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Abstract

Background: Frequent attenders to accident and emergency (A&E) services pose complex challenges for healthcare provi-
ders, often driven by critical clinical needs. Machine learning (ML) offers potential for predictive approaches to managing
frequent attendance, yet its application in this area is limited. Existing studies often focus on specific populations or models,
raising concerns about generalisability. Identifying risk factors for frequent attendance and high resource use is crucial for
effective prevention strategies.

Objectives: This research aims to evaluate the strengths and weaknesses of ML approaches in predicting frequent A&E
attendance in NHS Lanarkshire, Scotland, identify associated risk factors and compare findings with existing research to
uncover commonalities and differences.

Method: Health and social care data were collected from 17,437 A&E patients in NHS Lanarkshire (2021–2022), including
clinical, social and demographic information. Five classification models were tested: multinomial logistic regression (LR),
random forests (RF), support vector machine (SVM) classifier, k-nearest neighbours (k-NN) and multi-layer perceptron
(MLP) classifier. Models were evaluated using a confusion matrix and metrics such as precision, recall, F1 and area
under the curve. Shapley values were used to identify risk factors.

Results: MLP achieved the highest F1 score (0.75), followed by k-NN, RF and SVM (0.72 each), and LR (0.70). Key health
conditions and risk factors consistently predicted frequent attendance across models, with some variation highlighting data-
set-specific characteristics.

Conclusions: This study underscores the utility of combining ML models to enhance prediction accuracy and identify risk
factors. Findings align with existing research but reveal unique insights specific to the dataset and methodology.
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Introduction and background
The Royal College of Emergency Medicine Best Practice
Guidelines1 notes that ‘frequent attendance’ (FA) is most
commonly defined as attendance of an emergency depart-
ment five or more times per year. However, FA is a loosely-
defined term which can vary between facilities, service type
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and other factors.1 When compared to similar population
groups, these patients often require extensive medical
resources and attention, Furthermore, FA is often indicative
of underlying issues such as chronic illnesses, mental health
problems or socio-economic challenges that are not
adequately addressed through emergency services alone.
It is recognised that those frequently attending accident
and emergency (A&E) services also tend to use other
health and social care facilities frequently.2 These highlight
the need for effective approaches to identify and manage
these high-risk patients, enabling healthcare providers to
implement targeted interventions that can reduce A&E
visits and improve overall patient outcomes.

Machine learning (ML) models have a great potential to
identify health risk factors. MLs are a class of predictive
algorithms that leverage mathematics and statistics to
learn patterns from data to make predictions or decisions.
By training on historical data, ML models can generalise
from past examples to predict future outcomes, identify
trends and uncover insights that might not be immediately
obvious to humans. By analysing vast amounts of patient
data, such as of electronic health records (EHRs), ML algo-
rithms can achieve unprecedented accuracy compared to
traditional methods in a wide range of clinical applications,
for example, heart attacks and strokes3 and breast cancer.4

These predictions help in early diagnosis, targeted interven-
tions, personalised treatment plans and proactive health
management.5

Using ML models to identify risks associated with fre-
quent and high resource use of A&E services fulfils the
demand for a more anticipatory and predictive approach
to the identification and management of FA – moving
from a system that is reactive, dealing with events once
thresholds are met, to one that can identify a person’s risk
of FA or even high resource use early in their trajectory.
Such intelligence provides useful information to facilitate
better preventive care and resource allocation, leading to
early management to reduce unscheduled service use for
these individuals.

However, the use of ML in this area is largely unexplored
as of yet. Despite the promising results demonstrated by
some of the early work, several limitations must be acknowl-
edged: (a)firstly, themajority of existing studies have experi-
mented with only a limited range of ML models. Typically,
each study has focused on a single model, many of which
use logistic regression.

6,7,8,9

Other potentially very powerful
models such as support vector machines (SVMs) and deci-
sion trees were only used to a very limited extent.10 In par-
ticular, the use of deep neural networks for FA risk
identification is rare. These limitations restrict the ability to
compare the effectiveness of different algorithms; (b) sec-
ondly, most studies are conducted on specific populations
in emergency services, for example, geographic areas such
as Norway,7 Yorkshire8 or Quebec,9 or GP practice,7

raising concerns about the generalisability of their findings

to other populations such as people in Scotland. The demo-
graphic and clinical characteristics of the study populations
in Lanarkshire or other geographic locations can vary
widely from other previously studied populations, making
it difficult to apply the results universally; and (c) lastly,
while some common risk factors for frequent A&E attend-
ance have been identified across the aforementioned
studies, there are notable differences as well. Factors such
as chronic conditions, mental health issues and socio-
economic challenges are frequently cited, but the relative
importance and interactionof thesevariables canvary. Inpar-
ticular, it is not clear whether the population in Lanarkshire
share these common risk factors. These variations highlight
the need for this research.

Correspondingly, the aim of this research has therefore
been to investigate ML approaches for predicting FA of
the A&E services in the National Health Service (NHS)
in Lanarkshire, Scotland. Our research has sought to
answer the following research questions:

• What are the strengths and limitations of different ML
models for predicting individual risk of FA?
Understanding the strengths and limitations of various
ML models, such as logistic regression, decision trees,
random forests (RF), SVMs, k-nearest neighbours
(k-NN) and neural networks, through evaluation with
key performance indicators such as accuracy, precision,
recall, F1 score and area under the curve (AUC), pro-
vides critical evidence for healthcare providers to
select the most appropriate and robust model that best
suits the clinical scenarios and demands.

• What are the common risk factors among patients, and is
there a consensus between different models? This
inquiry helps uncover the underlying causes of frequent
A&E attendance and high resource use. By analysing
risk factors such as age, alcohol consumption, substance
use, chronic conditions, socio-economic status, mental
health issues and previous medical history, we can
gain insights into the drivers of high A&E usage.
Moreover, comparing the risk factors identified by dif-
ferent ML models allows us to verify the consistency
and reliability of the predictions. A consensus on risk
factors across models enhances the credibility of the
findings.

• Are the results of this research comparable with existing
research? This research question seeks to determine
whether the predictive models and identified risk
factors align with results found in prior research.
Comparing the results of this research with existing
studies contextualises the findings and validates the
models used. Through these comparisons, we assess
the generalisability and applicability of our findings to
different populations and settings. Furthermore, it
allows us to identify any novel insights or discrepancies
that may warrant further investigation.
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The main contributions are: (a) this study is specifically tai-
lored to the Lanarkshire population in Scotland, with a
focus on identifying those attending A&E departments fre-
quently. By concentrating on this distinct demographic, we
aim to provide insights that are directly relevant, applicable
and beneficial to the local healthcare providers to address
the unique challenges faced by the A&E services, particu-
larly in managing and allocating resources more effectively;
(b) unlike many previous studies that typically employ a
single ML model, our research encompasses a spectrum
of ML models, including logistic regression, RF, SVM,
k-NN and neural networks. By evaluating multiple
models, we compare their performance rigorously and iden-
tify the most effective algorithms. Our particular focus is on
exploring the potential of neural network models. Given
that deep learning is currently a dominant force in the
field of ML,

11

we investigate its capabilities in handling
complex, high-dimensional data, especially in the scenario
where the data are imbalanced; (c) we provide a computa-
tionally efficient method for Shapley value

12

approximation
to rank the feature importance. Shapley values offer a
robust framework for interpreting complex ML models by
distributing the predictive power of each feature in a fair
and consistent manner. This is applied across the five
models, allowing us to compare and reach a consensus on
the most significant risk factors. This approach helps us
identify the key risk factors that lead to frequent
A&E attendance and high resource use. Pinpointing these
critical factors allows the possibility to design targeted
prevention methods to mitigate the risks; and (d) we com-
pared our ML model performance and risk factor identifi-
cation outcomes with existing research focused on
Scotland to identify commonalities and differences. By
doing so, we aimed to validate our findings and under-
stand how our study aligns with or diverges from prior
work in the region. This comparison helps to contextual-
ise our results within the broader landscape of healthcare
research in Scotland, providing valuable insights into the
consistency and uniqueness of our findings. Overall, this
research provides further understanding of the effective-
ness of ML models in predicting frequent A&E attend-
ance and high resource use, the common risk factors
involved and the alignment of our findings with existing
research. This approach ensures a thorough examination
of the issue, facilitating the development of targeted inter-
ventions to reduce frequent A&E visits and improve
patient care.

Related work
This section provides an overview of the related work in
identifying risk factors for FA in health services. We
present the important variables involved in the previous
studies and also review the work conducted in Scotland.

ML for risk identification of FA

Studies involving the use of ML were few in the area of risk
detection for FA. The most popular method thus far is logis-
tic regression. Examples with logistic regression include
those outlined in section ‘Introduction and background’.6,7,8,9

Other studies involving decision trees also exist, but the
results from these studies varied, with the ML models
giving equal or worse performance than logistic regression
when tasked with classification of future frequent
attendance.

10,13

In one study,14 a tree-based method was used, namely
XGBoost. The model was trained using five-fold cross-
validation, and the test set was defined using 95% confi-
dence intervals, which were calculated using bootstrapping.
Data in this study were collected from Southampton’s
Emergency Department (University Hospitals
Southampton Foundation Trust) from 1 April 2019 to 30
April 2020. During training, hyperparameters were selected
using a Tree Parzen Estimator. The most favourable results
in this study were from XGBoost, which achieved an
AUCROC of 0.747. However, during testing, the model
only achieved a precision of 0.233. This suggests that,
while the model’s overall predictive capacity is moderate
to high, it is likely overfitted. This study differs from the
study undertaken here in that it examines only the likeli-
hood of a patient reattending an emergency department
(ED) within 30 days of an initial visit, thus making a
direct comparison challenging. However, it can help to
provide some context of model selection and results.

A second study13 which investigated the prediction of
attendances to A&E departments also utilised gradient-
boosted trees, namely AdaBoost, as well as standard deci-
sion trees. This study also used logistic regression as a base-
line model against which the results of the two tree-based
models were compared. The data were collected from a
non-public dataset from the California Office of
State-wide Health Planning and Development (OSHPD)
covering the years 2009–2013, and from this dataset, four
cohorts of patients with one or more ED visits were con-
structed for the years 2009, 2010, 2011 and 2012, respect-
ively. Models were trained on the 2009 cohort and tested on
cohorts from subsequent years. The authors sought to use
ML methods for two classification tasks: a three-class clas-
sification task, where patients were classified as either low-
frequency (<1 visit), medium-frequency (2–4 visits) and
high-frequency (≥5 visits) ED users, and a second binary
classification task, where patients were classified as either
low-frequency (<p visits) or high-frequency (≥p visits)
ED users. The threshold for p was varied between 2 and
9, and models were trained for each threshold. Results
varied from cohort to cohort. For the three-class classifica-
tion task, the study only reports detailed metrics for per-
formance on specific classes, rather than aggregated
performance across all classes, meaning that only a basic
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average of results across all classes can be calculated post
hoc. For the binary classification task, results are only pre-
sented in a line plot, making exact analysis of results chal-
lenging. However, from the study’s results, the same
problem presents itself, namely that in all but the most fre-
quent class, precision is very low, and the models are likely
overfitted to the most frequent class, very likely limiting
their feasibility in real-world use. It is also worth noting
that in this study, the most frequent class was in fact
those with one or fewer visits, meaning that the models in
this study are seemingly overfitted to predicting infrequent
attendance. This would likely prevent the models from
being useful in the prediction of FA.

A third study10 assessed the performance of nine
models. The study only examined the FA of EDs of
those with epilepsy, limiting the generalisability of find-
ings. The data were collected from a health information
exchange in New York City. The study used data from a
2-year period, and utilised data from year 1 to predict fre-
quent ED attendance (≥4 visits) in year 2, thus treating the
task as a binary classification. Of all methods, lasso, RF
and AdaBoost all achieved high AUCROC scores.
However, all of the models had poor sensitivity (<50%).
This again suggests that the models are not well-
generalised and have overfit to the positive class. The
study ultimately proposes that a simple strategy of select-
ing those with >11 ED visits in year 1 as being most at risk
of FA in the subsequent year outperforms most models’
predictions of those who are most at risk of continued fre-
quent attendance. However, this strategy requires that an
individual very frequently attends ED in one year to be
classified as likely to frequently attend in the next year.
Arguably this methodology is only useful as a strategy
to predict continued high levels of FA, rather than the
emergence of high levels of FA.

A final study15 examined the use of recurrent neural
networks to predict FA based on time-series data. In the
context of this study, the examination of the use of recur-
rent neural networks is only tangentially useful as an
example of the use of deep neural networks in the predic-
tion of FA, as our study does not examine time-series
data.

Important variables

A rapid review was conducted to find studies using any
methods to investigate FA of any healthcare setting. A
total of 31 studies were included (Table C.1). Most included
studies reported risk factors for FA of EDs (N= 29). Two
studies investigated FA of GP practices. There was signifi-
cant variability in the definition of FA; definitions ranged
from three to 20+ times a year (in attendance), with some
studies even determining FA as the top 10% (in attendance)
of a particular cohort of participants.

The variables reported by the included studies (N= 31)
to be the greatest risk factors for FA were: age (N= 21),
sex (N= 20), mental illness (N= 13), outcome after care
(N= 8), intensity of FA (N= 7), substance abuse (N= 6),
triage level (N= 6), origin of stay in hospital (N= 5),
chronic illness/long-term disease (N= 5), length of stay
(N= 5) and residence (i.e. low-come vs high-income area)
(N= 5). Triage level, origin of stay in hospital and length
of stay were not represented in this project’s dataset.
Additionally, only mortality was represented as an
outcome after care.

