y). □

The asymptotic number of 3-free NL posets on [n] is given in an unpublished comment by Vaclav
otěšovec as c · 2n2/4, where c ≈ 7.37196880 if n is even, and c ≈ 7.37194949 if n is odd; see A13

5922 in [33].
We conclude this section by presenting a new explicit formula for the enumeration of those

-free NL posets which have no isolated elements (see A323842 in [33]).

Proposition 5. Suppose G(z, y) is the bivariate generating function in which the coefficient of znyk is
he number of 3-free naturally labelled posets on [n] with no isolated elements and k minima. Then G
atisfies the functional equation

G(z, y) =
1

1 − z2y2

(
1 − zy + z

(
G
(

z
1 − zy

, 2y
)

− (1 − y)(1 − zy)G(z, y)
))

(5)

and can be expressed explicitly by

G(z, y) =
1

1 + zy

∑
k⩾0

zkyk∏k
i=1

(
1 − (2i − 1 − y)z

) . (6)

Proof. Let us say that a decorated poset is a 3-free NL poset with no isolated elements in which each
lement, including an additional invisible element 0, is decorated with a sequence of zero or more
ings. It is easy to see that 3-free NL posets on [n] with ℓ isolated elements are in bijection with
decorated posets on [n− ℓ] with ℓ rings. Given a 3-free NL poset P , to construct the corresponding
decorated poset Q, we simply process its elements in order. If an element is isolated in P , add a
ring to the previous element in Q; otherwise add the element to Q with the covering relations
corresponding to those in P . See Fig. 2 for an example.
4
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Fig. 2. A 3-free NL poset with four isolated vertices, and the corresponding decorated 3-free NL poset with no isolated
vertices.

In terms of generating functions, this means we have the following relationship between G and F ,
the bivariate generating function (2) for all 3-free NL posets:

F (z, y) =
1

1 − zy
G
(

z
1 − zy

, y
)

.

Here, z/(1−zy) accounts for decorated elements, and 1/(1−zy) for the sequence of rings on invisible
lement 0. A simple change of variables then gives us G in terms of F :

G(z, y) =
1

1 + zy
F
(

z
1 + zy

, y
)

.

Substitution into the functional equation (3) for F and some algebraic rearrangement yields the
unctional equation for G (5), and substitution into (4) gives the explicit formula (6). □

Fig. 3. A (2+2)-free poset and a poset with an induced 2 + 2 subposet.

3. {3, 2 + 2}-free naturally labelled posets

A poset is said to be (2+2)-free if it does not contain an induced subposet that is isomorphic to
2 + 2, the union of two disjoint 2-element chains. For example, in Fig. 3, the poset on the left is
2+2)-free, but the poset on the right is not. See Section 4 below for further discussion of (2+2)-free
osets.
In this section we consider {3, 2+2}-free NL posets. First, we exhibit bijections between these

osets and certain matrices, certain labelled binary words, and certain bicoloured permutations.
hen we establish a bijection with permutations avoiding the vincular pattern 12–34. We then
onsider the enumeration of these objects, first determining functional equations satisfied by their
enerating function, and then investigating their asymptotic growth.
The following proposition characterises the incidence matrices of {3, 2+2}-free NL posets.

Proposition 6. The {3, 2+2}-free naturally labelled posets on [n] are in bijection with upper-triangular
n × n binary matrices with each entry on the main diagonal equal to one that contain none of the four
partial submatrices

M0 =
(
1
1 1

)
, M1 =

(
1 0 0
1 0 0
1 1

)
, M2 =

(
0 1 0
1 0 1
1 0

)
, M3 =

(
0 0 1
1 1 0
1 0

)
,

with lower left (bold) entries on the main diagonal.

Proof. By Proposition 2, the incidence matrix of a 3-free NL poset is upper-triangular with each
ntry on the main diagonal equal to one and has no M0 partial submatrix. Suppose a NL partial
rder ≺ has an induced 2 + 2 subposet i ≺ j, k ≺ ℓ (where i and j are both incomparable with
5
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Fig. 4. The Hasse diagram of a {3, 2+2}-free NL poset, and the corresponding labelled binary word and bicoloured
ermutation.

both k and ℓ under ≺). Without loss of generality, we may assume that i < k. Then three cases are
ossible:

i < j < k < ℓ, i < k < j < ℓ, i < k < ℓ < j.

