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A B S T R A C T

Thin plate and shell structures are widely used in aerospace due to their lightweight nature and efficient load-
bearing capabilities, making them attractive for aircraft and spacecraft designs. This study proposes an efficient
quadrilateral inverse shell element for thin structures, developed using discrete Kirchhoff assumptions, for
Structural Health Monitoring (SHM) applications within the inverse finite element method (iFEM) framework.
The proposed inverse formulation is straightforward, computationally efficient, and requires fewer strain
sensors for full-field reconstruction than existing inverse elements based on First-Order Shear Deformation
Theory (FSDT). These attributes are essential for implementing efficient SHM strategies while lowering overall
project costs. The proposed inverse element is rigorously validated using benchmark problems for in-plane,
out-of-plane, and general loading conditions. Its performance is compared to that of an existing competitive
quadrilateral inverse shell element based on FSDT. For aerospace SHM applications, the inverse element is
assessed for its shape-sensing capabilities, material discontinuity and degradation defects characterization, and
structural health assessment. This research highlights the ability of the proposed inverse element to enhance
SHM applications in aerospace structures, contributing to the development of more reliable and cost-effective
monitoring solutions.
1. Introduction

In the aerospace sector, thin plate and shell structures are crit-
ical components that form the basis for structural designs. These
lightweight and stiff structural configurations provide effective load-
bearing capabilities while adhering to stringent safety standards. En-
suring the reliability and safety of airframes necessitates rigorous
maintenance and inspection schedules. Traditional inspection methods,
such as visual or ultrasonic testing, are effective but time-consuming,
labor-intensive, and sometimes inadequate in detecting latent damages.
With recent industrial revolutions, Structural Health Monitoring (SHM)
has emerged as a modern tool to improve maintenance efficiency and
safety. Modern SHM systems collect onboard sensory data, analyze it
in real time, and predict structural behavior with greater accuracy [1].
These systems can detect damage such as cracks, delamination, or
corrosion and help forecast scheduled maintenance, maximizing asset
availability and safety. The most challenging and crucial aspect of a ro-
bust SHM strategy is its ability to monitor real-time structural integrity.
Therefore, full-field reconstruction of displacement and stress profiles
is essential. Unlike point-wise measurements, which provide data only
at discrete locations, full-field reconstruction offers a comprehensive

∗ Corresponding author.
E-mail address: erkan.oterkus@strath.ac.uk (E. Oterkus).

view of structural health, allowing for identifying and quantifying
defects that might otherwise be missed. Developing such accurate SHM
capabilities presents an inverse structural analysis problem that has
intrigued researchers, as evidenced by their significant contributions
to the literature.

Early research in full-field reconstruction included applying Ko’s
Displacement Theory [2] to reconstruct displacement profiles for air-
frame wing structural configurations. This methodology enables the
reconstruction of wing-bending profiles with limited onboard sensors.
Specifically, Ko et al. [3] relied on the assumptions of Euler Bernoulli’s
beam theory to reconstruct aircraft wing deflection by strategically
placing strain sensors along the wing span following the main spar
lines. However, the underlying assumptions limit the applicability of
this methodology to capture complex structural behaviors, i.e., shear
and torsional effects, making it less applicable to structures with more
intricate geometry and loading conditions. Ko’s methodology is pri-
marily suited for beam-like structures, and its extension to thin shell
structures may need to account for more complex deformation modes
like membrane stresses or buckling. This simplification reduces its
effectiveness in accurately detecting localized damage in real-world
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SHM applications.
In literature, Foss et al. explored global and piecewise contin-

uous basis functions for displacement reconstruction [4]. Similarly,
Modal Transformation Theory (MTT) [5,6] received significant atten-
tion for its ability to reconstruct displacement profiles from normal

ode shapes using appropriate strain–displacement relations. However,
hese methods depend on accurate mode shape data, which can be
nfluenced by material degradation or structural damage. Also, these
ethods rely on limited modes for reconstructing displacement profiles,
otentially overlooking complex or localized deformation behavior
rucial to SHM applications. Later, Shkarayev et al. [7] introduced a
wo-step least squares method for displacement reconstruction. This
pproach estimates the applied load on the structure in the first step,

followed by determining the displacement field in the second step.
As a result, the reliability of the reconstructed displacements depends
heavily on the accuracy of the load predictions. Consequently, even

inor errors in load estimations can lead to significant inaccuracies in
he reconstructed displacement profiles.

Recently, researchers have employed variational approaches to
odel-based formulations to develop full-field displacement recon-

truction capabilities. Tessler and Spangler [8] proposed the Inverse
inite Element Method (iFEM) framework by developing a variational
rror functional utilizing on-board discrete strain data and numerical
train approximations from the Finite Element Method (FEM) to recon-
truct displacement profiles. A key advantage of the iFEM framework
s its independence from constitutive relations and loading conditions.
onsequently, the iFEM framework can reconstruct full-field displace-
ents relying solely on boundary conditions. The iFEM framework

s also robust enough to handle sparse strain measures in reliably
econstructing displacement fields. These capabilities are valuable in

contrast to traditional methods necessitating precise material properties
and loading information, enabling more effective identification and
uantification of structural defects.

Similarly, data-driven approaches [9,10] based on Deep Neural Net-
works (DNN) offer substantial benefits in reconstructing complex struc-
tural behavior. These data-based frameworks are robust and capable of
handling forward and inverse analysis, making them highly suitable for
SHM applications. However, these methods are data-intensive, mandat-
ing substantial computational power and an entirely different machine
learning (ML) framework for implementation [11]. Despite these chal-
enges, DNN-based methods present promising alternatives for SHM
pplications, particularly when traditional physics-based approaches
ace limitations in capturing intricate structural responses [1].