Results of the included studies were in some aspects
extremely heterogeneous, e.g. some studies reported
females to exhibit greater frequent attendance while other
studies reported the opposite or no significant differences.
However, there was a general consensus between included
studies that increased age was a significant risk factor for
FA to healthcare services.

Study in Scotland

A rapid review of Scottish studies investigating FA in
Scotland was conducted, and very few studies were
found. Of the included studies, each focused on a specific
factor, such as: COVID-19, social connectedness, cancer
and patient experience. Kyle et al.16 explored changes in
FA behaviour in relation to the COVID-19 pandemic.
The results concluded that both before and after the pan-
demic FA groups were predominantly male, and homeless-
ness, mental health problems and substance use were
commonly reported among both groups. It also highlighted
that FA was reduced during the pandemic. There were some
inconsistencies between studies however, as Kyle et al.

16

reported that most FA patients lived in socially deprived
areas, which is contrary to the findings of a previous
study,17 who found no association and reported that socio-
economic circumstance is not associated with FA when the
greater burden of ill health in deprived areas was consid-
ered. Cruwys et al.18 investigated how social connectedness
impacts FA. The study reported that there is a significant
association between FA and social interaction, suggesting
that social isolation could be considered as a risk factor
for FA in primary care. Other studies based in Scotland
focused on cancer-related frequent attendance. Mills et al.
(2022)19 reported that patients diagnosed with cancer who
attended A&E frequently were more likely to be elderly,
‘have upper gastrointestinal, haematological, breast and/or
ovarian malignancies’ than those attending infrequently.

Initial analysis of the 73 patients with the highest number
of attendances in Lanarkshire over both 2014/15 and 2015/
16 identified that overall, the majority were male (57.5%)
with a higher proportion being male in South Lanarkshire
(62%) compared to North Lanarkshire (53%). These data
indicate that the FAs seen within Lanarkshire are predomin-
antly a younger cohort (i.e. not frail elderly), vulnerable and

4 DIGITAL HEALTH



facing the multiple challenges of deprivation and poor
health, both physical and mental.

An analysis of FA in NHS Lanarkshire in the years
2017/18 found notable characteristics including:

• A total of 83% and 92% were under 65 years in North
and South Lanarkshire, respectively.

• A total of 90% had at least one long-term condition
(LTC) with 37% having more than five LTC.

• A total of 77% of those who exhibit FA lived in the most
deprived areas (Scottish Index of Multiple Deprivation
(SIMD) 1 and 2).

• Mental health related issues accounted for the top three
reasons for ED attendance, including ‘mental health –
alcohol’ and ‘mental health – feared complaint no diag-
nosis’. These are similar issues identified in a UK study
which reviewed reasons for FAs in ED.20

• FAs peaked later on at night (4–9 p.m.), the general
population’s ED attendances peaked in the mid-
morning/afternoon (11 a.m.–1 p.m.), however, time of
admission was not included in the final dataset.

The dataset

Dataset curation

This research utilises primary and secondary health data
and social care data gathered from existing patient records
associated with A&E department visits in NHS
Lanarkshire. The retrospective data were extracted from
previously collected routine patient-level information,
which contain variables potentially associated with high
attendance at healthcare facilities. The patient-level
dataset was provided by the Local Intelligence Support
Team (LIST) in Public Health Scotland (PHS), with all
identifiable variables removed. A PHS Data Release and
Linkage Form was approved to authorise the release of
this dataset to NHS Lanarkshire, this contains approval
from the NHS Lanarkshire Caldicott Guardian, North and
South Lanarkshire HSCPs’ Senior Responsible Officers
and the PHS Data Protection Team. Caldicott Guardian
approval was granted for named NHSL researchers’ use
of patient identifiable data to ensure that it is pseudony-
mised, e.g. age is converted to age range and only a pseu-
donymised version was released for the research. No
information that is directly identifiable was used for the
research and we stored the de-identified data only for the
purposes of this research project.

The dataset spans the period from 2021 to 2022 and pro-
vides a comprehensive overview of A&E visits within this
timeframe. Those patients who had fewer than three visits
to A&E departments in NHS Lanarkshire were excluded
from the dataset.

The dataset covers known risk factors from previous
studies including clinical, social and demographics

information. Patient demographic information (age and
gender), locality within local authority, SIMD and health
and social care data. Health and social care data include
numbers of clinical episodes (including alcohol, mental
health, substance misuse, self-harm), home care episodes,
clinical conditions, mortality, homeless applications were
contained in the dataset. Table 1 offers a list of the variables
and their descriptions. The dataset is comprised of 17,437
rows, each relating to an individual patient. Hence in total
there are 17,437 patients who meet the inclusion criteria
during the study period (2021–2022).

Scottish patients at risk of readmission or admission
(SPARRA) scores

Scottish patients at risk of readmission or admission
(SPARRA) scores21 quantify a patient’s risk of emergency
hospital inpatient admission in the next 12 months.
SPARRA draws from a range of variables. Hospital
inpatient admissions, prescribing data, psychiatric admis-
sions, ED admissions, outpatient attendances and demo-
graphic information are all utilised with a logistic
regression model which estimates the patient’s risk of emer-
gency inpatient admission.

SIMD

The SIMD is a publicly-available metric for small geo-
graphic areas within Scotland. The SIMD ranks small
areas known as datazones from most deprived to least
deprived.22 For the purposes of this study, SIMD
population-weighted quintiles were used. Datazones
are grouped into five categories known as quintiles.
The population-weighted quintiles ensures a very
similar population size for each quintile, with the most
deprived quintile ranked 1, and the least deprived quin-
tile ranked 5.

Initial exploratory data analysis

The dataset reveals that the mean number of A&E visits per
user is 4.14, with a standard deviation of 2.81, indicating
considerable variability in the number of visits among
users. Notably, the dataset includes 348 patients who
attended A&E more than 10 times in 2021/22, highlighting
the presence of a small subset of individuals who utilise
A&E services extensively.

Initial analysis also indicates that the distribution of
A&E attendances underscores the presence of a small
number of high-frequency patients who account for a dis-
proportionate number of total visits 1. The vast majority
of patients have a relatively low number of visits, with
the data showing a significant concentration around the
lower end of the scale. Specifically, most patients in the
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Table 1. List of variables contained in the dataset.

Variable name Description

Number of AE attendances Number of accident and emergency department attendances for 2021/22

Deceased flag Deceased flag for 2021/22 (yes= deceased; no= alive)

Gender Gender

Age group Age at mid-point of financial year. In total there are six age groups ranging from
0–15 in group 1 to 75+ in group 6.

Local council authority Local council authority of residence in 2021/22

SIMD Scotland level population-weighted quintile SIMD 2020v2 Scotland level population-weighted quintile (1=most deprived; 5
= least deprived) in 2021/22

Homeless application flag Patient had an active homelessness application during financial year 2021/22

Number of home care episodes Total number of home care episodes, includes personal, non-personal and
unknown type in 2021/22

Number of acute inpatient episodes Number of acute inpatient episodes in 2021/22

Number of mental health inpatient episodes Number of mental health inpatient episodes 2021/22

Self-harm episodes Sum of episode flags for self-harm admission or attendance in 2021/22

Substance misuse episodes Sum of episode flags for substance misuse admission or attendance in 2021/22

Alcohol episodes Sum of episode flags for alcohol admission or attendance in 2021/22

Arthritis LTC Arthritis LTC marker in 2021/22
No= no diagnosis made
Yes= diagnosed with this LTC

Respiratory LTC Asthma LTC marker in 2021/22, chronic obstructive pulmonary disease (COPD)
LTC marker in 2021/22
No= no diagnosis made
Yes= diagnosed with 1+ of these LTCs

Cardiac LTC Atrial fibrillation LTC marker in 2021/22, heart failure LTC marker in 2021/22,
coronary heart disease (CHD) LTC marker in 2021/22
No= no diagnosis made
Yes= diagnosed with 1+ of these LTCs

Cancer LTC Cancer LTC marker in 2021/22
No= no diagnosis made
Yes= diagnosed with 1+ LTCs

Cerebrovascular disease LTC Cerebrovascular disease (CVD) LTC marker in 2021/22
No= no diagnosis made
Yes= diagnosed with 1+ LTCs

Digestive LTC Chronic liver disease LTC marker in 2021/22, other diseases of digestive system
flag in 2021/22
No= no diagnosis made
Yes= diagnosed with 1+ of these LTCs

(continued)
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dataset have had three or four A&E visits, with 13,474 users
falling into this category. This number surpasses the com-
bined total of patients who have between five and ten
visits, which stands at 3615. Further analysis also reveals
that 75% of patients have four or fewer visits to A&E.
This percentile further emphasises the skewness of the
dataset, where a large majority of patients have relatively
few visits, while a small minority have a significantly
higher number of visits.

The skewed distribution poses challenges for predictive
modelling, since it predisposes the models to predicting that
an individual will have fewer rather than more visits.
Hence, the models need to be sensitive to the high skewness
and capable of accurately identifying the small group of
users who are high-frequency attenders. Addressing this
challenge is crucial to predicting FA in this research. We
have employed weighted data sampling to address the
data imbalance – more details are presented in section
‘Methods’.

Ethical approval

This study was approved by NHS Research Ethics
Committee (Health & Care Research Wales REC 4),31

and the reference number for the ethical approval is (24/
WA/0041).

Methods
This study is retrospective in nature and was conducted
within the NHS Lanarkshire Health Board, Scotland. It is
an observational study focused on data collected over a
one-year period, from year 2021 to 2022. This timeframe
provides a comprehensive overview of patient attendance
patterns at A&E departments within the region. The
dataset used for this research was provided by Public
Health Scotland’s Local Intelligence Support Team
(LIST) and is derived from the linked ‘SOURCE’ dataset,
which includes pseudonymised CHI numbers. NHS staff

Table 1. Continued.

Variable name Description

Neurological LTC Dementia LTC marker in 2021/22, epilepsy LTC marker in 2021/22, multiple
sclerosis LTC marker in 2021/22, Parkinsons LTC marker in 2021/22
No= no diagnosis made
Yes= diagnosed with 1+ of these LTCs

Diabetes, other endocrine and metabolic LTC Diabetes LTC marker in 2021/22, other endocrine metabolic diseases LTC marker
in 2021/22
No= no diagnosis made
Yes= diagnosed with 1+ of these LTCs

Renal failure LTC Renal failure LTC marker in 2021/22
No= no diagnosis made
Yes= diagnosed with 1+ LTCs

Other LTC Congenital problems LTC marker in 2021/22, diseases of blood and blood
forming organs LTC marker in 2021/22
No= no diagnosis made
Yes= diagnosed with 1+ of these LTCs

Total number of LTCs Sum of individual LTCs for patient in that row 2021/22 (arthritis LTC marker,
asthma LTC marker, chronic obstructive pulmonary disease (COPD) LTC
marker, atrial fibrillation LTC marker, heart failure LTC marker, coronary
heart disease (CHD) LTC marker, cancer LTC marker, cerebrovascular disease
(CVD) LTC marker, chronic liver disease LTC marker, other diseases of
digestive system flag, dementia LTC marker, epilepsy LTC marker, multiple
sclerosis LTC marker, Parkinsons LTC marker, diabetes LTC marker, other
endocrine metabolic diseases LTC marker, renal failure LTC marker,
congenital problems LTC marker, diseases of blood and blood forming organs
LTC marker)

Scottish patients at risk of readmission or admission
(SPARRA) 12-month risk score

SPARRA 12-month risk score from the start of the financial year of 2021/22

Reid et al. 7



removed all personally identifiable information before
sharing the data with the data scientists, ensuring compli-
ance with appropriate information governance and data pro-
tection standards, as the study involves the secondary use of
previously collected routine data without requiring patient
consent. The SOURCE dataset encompasses health and
social care information, including factors potentially asso-
ciated with FA at healthcare facilities – see section ‘The
dataset’ for more details. A pseudonymised dataset was
securely transferred for analysis. The inclusion and exclu-
sion criteria are described below.

The above image (Figure 1) demonstrates the research
process of this study. Alongside our background literature
review, data were collected by Public Health Scotland from
their SOURCEdataset, as detailed in the previous paragraph.
The dataset was filtered to include patients who had been
admitted to NHS Lanarkshire A&E departments three or
more times and exclude those who had been admitted
fewer than three times. The result was our frequent attend-
ance dataset – see section ‘The dataset’ for more details.
Our background literature review identified the models
assessed in this paper as being underrepresented in existing
research on FA. We then utilise the frequent attendance
dataset to train and test the models identified in this stage
of the research. Using these trained models, we can then
compute Shapley value approximations for each model.
The final results of the training and testing, as well as the
Shapley values, can then be used to comparemodel perform-
ance and identification of risk factors.

Inclusion and exclusion criteria

This study is retrospective in nature. Data were collected
from all patients in NHS Lanarkshire health board who
had attended A&E on at least three occasions during

2021/22. All patients who met this criterion were included.
Patients with fewer attendances were excluded as they are
less likely to exhibit patterns indicative of recurrent or
chronic conditions requiring frequent A&E visits. By focus-
ing on this cohort, this study seeks to understand the trajec-
tory of individuals who have reached this threshold and
assess how they might progress to even higher attendance
levels. This knowledge is critical for developing preventa-
tive strategies aimed at reducing A&E visits, with a particu-
lar focus on intervening at the three-visit threshold to
potentially stabilise or reduce the frequency of future
attendance. We are particularly interested in identifying sig-
nificant risk factors associated with FA, providing insights
into how these factors contribute to high A&E use.