i 1 1 0 0
j 1 0 0
k 1 1
ℓ 1

i j k ℓ

i 1 0 1 0
k 1 0 1
j 1 0
ℓ 1

i k j ℓ

i 1 0 0 1
k 1 1 0
ℓ 1 0
j 1
i k ℓ j

These clearly correspond precisely to an occurrence in M≺ of the partial submatrices M1, M2, or M3,
respectively, as illustrated. Thus, if a naturally labelled poset is not (2+2)-free, then its incidence
matrix contains one of these three partial submatrices, and if the incidence matrix contains any
one of the partial submatrices, then the corresponding poset is not (2+2)-free. □

It is well-known (see [5]) that a poset is (2+2)-free if and only if the set of its strict downsets
can be linearly ordered by inclusion. That is, given a poset (P, ≺), if for each x ∈ P , we let
D(x) = {t ∈ P : t ≺ x} denote the strict downset of x, then for any pair of elements x, y ∈ P ,
either D(x) ⊆ D(y) or D(y) ⊆ D(x). We use this characterisation to exhibit natural bijections between
{3, 2+2}-free NL posets and certain sets of labelled binary words and bicoloured permutations.

Proposition 7. The {3, 2+2}-free naturally labelled posets on [n] are in bijection with words over {0, 1}
f length n, with the letters labelled 1, . . . , n and satisfying the following four conditions:

1. the first letter is 0,
2. the labels on adjacent 0s are in decreasing order,
3. the labels on adjacent 1s are in increasing order, and
4. the label on any 1 is greater than the labels on all the 0s earlier in the word.

Proof. Given a {3, 2+2}-free NL poset P , let D1 ⊊ D2 ⊊ . . . ⊊ Dk be the distinct strict downsets of
its non-isolated maxima. Each Di is a nonempty subset of the minima of P . Let E1 = D1, and for
i = 2, . . . , k, let Ei = Di \ Di−1. Finally, let Ek+1 be the set of isolated elements of P . Then the Ei’s
form a partition of the minima of P , with each part nonempty, except possibly Ek+1.

For each i ∈ [k], let Mi = {x ∈ P : D(x) = Di} be the set of maxima of P whose strict downset is
equal to Di. The Mi’s partition the non-isolated maxima of P , and each Mi is nonempty.

Clearly P is defined by the sequence (E1,M1, E2,M2, . . . , Ek,Mk, Ek+1). We encode this as a
abelled binary word ε1µ1 . . . εkµkεk+1, in which each εi consists of |Ei| 0s, labelled with the
lements of Ei in decreasing order, and each µi consists of |Mi| 1s, labelled with the elements ofMi in
ncreasing order,1 so that each subset of elements is uniquely represented and the sets comprising
he sequence can be distinguished.

1 The choice of decreasing labels for minima and increasing labels for maxima is motivated by the requirements of
our bijection between {3, 2+2}-free NL posets and permutations avoiding 43–12 in Proposition 10.
6



D. Bevan, G.-S. Cheon and S. Kitaev European Journal of Combinatorics 126 (2025) 104117

C
o

l

b

t
b

o
v

c
p

Fig. 5. The single occurrence of the pattern 43–12 in the permutation 947863152.

For example, for the poset on the left in Fig. 4, we have
E1 = {2} ε1 = 02 M1 = {4} µ1 = 14
E2 = {1, 5} ε2 = 0501 M2 = {8} µ2 = 18
E3 = {6} ε3 = 06 M3 = {7, 9} µ3 = 1719
E4 = {3} ε4 = 03

yielding the word in the centre of the figure.
Any word created in this way satisfies the four conditions in the statement of the proposition:

ondition 1 holds because E1 is nonempty, conditions 2 and 3 hold as a result of our choices for the
rdering of labels, and condition 4 holds because P is naturally labelled.
Moreover, a unique poset can be built from any word satisfying the four conditions. Reading from

left to right, 0p adds a new (initially isolated) minimal element p, whereas 1q adds a new maximal
element q covering all existing minima. □

A reinterpretation of these words yields a bijection with certain bicoloured permutations. An
inversion in a permutation consists of two values (not necessarily consecutive), the larger of which
occurs first. A descent is an inversion consisting of two consecutive values. An ascent consists of
two consecutive values, the smaller of which occurs first.

Proposition 8. The {3, 2+2}-free naturally labelled posets on [n] are in bijection with permutations of
ength n, each entry of which is coloured blue or red, whose first entry is blue, and which avoid blue-blue
ascents, red-red descents, and blue–red inversions.