The framework of iFEM has emerged as an effective tool for full-
field reconstruction and SHM applications, offering the potential for
real-time damage assessment of various engineering structures. Re-
searchers have proposed various inverse elements tailored to spe-
cific structural configurations, highlighting the versatility of iFEM in
advancing Structural Health Monitoring (SHM). Tessler and Span-
gler. [12] developed a three-node triangular inverse element (iMIN3) to
emonstrate the capability of the iFEM framework for full-field shape-
ensing applications. A four-node quadrilateral inverse shell element
iQS4) was introduced by Kefal et al. [13] for SHM applications in the

naval sector. Later, they developed curved quadrilateral inverse shell
lements (iCS8) to improve SHM capabilities in marine and offshore
tructures [14]. Khalid et al. [15] developed iKP4 inverse plate element

using non-conforming Hermite basis functions for shape-sensing appli-
cations of thin plate structures. Similarly, isogeometric inverse elements
iKLS and IgaiMin were developed to analyze geometrically complex
structures [16–18]. These higher-order elements enhance interelement
ompatibility and help seamless integration with geometric modeling.
 three-dimensional solid inverse element was presented by De Mooij
t al. [19] to extend the application of iFEM in analyzing thick struc-
ures. Recent studies have advanced deformation reconstruction and
hape sensing using nonlinear iFEM algorithms, quasi-3D zigzag beam
heory, and full-field iFEM for thin-walled structures [20–22]. Based on
2 
the Refined Zigzag theory, a three-node inverse element (i3-RZT) was
proposed to extend the iFEM capabilities to composite laminates and
sandwich structures [23]. Khalid et al. recently introduced an inverse
crack tip element (iTP6) to perform iFEM analysis on structures with
preexisting cracks and reconstruct crack mechanics [24].

Various inverse elements in the literature are based on First-Order
Shear Deformation Theory (FSDT), which is used to undertake iFEM
analysis of thin and thick shell structures. In dealing with thicker
structures, shear correction factors are employed, and transverse shear
strains are computed using FSDT equilibrium equations. In contrast, in
dealing with thin structures, the transverse shear effects are neglected;
however, this assumption does not simplify the overall inverse formu-
lation to capitalize on computational efficiency. One of the challenges
associated with FSDT-based elements is shear locking when dealing
with thin structures because of the excessive influence of the transverse
shear deformation terms. Furthermore, these elements exhibit slow
convergence when applied to thin plate and shell structures, requiring a
significantly large number of onboard strain sensors. As a result, FSDT-
based inverse elements often face challenges in accurately analyzing
thin structures due to high computational costs and the need for an
impractically large number of onboard sensors. The literature high-
lights that the effectiveness of iFEM analysis is highly dependent on the
underlying kinematics integrated into the inverse formulation. There-
fore, there is a need for an inverse formulation explicitly designed for
thin shell structures, which helps to optimize computational efficiency
and minimize sensor requirements. These features are crucial for SHM
applications, where real-time monitoring and precise damage detection
are vital for maintaining structural integrity and safety.

This study aims to overcome some limitations of existing FSDT-
based inverse formulations in dealing with thin shell structures by
proposing a new quadrilateral inverse shell element (iKS4) for SHM
applications. The proposed inverse shell formulation is straightforward,
neglecting transverse shear effects using discrete Kirchhoff assump-
tions. Hierarchical drilling rotation is incorporated to enhance element
compatibility and extend the practical usefulness of iKS4 to access
built-up structures. Unlike existing FSDT-based elements, the proposed
inverse element is simple in its formulation, computationally efficient,
and free from shear-locking issues in dealing with thin plate and
shell structures. A rigorous numerical validation study evaluates the
performance of the newly proposed inverse formulation using famous
benchmark problems. A comparative analysis of the proposed inverse
formulation is performed against an existing iQS4 inverse shell element
to assess its accuracy and efficiency in reconstructing the displacement
field. In the context of SHM applications, the iKS4 inverse shell element
is numerically evaluated by considering an aircraft fuselage stiffened
panel subjected to cabin pressurization conditions. Furthermore, the
inverse formulation is evaluated for its defect detection capabilities
by considering two common categories in the aerospace industry: geo-
metric discontinuities, such as voids, cracks, and material degradations
resulting from cyclic loading.

The rest of the article is organized as follows. Inverse shell for-
ulation and theoretical insights are presented in Section 2. To focus

on key mathematical steps, shape functions for quadrilateral element,
rilling rotation DOF, and discrete Kirchhoff bending field are out-

lined in Appendices A.1, A.2, A.3. The details about the coordinate
transformation system essential for shell formulations are explained in
Appendix A.4. Section 3 offers numerical validation through bench-
mark results and a standardized analysis setup to compare iFEM results
rom iKS4 and iQS4 inverse elements. Real-world SHM applications,
ncluding displacement reconstruction and defect identification, are
xamined in Section 4. Finally, the conclusion summarizes the findings

in light of the detailed analysis and discussion of the numerical cases
considered in the study.
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2. Formulation of inverse shell element

According to the kinematics of Classical Plate Theory (CPT),
Kirchhoff-based elements require the deflection field to have 𝐶1 conti-
nuity because of the presence of second derivatives of the deflection in
the virtual work expression. Achieving 𝐶1 continuity generally requires
special techniques like using Hermite basis functions, which increases
computational complexity and makes it challenging to analyze built-up
structures [25].

Batoz et al. [26] introduced the Discrete Kirchhoff Theory to cir-
umvent the strict continuity requirement by imposing the Kirchhoff
ypothesis only along the edges of the element to relate the rotations
o the transverse displacements. This approach allows simpler 𝐶0 con-
inuity elements while still ensuring that the solution converges to the
irchhoff plate theory solution. The formulation is based upon the dis-
retization of strain energy where transverse shear energy is neglected,
onsistent with the thin plate theory assumptions. The independent
ending variables in this formulation are the deflection 𝑤 and the
otations (𝜃𝑥), 𝜃𝑦 requiring only 𝐶0 continuity. The Kirchhoff hypothesis
s discretely applied along the element edges to relate rotations to
ransverse displacements, such that 𝜃𝑥 = −𝑤,𝑦 and 𝜃𝑦 = 𝑤,𝑥.

A general expression for the strain field with membrane and bending
components can be written as:

𝜺(𝐮) = 𝒆(𝐮) + 𝜿(𝐮) (1)

where, 𝜺(𝐮) is the strain field defined in terms of the displacement field
(𝑥, 𝑦). The component 𝒆(𝐮) represents the membrane strains, and 𝜿(𝐮)
enotes the bending strains associated with bending curvatures. The
train field can be further expressed in terms of strain components as:

𝜺(𝐮) =
⎧

⎪

⎨

⎪

⎩

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

𝜀𝑜𝑥𝑥
𝜀𝑜𝑦𝑦
𝛾𝑜𝑥𝑦

⎫

⎪

⎬

⎪

⎭

− 𝑧

⎧

⎪

⎨

⎪

⎩

𝜅𝑥𝑥
𝜅𝑦𝑦
𝜅𝑥𝑦

⎫

⎪

⎬

⎪

⎭

(2)

where membrane and bending curvatures can be written more conve-
iently as:

𝒆(𝐮) =
⎧

⎪

⎨

⎪

⎩

𝜀𝑜𝑥𝑥
𝜀𝑜𝑦𝑦
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⎫

⎪

⎬

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕
𝜕 𝑥 0

0 𝜕
𝜕 𝑦

𝜕
𝜕 𝑦

𝜕
𝜕 𝑥

⎤

⎥

⎥

⎥

⎥

⎥

⎦
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𝑢𝑜
𝑣𝑜

}

(3)

𝜿(𝐮) =
⎧

⎪

⎨

⎪

⎩

𝜅𝑥𝑥
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𝜕 𝑦

𝜕
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⎥

⎥

⎥

⎥
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𝜃𝑥
𝜃𝑦

}

(4)

The independent rotations 𝜃𝑥 and 𝜃𝑦 are related to the nodal displace-
ent in such a way that the final element retains the characteristics of
 Kirchhoff-type element. These strain–displacement relationships are
ubsequently used in inverse shell formulation based on iFEM weighted
east-squares functional.