Approach selection

The distribution of A&E visits in the dataset presents a chal-
lenge for regression analysis due to the high variability and
skewness in the number of visits among patients. One
primary issue with regression in this context is the difficulty
in finding a model that can effectively represent such a large
and diverse group of patients who share the same number of
AE visits. For instance, there are 9730 users with exactly
three A&E visits, and similarly, a considerable number of
patients fall into categories with four or five visits. This
homogeneity in visit counts among a substantial number
of patients introduces noise and reduces the model’s pre-
dictive power. A regression model would struggle to
account for the underlying differences in patient character-
istics that lead to the same visit count, thus leading to less
accurate and meaningful predictions. Moreover, the pres-
ence of outliers exacerbates the challenge for regression
models. These extreme values can disproportionately influ-
ence the model, causing it to perform poorly for the

Figure 1. Block diagram detailing the research process.
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majority of patients who have a much lower number of
visits. The skewed distribution and the wide range of visit
counts further diminish the regression model’s ability to
generalise across different patient groups.

On the other hand, classification models offer a more
effective alternative. By categorising patients into discrete
groups based on their A&E visit frequency, classification
models can handle the variability and skewness more
robustly. Instead of predicting the exact number of visits,
a classification model can predict whether a patient is a low-
frequency attender, medium-frequency attender or high-
frequency attender. This approach simplifies the modelling
process and enhances the model’s ability to provide action-
able insights. Using classification, we can better manage
and interpret the data, as the model focuses on distinguish-
ing between categories rather than fitting a precise number
for each patient. This method is particularly advantageous
when dealing with large groups of patients who share the
same number of visits, as it allows us to leverage the com-
monalities within each category while accounting for indi-
vidual variations.

Data cleaning and pre-processing

Variable removal. Some data cleaning was undertaken to
remove interdependence between variables. Two variables
were removed from the dataset: SPARRA 12-month risk
score and local authority. This decision was made due to
the fact that SPARRA scores are calculated using many
of the variables which are already present in the dataset,
while SIMD and local authority both relate to information
about geographic areas. The decision was made to keep
SIMD over local authority as it was thought that SIMD
would provide more granular information.

It was found that SPARRA 12-month risk score had
1398 null values. As this variable was removed entirely,
no action was required to address this.

Binning for classification models. Classification models aim
to predict which class a record belongs to. As such, it is
necessary to split the target variable into classes. The
lower bound of the definition of FA is three visits in a
12-month period. However, the most commonly accepted
definition of FA is five or more visits in a 12-month
period.1 Meanwhile, High Intensity Use is defined by
NHS East London as 10 or more visits to A&E in a
12-month period.23 These boundaries were used to inform
the classification of patients into one of the three categories:

• Low attendance: number of A&E attendances < 5: Class
0, n= 13,474

• Mid attendance: number of A&E attendances≥ 5, ≤10:
Class 1, n= 3615

• High attendance: number of A&E attendances > 10:
Class 2, n= 348

This allows the model to predict whether a patient is likely
to belong to Class 0, 1 or 2.

Classification models

Challenges. While classification models are better suited for
this dataset, they need to overcome the problem arising
from the high degree of feature entanglement in the
dataset. It requires sophisticated modelling techniques that
can navigate the complex relationships and still provide
reliable and interpretable results.

To illustrate this, a t-SNE (t-distributed stochastic neigh-
bour embedding) model24 was used to investigate the
entanglement of features within our dataset. t-SNE is a
popular dimensionality reduction technique primarily used
for visualising high-dimensional data. It is particularly
effective in preserving the local structure of the data,
making it an excellent tool for visualising clusters or
groups in complex datasets. The t-SNE results reveal that
the features are highly entangled, with no clear boundaries
between groups of patients. Figure 1 shows colour coded
data points according to their class (i.e. 0, 1 or 2) from
our dataset.

The high degree of feature entanglement indicates that
the underlying relationships between patient characteristics
and their A&E visit frequencies are intricate and inter-
woven. This complexity can stem from various factors
that do not neatly categorise into distinct groups. Highly
entangled features mean that models are less able to statis-
tically separate records by drawing boundaries between
groups of similar and dissimilar examples. The entangle-
ment adds a significant layer of complexity to the task.
The entanglement also complicates the interpretation of
model outputs. When features are highly entangled, it is
harder to pinpoint which specific factors contribute most
to the prediction, making it challenging to identify the
risk factors from the model.

Models

In this study, five main classification models were used:

• Multinomial logistic regression;
• Decision trees and RFs;
• Support vector machine classifier;
• k-Nearest neighbours classifier; and
• Multi-layer perceptron (MLP) classifier.

The above models were chosen based on both their usage in
existing literature in this research area as outlined in section
‘Related work’, as well as their widespread usage in classi-
fication tasks in general. The selection of these models was
guided by their prevalence in existing literature within this
research area, as outlined in section ‘Related work’, as well
as their general applicability and success in classification
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tasks. The combination of multinomial logistic regression,
decision trees, RF, SVM, k-NN and MLP classifier pro-
vides a comprehensive set of tools to address the classifica-
tion problem at hand. These models represent a spectrum
from simple, interpretable models to complex, powerful
models, allowing us to balance accuracy, interpretability
and computational efficiency. This diverse selection
ensures robust evaluation and provides a strong foundation
for understanding the risk factors associated with frequent
A&E attendance (Figure 2).

Data sample weighting

To handle data imbalance, we count the number of data
samples in each class and weight the importance of
each sample inversely proportional to the class frequency.
This means that classes with fewer samples are assigned
higher weights, while those with more samples receive
lower weights. This approach ensures that the model
pays more attention to the minority classes during train-
ing, helping to mitigate the bias toward the majority
class and improving overall performance on imbalanced
datasets.

Multinomial logistic regression. Logistic regression (LR) in
its original form is designed for binary classification
tasks.25 Multinomial logistic regression, also known as
softmax regression, directly handles multi-class classifica-
tion by extending the logistic function to multiple classes.

It calculates the probability that an observation belongs to
each class based on a set of independent variables, and
then assigns the class with the highest probability.

By including multinomial logistic regression, we ensure
that our analysis begins with a method that offers high inter-
pretability and simplicity, serving as a clear benchmark for
more complex models. Its ability to provide direct insights
into the influence of individual features on the likelihood of
frequent A&E attendance is invaluable for healthcare provi-
ders who need to make data-driven decisions.

One of the main advantages of logistic regression is its
interpretability. The coefficients in the model can be dir-
ectly interpreted as the change in the log odds of the
outcome for a one-unit increase in the predictor variable,
holding other variables constant. This makes it easy to
understand the influence of each feature on the probability
of the outcome.

While logistic regression is powerful and interpretable
and has been widely used in the studies of identifying
risks of FA,

6,7,8,9

it has limitations. It assumes a linear rela-
tionship between the log odds of the outcome and the pre-
dictor variables, which may not hold in all cases.
Additionally, logistic regression can struggle with multicol-
linearity among predictors and is less effective with very
large and complex datasets compared to more advanced
techniques like decision trees or neural networks.

In this work, the logistic regression implementation26

used Limited Memory Broyden–Fletcher–Goldfarb–
Shanno (LMBFGS) in the optimisation for training of the

Figure 2. Two-dimensional t-SNE plot.
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multinomial logistic regression model, with the maximum
iterations set to 100,000 to ensure convergence. LMBFGS
is a special implementation of the Broyden–Fletcher–
Goldfarb–Shanno optimisation method27 which aims to
reduce memory usage. This algorithm uses the gradient of
the logistic regression cost function to approximate the
inverse Hessian matrix, thus determining the search direc-
tion. The Limited Memory variant of this algorithm only
stores a limited number of pairs of parameter updates and
gradient differences, rather than a full history. This pre-
serves memory and is more practical from a computational
point of view when considering larger problems.

Decision trees and RF. A decision tree28 is a popular ML
algorithm used for both classification and regression
tasks. It works by recursively splitting the data into
subsets based on the values of input features. Each internal
node of the tree represents a decision point based on a spe-
cific feature, and each leaf node represents a predicted
outcome. The paths from the root to the leaf nodes represent
classification rules. RF28 is an ensemble learning method
that builds upon the decision tree algorithm. It combines
the predictions of multiple decision trees to produce a
more robust and accurate model. The idea is to create a
‘forest’ of decision trees, each trained on a different
random subset of the data and using a random subset of fea-
tures at each split.

Both decision trees and RF are powerful ML models.
Decision trees offer simplicity and interpretability,
making them suitable for exploratory analysis and applica-
tions where model transparency is crucial. However, deci-
sion trees are prone to overfitting, especially when the
tree is too deep and captures noise in the training data.
RF, with their ensemble approach, provide enhanced pre-
dictive performance and robustness, making them ideal
for more complex and demanding tasks. Understanding
the strengths and limitations of each method is key to select-
ing the appropriate algorithm for a given problem. While
RF are powerful and versatile, they have several limitations
that practitioners need to be aware of. These include chal-
lenges with interpretability, potential for overfitting, diffi-
culties with high-dimensional data, sensitivity to noisy
data, biases in feature importance, slow prediction times
and struggles with imbalanced datasets. Understanding
these limitations is crucial for effectively applying RF and
interpreting their results.

The decision trees and RF add a layer of complexity and
robustness to our model suite. Decision trees’ ease of inter-
pretation complements logistic regression, while their
ability to capture non-linear relationships and interactions
between features enhances our analytical depth. RF, as an
ensemble method, mitigate the risk of overfitting inherent
in individual decision trees, thus providing more reliable
and generalisable results.

In this work, the random forests implementation26

involves the main tuneable hyperparameters for this class
are the number of estimators (n_estimators), and the split
criterion (criterion). The number of estimators sets the
number of trees in the forest, and this was set at the
default of 100. Increasing the number of trees did not
produce significant changes in results. The two possible
selections for split criterion are Gini Impurity (‘gini’), and
Information Entropy (‘entropy’). Using Information
Entropy did not produce significant changes in weighted
F1 score, and so the default setting of Gini Impurity was
used, as this method is less computationally expensive.

SVM. SVM28 is a powerful supervised ML algorithm used
for both classification and regression tasks. It is particularly
well-suited for classification problems and is known for its
effectiveness in high-dimensional spaces. The core idea
behind SVM is to find a hyperplane that maximises the
margin between the classes. The margin is defined as the
distance between the hyperplane and the nearest points
from each class, which are known as support vectors. By
maximising this margin, SVM ensures that the model has
the best possible generalisation ability to classify unseen
data points. In the case of linearly separable data, the
SVM algorithm finds the hyperplane that separates the
classes with the maximum margin. However, for non-
linearly separable data, SVM can still be effective by
employing a technique known as the kernel trick.
Features which are not linearly separable can still be sepa-
rated by a hyperplane if the features are first transformed to
a higher dimensional space. However, this is often compu-
tationally expensive, especially when the dimensionality of
the transformed space is very high or infinite, such as with
the use of the radial basis function (RBF). The kernel trick
method seeks mainly to solve the high computational cost
of computing a complete mapping of inner products
between features in a high-dimensional space. Rather than
explicitly calculating a transformation of the data to a
higher dimensional space and then taking the inner
product between x and y in that higher dimensional space,
a kernel function which is equivalent to the inner products
between x and y after transformation can be computed
without explicitly transforming the features. This signifi-
cantly reduces the computational cost.

The inclusion of the support vector machine classifier
addresses the need for a robust method capable of handling
high-dimensional feature spaces and non-linear separations.
SVM’s use of kernel functions enables us to transform and
manage complex data structures effectively. This model’s
strength lies in its capacity to generalise well to unseen
data, which is critical in the context of predicting healthcare
outcomes.

The kernel chosen for the SVM-C model was the RBF.
This kernel was chosen based on the two-dimensional
t-SNE plot, which showed that features were highly
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entangled with no clear linear separations. The RBF kernel
separates features by implicitly computing their relationship
in infinite-dimensional space, thus potentially finding non-
linear relationships which are not accessible to other kernel
methods. A five-fold grid search was performed to set the C
and gamma hyperparameters of the model, using F1 score
as a criterion. However, upon using the best parameters
from the grid search (C= 10, gamma= 0.01), AUCROC
performance was degraded significantly (default= 0.69,
best parameters= 0.50). As a result, the default settings
were instead used.

MLP. A MLP classifier29 is a type of artificial neural
network used for supervised learning tasks, particularly
classification. It is one of the simplest forms of neural net-
works and consists of multiple layers of nodes (neurons)
connected in a feedforward manner. MLPs are known for
their ability to model complex relationships in data,
making them a powerful tool for various classification pro-
blems. A MLP is the most basic form of deep neural
network. Deep neural networks are an extension of the
MLP architecture and are characterised by a large number
of hidden layers. This increased depth allows DNNs to
learn hierarchical representations of data, where each suc-
cessive layer captures increasingly abstract features.

The MLP classifier introduces advanced deep learning
capabilities into our study. MLPs’ ability to model intricate,
non-linear relationships through multiple hidden layers and
activation functions positions them at the cutting edge of
predictive modelling. Their flexibility and power make
them particularly suitable for capturing the complex
dynamics of frequent A&E attenders, which might be over-
looked by simpler models. Comparing MLP performance
against traditional models provides valuable insights into
the added benefits and potential trade-offs of using deep
learning in healthcare applications.

To address the data imbalance challenge with the MLP
model, we have experimented a few approaches under the
MLP setting. One of them is to experiment with a ‘value-
hot’ cross entropy method. Traditional cross entropy loss,
which relies on one-hot encoded ground truth labels, may
not effectively handle this imbalance, often leading to sub-
optimal performance, especially for rare classes. The
‘value-hot cross entropy’method modifies the conventional
cross entropy loss by replacing the binary indicator (1 for
the true class and 0s for others) with the actual numerical
value corresponding to the ground truth class. For
example, in a medical classification task predicting patient
attendance numbers (e.g. A&E attendance), the ground
truth label for each sample is represented by the actual
attendance number rather than a binary indicator. This
adjustment allows the loss function to inherently assign
higher penalties to predictions that deviate from the actual
numerical values, thereby prioritising the correct classifica-
tion of instances with higher numerical significance.