Proof. These bicoloured permutations are simply an alternative representation of the labelled
inary words of Proposition 7, formed by switching the role of letters and labels and using the

colours blue and red for 0 and 1, respectively. See Fig. 4 for an example. The four conditions on
he colouring of entries precisely correspond to the four conditions in Proposition 7 on the labelled
inary words. □

3.1. Bijection with permutations avoiding 12–34

A vincular pattern is a permutation together with adjacency conditions for its containment. We
use the traditional notation in which a vincular pattern is written as a permutation with dashes
inserted between terms that need not be adjacent but no dashes between terms that must be
adjacent. For example, the permutation σ contains the vincular pattern 43–12 if there exist indices
i < j such that σ (i) > σ (i + 1) > σ (j + 1) > σ (j). The permutation in Fig. 5 contains a single
ccurrence of 43–12. Vincular patterns were introduced in [3] (under another name) and first called
incular patterns in [5].
We also require the ability to specify a pattern in which the first term must occur at the start

of the host permutation. We denote this with an initial bracket. For example, the permutation σ
ontains the pattern [3–12 if there exists an index i such that σ (1) > σ (i + 1) > σ (i). The
ermutation in Fig. 5 contains two occurrences of [3–12, formed by 947 and 915.
7
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Fig. 6. A bicoloured permutation in B, and the 43–12 avoider that corresponds to it under the bijection Λ.

In this section we prove that {3, 2+2}-free NL posets have the same counting sequence as
permutations avoiding the vincular pattern 12–34. The permutations avoiding 12–34 were first
studied by Elizalde [21, Section 5], who, among other things, established that 12–34-avoiders are
equinumerous with both 12–43-avoiders and 21–43-avoiders (and their symmetries).2

Proposition 9 (See [21, Propositions 5.2 and 5.3]). The class Av(12–34) of permutations avoiding the
incular pattern 12–34 is equinumerous with both Av(12–43) and Av(21–43), and also with the five
ther symmetries of these three classes.

In light of this, the heart of our proof consists of the establishment of a bijection between the
icoloured permutations of [n] defined in Proposition 8 and permutations of [n] avoiding 43–12.
Let B denote the set of bicoloured permutations defined in Proposition 8. Observe that the runs

maximal sequences of ascending or descending points) of any β ∈ B are coloured as follows:

• The first point in an ascending run of β is blue (since the first point of β is blue, and red-red
descents and blue–red inversions are forbidden). Subsequent points may have either colour,
but a pair of consecutive points cannot both be blue (since blue-blue ascents are forbidden).
In particular, the second point of an ascending run is red.

• The first point in a descending run of β may have either colour, but subsequent points are all
blue (avoiding red-red descents and blue–red inversions).

We define Λ to be the following length-preserving map from B to uncoloured permutations:

• If β is a bicoloured permutation that does not contain a red-blue ascent, then Λ(β) is simply
the permutation that results from removing the colours from β .

• If β contains one or more red-blue ascents, then for each such ascent PQ , we mark the point Q
and any points in a descending run beginning with Q that lie above the red point P . All these
points are blue. In this case, Λ(β) is the uncoloured permutation that results from moving all
the marked points to the start of the permutation, placing them in increasing order. See Fig. 6
for an example; on the left, red-blue ascents are indicated with a grey line, and the marked
points are circled.

We claim that the map Λ is a bijection from B to Av(43–12).
We begin with some further properties of elements of B. Suppose β ∈ B. Then β avoids 43–12,

because the lower point in each descent of β is coloured blue and at least one of the points in each
scent of β is red, so any 43–12 would contain a forbidden blue–red inversion, realised by the 3

2 That is, 12–34, 12–43 and 21–43 are Wilf equivalent.
8
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and one of the points of the 12. Moreover, β also avoids the pattern [3–12, since the first point
f β is blue, so any [3–12 would contain a forbidden blue–red inversion, again realised by the 3
nd one of the points of the 12. Thus, the removal of the colours from β yields a permutation in
0 := Av

(
43–12,[3–12

)
.

Let B0 consist of those elements of B that do not contain a red-blue ascent. Recall that Λ simply
removes the colours from bicoloured permutations in B0. We now show that Λ maps B0 bijectively
to A0.

Suppose β ∈ B0, so β contains no red-blue ascent. Then the points must be coloured as follows:
he first point of β is blue. In an ascending run of β , the first point is blue, and all subsequent points
re red. In a descending run of β , the first point is either the first point of β (coloured blue) or else

the last point of an ascending run (coloured red), and all subsequent points are blue. No alternative
colouring is possible. Thus, Λ maps B0 injectively into A0.