The constitutive relationship between non-zero stress and strain
tates can be established for a material exhibiting homogeneity and
ubjected to isothermal conditions as

𝝈(𝐮) = [𝑪]𝜺(𝐮) (5)

where 𝑪 is the constitutive matrix containing the material properties.
ue to the thin plate theory assumptions, the transverse normal and

ransverse shear stresses (𝜎𝑧𝑧 = 𝛾𝑦𝑧 = 𝛾𝑥𝑧 = 0) are zero. The constitutive
atrices 𝑪 for an isotropic material can be expressed as follows:

𝑪 = 𝐸
(1 − 𝜈2)

⎡

⎢

⎢

⎣

1 −𝜈 0
−𝜈 1 0
0 0 1−𝜈

2

⎤

⎥

⎥

⎦

(6)

where 𝐸 and 𝜈 represent Young’s modulus of elasticity and Poisson’s
ratio.
3 
Fig. 1. iKS4 Defined in the Physical Coordinate System.

Fig. 2. Master element defined in natural coordinate system.

To start with finite element approximation, consider a four-node
quadrilateral inverse shell element defined in the physical coordi-
nate system (𝑥, 𝑦, 𝑧) with nodes located at the mid-plane, where 𝑧 ∈
−𝑡∕2, 𝑡∕2] defines the thickness of the element as shown in Fig. 1. The

master element depicted in Fig. 2 is defined in the natural coordinate
ystem (𝜉 , 𝜂).

The geometrical mapping between physical and natural coordinate
ystems is achieved using isoparametric bi-linear basis functions 𝑁𝑖(𝜉 , 𝜂)
xpressed as follows:

𝑁𝑖 =
1
4
(

1 + 𝜉𝑜
) (

1 + 𝜂𝑜
)

(7)

𝜉𝑜 = 𝜉 𝜉𝑖, 𝜂𝑜 = 𝜂 𝜂𝑖 (𝑖 = 1, 2, 3, 4)
where 𝜉𝑖 and 𝜂𝑖 denote natural coordinates of the 𝑖th node of the
element, and the explicit form of isoparametric bi-linear basis functions
is provided in Appendix A.1.

In shell formulations, 6 degrees of freedom (DOF) per node are often
onsidered, including three displacements and rotations at each node.
he nodal displacement vector for the iKS4 inverse shell element is
ritten as:

𝐮𝑒𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

𝑢𝑜
)

𝑖
(

𝑣𝑜
)

𝑖
(𝑤)𝑖
(

𝜃𝑥
)

𝑖
(

𝜃𝑦
)

𝑖
(

𝜃𝑧
)

𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(𝑖 = 1, 2, 3, 4) (8)

For the 𝑖t h node of inverse element, (𝑢𝑜, 𝑣𝑜, 𝑤) are the nodal displace-
ments, while (𝜃𝑥, 𝜃𝑦) correspond to the bending rotations along 𝑦 and
𝑥 axis, respectively. The variable 𝜃𝑧 denotes drilling rotation, which is
hierarchical in nature. Allman [27] originally introduced the concept of
drilling degrees of freedom (DOFs) to improve element compatibility.
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Furthermore, drilling DOF rotation helps to prevent coplanar singu-
larity issues when dealing with complex built-up structures. During
iFEM shape sensing analysis, these unknown nodal displacements are
reconstructed using onboard discrete strain measures.

The in-plane translational displacement variables 𝑢 and 𝑣 can be
expressed using isoparametric bi-linear basis functions expressed in the
Eq. (7) as

𝑢 =
4
∑

𝑖=1
𝑁𝑖(𝜉 , 𝜂)𝑢𝑜𝑖 +

4
∑

𝑖=1
𝐿𝑖(𝜉 , 𝜂)𝜃𝑧𝑖 (9)

𝑣 =
4
∑

𝑖=1
𝑁𝑖(𝜉 , 𝜂)𝑣𝑜𝑖 +

4
∑

𝑖=1
𝑀𝑖(𝜉 , 𝜂)𝜃𝑧𝑖 (10)

where 𝐿(𝜉 , 𝜂) and 𝑀(𝜉 , 𝜂) are anisoparametric shape functions, and
heir explicit expressions are provided in Appendix A.2. Incorporating

drilling rotation DOF 𝜃𝑧 extends the conventional in-plane kinematics
to represent the element behavior comprehensively.

The membrane nodal variables vector 𝐮𝑚𝑖 , which includes both
displacements and drilling rotation, is expressed as:

𝐮𝑚𝑖 =
⎡

⎢

⎢

⎣

(𝑢𝑜)𝑖
(𝑣𝑜)𝑖
(𝜃𝑧)𝑖

⎤

⎥

⎥

⎦

(𝑖 = 1, 2, 3, 4), 𝐮𝑚 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐮𝑚1
𝐮𝑚2
𝐮𝑚3
𝐮𝑚4

⎤

⎥

⎥

⎥

⎥

⎦

(11)

where 𝐮𝑚 represents the complete membrane displacement field for the
inverse element. Numerical elemental strains 𝒆(𝐮𝑒) for the membrane
part of the formulation can be computed using Eqs. (9) and (10) in
q. (3).