Additionally, we adjust the weighting scheme in the loss
function based on the A&E visiting numbers rather than
the sample frequencies. This approach ensures that the
model focuses more on learning from instances that carry
greater numerical importance, such as high attendance
numbers, rather than solely on their occurrence frequency
in the dataset.

In addition, we combine the ‘value-hot cross entropy’
method with the focal loss30 to enhance the robustness of
classification models in handling imbalanced datasets.
The focal loss, originally introduced to address the issue
of foreground-background class imbalance in object detec-
tion, is adapted here to further augment the penalty for mis-
classifying challenging instances while integrating the
numerical significance of classes through the ‘value-hot’
modification. The focal loss introduces a dynamically
adjusted focusing parameter that down-weights well-
classified examples and focuses more on hard-to-classify
examples. This property is particularly beneficial in scen-
arios with severe class imbalance, where rare classes
require more attention during training. By combining
focal loss with ‘value-hot cross entropy’, our method
enhances the model’s ability to effectively learn from and
prioritise challenging instances, improving overall classifi-
cation performance.

To design and optimise the MLP architecture, we inte-
grate state-of-the-art techniques such as batch normalisation
to alleviate gradient issues and a rigorous ablation study to
determine optimal hyperparameters, including network
depth, regularisation norms (L1 or L2), dropout rates and
learning rates. The MLP comprises an input layer tailored
to the dimensionality of the feature space, followed by mul-
tiple hidden layers. Each hidden layer incorporates batch
normalisation to stabilise training and accelerate conver-
gence. Activation functions are employed to introduce non-
linearity, crucial for capturing complex patterns within the
data. Selecting Rectified Linear Unit (ReLU) as the activa-
tion function in our neural network architecture is justified
by its several advantageous properties that contribute to
improved training efficiency and model performance. To
combat overfitting, which is common in deep neural net-
works, we employ regularisation techniques such as L1/
L2 norms. These penalties are applied to the weights of
the network to discourage excessive complexity and
improve generalisation capability. Additionally, dropout is
strategically inserted between hidden layers to prevent
co-adaptation of neurons, thereby enhancing the model’s
ability to generalise to unseen data.

A critical aspect of our approach involves the meticu-
lous tuning of hyperparameters through an ablation
study. We systematically vary parameters such as the
number of hidden layers, dropout rates, strengths of L1
or L2 regularisation and learning rates while keeping
others constant. This allows us to empirically evaluate
their impact on model performance metrics, such as

12 DIGITAL HEALTH



classification accuracy or loss, across different validation
sets – the outcomes of the ablation study are presented
in Appendix A.

k-NN. k-NN is a versatile and intuitive ML algorithm used
for both classification and regression tasks.32 The core idea
behind k-NN is based on the assumption that similar data
points are more likely to have the same outcome or
belong to the same class. The algorithm works by identify-
ing the ‘k’ nearest neighbours to a given query point from
the training dataset, typically using a distance metric such
as Euclidean distance. Once the neighbours are identified,
k-NN classifies the query point based on the most
common class among the neighbours (for classification
tasks) or computes the average value (for regression tasks).

One of the primary strengths of k-NN is its simplicity
and interpretability, making it particularly useful for pro-
blems where the relationship between features and out-
comes is complex or non-linear. Unlike many other ML
models, k-NN does not require an explicit training phase
or a parametric form for the data. This makes it highly flex-
ible, as it can adapt to different data structures without
making strong assumptions about the underlying distribu-
tion. Additionally, k-NN can easily be visualised, offering
transparency into the model’s decision-making process.
However, k-NN also comes with several limitations that
need to be considered. The most prominent issue is its com-
putational cost, especially during the prediction phase.
Since the algorithm computes distances between the
query point and all training samples, the time complexity
increases significantly with larger datasets, making it less
efficient for big data applications. Moreover, the choice of
the ‘k’ parameter and the distance metric are crucial for
the model’s performance. A small value of ‘k’ can make
the model sensitive to noise, while a large value can
smooth over important local variations in the data.
Additionally, k-NN is prone to being influenced by irrele-
vant or redundant features in the data, and it may struggle
with high-dimensional or sparse datasets. It is also sensitive
to class imbalance, as the majority class may dominate the
classification outcome if the neighbours are not evenly
distributed.

k-NN relies on the distance between a given test point
and all other points in the dataset. To compute this,
various distance metrics can be used, such as Manhattan
distance, Euclidian distance or in some cases, cosine simi-
larity.33 The algorithm then finds the k-nearest points to
the training point, with k being user-defined. To classify
the point, the algorithm uses majority voting to identify
the most commonly assigned class among its neighbours.34

In our experiments, we use the scikit-learn implementa-
tion of the k-NN classification algorithm.26 To choose k,
cross-validation was performed based on F1 score and
AUCROC, and 18 was chosen as the value of k, which
gave a macro (i.e. unweighted) F1 score of 0.79 and an

AUCROC of 0.72. We use the Euclidian distance to
compute the distance between neighbours.

Feature importance and risk factors

Shapley values and approximations. To identify the risk
factors of FA, we employ Shapley values to estimate
feature importance in the dataset (namely the importance
ranking of the variables that contributes to the risks).
Shapley values12 are derived from cooperative game
theory to offer a theoretically sound and fair method for
interpreting the contributions of individual features in a
ML model. In the context of ML,35 Shapley values are
used to attribute the output of a model to its input features,
providing a way to interpret the contributions of each
feature to the final prediction. More specifically, the
Shapley value for a feature represents its average marginal
contribution across all possible combinations of features.
This ensures a fair distribution of the prediction value
among the features based on their contributions, adhering
to properties like efficiency, symmetry, dummy and additiv-
ity. Importantly, Shapley values provide a model-agnostic
method for explaining predictions. This means that they
can be applied equally to the five ML models involved in
the study to allow a fair comparison. This flexibility is
crucial in ensuring that the identified risk factors are con-
sistent and reliable across different types of predictive
models. In contrast, feature importance in RF is specific
to the RF model, which makes it less flexible compared
to Shapley values.

In this research, we experimented with two approaches
to approximate the computation of Shapley values.
Computing exact Shapley values involves considering all
possible subsets of features, which can be computationally
expensive, especially for models with a large number of
features. Approximation methods such as Kernel SHAP
still involve significant amount of computations when the
feature set is large – for a dataset with n features, this
would require n! (factorial) evaluations. This quickly
becomes infeasible as the number of features increases.
Our approaches include zero-input-based Shapley value
calculation and permutation-based Shapley value calcula-
tion. Both approaches approximate Shapley value computa-
tion by focusing on the differences in model output with or
without the target features. Consequently, these methods
provide a practical balance between computational effi-
ciency and capturing the essential feature importance,
albeit with some trade-offs in accuracy. These result in
computationally efficient methods for a good approxima-
tion of the exact Shapley values. In addition, like
Kernel-based methods, both of these methods are
model-agnostic, however, unlike Kernel-based methods, it
does not require combinatorial masking of all the input vari-
ables, hence saving a significant amount of computation.
The efficiency of the proposed method makes it more
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scalable to larger datasets and models. It can handle high-
dimensional data and large sample sizes without the pro-
hibitive computational cost associated with permutations.

Zero-input vs permutations. The zero-input-based method
for evaluating feature importance involves directly setting
the target feature value to 0 and then comparing the
model’s output with and without the target feature. This
process starts by calculating the model’s prediction using
the original dataset with all features included. Next, we
create a modified version of the dataset where the target
feature is set to 0 for all instances. We then compute the
model’s prediction using this modified dataset and calculate
the difference between the baseline prediction and the
modified prediction. This difference is considered the
importance of the target feature, with larger differences
indicating higher importance.

The permutation-based Shapley value calculation simply
approximates Shapley values by calculating values for all
permutations of features one-by-one. A variable’s contribu-
tion is assessed by replacing its value with a randomly
drawn value while all other variables keep their real
values. The change (if any) in the model’s prediction is
then noted. A Shapley value is the average expected mar-
ginal contribution (in other words, the difference in the
model’s prediction when the feature is included vs
excluded) of one variable after we have tried all
combinations.

Theoretically, both the zero-input and permutation-
based calculations approximate the exact Shapley value
computation by simplifying the process and ignoring the
weighting factors on each term. To understand this, we
can delve into the function’s Taylor series expansion and
examine the resulting additive terms. When we expand a
function into its Taylor series, we express it as an infinite
sum of terms calculated from the values of the function’s
derivatives at a single point. Each term in the Taylor
series represents a contribution to the overall function
value, allowing us to see how changes in input variables
affect the output. In the context of Shapley value computa-
tion, each term in the Taylor series can be grouped into the
difference calculated when including or excluding a specific
target feature. Both the zero-input-based and permutation-
based methods capture this difference by observing the
model’s output changes when a feature is either set to
zero or permuted with other features. This difference high-
lights the feature’s contribution to the model’s prediction,
aligning with the core idea of Shapley values, which
measure the average marginal contribution of a feature
across all possible coalitions. However, the exact Shapley
value computation involves specific weighting factors for
each term, reflecting the probability of a feature appearing
in various coalitions. These weights ensure a fair distribu-
tion of feature importance by accounting for all possible
combinations and their respective probabilities. In contrast,

the zero-input and permutation-based methods approximate
the Shapley values without incorporating these precise
weights. By ignoring the weighting factors, the approxima-
tions simplify the computation and reduce the complexity
associated with exact Shapley value calculation. While
this leads to efficient and scalable methods, it also intro-
duces an approximation error by not fully capturing the
nuanced distribution of feature contributions.

We eventually selected to use the zero-input-based
Shapley value calculation to identify the feature importance
and risk factors in this research. This is due to its interpret-
ability and reduced variance in handling the imbalanced
dataset. Directly setting the input feature to zero offers a
clear and intuitive way to assess feature importance by
representing the feature’s absence. This method simplifies
the interpretation of results, making it easier for stake-
holders to understand the role of each feature in the
model’s predictions. When we set a feature’s value to
zero, we simulate the absence of that feature, which can
be intuitively understood as removing the influence of
that particular variable from the model. This direct manipu-
lation allows us to observe the change in the model’s pre-
dictions and quantify how much the absence of the
feature affects the outcome. For example, if setting a
feature to zero significantly alters the model’s prediction,
it indicates that the feature plays a crucial role in the
decision-making process. This method aligns with the real-
world scenario of evaluating what happens when a particu-
lar factor is not present, making it easier for non-technical
stakeholders to grasp the feature’s importance. On the
other hand, the permutation-based method involves reshuf-
fling the values of a feature while keeping the rest of the
dataset intact. This process disrupts the natural correlation
between the feature and the target variable but does not
completely remove the feature from the dataset. Instead, it
creates a scenario where the feature’s values are rando-
mised, making it appear as if the feature is still there but
without its original context and relationship to other vari-
ables. This can be harder to interpret because the feature’s
influence is not entirely removed but rather obscured by
random noise.

Also, the permutation method introduces variance in the
calculation of feature importance, and the degree of this
variance can be significantly affected by the balance of
the dataset. In cases where the data are highly imbalanced
– such as when one class has a substantial amount of data
while another class has relatively little – the variance intro-
duced by the permutation method can become particularly
pronounced. When the dataset is imbalanced, the permuta-
tions of features may disproportionately reflect the charac-
teristics of the dominant class. This can lead to an
overestimation or underestimation of feature importance
for the minority class. Since the permutation method
involves reshuffling the values of features and observing
the impact on the model’s predictions, it inherently captures
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the underlying distribution of the data. If the majority class
dominates, the permutations will mostly reflect the import-
ance of features as they pertain to this class, potentially
skewing the results. Moreover, the variance introduced by
the permutation method is also a function of the number
of permutations performed. In imbalanced datasets, even
with a large number of permutations, the likelihood that
permutations accurately represent the minority class’s
feature importance diminishes. This is because the permuta-
tions are more likely to be influenced by the majority class’s
feature distributions. In contrast, the zero-input-based
method, by using a fixed alteration (setting to 0), provides a
consistent and reproducible measure of feature importance.
The zero-input-based method can offer a more consistent
measure of feature importance across both classes. These
methods reduce the impact of data imbalance on variance
since they do not depend on the reshuffling of data points
and can provide amore stable estimation of feature importance.

Risk factor identification. Our method for evaluating feature
importance by setting input features to zero is applied stra-
tegically to different patient cohorts to derive targeted
insights. We aim to understand the factors influencing
both the increase and decrease in A&E attendance among
various groups. Here’s how we approach this:

• Firstly, we focus on patients who are currently at low
and mid-level attendance to A&E. The goal here is to
identify the factors that could potentially increase their
risk of becoming higher attenders. By setting each
feature to zero and observing the changes in the
model’s predictions, we can pinpoint which features,
when absent, lead to significant changes in predicted
A&E attendance. These features are identified as key
risk factors. Understanding these factors allows us to
develop targeted interventions and preventive strategies
aimed at minimising the likelihood of these patients
increasing their A&E visits.

• On the other hand, we apply the same method to patients
who are already at high levels of A&E attendance. Here,
the objective is to identify which key risk factors we
could target through interventions to reduce their A&E
visits. By setting the high-attenders’ risk-related features
to zero, we observe which changes lead to a decrease in
predicted A&E attendance. These findings highlight the
features that, when mitigated, could effectively lower the
number of visits. For instance, if reducing the frequency
of emergency prescriptions significantly decreases pre-
dicted A&E attendance, an intervention might involve
better managing chronic conditions through regular out-
patient care, thus reducing emergency situations.