On the other hand, suppose σ ∈ A0. Then the points of σ can be coloured to produce an element
of B0, by colouring the first point and the non-initial points of descending runs blue, and all the other
points (the non-initial points of ascending runs) red. This clearly avoids blue-blue ascents, red-blue
ascents and red-red descents. And if the result contained a blue–red inversion P–Q , then P would
be either the first point of σ or the second point of a descent and Q would be the second point in
an ascent, so σ would contain either a [3–12 or a 43–12. So, the restriction of Λ to B0 is a bijection
between B0 and A0.

We now consider the effect of Λ on bicoloured permutations that contain at least one red-
lue ascent. Let B1 = B \ B0 be the set consisting of such bicoloured permutations. Also, let
1 = Av(43–12) \A0 be comprised of those 43–12 avoiders that contain at least one occurrence of
3–12. We need to show that Λ maps B1 bijectively to A1.

Recall the effect of Λ on elements of B1: For each red-blue ascent PQ , the upper point Q is
marked along with any points in a descending run beginning with Q that lie above P . Then all the
marked points are moved to the start of the permutation, placed in increasing order.

Suppose that β ∈ B1, so β contains a red-blue ascent. We first establish that Λ(β) avoids 43–12.
Recall that β avoids both 43–12 and [3–12.

The marked points of Λ(β) form its initial ascending run (which may be a single point), since
the first point of β is below the lowermost marked point — which becomes the first point of Λ(β);
therwise there would be a blue–red inversion in β , formed of its first point and the lower point
f the leftmost red-blue ascent.
Thus, Λ(β) avoids 43–12:

(a) If the descent created in Λ(β) by the uppermost marked point and the first point of β were
to form the 43 of a 43–12, then β would have contained a [3–12.

(b) If the deletion of a descending run of marked points were to create a descent that formed the
43 of a 43–12 in Λ(β), then the lowest of these marked points would have been the first point
of a 43–12 in β .

(c) If the deletion of a descending run of marked points were to create an ascent that formed the
12 of a 43–12 in Λ(β), then the lowest of these marked points would have been the third
point of a 43–12 in β .

We now establish that Λ(β) contains [3–12.
The points in all the red-blue ascents of β form an increasing subsequence; otherwise β would

ontain a blue–red inversion. Each red-blue ascent of β consists of the upper two points of a blue-
ed-blue or red-red-blue double ascent, since a point coloured red cannot be the first point in an
scending run. Thus, Λ(β) contains a [3–12, formed from the lowest marked point and the lower
wo points of the leftmost blue-red-blue or red-red-blue double ascent. Hence, Λ maps B1 to A1.

Our goal now is to construct a map from A1 to B1 and to prove that it is in fact the partial inverse
f Λ.
Suppose σ ∈ A1. For each point P in the initial ascending run of σ (which may be a single point),

et α(P) be the ascent in the rightmost occurrence of a 3–12 pattern in σ whose first point is P . Note
hat α is properly defined if and only if σ contains [3–12; otherwise α(P) would be undefined if P
were the first point of σ .
9
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We now define Ψ to be the following length-preserving map from A1 to the set of bicoloured
ermutations: Define Ψ (σ ) to be the bicoloured permutation that results from moving each point

P from the initial ascending run of σ so that, for each ascent QR in the image of α, the points in
ts preimage α−1(QR) are placed in decreasing order immediately after R. All the moved points are
oloured blue, as is the first point of Ψ (σ ) and non-initial points of descending runs; the unmoved
on-initial points of ascending runs are coloured red. See Fig. 6 for an example; at the right, the
oints in the initial run are circled and the ascents in the image of α are indicated with a grey line.
We first establish that Ψ (σ ) ∈ B1. The colouring clearly avoids blue-blue ascents and red-red

escents. If Ψ (σ ) were to contain a blue–red inversion P–R, then R would be the second point in
n ascent QR, and P would be an unmoved point, because a moved point would form a 3–12 with
R in σ and so be moved after R by Ψ . Thus, either

• P would be the first point of Ψ (σ ), in which case σ would contain a 43–12 pattern SP–QR,
where S could be any point in the initial ascending run of σ , or else

• P would be the second (unmoved) point of a descent SP , in which case SP–QR would form a
43–12 in σ .

Hence, Ψ (σ ) avoids blue–red inversions. Moreover, Ψ (σ ) contains one red-blue ascent for each
ascent in the image of α. Hence, Ψ (σ ) ∈ B1 as claimed.