𝒆(𝐮𝑒) = 𝑩𝑚𝐮𝑒 (12)

where 𝑩𝑚 represents the membrane gradient matrix of the element and
𝑒 is the displacement vector. The nodal membrane gradient matrix 𝑩𝑚

𝑖
an be expressed in terms of the nodal basis functions as:

𝑩𝑚
𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕 𝑁𝑖
𝜕 𝑥 0 0 0 0

𝜕 𝐿𝑖
𝜕 𝑥

0
𝜕 𝑁𝑖
𝜕 𝑦 0 0 0

𝜕 𝑀𝑖
𝜕 𝑦

𝜕 𝑁𝑖
𝜕 𝑦

𝜕 𝑁𝑖
𝜕 𝑥 0 0 0

𝜕 𝑀𝑖
𝜕 𝑥 +

𝜕 𝐿𝑖
𝜕 𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(13)

By assembling the nodal gradient matrices 𝑩𝑚
𝑖 for each node (𝑖 =

, 2, 3, 4), the membrane gradient matrix 𝑩𝑚 for the complete element
s computed as:

𝑩𝑚 =
[

𝑩𝑚
1 𝑩𝑚

2 𝑩𝑚
3 𝑩𝑚

4
]

(14)

The formulation of the bending gradient matrix is derived from the
iscrete Kirchhoff Quadrilateral (DKQ) bending element, as originally
eveloped by Batoz et al. [26]. While the detailed derivation of the

DKQ bending element is well-documented in the existing literature; this
discussion focuses on utilizing its displacement field to formulate the
bending gradient matrix for the current inverse shell element.

In a bi-linear domain, the independent bending rotations 𝜃𝑥 and 𝜃𝑦
can be approximated using anisoparametric shape functions based on
he discrete Kirchhoff hypothesis.

𝜃𝑥 = 𝑯𝑥(𝜉 , 𝜂)T𝐮𝑏 (15)

𝜃𝑦 = 𝑯𝑦(𝜉 , 𝜂)T𝐮𝑏 (16)

Here, 𝑯𝑥(𝜉 , 𝜂) and 𝑯𝑦(𝜉 , 𝜂) are the shape function vectors mapping the
element displacement field 𝐮𝑏 to the independent bending rotations
𝑥 and 𝜃𝑦, respectively. Both 𝑯𝑥(𝜉 , 𝜂) and 𝑯𝑦(𝜉 , 𝜂) comprise twelve

anisoparametric shape functions introduced by Batoz et al. [26], de-
fined using the standard quadratic basis functions of the eight-node
quadrilateral element (provided in Appendix A.1). The explicit expres-
sions for (𝑯𝑥,𝑯𝑦) shape function vectors are provided in Appendix A.3.
4 
The bending nodal variables 𝐮𝑏𝑖 can be assembled to formulate an
element’s bending displacement field 𝐮𝑏𝑖 as follows:

𝐮𝑏𝑖 =
⎡

⎢

⎢

⎣

(𝑤)𝑖
(𝜃𝑥)𝑖
(𝜃𝑦)𝑖

⎤

⎥

⎥

⎦

(𝑖 = 1, 2, 3, 4), 𝐮𝑏 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐮𝑏1
𝐮𝑏2
𝐮𝑏3
𝐮𝑏4

⎤

⎥

⎥

⎥

⎥

⎦

(17)

Like the membrane part, numerical elemental strains 𝜿(𝐮𝑒) for the
ending part can be computed using Eqs. (15) and (16) in Eq. (4).

𝜿(𝐮𝑒) = 𝑩𝑏𝐮𝑒 (18)

where 𝑩𝑏 represents the element bending gradient matrix. The nodal
bending gradient matrix 𝑩𝑏

𝑖 can be written in terms of 𝑯𝑥 and 𝑯𝑦 shape
unctions as:

𝑩𝑏
𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 𝑯𝑥
𝑗+1,𝑥 𝑯𝑥

𝑗+2,𝑥 𝑯𝑥
𝑗+3,𝑥 0

0 0 𝑯𝑦
𝑗+1,𝑦 𝑯𝑦

𝑗+2,𝑦 𝑯𝑦
𝑗+3,𝑦 0

0 0
𝑯𝑦

𝑗+1,𝑥
+

𝑯𝑥
𝑗+1,𝑦

𝑯𝑦
𝑗+2,𝑥
+

𝑯𝑥
𝑗+2,𝑦

𝑯𝑦
𝑗+3,𝑥
+

𝑯𝑥
𝑗+3,𝑦

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(19)

𝑤ℎ𝑒𝑟𝑒𝑗 = 3(𝑖 − 1), 𝑓 𝑜𝑟𝑖 = 1, 2, 3, 4

The bending gradient matrix 𝑩𝑏 can be formulated by concatenating
𝑩𝑏

𝑖 for each node (𝑖 = 1, 2, 3, 4) of the iKS4 inverse shell element as:

𝑩𝑏 =
[

𝑩𝑏
1 𝑩𝑏

2 𝑩𝑏
3 𝑩𝑏

4
]

(20)

The iFEM framework is built on the principle of the variational
method, where the displacement field is reconstructed by minimizing
the weighted least squares error functional. The error functional is
formulated using discrete strain measures and their corresponding
numerical counterparts in a discretized geometric space. One of the
significant benefits of the iFEM scheme is its independence from elastic
r inertial material properties and loading conditions for full-field
hape reconstruction.

The weighted least squares functional for the proposed iKS4 element
is defined as the sum of the error terms between the numerical and
discretely measured values of the membrane and bending strains as

𝝓𝑒(𝐮𝑒) = 𝑤𝑒
‖

‖

𝒆(𝐮𝑒) − 𝒆∗‖
‖

2 +𝑤𝑘
‖

‖

𝜿(𝐮𝑒) − 𝜿∗
‖

‖

2 (21)

where 𝒆(𝐮𝑒) and 𝜿(𝐮𝑒) represent numerically computed elemental mem-
brane and bending strains. In contrast, 𝒆∗ and 𝜿∗ indicate in-situ
discrete strain measures obtained from the strain sensors located in the
iscretized elemental geometric domains; 𝑤𝑒 and 𝑤𝑘 are the weight-

ing coefficients associated with the squared norms corresponding to
membrane and bending errors, respectively. Each of the squared norms
defined in Eq. (21) can be further expressed over the inverse element
domain 𝛺𝑖𝑒𝑙 as:

‖

‖

𝒆(𝐮𝑒) − 𝒆∗‖
‖

2 = ∬𝐴𝑒

(

𝒆(𝐮𝑒) − 𝒆∗
)2

dxdy (22)