This dual application of our method is particularly advanta-
geous when applied to different patient cohorts: those with
low and mid-level A&E attendance and those with high

attendance, and it provides a comprehensive understanding
of the factors influencing A&E attendance across different
patient cohorts. For low and mid-level attenders, it identi-
fies potential risk factors for escalation, enabling preventa-
tive actions. For high attenders, it highlights actionable risk
factors where targeted interventions could lead to a reduc-
tion in A&E visits. By tailoring our approach to the specific
needs and risk profiles of different patient groups, we can
more effectively and accurately identify the factors
driving A&E attendance for different patient cohorts. In
section ‘Results’, we report the findings on feature import-
ance by aggregating the results from all three categories in
Table 2. More detailed results on each individual class is
given in Appendix B.

Results

Confusion matrix

A three-class confusion matrix is used to evaluate the per-
formance of a classification model. In this context, the
three classes are low, mid attendance and high resource
users. The confusion matrix allows us to see how well the
model is performing by showing the actual vs predicted
classifications. It provides a comprehensive view of the
model’s performance, highlighting both its strengths and
areas for improvement across the three resource usage cat-
egories via detailed breakdown for key information includ-
ing: (a) precision, which measures the proportion of true
positive predictions among all positive predictions made
by the model. It indicates the accuracy of the positive clas-
sifications. High precision means that the model produces
few false positives; (b) recall, also known as sensitivity or
true positive rate, measures the proportion of true positive
predictions among all actual positives in the dataset. It
reflects the model’s ability to identify all relevant instances.
High recall means that the model successfully captures
most of the positive cases; and (c) F1 score, which is the
harmonic mean of precision and recall, providing a single
metric that balances both. It is particularly useful when
dealing with imbalanced datasets, as it considers both
false positives and false negatives. A high F1 score indi-
cates a good balance between precision and recall. These
are the incorrect predictions where the predicted class
does not match the actual class, including the number of
low resource users incorrectly classified as mid resource
users and high resource users, the number of mid resource
users incorrectly classified as low resource users and high
resource users; the number of high resource users incor-
rectly classified as low resource users and mid resource
users. Together, these numbers indicate the correct classifi-
cations and misclassification for each class.

Table 2 combines all the confusion matrices into one
table, where the rows represent the actual classes, while
the columns represent the predicted classes. For each
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actual class, the predicted counts for each class are listed for
each model. Each count is associated with a model, ensur-
ing clarity in comparison.

Table 3 presents the comparisons of the performance of
the four models in precision, recall, F1 and AUC.

The performance of the models is also demonstrated
using ROC (Receiver Operating Characteristic) curves.
The ROC curve is a graphical plot that illustrates the diag-
nostic ability of a binary classifier system as its discrimin-
ation threshold is varied. It is created by plotting the true
positive rate (TPR) against the false positive rate (FPR) at
various threshold settings. It shows the trade-off between
TPR and FPR across different thresholds. A point in the
upper left corner of the plot indicates a good performance.
AUC represents the area under the ROC curve. It provides a
single scalar value to summarise the overall performance of
the classifier.A higherAUCvalue indicates better overall per-
formance of the classifier. It essentially measures the likeli-
hood that the classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative instance.

In the three-class classification problem, ROC curves
and AUC are adapted to handle multiple classes
(Figure 3). The process involves creating and analysing
ROC curves for each class separately, using a one-vs-rest
approach, and then summarising the performance using
the average AUC. For each class, the ROC curve is

Table 2. Combined confusion matrix across the four models.

Models Predicted low attendance Predicted mid attendance Predicted high attendance Total

Actual
Low attendance

LR 3078 738 245 4061

RF 3628 400 33

SVM 3160 776 125

MLP 3871 167 23

k-NN 3937 123 1

Actual
Mid attendance

LR 467 369 243 1079

RF 829 239 11

SVM 471 467 141

MLP 815 214 50

k-NN 871 198 10

Actual
High attendance

LR 17 14 61 92

RF 40 41 11

SVM 21 26 45

MLP 26 20 46

k-NN 37 37 18

Bold values denote the highest performing model for each metric.

Table 3. Precision, recall, F1 and AUC of the four models.

Precision Recall F1 AUC

LR 74.06% 67.05% 0.70 0.77

RF 74.12% 70.22% 0.72 0.68

SVM 75.01% 70.18% 0.72 0.73

MLP 75.45% 78.96% 0.75 0.73

k-NN 75.57% 79.38% 0.75 0.73

Bold values denote the highest performing model for each metric.
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plotted by considering the current class as the positive class
and combining the other two classes as the negative class.
This results in three ROC curves, one for each class.
Correspondingly, for the three-class problem, we calculate
the AUC for each class separately and often average them
to get an overall performance metric.

Discussions

Tables1and2andFigure3 illustrate the followingmain results:

• The k-NN model showed the highest accuracy in pre-
dicting low-attendance patients with 3937 correct

Figure 3. The ROC curves of the five models.
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predictions and the lowest number of misclassifications
(123 mid, 1 high). This indicates k-NN’s strong capabil-
ity in identifying low-risk patients accurately. This was
followed closely by the MLP model, which correctly
predicted 3871 patients as low risk, with incorrect clas-
sifications of 167 mid risk and 23 high risk. The RF
model also performed well, but with slightly more
mid-risk misclassifications. Both LR and SVM had
higher misclassifications, indicating their relative weak-
ness in distinguishing low-risk patients.

• In the mid-attendance category, the LR model correctly
predicted 369 cases but misclassified 467 cases as
low-risk and 243 cases as high-risk. The RF model, on
the other hand, correctly predicted 239 cases, while mis-
classifying a significant number, 829 cases, as low-risk
and 11 as high-risk. The SVM model showed best per-
formance in this category with 467 correct predictions,
but still had 471 cases misclassified as low-risk and
141 as high-risk. The k-NN model’s performance in
mid risk is lowest of the five models, correctly classify-
ing 198 cases, while misclassifying 871 cases as low risk
and 10 cases as high risk. The MLP model, despite its
overall strength, correctly predicted only 214 cases,
with 815 misclassified as low-risk and 50 as high-risk.
These results highlight the challenge of accurately iden-
tifying mid-risk patients, with each model showing
varying degrees of misclassification, particularly with a
tendency to classify mid-risk patients as low-risk. This
suggests that further refinement and potentially more
nuanced feature engineering might be necessary to
improve mid-risk classification accuracy.

• In the high-risk category, the LR model demonstrated
the highest number of correct predictions, accurately
identifying 61 high-risk cases while misclassifying 17
cases as low-risk and 14 as mid-risk. The RF model cor-
rectly predicted 11 high-risk cases but had a substantial
number of misclassifications, with 40 cases identified as
low-risk and 41 as mid-risk. Similarly, the k-NN model
correctly classifies 18 patients as high-risk, but misclas-
sifies 37 as low-risk and 37 as mid-risk. The SVMmodel
correctly predicted 45 high-risk cases, misclassifying 21
as low-risk and 26 as mid-risk. The MLP model cor-
rectly identified 46 high-risk cases, with 26 cases mis-
classified as low-risk and 20 as mid-risk. These results
indicate that while LR was the most successful in cor-
rectly identifying high-risk patients, all models struggled
with a significant number of misclassifications, particu-
larly between low and mid-risk categories. This under-
lines the complexity and challenge of accurately
predicting high-risk patients, suggesting that further
model optimisation and inclusion of additional features
may be necessary.

When considering overall precision, recall, F1 score and
AUC, MLP stands out with the highest precision (75%),

recall (79%) and F1 score (0.75). The MLP model’s super-
ior recall indicates its effectiveness in correctly identifying
true positive cases across all risk categories. Its higher F1
score reflects a good balance between precision and
recall, making it the most reliable model among those
tested. The MLP model’s superior performance in both
correct predictions and lower misclassifications across
most of the categories indicates its robustness in capturing
the nuanced patterns in our dataset. The architecture of
MLP, which allows it to learn complex, non-linear relation-
ships, seems well-suited for our classification task. One
reason behind MLP’s strong performance is its flexibility
to include multiple layers, which enhances its ability to
capture intricate feature interactions. Additionally, the use
of advanced loss functions such as focal loss and value-hot
encoding has likely contributed to its effectiveness in hand-
ling imbalanced data. These techniques ensure that the
model pays more attention to hard-to-classify examples
and high-risk categories, thereby improving overall classifi-
cation accuracy.

k-NN slightly outperforms MLP with similar precision
(76%) and recall (79%) scores, and with an identical F1
score (0.75), and AUC (0.73). However, as shown in the
confusion matrix (Table 1), k-NN’s performance is domi-
nated by high performance in the low-risk category, while
performing the worst in the mid-risk category, and second
worst in the high-risk category. Since k-NN relies on major-
ity voting to classify points, it is likely particularly suscep-
tible to the high degree of class imbalance contained in the
dataset.

RF showed a strong balance between precision (74%)
and recall (70%), with a competitive F1 score (0.72).
However, its lower AUC (0.68) suggests some limitations
in distinguishing between classes compared to other
models. These show that the RF model also performs
well, particularly with its low high-risk misclassifications.
This performance can be attributed to RF’s ensemble
nature, which reduces overfitting and improves generalisa-
tion by combining multiple decision trees. RF’s ability to
handle imbalanced data through techniques like bootstrap-
ping and feature bagging also plays a crucial role. These
methods help the model to be more robust and less sensitive
to noise in the data, allowing it to perform well across dif-
ferent risk categories.

SVM performed well with a precision of 75% and a
recall of 70%, resulting in an F1 score of 0.72. Its AUC
(0.73) indicates good model performance. LR, while
showing reasonable performance, lagged behind the other
models with a lower recall (67%) and F1 score (0.70). Its
higher AUC (0.77) compared to RF suggests better distin-
guishing capabilities but still indicates a need for improve-
ment in balancing precision and recall. LR, being a linear
model, might not capture the complex interactions
between features. It tends to be less flexible compared to
non-linear models like MLP and RF, leading to higher

18 DIGITAL HEALTH



misclassifications in mid and high-risk categories. SVM,
on the other hand, can handle non-linear boundaries but
might struggle with high-dimensional and imbalanced
datasets. The standard SVM relies heavily on the choice
of kernel and regularisation parameters, which may not
be as effective in our context without extensive hyperpara-
meter tuning.

In different clinical scenarios, the preference for high
precision or high recall (sensitivity) can vary significantly,
especially in the context of A&E attendance. For
example, in a scenario focused on prevention, such as iden-
tifying patients who might develop severe conditions if not
monitored closely, we may want to ensure that all at-risk
patients are flagged. In this case, high recall is prioritised
to minimise the chance of missing any high-risk patients,
even if it means that some low-risk patients are mistakenly
identified as high-risk. This approach is crucial for condi-
tions where early intervention can significantly impact out-
comes, such as detecting early signs of sepsis or cardiac
events, where every potential case must be considered to
prevent deterioration. Conversely, there are clinical scen-
arios in A&E where high precision is preferred. For
instance, when dealing with limited resources or when the
intervention is invasive or costly, we need to ensure that
only those who truly need the treatment are identified as
high-risk, thereby avoiding unnecessary risks and side
effects associated with the treatment. Here, the goal is to
minimise false positives, ensuring that resources are allo-
cated effectively and that patients are not subjected to
unnecessary procedures.

A flexible model like MLP allows for these necessary
adjustments to balance precision and recall according to
specific clinical needs. For example, in A&E, if the focus
is on managing chronic conditions that lead to frequent
visits, the model can be tuned to have higher recall to

catch all potential chronic cases early. This might involve
adjusting the architecture to give more weight to features
indicative of chronic conditions. On the other hand, if the
goal is to reduce unnecessary admissions for non-urgent
issues, the model can be adjusted to prioritise high preci-
sion, ensuring that only those who absolutely need emer-
gency care are flagged. This can involve refining the loss
function and hyperparameters to reduce the FPR, which is
particularly useful in managing resources during peak
times or pandemics. By having the flexibility to adjust the
model’s parameters, MLP provides a tailored approach to
different clinical requirements, ensuring that the model’s
performance aligns with the specific goals of the A&E
department. This adaptability is essential for addressing
the diverse and dynamic nature of emergency medical ser-
vices, where the balance between precision and recall must
be constantly monitored and adjusted to meet the evolving
needs of patient care.

Table 4 summarises the performance of ML models for
predicting FA and high resource use in healthcare settings
varies across studies, reflecting differences in datasets,
modelling approaches and classification thresholds.
Chmiel et al.14 used an XGBoost model on the
Southampton Emergency Department dataset (2019–
2020), achieving an AUCROC of 0.747 during training.
However, the testing precision was relatively low at
0.233, indicating limited accuracy in identifying true posi-
tives among predicted positive cases. Pereira et al.13

explored multiple models, including AdaBoost, decision
trees and logistic regression, using the California Office
of State-wide Health Planning and Development dataset
(2009–2013). In their three-class classification task, per-
formance metrics varied by frequency group. For low-
frequency visits (≤1), AdaBoost achieved a high precision
of 0.95 but a moderate sensitivity of 0.61 and AUC of 0.75.

Table 4. Model performance in other research.

Study Methods Population Results

Chmiel et al.
202114

XGBoost Southampton Emergency Department
2019–2020

AUCROC of 0.747 during training; precision of
0.233 during testing.