Finally, we show that Ψ is the inverse of the restriction of Λ to B1.
Suppose QR is in the image of α, and P is the uppermost point of α−1(QR). Then RP forms a

ed-blue ascent in Ψ (σ ), with the remaining points of α−1(QR) in a descending run beginning with
and lying above R. This is the only way that red-blue ascents are formed in Ψ (σ ). So Λ(Ψ (σ )) = σ .
Suppose now that β ∈ B1 and RP is a red-blue ascent in β . Then R is the upper point of an ascent

R in Λ(β) because neither R nor the first point in the ascending run containing R is moved by Λ.
oreover, there is no ascent below and to the right of P in β , otherwise β would contain a blue–red

nversion PS, since the second point in any ascending run is red. Thus QR is the rightmost ascent
hat forms a 3–12 pattern in Λ(β) with the moved point P , and also with any other moved points
rom the descending run beginning with P that lie above R. So Ψ (Λ(β)) = β .

Hence, Ψ is the partial inverse of Λ, and thus Λ is a bijection from B to Av(43–12), as claimed. By
Propositions 8 and 9, this is sufficient to prove that class of {3, 2+2}-free NL posets is equinumerous
ith Av(12–34).

Proposition 10. The {3, 2+2}-free naturally labelled posets on [n] are in bijection with permutations
f length n avoiding the vincular pattern 12–34.

3.2. Enumerating 12–34-avoiding permutations

In this section, we consider the enumeration of 12–34-avoiders, and hence also of {3, 2+2}-free
L posets. First we present functional equations satisfied by their generating function. Then we give
 lower bound on the exponential term in the asymptotics of Av(12–34), and use methods of series
nalysis to investigate its asymptotic growth, resulting in a conjectured form for the asymptotics.

Proposition 11. Suppose H(z, x, y) is the trivariate generating function in which the coefficient of
znxkyℓ is the number of permutations of length n avoiding 12–34 with lowest ascent top k and last
ntry ℓ. We take k = n + 1 for the decreasing n-permutation (including the permutation of length 1).
Then H(z, x, y) = H1(z, x, y) + H2(z, x, y), where

H1(z, x, y) = zxy
(
x +

1
1 − y

(
H1(z, x, 1) − H1(z, x, y) + H2(z, x, 1) − H1(z, xy, 1)

)
+

1
1 − xy

(
H1(z, 1, xy) − H1(z, xy, 1)

))
,

H2(z, x, y) =
zy

1 − y

(
H1(z, xy, 1) − yH1(zy, x, 1) + H2(z, xy, 1) − H2(z, x, y)

)
.

10
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Fig. 7. The possibilities for inserting a new point to the right of two 12–34-avoiders.

Proof. We use a generating tree approach (also sometimes known as the ECO method [4]). See [22]
or the enumeration of several subfamilies of 12–34 avoiding permutations using generating trees.
e model the process of extending a 12–34-avoider by inserting a new point at the right. There

re two cases, depending on the relative positions of the lowest ascent top and the last entry.
If the last entry is not above the lowest ascent top, then there is no restriction on the value of

he inserted point. This first case is enumerated by H1.
On the other hand, if the last entry is above the lowest ascent top, then a new point cannot be

nserted above the last entry, or a 12–34 would be created. This second case is enumerated by H2.
This process thus gives rise to the following transition rules, as illustrated in Fig. 7:

(k, ℓ) ↦ −→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(k + 1, j), (a) if ℓ ⩽ k, for j = 1, . . . , ℓ,
(j, j), (b) if ℓ ⩽ k, for j = ℓ + 1, . . . , k,
(k, j), (c) if ℓ ⩽ k, for j = k + 1, . . . , n + 1,
(k + 1, j), (d) if ℓ > k, for j = 1, . . . , k,
(k, j), (e) if ℓ > k, for j = k + 1, . . . , ℓ.

These are readily checked, as is the correctness of setting the lowest ascent top to n + 1 for the
ecreasing n-permutation (which has no ascent).
The process for translating an insertion encoding like this into functional equations is entirely

tandard. For example, the application of rule (a) to a permutation represented by the monomial
nxkyℓ yields permutations represented by

zn+1
ℓ∑

j=1

xk+1yj =
zxy

1 − y
znxk(1 − yℓ).