‖

‖

𝜿(𝐮𝑒) − 𝜿∗
‖

‖

2 = 𝑡2 ∬𝐴𝑒

(

𝜿(𝐮𝑒) − 𝜿∗
)2

dxdy (23)

where 𝐴𝑒 represents the area of an inverse element.
Discrete strain sensor measurements play a crucial role in the iFEM

formulation, which are measured discretely (𝑥𝑗 , 𝑦𝑗 ) at the mid-plane
of the shell, as shown in Fig. 3. For complex built-up structures and
general loading conditions, strain sensors are needed on both surfaces
of the structure for accurate computation of the section strains. How-
ever, strain data from either surface (top or bottom) suffices for iFEM
analysis of specific cases, such as plane stress or pure bending. The in-
situ strain data usually obtained from the onboard strain sensors can
be represented as discrete measurements of membrane and bending
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Fig. 3. Strain rosettes at discrete locations (𝑥𝑗 , 𝑦𝑗 ,± 𝑡
2
).

strains:

𝒆∗ = 1
2

⎧

⎪

⎨

⎪

⎩

𝜀+𝑥𝑥 + 𝜀−𝑥𝑥
𝜀+𝑦𝑦 + 𝜀−𝑦𝑦
𝛾+𝑥𝑦 + 𝛾−𝑥𝑦

⎫

⎪

⎬

⎪

⎭

(24)

𝜿∗ = 1
𝑡

⎧

⎪

⎨

⎪

⎩

𝜀+𝑥𝑥 − 𝜀−𝑥𝑥
𝜀+𝑦𝑦 − 𝜀−𝑦𝑦
𝛾+𝑥𝑦 − 𝛾−𝑥𝑦

⎫

⎪

⎬

⎪

⎭

(25)

where 𝒆∗ and 𝜿∗ are the discrete strain measures defined at location
𝑥𝑗 , 𝑦𝑗 ) within the spatial domain of an inverse element. The super-

scripts (+) and (−) refer to strain measurements obtained from the strain
osettes installed on the top and bottom surfaces of the shell structure,
espectively.

The weighting coefficients 𝑤𝑒 and 𝑤𝑘, defined in the least squares
rror functional in Eq. (21), are chosen based on the availability of
iscrete strain measures for the given inverse element. If discrete

strain measures (𝒆∗, 𝜿∗) are available within the spatial domain of the
inverse element, the coefficients can be set to unity, 𝑤𝑒 = 𝑤𝑘 = 1.

therwise, if strain measures are missing within an inverse element,
he coefficients are set to minimal values (𝑤𝑒, 𝑤𝑘) ≪ 1. During the least
quares error minimization process, these weighting coefficients help to
alance the influence of available discrete strain measures in the closed-
orm solution. Setting the coefficients to unity (𝑤𝑒 = 𝑤𝑘 = 1) gives

equal importance to all data points, which are known with certainty
when the strain measures are available. On the other hand, setting
the coefficients to a minimal value (𝑤𝑒 = 𝑤𝑘 = 10−3𝑡𝑜10−6) when
the strain data is missing reduces the impact of these missing data
points during the error minimization process, preventing them from
unduly affecting the overall result. This approach helps to ensure that
the iFEM algorithm exhibits its intended robustness for real-world SHM
applications.

Minimizing the weighted least squares error functional in Eq. (21)
ith respect to the unknown nodal displacements 𝐮𝑒 of an inverse

element reduces to the conventional system of the linear equations:
𝜕𝝓𝑒(𝐮𝑒)
𝜕𝐮𝑒

= 𝒎𝑒𝐮𝑒 − 𝒔𝑒 = 0 (26)

The equilibrium equations can thus be written as:

𝒎𝑒𝐮𝑒 = 𝒔𝑒 (27)

where 𝒎𝑒 represents the error minimization matrix, 𝒔𝑒 is the measured
strain vector comprising discrete strain measures obtained from the
onboard strain sensors, and 𝐮𝑒 is the unknown nodal displacements
o be determined after prescribing necessary displacement boundary

conditions. The mathematical expressions representing 𝒎𝑒 and 𝒔𝑒 can
be written as:

𝒎𝑒 = ∬𝐴𝑒

(

𝑤𝑒(𝑩𝑚)T𝑩𝑚 + (𝑡2)𝑤𝑘(𝑩𝑏)T𝑩𝑏
)

dxdy (28)

𝒔𝑒 = ∬𝐴𝑒

(

𝑤𝑒(𝑩𝑚)T𝒆∗ + (𝑡2)𝑤𝑘(𝑩𝑏)T𝜿∗
)

dxdy (29)

Next, the global system of equations can be formulated based on the
element contributions given in Eqs. (28) and (29) as:
𝑴𝐔 = 𝑺 (30)

5 
where 𝑴 is the global error minimization matrix, 𝐔 is the global
nknown displacement vector, and 𝑺 is the global measured strain

vector. These global matrices are derived by summing the transformed
element-level quantities using the element transformation matrix 𝑻 𝑒.

𝑴 =
𝑁𝑖𝑒𝑙
∑

𝑒=1
𝑻 𝑒T(𝒎𝑒)𝑻 𝑒 (31)

𝐔 =
𝑁𝑖𝑒𝑙
∑

𝑒=1
𝑻 𝑒T(𝐮𝑒) (32)

𝑺 =
𝑁𝑖𝑒𝑙
∑

𝑒=1
𝑻 𝑒T(𝒔𝑒) (33)

where 𝑁𝑖𝑒𝑙 denotes the total number of inverse elements in the spatial
domain. The element transformation matrix 𝑻 𝑒 ensures the transfor-
mation of the element-level matrices (𝒎𝑒, 𝐮𝑒, and 𝒔𝑒) to the global
coordinate system before their assembly. The detailed methodology to
obtain the element transformation matrix is presented in Appendix A.4.

After prescribing the essential boundary conditions, the partitioned
lobal system of equations can be written as:

𝑴𝑝𝐔𝑝 = 𝑺𝑝 (34)

Consequently, 𝑴𝑝, 𝐔𝑝, and 𝑺𝑝 imply the partitioned global system of
equilibrium equations in the iFEM formulation. The unknown nodal
displacements can be computed by solving these equations to recon-
struct full-field displacement profiles.

3. Numerical validation

The validation of the inverse formulation requires discrete strain
data. This data can be obtained in two ways. Experimental strain
data is collected using strain gauges on the structural system. On the
other hand, synthetic strain data can be obtained through high-fidelity
forward FEM analysis. Under similar loading and boundary conditions,
the strain data acquired through FEM analysis can reliably duplicate the
experimental strain data obtained from the experimental setup. Since
FEM is a well-established analysis technique, the numerical validation
of inverse formulations via synthetic strain data is widely accepted in
the engineering community as a reliable validation methodology. As
reported in the literature, a similar validation methodology has been

idely used in formulating inverse elements [13,17,28].
The iFEM formulation of the iKS4 inverse shell element is nu-

erically validated, considering famous benchmark problems from
he existing literature. A rigorous numerical validation plan includes
valuating the iKS4 inverse element under in-plane (membrane), out-
f-plane (bending), and general loading for curved shell structures.
umerical modeling is widely employed in research and development

o simulate real-world phenomena. Since numerical models, such as
FEM, rely on various assumptions and simplifications, validating them
gainst analytical solutions is essential to confirm their accuracy and re-
iability for real-world applications. However, when analytical solutions
re not available for complex cases, the high-fidelity FEM reference
olutions allow for the reliable comparison of iFEM results.