Pereira et al.
201613

AdaBoost, decision
trees, logistic
regression

California Office of State-wide Health
Planning and Development dataset
(2009–2013)

Three-class classification: low frequency (≤1
visit) AdaBoost sensitivity: 0.61, precision:
0.95, AUC: 0.75.
Medium frequency (2–4 visits) decision tree
sensitivity: 0.40, precision: 0.12, AUC: 0.59.
High frequency (≥5 visits) AdaBoost sensitivity:
0.61, precision: 0.07, AUC: 0.84.
Binary classification: AdaBoost (AUC 0.93 with
≥9 visit threshold).

Grinspan
et al. 201510

Lasso, random forests,
AdaBoost

Health information exchange in
New York City, epilepsy patients

High AUCROC (0.7) but low sensitivity (<50%)
across all methods.
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For medium-frequency visits (2–4), decision trees showed
much lower precision (0.12) and sensitivity (0.40), with
an AUC of 0.59. High-frequency visits (≥5) were best iden-
tified by AdaBoost with an AUC of 0.84 but very low pre-
cision (0.07), highlighting a trade-off between identifying
true positives and avoiding false positives. Their binary
classification task using AdaBoost demonstrated a strong
AUC of 0.93 for a threshold of ≥9 visits, yet sensitivity
remained a challenge. Grinspan et al.10 applied models
such as lasso, RF and AdaBoost, achieving high
AUCROC values (0.7) but low sensitivity (<50%) across
all methods. This indicates that while the models were
good at ranking patients based on their likelihood of FA,
they struggled to capture all true positive cases.

In comparison, our models demonstrated more balanced
and robust performance across all metrics. For example,
our MLP model achieved the highest F1 score (0.75) and
recall (78.96%), indicating superior ability to balance preci-
sion and recall. It also maintained a strong AUC of 0.73,
showing reliable ranking capability. Logistic regression
(LR) and SVM also performed consistently well, with LR
achieving an F1 score of 0.70 and an AUC of 0.77, while
SVM demonstrated a slightly better balance between preci-
sion (75.01%) and recall (70.18%). The k-NN model,
showed competitive performance, with an F1 score of 0.74,

precision of 75.20% and recall of 78.72%. Unlike previous
studies that often struggled with sensitivity, our models, par-
ticularlyMLPandk-NN, excelled in recallwhilemaintaining
reasonable precision. This suggests that our approach, which
incorporates advanced methods like Shapley value approxi-
mation for feature importance and carefully tunedhyperpara-
meters, is better suited to the complex and imbalanced nature
of A&E frequent attendance data. Our comprehensive com-
parison across five models further strengthens the generalis-
ability of our findings and provides actionable insights for
clinical decision-making.

Risk factors identified via Shapley values

Table 5 shows consensus and differences of the risk factors
identified by the four different models. We use columns to
show the feature ranking (in descending order) for all the
four models. The importance (i.e. Shapley) values are dis-
played next to the features, indicating their positive or nega-
tive contributions to the risks.

Table 5 shows the following common risk factors iden-
tified across the four models:

• Acute inpatient episodes: Identified as a top risk factor
by all five models, with values ranging from 0.11

Table 5. Comparisons of the risk factors (with an absolute importance value > 0.01) identified by the models.

Importance LR RF SVM k-NN MLP

(0.2 0.3) Acute (0.24) Acute (0.28) Acute (0.37) Acute (0.31)

(0.1 0.2) Digestive (0.15) Acute (0.11)

(0.01 0.1) Gender (0.08)
Digestive (0.07)
Respiratory (0.04)
Alcohol (0.02)
Self-harm (0.02)
NeuroLTC (0.01)
Mental (0.01)
Homeless (0.01)

Alcohol (0.05)
Gender (0.04)
Respiratory (0.04)
Self-harm (0.03)
Mental (0.02)
Diabetes (0.02)

Digestive (0.05)
Gender (0.04)
Respiratory (0.03)
Self-harm (0.02)
Diabetes (0.02)
Homeless (0.02)
Mental (0.02)

Digestive (0.04)
Self-harm (0.03)
Alcohol (0.02)
Respiratory (0.02)
Mental (0.01)

Gender (0.08)
Digestive (0.07)
Alcohol (0.05)
Respiratory (0.03)
Mental (0.02)
Self-harm (0.02)
Diabetes (0.01)
Oth LTC (0.01)
NeuroLTC (0.01)

(−0.1 −0.01) Home care (−0.01)
Cardiac (−0.01)
Cancer (−0.01)
SIMD (−0.06)

Cancer (−0.01)
Deceased (−0.02)
Home care (−0.02)
SIMD (−0.08)

Substance (−0.02)
Home care (−0.02)

Deceased (−0.02)
SIMD (−0.1)

Cancer (−0.01)
Cardiac (−0.01)
SIMD (−0.04)

(−0.2 −0.1) Deceased (−0.18)
Age (−0.19)

Age (−0.20) SIMD (−0.15)
Deceased (−0.16)

Deceased (−0.14)
Age (−0.14)

(−0.3 −0.2) Age (−0.30)

(−0.4 −0.3) Age (−0.31)
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(SVM) to 0.37 (k-NN). The prominence of acute condi-
tions across all models indicates that recent acute
medical issues are strongly associated with increased
A&E visits.

• Gender: Consistently identified as an important risk
factor by all models except k-NN, with importance
values ranging from 0.04 (RF, SVM) to 0.08 (MLP).
This suggests that gender plays a significant role in pre-
dicting frequent A&E attendance (namely more male
than female), potentially due to underlying differences
in health-seeking behaviour and medical needs.

• Digestive conditions: Highlighted by all models, with
values from 0.05 (SVM) to 0.15 (RF). Digestive issues
are commonly associated with emergency medical
needs, thus frequent A&E visits.

• Respiratory conditions: Present in all models, though the
importance values are generally lower, ranging from
0.03 (SVM, MLP) to 0.04 (RF, LR). This consistency
underscores the role of chronic respiratory conditions
in driving emergency healthcare utilisation.

• Self-harm: Identified by all models, with importance
values from 0.02 (SVM, LR and MLP) to 0.03 (RF,
k-NN). This reflects the critical need for emergency ser-
vices in cases involving self-harm.

• Mental health issues: Another common factor, though
the importance varies, with values from 0.01 (LR,
k-NN) to 0.02 (RF, SVM and MLP). The frequent
need for emergency intervention for mental health
crises is likely the reason for this trend.

In addition, other risks factors that are positively contribute
to the high resources risk, as identified by most of the
models are:

• Alcohol: Highlighted by LR (0.02), k-NN (0.02), RF
(0.05) and MLP (0.05), but not by SVM. This discrep-
ancy might be due to SVM’s sensitivity to high-
dimensional data and its specific feature selection
process, which may not prioritise alcohol consumption
as highly as the other models.

• Homelessness: Identified by LR (0.01) and SVM (0.02),
but not by RF, k-NN or MLP. The complex social and
medical needs of homeless individuals could be captured
differently by each model, particularly since RF and
MLP might better integrate other contributing factors.

• Diabetes: Recognised by RF (0.02), SVM (0.02) and
MLP (0.01) but not by LR or k-NN. LR’s linear nature
may not capture the multifaceted impacts of diabetes
as effectively as the more flexible models.

The rationale behind these outcomes is as follows:
Positive contributors to frequent A&E visits include
factors such as admissions due to alcohol misuse, self-
harm and mental health inpatient episodes. High alcohol
consumption often leads to acute medical crises, such as

injuries, overdoses and liver disease complications, neces-
sitating emergency care. Individuals engaging in self-harm
are at immediate risk of severe injury and require urgent
medical attention, making self-harm a significant predictor
of frequent A&E visits. Similarly, mental health issues
often result in crises that require immediate intervention
to ensure patient safety, contributing to higher A&E
attendance. Some specific health conditions such as
digestive and respiratory conditions contribute to the
increase of A&E visits. Also, the acute nature of medical
conditions and their potential for sudden and severe
health impacts make them key indicators of the need for
emergency medical services.

Conversely, certain conditions and factors contribute
negatively to the risk of frequent A&E visits, including:

• SIMD: Consistently identified as a significant negative
factor across all models, with values ranging from
−0.04 (MLP) to −0.15 (SVM). This suggests that
higher poverty levels (lower SIMD values) are asso-
ciated with higher A&E visits.

• Deceased: Identified by LR (−0.18), RF (−0.02), k-NN
(0.02), SVM (−0.16) and MLP (−0.14). This negative
importance is intuitive, as deceased individuals no
longer contribute to A&E visits.

• Age: Consistently a significant negative factor, with
values from −0.14 (MLP) to −0.31 (k-NN). This sug-
gests that older age groups may have fewer A&E
visits, potentially due to better management of chronic
conditions or reduced likelihood of acute events
leading to emergency visits.

• Home care: Identified negatively by LR (−0.01), RF and
SVM (−0.02). This could indicate that individuals
receiving home care have reduced need for emergency
visits due to regular monitoring and management of
their conditions.

• Cancer: Identified negatively by LR (−0.01), RF (−0.01)
and MLP (−0.01), but not significantly by SVM. This
negative importance might reflect the stable manage-
ment of cancer patients, reducing their emergency visits.

• Cardiac conditions: Negative importance identified by
LR (−0.01) and MLP (−0.01), but not by RF or SVM.
This could indicate effective outpatient management
reducing emergency visits for these conditions.

The rationale behind these outcomes is as follows: despite
being a severe condition, cancer is managed through struc-
tured and continuous care outside of emergency services,
reducing the necessity for frequent A&E visits. Many
cancer patients have planned admissions for treatment
rather than unplanned emergency visits. Similarly,
chronic cardiac conditions are typically managed through
regular outpatient visits and planned interventions, which
reduce the frequency of emergency visits. Improved
medical management and regular monitoring can help
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maintain stability, thus lowering emergency needs for
cardiac patients.

The SIMD, which represents the multifactorial socio-
economic gradient, consistently emerges as a significant
negative factor across all models. This suggests that
higher poverty levels result in higher A&E visits. This high-
lights the complex interplay between socio-economic
factors and healthcare utilisation.

Age is another significant negative factor, with older
adults potentially having fewer emergency visits due to
stable management of chronic conditions, greater use of
planned healthcare services or different health-seeking
behaviours. Regular monitoring and management of
health conditions through home care services also contrib-
ute negatively to the risk of frequent A&E visits. These ser-
vices provide continuous care, reducing the need for
emergency interventions and leading to fewer A&E visits.

Understanding these positive and negative contributors
helps in tailoring interventions and resource allocation to
manage frequent A&E attenders effectively. The identifica-
tion of these risk factors provides valuable insights into
which populations are at higher or lower risk of frequent
A&E visits, guiding targeted strategies for prevention and
management.

Comparisons with other research in Scotland

This study is broadly comparable with similar studies in the
literature. It covers most of the variables used by other
research, ensuring a comprehensive analysis that incorpo-
rates a wide range of relevant factors. This inclusivity
allows for a more robust comparison and understanding
of the various influences on frequent A&E attendance.
Meanwhile, our study presents several unique aspects that
distinguish it from previous research in the field. In particu-
lar, we present our focus on identifying high resource users
(i.e. >10 A&E visits per year). Other unique characteristics
include: (a) the study is conducted at a specific location,
namely the A&E at NHS Lanarkshire to provide detailed
insights into the local population and healthcare dynamics
to inform targeted interventions and policies within this
region; (b) the dataset used in this study is unique in that
it only includes attendance from three and above, excluding
those with fewer visits. This focus on higher-frequency
attenders allows for a more concentrated analysis of the
factors contributing to repeated A&E usage; and (c)
finally, this study involves models that have been used in
other studies, such as LR, RF and SVM, which shows con-
sistent performance with the findings of this research. In
addition, we have placed more emphasis on the MLP
model. By focusing on MLP, the study aims to explore
the effects of state-of-the-art deep learning techniques on
predicting frequent A&E attendance, providing insights
into their potential advantages and limitations compared
to more traditional models. Our study reveals that the

performance of deep neural networks can vary significantly
due to their flexible architecture and the variety of loss func-
tions available. Our research demonstrates that with careful
design of the model architecture and strategic selection of
hyperparameters, DNNs can achieve superior performance
compared to the other three models. This underscores the
importance of leveraging the versatility of deep neural net-
works to optimise predictive accuracy in risk identification.

Our study identifies several risk factors similar to the
findings from previous research carried out also in
Scotland, such as the importance of mental health, socio-
economic factors, gender and some chronic conditions.
However, our findings also diverge in some areas, particu-
larly concerning the role of age and cancer conditions, high-
lighting the unique aspects of our dataset and the need for
further investigation to reconcile these differences. (1)
Kyle et al.16 focused on groups predominantly composed
of males, identifying mental health and substance misuse
problems as common risk factors. Their findings align
with our study, where mental health were also highlighted
as significant risk factors. Additionally, both studies
found a strong association between FA and socio-economic
deprivation. Our study, however, does not identify sub-
stance misuse as a key risk factor, but includes a broader
set of other variables such as respiratory and digestive con-
ditions, which were not specifically mentioned in Kyle
et al.’s work. (2). Wyke et al.17 associated high attendance
in a General Practice setting with a greater number of
serious conditions and higher levels of anxiety but did not
find a direct link to socio-economic conditions. In contrast,
our study identified socio-economic deprivation (measured
through SIMD) as a significant negative risk factor.
Moreover, while anxiety was not explicitly measured in
our study, mental health issues were a common risk
factor, which could implicitly cover aspects of anxiety.
(3). Cruwys et al.18 found FA to be associated with
chronic conditions such as overweight and obesity, high
blood pressure and drug prescriptions, along with the poten-
tial influence of social group connections. Our study simi-
larly highlighted chronic conditions like respiratory issues
as important risk factors. However, our data did not expli-
citly investigate social group connections, which Cruwys
et al. suggested might be a critical area for further research.
(4). Finally, the previous study in Lanarkshire NHS found
that 90% had at least one LTC with 37% having more
than five conditions, and 77% of frequent attenders lived
in the most deprived areas (SIMD 1 and 2). The outcomes
of this research have largely confirmed these previous
findings.