Extending this to a linear operator on the appropriate generating function gives
zxy

1 − y

(
H1(z, x, 1) − H1(z, x, y)

)
,

to be included on the right of the equation for H1. Together with similar contributions from the other
four rules, and a zx2y term for the initial 1-point permutation, this yields the desired functional
quations. □

Techniques currently available would appear to be inadequate for solving these functional
quations. The primary source of their intractability is several instances of variables being present

in the ‘‘wrong slots’’, with x occurring (in xy) in the third argument, and y occurring in both the
irst argument (in zy) and the second argument (in xy).

Ferraz de Andrade, Lundberg and Nagle [1, Corollary 1.4] prove that the exponential term in the
asymptotics of a particular subclass of the 43–12-avoiders is

lim
n→∞

n
√⏐⏐Avn(21–34, 43–12)⏐⏐/n! = 1/ log 4.

Together with Proposition 9, this yields the following lower bound on the growth of 12–34-avoiders,
hich improves on the bound of 0.5 given in [15].
11
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Fig. 8. Plots of the ratios against n−1 , and against n−2/3 .

Proposition 12. limn→∞
n
√⏐⏐Avn(12–34)⏐⏐/n! ⩾ (log 4)−1

≈ 0.72134752.

The counting sequence for 12–34-avoiders — and hence also for {3, 2+2}-free NL posets — is
A113226 in [33]. By iterating the recurrence in the proof of Proposition 11, we were able to generate
the first 557 terms in this sequence. We now use the methods of series analysis, as presented
by Guttmann in [26], to estimate the asymptotics of

⏐⏐Avn(12–34)⏐⏐. This approach was exploited
n [13,14] to investigate the number of permutations avoiding the classical pattern 1324; our
nalysis here is similar.
For each n, let an =

⏐⏐Avn(12–34)⏐⏐/n!, so E(z) :=
∑

n⩾0 anz
n is the exponential generating

unction for the number of 12–34-avoiders. We consider the behaviour of the ratios rn = an+1/an
f consecutive terms in this sequence.
If E(z) were to exhibit a simple power-law singularity, with the asymptotics of the coefficients

iven by an ∼ A · γ n
· nβ , for some constants A, γ and β , then the ratios would satisfy

rn = γ
(
1 + β /n + O(n−2)

)
, (7)

in which case rn would be asymptotically linear with respect to n−1. On the other hand, if the
oefficients were to behave like an ∼ A · γ n

· µnα
· nβ , with a stretched exponential factor µnα

for
ome constants µ > 0 and α < 1, then

rn = γ

(
1 +

α logµ

n1−α
+

β

n
+ O

(
n−(2−2α))) .

In particular (anticipating our findings below), when α = 1/3, this specialises to

rn = γ

(
1 +

logµ

3n2/3 +
β

n
+ O(n−4/3)

)
, (8)

in which rn is asymptotically linear with respect to n−2/3.
In Fig. 8, the ratios are plotted against n−1, and against n−2/3. The nonlinearity of the plot against

n−1 is not consistent with the existence of an algebraic singularity, as can be seen from (7). On the
ther hand, the plot against n−2/3 appears close to being linear, which by (8) would be consistent
ith the existence of a stretched exponential term with α ≈ 1/3. (We note in passing that a
tretched exponential with exponent 1/3 has recently been established rigorously for compacted
inary trees [23].)
Extrapolation of either of these plots is consistent with a limiting ratio of (log 4)−1, as marked

on the vertical axes, matching the lower bound for γ given in Proposition 12. Further evidence
that γ = (log 4)−1, and also that α = 1/3, is provided by the visual linearity of the plot in Fig. 9,
since Eq. (8) implies that

n2/3(rn/γ − 1) =
1
3 logµ + βn−1/3

+ O(n−2/3). (9)

Choosing a slightly different value for either γ or α results in a plot with clear curvature. Thus we
elieve that the exponential term in the asymptotics is actually equal to its lower bound.
12
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Fig. 9. Plot of n2/3(rn/γ − 1) against n−1/3 , with γ = (log 4)−1 .

Fig. 10. Plots of direct fitting estimates for A, µ, and β .

Conjecture 13. limn→∞
n
√

|Avn(12–34)|/n! = (log 4)−1.