The numerical cases considered in this section serve two essential
purposes: first, to validate the iKS4 inverse shell element, and second,
to compare its performance with the existing iQS4 inverse shell ele-
ment [13]. In both cases, shear deformation effects are neglected when
nalyzing thin plate and shell structures, aligning with the mechanics
f these problems. Kefal et al. [13] previously recommended this

assumption for implementing the iQS4 inverse element in thin shell
structures. However, in the iKS4 inverse formulation, the exclusion
of shear deformation is inherent, as it is based on Classical Plate
Theory (CPT). The absence of shear deformation terms in the proposed
iKS4 inverse formulation simplifies the weighted least squares error
functional in iFEM analysis. In contrast, the iQS4 formulation, based on
FSDT assumptions, requires the computation of numerical transverse
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Fig. 4. 1, 2, and 3 Point Gauss locations in master element.
Fig. 5. Cantilevered beam — free edge under shear load.

shear strains due to the inclusion of shear deformation terms. Even
when the shear deformation effects are neglected in the iQS4 element, it
does not provide the same computational advantage as the iKS4 inverse
formulation, which inherently benefits from excluding these terms and
necessitates fewer onboard sensors.

In iFEM applications, two sensor arrangements are typically em-
ployed during the numerical validation: dense and sparse configu-
rations. Dense sensor arrangements are used to assess the accuracy
of iFEM formulations, providing discrete strain data to all inverse
elements for precise validation. In contrast, Sparse sensor arrangements
provide strain measures for fewer inverse elements to evaluate the
robustness of the iFEM algorithm, simulating its performance under
real-world practicable onboard sensor arrangements. To ensure an
intuitive and accurate comparison, the numerical validation of iKS4
and iQS4 inverse shell elements is conducted under a standardized
dense sensor arrangement. Another factor influencing the accuracy of
iFEM analysis is the strain rosette’s location within the inverse element
domain.

In iFEM analysis, the strain rosette can be placed at various locations
within the inverse element domain, including commonly used posi-
tions like Gauss points, as illustrated in Fig. 4. The choice of discrete
locations can be optimized based on factors such as the geometric
configuration of the engineering structure, loading conditions, and
critical stress areas. For this study, the strain rosette is consistently
placed at the center of the inverse element domain (single point Gauss
location) for all numerical validation cases under consideration.

3.1. In-plane loading (Case - I)

The plane stress condition represents one of the simplest cases
in two-dimensional structural analysis. Analytical solutions exist for
various problems involving point loads and edge tractions. Several
studies [29,30] have employed shear-loaded cantilever beams to assess
the membrane behavior of newly developed elements. In this work, we
revisit this problem to evaluate the membrane response capabilities of
the newly formulated iKS4 inverse shell element.

A rectangular beam with dimensions 𝑏 = 1.2192m (length), 𝑎 =
0.3048m (width), and a constant cross-sectional thickness of 𝑡 =
25.4mm, is considered. The left edge is fixed, while the right edge is
subjected to a resultant shear load of 𝑃 = 177.929 kN, as illustrated
6 
Fig. 6. Case I - Vertical displacement profiles: (a) FEMRef, (b) iFEM iKS4, and (c) iFEM
iQS4.

in Fig. 5. The beam material is homogeneous and isotropic, with an
elastic modulus 𝐸 = 206.84GPa and Poisson’s ratio 𝜈 = 0.25. According
to the elasticity solution by Timoshenko [31], the maximum vertical
displacement at the tip of the free edge is given as:

𝑉 = 4𝑃 𝑎3
𝐸 𝑡𝑏3 +

2(4 + 5𝜈)𝑃 𝑎
4𝐸 𝑡𝑏 = 9.025 mm (35)

A high-fidelity FEM analysis is conducted to solve the cantilevered
beam benchmark problem. The maximum vertical displacement ob-
tained from the forward FEM analysis is 9.039mm (as shown in Fig. 6a),
which conforms well with the analytical solution. The displacement
field from the high-fidelity FEM solution is used to generate synthetic
discrete strain measures at the centroids of the inverse elements. These
discrete strain measures are utilized in the iFEM analysis using the
proposed inverse formulation and the iQS4 inverse element. For mem-
brane problems, strain sensors on either side of the beam generate the
required strain data, as the displacement field remains constant through
the thickness under in-plane loading conditions.

The iFEM analysis uses two configurations of the iKS4 inverse shell
element: one configuration neglects the drilling rotation (𝜃𝑧) degrees of
freedom (DOF), given that drilling rotations are hierarchical and can be
omitted during analysis. In contrast, the other configuration includes
the drilling rotation (𝜃𝑧). This approach offers a detailed insight into
the impact and significance of drilling rotations on the performance of
the iKS4 inverse shell element.

The reconstructed vertical displacement profiles for the 16 × 8
inverse discretization are shown in Figs. 6b and 6c for the iKS4 inverse
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Fig. 7. Case I - Influence of inverse discretization on reconstructed vertical displace-
ment.

element, omitting drilling rotations in the former and including them in
the latter. Since the membrane formulation is the same for the iKS4 and
iQS4 inverse shell elements, their reconstructed displacement profiles
are consequently similar. The absolute error in the reconstruction of the
maximum vertical displacement, compared to the analytical solution
(Eq. (35)), is 7.09% when drilling rotations are omitted and reduces to
1.49% when drilling rotations are included. However, the reconstructed
displacement contours for both configurations are virtually indistin-
guishable as compared to the high-fidelity FEM reference solution
shown in Figs. 6a.

Fig. 7 illustrates the influence of inverse discretization on the re-
construction of the vertical displacement profile. The convergence plot
demonstrates the monotonic convergence of the reconstructed dis-
placements for both configurations of the iKS4 inverse element (with
and without drilling rotation DOF) and the iQS4 inverse element as
the number of inverse elements increases. The enhanced membrane
response capability of iKS4 and iQS4 inverse shell elements is due to
hierarchical drilling rotation, which improves their ability to capture
in-plane rotational effects, resulting in more accurate membrane be-
havior and faster convergence. Without drilling rotation DOF, the iFEM
results slowly converge to the elasticity solution using more inverse
elements, consequently necessitating more onboard strain sensors.