Some possible explanations of the discrepancy is as
follows:

• Age group was found to be negatively correlated with
higher A&E attendances in this dataset. While this con-
flicts with some of the findings of existing literature,
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potential explanations present themselves. In this
dataset, mental health, substance misuse and alcohol
misuse are all significant factors in explaining higher fre-
quent attendance. These factors tend to be associated
with younger age groups.

32,36

In addition, the vast major-
ity of A&E admissions in this dataset were for under 65s.
This would seem to suggest that the high number of
admissions for the above mentioned conditions in
NHS Lanarkshire causes younger people to make up a
higher percentage of admissions, and therefore results
in older age not being a significant factor in predicting
higher attendance.

• Additionally, gender was found to be highly correlated
with higher A&E attendances in this dataset, despite
the majority of A&E attendances in Lanarkshire being
for patients of male gender. Our literature review
found that the value of gender as a predictor of FA
was inconsistent in existing literature. More research is
likely needed to explore the relationship between
gender and FA, and this is left to future work.

• Chronic conditions such as cancer and cardiovascular
disease have been identified as negative contributors.
This negative importance might reflect the stable man-
agement of these conditions.

Conclusions
In conclusion, this research has used ML models for the
prediction of FA in NHS Lanarkshire patients. Here we
conclude this research as follows:

Firstly, we examine which model has best performance
on the dataset. The MLP model’s outstanding performance
across most of the risk categories underscores its flexibil-
ity and adaptability in handling complex and imbalanced
data. This can be attributed to its ability to leverage deep
learning techniques and advanced loss functions, which
are crucial for capturing the intricate patterns in the
dataset. k-NN also performed strongly on the dataset
across most metrics, but this performance was dominated
mainly by high performance in the low-risk category. This
results in k-NN presenting itself as a model which captures
the trade-off between precision and recall well, but one
which may not be robust to high class imbalance.
k-NN’s highly interpretable nature means that it remains
a strong contender with unique benefits. The SVM
models also demonstrated commendable performance,
particularly in the mid-risk category where it exhibited a
balanced precision and recall. SVM’s robustness in high-
dimensional spaces and its capacity to handle non-linear
boundaries with kernel tricks make it a valuable model.
Despite having slightly higher misclassifications in the
low-risk category compared to MLP, SVM maintained
competitive overall performance, indicating its effective-
ness in capturing complex patterns in the data. The RF
model also shows strong performance, particularly in

handling high-risk predictions, due to its ensemble
approach and robustness to overfitting. Logistic regres-
sion, while performing reasonably well, highlights the
limitations of linear and traditional ML approaches in
modelling the complex dependencies present in the data.
However, its strength in identifying high-risk cases and
its simplicity and interpretability still hold value, particu-
larly when complemented with more advanced techniques
like MLP. Overall, the combination of MLP’s advanced
architecture and tuning capabilities, RF’s robust ensemble
approach, SVM’s balanced performance, k-NN’s high
performance and simplicity and LR’s interpretability pro-
vides a comprehensive understanding of the risk predic-
tion landscape. Each model offers unique strengths that
can be leveraged to improve predictive accuracy and reli-
ability in different contexts.

Also, our study demonstrated strong and balanced per-
formance across multiple metrics (precision, recall, F1
and AUC) when compared to existing research on frequent
attenders. Unlike previous studies, which often reported
imbalanced outcomes, our models provide consistent
scores across all metrics. These findings suggest that our
approach offers a more comprehensive and adaptable
framework for predicting FA and identifying risk factors,
addressing gaps in prior research and setting a benchmark
for future studies.

This analysis also demonstrates that certain health condi-
tions and risk factors consistently predict frequent A&E
attendance across different models such as the acute
inpatient episodes, gender, digestive, respiratory condi-
tions, self-harm and mental health issues and alcohol,
while other factors vary in their importance. The differences
in model selection and the complexity of interactions
between features highlight the need for diverse approaches
in predicting healthcare utilisation. Understanding these
patterns helps in tailoring interventions and resource alloca-
tion to manage frequent A&E attenders effectively. The
identification of both positive and negative risk factors pro-
vides insights into which populations are at higher or lower
risk of frequent A&E visits, guiding targeted strategies for
prevention and management.

Lastly, we examine the similarity of our results with
results of previous research. The results of this research
are largely comparable with existing studies, although
there are some differences that highlight unique aspects of
our dataset and methodology. Similar to Kyle et al.16 and
Cruwys et al.,18 our research identifies mental health
issues as significant risk factors for FA in A&E. Both
studies, along with ours, underscore the influence of socio-
economic deprivation on attendance rates. However, while
Wyke et al.17 did not find socio-economic conditions to be
directly associated with high attendance, our study identi-
fied socio-economic deprivation as a significant risk
factor. Additionally, while Mills et al. (2022)19 highlighted
age and cancer type as key factors among those diagnosed
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with cancer, our research found age and cancer to nega-
tively contribute to the risk, suggesting that older age and
cancer diagnoses are associated with lower attendance.
These differences may stem from variations in study popu-
lations, timeframes and specific variables considered, but
overall, the core findings on the importance of mental
health, chronic conditions and socio-economic factors are
consistent across studies.

Limitations of the study and future work

The current study has several limitations that must be
acknowledged to understand the context and potential con-
straints of our findings. Firstly, the dataset used covers only
the period from 2021 to 2022, which coincides with the
COVID-19 pandemic. The pandemic significantly altered
healthcare utilisation patterns, with many people avoiding
hospitals due to infection fears or lockdown measures.
Consequently, the frequent attendance patterns observed
during this period might not be representative of more
typical times. The generalisability of our results to non-
pandemic periods remains uncertain, and future studies
should incorporate data from both pre- and post-pandemic
periods to validate these findings.

Additionally, our dataset exclusively includes patients
with three or more A&E visits, omitting those with one or
two visits. This focus on FAmeans that we lack information
on the majority of A&E users, who typically have fewer
visits. Understanding the characteristics and risk factors
of this larger group could provide a more comprehensive
picture of A&E utilisation patterns and might reveal differ-
ent predictors of attendance frequency. Including this
broader spectrum of attendance data in future research
would enhance the completeness and applicability of the
findings.

Another significant limitation is the lack of detailed
external information, such as comprehensive social status
indicators beyond the SIMD. While SIMD is a valuable
measure of socio-economic status, it does not capture all
the nuances of an individual’s social circumstances. Other
factors, such as employment status, educational background
and detailed housing conditions, can provide deeper
insights into the social determinants of health and their
impact on A&E attendance. Incorporating these additional
variables in future studies would likely yield a more holistic
understanding of the factors influencing FA.

One area of future work which presents itself is the pos-
sibility of utilising AI/ML approaches to develop consistent
risk scores for patients, and the ability to generate these risk
scores in real time. This would allow AI/ML to be inte-
grated into the clinical processes involved in assessing
FA as a decision support tool. One avenue of investigation
for the development of real-time assessments of risk scores
is the use of time-series data.

Further to this, the evaluation of prevention and early
intervention approaches requires more investigation. For a
risk score to be truly effective, health services must be
aware of which options for treatment are likely to be effect-
ive in lowering the risk score.

In conclusion, while this study provides valuable
insights into the risk factors associated with frequent
A&E attendance, it is limited by its temporal scope, the
exclusion of those attending less frequently and the lack
of comprehensive social data. Future research should
address these limitations by incorporating a broader range
of data, both temporally and demographically, and by
including more detailed socio-economic indicators.
Additionally, potential AI/ML approaches should focus
on providing actionable information such as real-time risk
scores which are consistent across patients, and prevention
and early intervention strategies should be fully explored.
This will help to validate and extend our findings, making
them more generalisable and actionable for healthcare pro-
viders and policymakers.
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Appendix

Appendix A. An ablation study of the MLP
architecture and hyperparameters

An ablation study was conducted to evaluate the perform-
ance of a neural network model by systematically altering
its architectural components and hyperparameters. The
baseline model configuration (default) included two layers
with batch normalisation, a weighted focal loss function
adjusted according to the number of data samples, L1 regu-
larisation, a dropout rate of 0.5 and a learning rate of 0.001.
The performance of this baseline model was assessed using
precision, recall, F1 score, AUC and accuracy.

To understand the impact of different architectural and
hyperparameter choices, various modifications were made
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to the baseline configuration. Specifically, the study
explored the following variations:

• Layer depth: The number of layers was increased from 2
to 11.

• Loss function: The focal loss was replaced with a
weighted loss function without the focal component.

• Regularisation: L1 regularisation was substituted with
L2 regularisation.

• Dropout rate: The dropout rate was varied to 0, 0.2 and
0.7.

• Learning rate: The learning rate was adjusted to 0.0001
and 0.01.

Increasing the number of layers to 11 provided insights into
the benefits and drawbacks of deeper networks. While
deeper layers can capture more complex patterns, they
might also lead to overfitting if not properly regularised.
Using a weighted loss without the focal component tested

the importance of focusing on hard-to-classify. This
change helped determine the effectiveness of the focal
loss in handling class imbalances. Substituting L1 with
L2 regularisation evaluated the impact on model generalisa-
tion. L2 regularisation can help mitigate overfitting by
penalising larger weights differently than L1. Varying the
dropout rate allowed us to study its effect on preventing
overfitting. A higher dropout rate generally increases
robustness, while too much dropout can hinder learning.
Adjusting the learning rate tested the model’s sensitivity
to this critical hyperparameter. A smaller learning rate
often results in more stable convergence, while a larger
rate can speed up learning but may cause instability.

The results of these experiments, detailed in Table A.1,
reveal how each change impacts the neural network’s per-
formance metrics. The baseline model performance
include:

• Precision: The baseline model achieved a high precision,
indicating its accuracy in predicting positive cases.

Table A.1. The outcomes of an ablation study of the MLP architecture and hyperparameters (I).

Hyperparameter Configurations Precision Recall F1 score AUC Accuracy

Baseline Default 74.76% 71.39% 0.73 0.76 71.39%

Layers 3 73.81% 71.16% 0.72 0.77 71.16%

4 72.59% 70.09% 0.70 0.73 70.09%

5 73.07% 73.34% 0.72 0.74 73.34%

6 73.41% 72.92% 0.72 0.75 72.92%

7 72.36% 72.65% 0.70 0.74 72.65%

8 75.27% 77.62% 0.73 0.74 77.62%

9 73.66% 76.09% 0.71 0.75 76.09%

10 74.39% 77.12% 0.71 0.74 77.12%

11 74.70% 76.93% 0.71 0.72 76.93%

Loss Weighted 73.31% 75.38% 0.71 0.76 75.38%

Regularisation L2 71.50% 74.25% 0.71 0.73 74.25%

Dropout rate 0 73.52% 64.97% 0.68 0.73 64.97%

0.2 73.51% 70.89% 0.72 0.72 70.89%

0.7 74.40% 78.44% 0.70 0.73 78.44%

Learning rate 0.0001 73.17% 78.02% 0.69 0.67 78.02%

0.01 73.53% 78.50% 0.71 0.61 78.50%
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• Recall: The model showed strong recall, demonstrating
its ability to identify most positive instances.

• F1 score: A high F1 score reflected a good balance
between precision and recall.

• AUC: The model’s AUC indicated excellent overall per-
formance in distinguishing between classes.

• Accuracy: The baseline model maintained high accur-
acy, reflecting its overall reliability.

The ablation study, as summarised in Table A.1, highlights
the trade-offs involved in neural network design and provides
a comprehensive understanding of how different configura-
tions influence performance. This study underscores the
importance of careful model tuning to achieve optimal
results in precision, recall, F1 score, AUC and accuracy.

A second ablation study was conducted to further investi-
gate the performance of the neural network, with a primary
focus on the impact of the loss function configuration. In

this study, the baseline model utilised value-hot cross
entropy with focal loss, which adjusts the loss contribution
based on the attendance number, adding a higher penalty
for misclassifying high attendance cases. Similar to the first
study, the baseline model featured two layers with batch nor-
malisation, L1 regularisation, a dropout rate of 0.5 and a learn-
ing rate of 0.001. The main variation in this second study
involved evaluating the model’s performance without incorp-
orating the focal loss component. This adjustment allowed us
to assess the significance of the focal loss in handling class
imbalances and its overall effect on precision, recall, F1
score, AUC and accuracy. Other aspects of the ablation
study, such as variations in layer depth, regularisation,
dropout rates and learning rates, mirrored those in the first
study and are not repeated here. The findings, summarised
in Table A.2, highlight the importance of focal loss in enhan-
cing the model’s ability to manage imbalanced data and
improve predictive performance across multiple metrics.