By (9), extrapolating from the plot in Fig. 9 also gives us an estimate for logµ near to 3.6. To
gain a better approximation for µ and to approximate the values of A and β , we use a direct fitting
approach. Given our assumed asymptotic form for an, we have

log an ∼ log A + n log γ + n1/3 logµ + β log n. (10)

So, for each n, we solve the system of three linear equations{
log An + k1/3 logµn + βn log k = log ak − k log γ : k = n, n + 1, n + 2

}
,

to give estimates An, µn and βn for A, µ and β , respectively. Assuming our conjectured asymptotic
form is correct, these estimates should converge to the actual values as n increases. Plots of the
results are shown in Fig. 10, which can be extrapolated to yield approximations for the constants.

In addition, we used the Mathematica FindFit function to find the values of the constants that
ake the expression on the right side of (10) give the best fit to different ranges of the data, as

recorded in Table 1.
13
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Table 1
Estimates for A, µ and β from FindFit.
Data A µ β

500 terms: a58, . . . , a557 0.03351 38.050 −0.83314
400 terms: a158, . . . , a557 0.03312 37.976 −0.82876
300 terms: a258, . . . , a557 0.03298 37.950 −0.82710
200 terms: a358, . . . , a557 0.03286 37.936 −0.82618
100 terms: a458, . . . , a557 0.03280 37.928 −0.82557

These results show evidence of convergence and are consistent with the extrapolated intercepts
rom the plots in Figs. 9 and 10 (log 37.9 ≈ 3.63). Hence, we believe that the asymptotics have the
ollowing form.

Conjecture 14. The asymptotic number of 12–34-avoiders is given by

|Avn(12–34)| ∼ A · (log 4)−n
· µn1/3

· nβ
· n!,

exhibiting a stretched exponential term, with constants A ≈ 0.032, µ ≈ 37.9 and β ≈ −0.82.

Fig. 11. Permutations avoiding this pattern are equinumerous with interval orders.

4. Discussion

Suppose P is an unlabelled poset with strict order relation ≺. Then P is an interval order if it
as an interval representation, that is, if we can assign a real closed interval [ℓx, rx] to each element
∈ P in such a way that x ≺ y if and only if rx < ℓy (so the interval corresponding to x is strictly to
he left of that corresponding to y). The notion of an interval order was introduced by Fishburn [24]
n 1970, who proved that P is an interval order if and only if P is (2+2)-free.

Interval orders have attracted much attention in the literature, and they have been shown to
e equinumerous with several combinatorial structures, namely with Fishburn matrices, ascent
equences, Stoimenow matchings, and Fishburn permutations.

• A Fishburn matrix of size n is an upper-triangular n × n matrix with non-negative integer
entries with the property that every row and every column contains a nonzero element and
the total sum of the entries is n.

• A sequence x1x2 . . . xn of nonnegative integers is an ascent sequence if x1 = 0 and, for each
i > 1, we have xi ⩽ 1 + asc(x1 . . . xi−1), where

asc(x1 . . . xk) =
⏐⏐{j : 1 ⩽ j < k and xj < xj+1}

⏐⏐
is the number of ascents in x1 . . . xk.

• A Stoimenow matching of size n is a matching on the set {1, 2, . . . , 2n} with no left-nestings
or right-nestings; that is, without any pair of nested edges that have adjacent endpoints.

• A Fishburn permutation is one that avoids the bivincular pattern shown (as a mesh pattern)
in Fig. 11. An occurrence in a permutation σ of this pattern is an occurrence of 231 with no
points in the shaded regions. That is, the permutation σ contains this pattern if there exist
indices i < j such that σ (j) + 1 = σ (i) < σ (i + 1).

The enumeration of interval orders was possible only after discovering their decomposition and
inking it to ascent sequences, which were then enumerated [5]. The generating function for interval
14
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Fig. 12. Relationships between interval orders and associated combinatorial objects.

orders turns out to be the non-D-finite power series∑
n⩾0

n∏
i=1

(1 − (1 − z)i).

Ascent sequences play a crucial role in papers [17,27,29,31,41] where interval orders are enumer-
ted explicitly with respect to extra statistics, a statistic being a function from a set of objects to the
atural numbers. In particular, among other results, Kitaev and Remmel [29] obtained the bivariate

generating function for (2+2)-free posets counting the number of minimal elements. As another
example, a result in [17] not only settled a conjecture of Jovovic on the number of primitive (that is,
inary) Fishburn matrices, but also allowed the generating function to be refined to count Fishburn
atrices whose entries do not exceed a fixed value k, enabling the counting of interval orders with
t most k indistinguishable elements. Fishburn matrices themselves (rather than ascent sequences)
ave also been used [27] to obtain further enumeration results related to interval orders.
These equinumerous objects, collectively known as Fishburn structures counted by the Fishburn