The high-fidelity FEM reference solution in Fig. 8a shows the max-
imum horizontal displacement of 1.635mm. Reconstructed horizontal
displacement contours of iKS4 (with and without drilling rotation DOF)
and iQS4 inverse elements are in close agreement with the high-fidelity
FEM reference solution, as shown in Fig. 8b and 8c. The contours accu-
rately reveal the symmetric squeezing and stretching phenomena along
the upper and lower edges of the cantilevered beam. When drilling
rotations were not included, the iKS4 inverse element reconstructed
a maximum horizontal displacement of 1.510 mm (absolute error of
7.64%). Upon including the drilling DOF, both the iKS4 and iQS4
inverse elements reconstructed a maximum horizontal displacement of
1.605 mm (absolute error of 1.83%).

The iFEM convergence chart presented in Fig. 9 illustrates the
monotonic convergence of the reconstructed displacements for both
configurations of the iKS4 inverse element (with and without drilling
rotation DOF) and the iQS4 inverse element as the number of inverse
elements increases. As anticipated, the iKS4 inverse shell element with
drilling rotations demonstrates rapid convergence to the reference FEM
solution, exhibiting behavior that is identical to that of the iQS4 inverse
shell element. However, the straightforward inverse formulation of the
iKS4 element is computationally more efficient, as its error functional
7 
Fig. 8. Case I - Horizontal displacement profiles: (a) FEMRef, (b) iFEM iKS4, and (c)
iFEM iQS4.

Fig. 9. Case I - Influence of inverse discretization on reconstructed horizontal displace-
ment.

Table 1
Analysis details of Case - I.

Analysis Sensors Max 𝐯𝐲 Max 𝐮𝐱 Error [𝐯𝐲]

FEM - - - - - 9.039mm 1.635mm 0.15% (abs)
iFEM-iKS4 16 × 8 8.890mm 1.605mm 1.49% (abs)
iFEM-iQS4 16 × 8 8.890mm 1.605mm 1.49% (abs)
Analytical Solution [31] 9.025 mm

does not include shear components. This simplification reduces nu-
merical complexity and incurs less computational overhead than more
complex formulations that account for shear effects. The analysis details
for Case-I are summarized in Table 1.

The analysis of the in-plane loading case highlights that the iKS4
element effectively reconstructs horizontal and vertical displacement
profiles, achieving accuracy identical to that of the iQS4 inverse el-
ement. Both inverse shell elements incorporate drilling rotation DOF
to improve element membrane behavior. However, distinctions in the
reconstructed displacements between the iKS4 and iQS4 elements will
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Fig. 10. Simply supported square plate under arbitrary uniform transverse load.

emerge in subsequent cases involving bending behavior, as these ele-
ments are based on different plate theory assumptions.

3.2. Out-of-plane loading (Case - II)

Numerical validation for the pure bending case is performed by
reconsidering a classical textbook problem [31] to validate the pro-
posed inverse formulation within the iFEM framework. An isotropic
square plate with simply supported boundary conditions is subjected
to a uniform transverse pressure 𝑞𝑜, as depicted in Fig. 10. The length
𝑎, width 𝑏, and thickness 𝑡 of the plate are arbitrary, as the validation
is based on dimensionless parameters, where 𝑎 = 𝑏 = 𝑐 and 𝑡 ≪ 𝑐, with
𝑐 being the characteristic length of the plate.

For this case, a square plate (𝑎 = 𝑏 = 1) m is subjected to a uniform
transverse pressure of 𝑞𝑜 = 10 kN, and the thickness is set to 𝑡 = 0.01
m, with material properties of 𝐸 = 200GPa and 𝜈 = 0.3. Under given
conditions, the maximum dimensionless transverse deflection [31] at
the center of the plate is given as:

�̄�𝑚𝑎𝑥 = 𝑤 × 𝐷
𝑞𝑜𝑎4

= −4.062 × 10−3 (36)

where 𝐷 = 𝐸 𝑡3∕12(1 − 𝜈2) in the above dimensionless transverse
displacement expression.

A high-fidelity FEM analysis is performed to simulate the analytical
solution and corresponding deformation profiles (as shown in Fig. 11a).
The normalized maximum out-of-plane displacement at the center of
the simply supported plate is obtained as �̄�𝑚𝑎𝑥 = −4.062 × 10−3,
conforming well to the analytical solution outlined in Eq. (36). Since
the deformations are purely due to bending, the strain distribution is
anti-symmetric relative to the mid-plane. As the mid-plane undergoes
no stretching, the surface strain values differ only in sign across the
thickness. Consequently, strain measurements are needed only on ei-
ther of the plate surfaces (e.g., 𝑧 = ±𝑡∕2). These discrete strain measures
are subsequently used in the iFEM analysis to validate the iKS4 inverse
element numerically.

The dimensionless transverse displacement reconstructed by the
iKS4 inverse element using a 10 × 10 discretization scheme closely
conforms to the analytical solution, showing an absolute error of only
0.12% in the maximum displacement (11b). The resulting displace-
ment contour is virtually indistinguishable from the high-fidelity FEM
analysis. Similarly, the iQS4 inverse element provides a reconstructed
displacement field that agrees with the reference solution as shown in
Fig. 11c. However, iQS4 converges slower when dealing with thin plate
structures. To achieve comparable accuracy against the iKS4 inverse
8 
Fig. 11. Case II — Transverse displacement profiles: (a) FEMRef, (b) iFEM iKS4, and
(c) iFEM iQS4.

element, iQS4 requires a finer 40 × 40 discretization. It yields an
absolute error of 0.14% in predicting the maximum displacement at
the center of the simply supported plate. Enhanced continuity of the
discrete Kirchhoff shape functions in iKS4 inverse formulation allows
for a coarser discretization while still accurately capturing the bending
behavior of thin plates, with minimal impact on iFEM accuracy.

Fig. 12 illustrates the iFEM convergence trends for iKS4 and iQS4
inverse shell elements. It is evident from the chart that the iFEM
solution approaches the analytical solution as the number of inverse
elements increases. Notably, the iKS4 inverse element demonstrates
faster convergence, requiring fewer inverse elements to reconstruct the
bending response effectively. This efficiency is paramount for monitor-
ing dynamic structural changes, enabling timely detection of potential
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Fig. 12. Case II — Influence of inverse discretization on reconstructed transverse
displacement.