Table A.2. The outcomes of an ablation study of the MLP architecture and hyperparameters (II)

Hyperparameter Configurations Precision Recall F1 score AUC Accuracy

Baseline Default 75.13% 71.98% 0.73 0.76 75.13%

Layers 3 74.88% 72.99% 0.74 0.76 72.99%

4 73.89% 75.73% 0.74 0.73 75.73%

5 73.54% 75.54% 0.73 0.72 75.54%

6 75.45% 78.96% 0.75 0.73 78.96%

7 74.42% 78.46% 0.73 0.73 78.46%

8 75.40% 79.01% 0.74 0.70 79.01%

9 71.30% 78.31% 0.70 0.71 78.31%

10 71.43% 78.19% 0.70 0.74 78.19%

11 71.87% 78.13% 0.69 0.72 78.13%

Loss Value hot 75.02% 77.92% 0.75 0.77 77.92%

Regularisation L2 75.04% 78.36% 0.75 0.72 78.36%

Dropout rate 0 73.41% 64.20% 0.68 0.74 64.20%

0.2 74.21% 71.56% 0.72 0.75 71.56%

0.7 75.72% 78.96% 0.73 0.69 78.96%

Learning rate 0.0001 74.99% 79.03% 0.73 0.68 79.03%

0.01 73.26% 78.48% 0.73 0.54 78.48%

Bold denotes values of model which was chosen.

28 DIGITAL HEALTH



Appendix B. Results of risk factor identification

Tables B.1 to B.3 present the results of applying Shapley
value approximation to determine the importance of
various risk factors for three distinct cohorts: low attendance,
mid attendance and high resource users. This analysis pro-
vides insights into the different factors that contribute to
the risk of frequent attendance and high resource use,
helping us understand the unique characteristics of each
group.

Table B.1 shows the Shapley value rankings for low
attendance individuals. The risk factors in this category
include acute conditions, gender and digestive issues,
among others. This table highlights the importance of
these factors in predicting low attendance patterns, with
acute conditions having the highest Shapley value, indicat-
ing its significant contribution to this cohort.

Table B.2 displays the Shapley value rankings for mid
attendance individuals. In this category, factors such as

acute conditions, gender and digestive issues remain
important, but other factors like mental health and self-harm
also emerge as significant contributors. This table demon-
strates how the importance of risk factors shifts as attend-
ance frequency increases, reflecting the changing
dynamics in mid attendance patterns.

Table B.3 presents the Shapley value rankings for high
resource users. Here, acute conditions, gender and digestive
issues continue to be important, but additional factors like
alcohol use and chronic conditions gain prominence. This
table underscores the complexity of predicting high
resource use, with a broader range of risk factors playing
a critical role in this cohort.

Overall, these tables illustrate the varying impact of dif-
ferent risk factors across the three attendance categories. By
using Shapley value approximation, we can effectively rank
the importance of these factors, providing valuable insights
for designing targeted interventions and prevention strat-
egies tailored to each cohort’s specific needs.

Table B.1. Comparisons of the risk factors (with an absolute importance value > 0.01) for people with low attendance, as identified by the
models.

Importance LR RF SVM k-NN MLP

(0.2 0.3) Acute (0.27) Acute (0.25) Age (0.25)

(0.1 0.2) Acute (0.18)
Digestive (0.1)

Digestive (0.19) SIMD (0.14) Acute (0.18)
Gender (0.14)

(0.01 0.1) Gender (0.05)
Respiratory (0.02)

Gender (0.06)
Mental (0.02)
Alcohol (0.01)

Digestive (0.07)
Alcohol (0.03)
Respiratory (0.02)
Gender (0.02)
Mental (0.01)
Oth LTC (0.01)

Deceased (0.03)
Home care (0.02)

Digestive (0.09)
Respiratory (0.02)
Oth LTC (0.01)
Alcohol (0.01)
NeuroLTC (0.01)

(−0.1 −0.01) Cardiac (−0.01)
Home care (−0.01)
SIMD (−0.09)

Deceased (−0.01)
Home care (−0.02)

Home care (−0.02)
SIMD (−0.09)

Respiratory (−0.01)
Diabetes (−0.01)
Alcohol (−0.02)
Gender (−0.03)

Cancer (−0.02)
Cardiac (−0.01)
SIMD (−0.05)

(−0.2 −0.1) SIMD (−0.13) Deceased (−0.13) Digestive (−0.1) Age (−0.16)

(−0.3 −0.2) Deceased (−0.21)
Age (−0.24)

Age (−0.24) Age (−0.29) Acute (−0.35) Deceased (−0.2)
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Table B.2. Comparisons of the risk factors (with an absolute importance value > 0.01) for people with medium attendance, as identified by
the models.

Importance LR RF SVM k-NN MLP

(0.5 0.6) Age (0.6)

(0.4 0.5)

(0.3 0.4)

(0.2 0.3)

(0.1 0.2) Acute (0.19)
Digestive (0.1)

Acute (0.14)
Digestive (0.11)

Acute (0.19)

(0.01 0.1) Gender (0.08)
Digestive (0.07)
Respiratory (0.05)
NeuroLTC (0.02)
Alcohol (0.02)
Mental (0.01)

Respiratory (0.08)
Alcohol (0.06)
Gender (0.05)
Mental (0.03)
Diabetes (0.02)
Self-harm (0.02)
NeuroLTC (0.02)

Gender (0.04)
Digestive (0.04)
Respiratory (0.04)
Diabetes (0.03)
Alcohol (0.02)
Mental (0.02)
Self-harm (0.02)
Homeless (0.01)
Oth LTC (0.01)

SIMD (0.1)
Home care (0.05)
Gender (0.02)

Gender (0.08)
Digestive (0.08)
Respiratory (0.04)
Alcohol (0.03)
Oth LTC (0.02)
Mental (0.02)
Diabetes (0.02)
NeuroLTC (0.01)

(−0.1 −0.01) Arthritis (−0.01)
Home care (−0.01)
Cardiac (−0.01)
Cancer (−0.02)
SIMD (−0.05)

Deceased (−0.01)
Home care (−0.03)
Cancer (−0.03)
SIMD (−0.04)

Home care (−0.01)
Acute (−0.02)

Alcohol (−0.01)
Self-harm (−0.01)
Mental (−0.02)
Diabetes (−0.02)
Respiratory (−0.05)
Acute (−0.07)

Home care (−0.01)
Cardiac (−0.01)
Cancer (−0.02)
SIMD (−0.04)

(−0.2 −0.1) Deceased (−0.19) SIMD (−0.16)
Deceased (−0.18)

Deceased (−0.15)
Age (−0.15)

(−0.3 −0.2) Age (−0.21)

(−0.4 −0.3) Age (−0.33) Age (−0.36)

Table B.3. Comparisons of the risk factors (with an absolute importance value > 0.01) for people with high resource use, as identified by the
models.

Importance LR RF SVM k-NN MLP

(0.5 0.6) Acute (0.58)

(0.4 0.5)

(0.3, 0.4) Acute (0.35) Acute (0.35) Acute (0.39)

(0.1 0.2) Digestive (0.14) Alcohol (0.1)

(continued)
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Appendix C. Rapid literature review summary

Table C.1. Summary of rapid literature review.

Study Objectives Location Area Methods

Acosta and Lima
(2015)37

Identify profile, factors, reasons for
frequent use of emergency services

Brazil National Mixed-methods: descriptive statistics,
Fisher’s exact test, Spearman’s
correlation, semi-structured
interviews, thematic content
analysis

Chen et al. (2020)38 Examine sociodemographic and visit
characteristics of high system users

Canada National Numerical summaries (means, SDs,
IQR), logistic regression models,
multivariable logistic regression

Beck et al. (2016)39 Identify characteristics of ED attendees
with mental health referrals

UK London Cox proportional hazards regression,
negative binomial regression

Cordell et al.
(2022)40

Identify proportion and characteristics of
frequent ED presenters

Australia Sydney Descriptive statistics, Pearson’s
chi-square test, Fisher’s exact test,
Mann–Whitney test, multivariate
logistic regression

Burns (2017)41 Review of literature on factors for
frequent ED use

USA St Louis Narrative synthesis

Cho et al. (2023)42 Identify characteristics and factors for
frequent ED use

South Korea National Frequency analysis, chi-square test,
multiple logistic regression

(continued)

Table B.3. Continued.

Importance LR RF SVM k-NN MLP

(0.01 0.1) Gender (0.08)
Digestive (0.07)
Digestive (0.05)
Self-harm (0.05)
Alcohol (0.05)
Respiratory (0.03)
NeuroLTC (0.02)
Homeless (0.01)

Alcohol (0.08)
Self-harm (0.06)
Respiratory (0.05)
Gender (0.03)
Diabetes (0.03)
Oth LTC (0.02)
Mental (0.02)

Gender (0.09)
Acute (0.06)
Self-harm (0.06)
Respiratory (0.04)
Digestive (0.03)
Diabetes (0.02)
NeuroLTC (0.02)
CereLTC (0.01)
Mental (0.02)

Self-harm (0.07)
Alcohol (0.04)
Substance (0.02)
NeuroLTC (0.02)
Mental (0.01)
CereLTC (0.01)

Self-harm (0.05)
Digestive (0.04)
Mental (0.04)
Gender (0.03)
Respiratory (0.02)
Substance (0.02)
Diabetes (0.01)

(−0.1 −0.01) SIMD (−0.03) Cardiac (−0.01)
Home care (−0.02)
Deceased (−0.02)
SIMD (−0.06)
Age (−0.09)

Home care (−0.01)
Substance (−0.05)
Alcohol (−0.08)

Digestive (−0.01)
Deceased (−0.02)
Home care (−0.02)
Diabetes (−0.03)
SIMD (−0.03)

SIMD (−0.03)
Deceased (−0.09)
Age (−0.13)

(−0.2 −0.1) Deceased (−0.12)
Age (−0.13)

Deceased (−0.14)
Age (−0.16)
SIMD (−0.18)

Age (−0.11)
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Table C.1. Continued.

Study Objectives Location Area Methods

Daniels et al.
(2018)43

Characteristics and unmet needs of
frequent ED attenders

UK Bath Mixed-methods: qualitative
interviews, descriptive statistics,
business data, case note analysis

Castillo et al.
(2014)44

Compare hospital-specific vs
community-wide identification of
frequent users

USA San Diego Retrospective cohort study,
comparisons between identification
methods, confidence intervals

Dufour et al.
(2020)45

Factors associated with frequent ED use
among older adults

Canada Quebec Descriptive statistics, chi-square test,
Kruskal–Wallis test, multivariate
regression model

Colligan et al.
(2016)46

Examine factors for persistent frequent
ED use in Medicare beneficiaries

USA National Multinomial logistic regression

Chiu et al. (2020)9 Estimate prevalence and factors of
persistent frequent ED use; compare
characteristics with occasional
frequent users

Canada National Multivariable logistic regression; odds
ratios

Hotham et al.
(2021)8

Test hypothesis: main variables for ED
attendance are multimorbidity and
increasing age

UK National Logistic regression; entropy and count
of presenting complaint categories

Diaz et al. (2014)7 Compare likelihood of frequent GP
attendance between natives and
immigrants; study associated
socio-economic and morbidity factors

Norway National Multivariate binary logistic analyses;
binary logistic regression

Burton et al.
(2021)47

Test hypothesis: frequent attendance can
be understood as a complex system

UK National Analysis of health records; fitting data
to power law distributions

Shukla et al.
(2020)48

Suggest uniform definition of frequent
attenders; determine correlated
factors

USA National Systematic literature review

Byrne et al. (2003)49 Describe frequent attenders’ general
health service use, clinical,
psychological and social profiles

Ireland National Matched case-control study;
questionnaires

Paul et al. (2010)6 Determine factors associated with
frequent ED attendance in Singapore

Singapore National Stepwise logistic regression analysis

Jelinek et al.
(2008)50

Examine characteristics of adult patient
attendances to EDs by frequency of
attendance

Australia Perth SPSS analysis, χ2 test, Student’s t-test

Afonso and Lopes
(2020)51

Identify ED high-frequency users and
compare their clinical and utilisation
characteristics with other ED users

Portugal National Kruskal–Wallis test, Spearman
correlation, chi-squared tests

Chang et al.
(2014)52

Identify patient characteristics associated
with frequent ED use

USA Greater
Boston

Descriptive statistics, chi-square tests,
multivariate logistic regression

(continued)
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Table C.1. Continued.

Study Objectives Location Area Methods

Palmer et al.
(2014)53

Determine if having regular access to a
primary care provider affects
frequency of ED use

Canada Saint John Descriptive statistics, χ2 tests, logistic
regression

Chan et al. (2018)54 Describe characteristics of ED visits by
FAs to a hospital in Singapore

Singapore National Logistic regression

Castillo et al.
(2019)55

Evaluate patient characteristics and
patterns of ED use among geriatric
patients

USA California Descriptive statistics, logistic
regression, odds ratios

Moore et al.
(2009)56

Identify personal and attendance factors
associated with ED attendance
frequency

UK National Frequencies, cross-tabulations

Al-Saffar et al.
(2020)57

Identify sociodemographic and clinical
characteristics of children who attend
primary care frequently

UK, Croatia,
Spain,
USA

Multinational Systematic review, narrative synthesis

Blair et al. (2017)58 Describe sociodemographic and clinical
characteristics of pre-schoolers who
attend ED frequently

UK National Descriptive analyses, Poisson
regression

Pek et al. (2022)59 Quantify extent of multiple ED use by FAs
and characterise FAs

Singapore National Chi-square tests, Mann–Whitney U
test, multivariable logistic
regression

Chou et al. (2021)60 Determine impact of COVID-19 on
healthcare-seeking behaviours
among frequent ED users

Taiwan National Descriptive statistics, Mann–Whitney
U test

Jacob et al. (2016)20 Characterise FAs, especially those with
medically unexplained and mental
health symptoms

UK National Descriptive statistics, case note review

Sousa et al. (2019)61 Evaluate impact of FA service on number
and frequency of ED attendances

UK Durham Descriptive statistics, independent
sample t-test

Aagaard et al.
(2014)62

Identify predictors of frequent use of a
psychiatric emergency room

Denmark National Logistic regression, semi-structured
interviews
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