umbers, are useful, not only for enumerative purposes, but also for gaining a deeper understanding
of the underlying structure of interval orders, and for solving problems concerning them. Through
ijections we can translate properties to an equinumerous structure that is more amenable to

analysis. Recently, Cerbai and Claesson [9] introduced Fishburn trees to this family, obtaining
implified versions of some of the known bijections.
Interval orders and other Fishburn structures form the base level of a hierarchy we are about to

sketch. Restricting interval orders in two different ways and considering corresponding restrictions
on the other objects from the base level, gives two lower levels in the hierarchy, whose existence
is of interest from the perspective of bijective combinatorics. Analysis of these lower levels also
ed to the resolution of a conjecture of Pudwell [5] in the theory of permutation patterns and of a
onjecture of Jovovic [17] in the theory of matrices.
In the other direction, Claesson and Linusson [12] considered supersets of the objects from the

ase level that are equinumerous to each other. Specifically, they investigated matchings without
left nestings, a superset of Stoimenow diagrams (which are matchings with neither left or right
estings). It turns out that there are n! such matchings. This led to the definition of a certain

subset of (2+2)-free NL posets counted by n!, which they called factorial posets, an extension of
nterval orders. Other factorial objects include permutations, inversion sequences (a superset of
scent sequences), and partition matrices (a superset of Fishburn matrices introduced by Claesson,
ukes and Kubitske [11]).
15
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Fig. 13. The place of naturally labelled posets in the hierarchy related to interval orders.

One can extend this approach by considering (natural) subsets and supersets of combinatorial
objects already in the hierarchy, linking bijectively structures that have the same cardinalities. The
hierarchy obtained so far in this way has twenty-one combinatorial objects on five levels, as shown
in Fig. 12. At the right of each row is the enumeration of the objects in the row and a link to
he entry in the OEIS [33]. Solid lines indicate known bijections, and solid arrows indicate known
mbeddings. For example, the class of permutations avoiding the pattern 231, being in one-to-
ne correspondence with 101-avoiding ascent sequences, is a subset of permutations avoiding the
attern 31524, which in turn is in bijection with self-modified ascent sequences, a superset of the
scent sequences avoiding 101. Note that {2 + 2, 3 + 1}-free posets are also counted by the Catalan

numbers. Fig. 12 is based on work in [5,11,12,16,18–20,28]. In particular, the bottom three levels
re explained in [18]. We do not provide definitions of all the objects involved.
In Fig. 13, we introduce to this hierarchy the objects related to NL posets that we investigated

in the previous sections of this paper. These new objects are shown in blue. As before, solid lines
indicate known bijections and solid arrows indicate known embeddings.

Our bijections in Propositions 1, 2 and 6 are represented by the relationships between families of
NL posets and families of poset matrices in the first two columns. Similarly, the other relationships
etween equinumerous families of objects in the second row from the bottom represent our
ijections between {3, 2+2}-free NL posets and labelled binary words in Proposition 7 and with
ermutations avoiding 43–12 in Proposition 10. Note that these labelled binary words are labelled
inary ascent sequences since every binary word whose first letter is 0 forms an ascent sequence.
he embeddings in columns 1, 2 and 4 are all self-explanatory.
Fig. 13 contains thirteen explicit open embedding questions. Out of those, we would like to

highlight the following that we consider to be of particular interest:
16
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• Rows 1 and 2: Find an embedding of Fishburn permutations (avoiding the bivincular pattern
in Fig. 11) into Av(43–12) or one of its symmetries. Does this translate to nice embeddings of
other row 1 objects into objects in row 2?

• Rows 2 and 3: Does the trivial embedding of permutations avoiding 43–12 into the set of all
permutations induce natural embeddings of the other row 2 objects into objects in row 3?
In particular, it would be good to find an embedding of {3, 2+2}-free NL posets into factorial
posets of the same size. A naturally labelled partial order ≺ on [n] is factorial if for i, j, k ∈ [n],
i < j ≺ k implies i ≺ k. Factorial posets are (2+2)-free [12].

• Rows 1–3: Discover a natural set of matchings equinumerous to {3, 2+2}-free NL posets that
contain Stoimenow matchings and are left-nesting-free.

• Rows 3 and 4: Find an embedding of factorial posets into 3-free NL posets. Find an embedding
of partition matrices into M0-avoiding lower triangular binary matrices. See [11] for the
definition of a partition matrix.

• Investigate the relationship between Fishburn matrices and incidence matrices of NL posets.
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