Table 2
Analysis details of Case — II.

Analysis Sensors Max �̄�𝐳 Error [�̄�𝐳]

FEM - - - - - −4.062 × 10−3 0.00% abs
iFEM-iKS4 10 × 10 −4.067 × 10−3 0.12% abs
iFEM-iQS4 10 × 10 −4.012 × 10−3 1.23% abs
Analytical Solution [31] −4.062

damage or anomalies while minimizing data processing time and com-
putational costs. By requiring fewer onboard sensors, the iKS4 inverse
element offers significant flexibility in sensor installation and substan-
tially saves costs across various aspects of SHM applications. Therefore,
for thin shell structures, using the iKS4 element improves the practical-
ity and effectiveness of SHM systems in ensuring structural safety and
reliability. Table 2 summarizes the key details of the iFEM analysis for
this case.

3.3. General loading (Case - III)

General loading condition is now considered for a curved thin shell
structure. The pinched cylinder with diaphragm boundary conditions is
a well-known benchmark and is considered one of the most severe tests
for both inextensional bending modes and complex membrane states. It
is also part of the obstacle course for shell elements [32]. The cylinder,
with a length 𝑙 = 600, radius 𝑟 = 300, and thickness 𝑡 = 3, is subjected to
a unit point load 𝑃 = 1 at the center on opposite sides, as illustrated in
Fig. 13. The cylinder has rigid end diaphragms; its material properties
are 𝐸 = 3.0 × 106 and 𝜈 = 0.3. Due to the problem’s symmetry, only
one octant of the cylinder is analyzed using FEM and iFEM analysis (as
shown in Fig. 13). The discretized geometry is subjected to symmetric
boundary conditions along the sides AB, BC, and CD, whereas it is
subjected to rigid diaphragm boundary conditions along the AB end. A
radial point load −𝑃∕4 is applied on the corner at point C. The reference
solution for this case results in a maximum transverse displacement of
𝑤𝑧 = −1.824 × 10−5 at the point of load application.

First, the high-fidelity FEM analysis is accomplished to replicate
the reference result. The numerical solution gradually and consistently
convergences to the reference value with the maximum radial displace-
ment of −1.821 × 10−5. The maximum displacement appears at a highly
localized place (as depicted in Fig. 14a), precisely at the node where the
radial point load is applied. This localized displacement is due to the
concentrated nature of the load, which causes a significant deformation
at the point of application. Synthetic strain data is generated based on
the displacement profile obtained from the high-fidelity model for sub-
sequent iFEM analysis. For three-dimensional structures, discrete strain
measures are required on both surfaces for accurate reconstruction of
9 
Fig. 13. Pinched cylinder with diaphragm boundary conditions.

Table 3
Analysis details of Case — III.

Analysis Sensors Max �̄�𝐳 Error [�̄�𝐳]

FEM - - - - - −1.821 × 10−5 0.16% abs
iFEM-iKS4 24 × 24 −1.751 × 10−5 4.00% abs
iFEM-iQS4 24 × 24 −1.694 × 10−5 7.12% abs
Reference Solution [32] −𝟷.𝟾𝟸𝟺 × 𝟷𝟶−𝟻

deformation profiles.
The comparison between the iKS4 and iQS4 inverse shell elements

demonstrates a distinct advantage of the iKS4 in terms of both ac-
curacy and sensor efficiency. The iKS4 element, using a 24 × 24
discretization, reconstructs a maximum radial deflection of −1.751 ×
10−5 with an absolute error of 4.00%, despite the complexity of the
problem (Fig. 14b). Conversely, the iQS4 element, even with a denser
32 × 32 discretization, reconstructs a slightly lower maximum radial
displacement of −1.744 × 10−5 with a higher absolute error of 4.38% as
depicted in Fig. 14(c). This comparison highlights that the iKS4 element
provides more accurate displacement reconstruction with fewer inverse
elements. Since the maximum displacement occurs in a highly localized
region, finer discretization is required to reconstruct the displacement
profile accurately. Interpolating discrete strain data (available at cen-
troids) to other locations within the inverse elements can introduce
slight interpolation errors in regions of steep displacement gradients.
Consequently, a finer mesh is essential to capture these localized effects
accurately. Table 3 summarizes the analysis details for Case III.

The influence of inverse discretization on the accuracy of dis-
placement profile reconstruction is also studied for both iKS4 and
iQS4 inverse shell elements (as shown in Fig. 15). With the increase
in inverse elements, both iKS4 and iQS4 monotonically converge to
the reference solution. The convergence trend lines clearly show that
the iKS4 inverse element demonstrates rapid convergence compared
to the iQS4 inverse element. This highlights the superior accuracy
of the iKS4 element in displacement reconstruction, requiring fewer
inverse elements while offering improved computational efficiency and
cost savings. Hence, the proposed inverse shell formulation based on
discrete Kirchhoff assumptions can be confidently used for thin shell
structures in real-time SHM applications.

4. SHM applications of iKS4 inverse element

After successful numerical validation of the proposed inverse for-
mulation, the iKS4 inverse shell element is now considered for real-
world SHM applications, including shape sensing, defect identification,
and structural damage assessment. In industrial SHM applications,
determining the appropriate number of sensors for shape sensing is
influenced by various factors, i.e., available space for onboard sensor
installation, budget constraints, structural health, and computational
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Fig. 14. Case III — Transverse displacement profiles: (a) FEMRef, (b) iFEM iKS4, and
(c) iFEM iQS4.

accuracy and efficiency. Optimal sensor arrangement can be achieved
by optimizing the iFEM framework for inverse element discretization,
sensor locations within the spatial domain, and weighting functions
in the error functional. More advanced techniques, such as sensor fu-
sion and signal processing, enhance iFEM robustness under practicable
sensor arrangement. Given that each structure experiences unique in-
service loading conditions, no universal closed-form solution exists for
determining optimal sensor arrangements across different structural
systems.
10 
Fig. 15. Case III — Influence of inverse discretization on reconstructed transverse
displacement.

In subsequent numerical cases, sparse sensor arrangements are de-
fined using coarser discretizations and fewer sensors than dense sensor
arrangements. The objective is to assess the robustness of the proposed
iFEM algorithm using fewer sensors while maintaining consistency in
variable factors influencing the error functional, i.e., sensor locations
and weighting functions. Strain sensors are fixed at the centroid of the
inverse elements for computing synthetic strain data. For sparse sensor
arrangements, When discrete strain measures are available within an
inverse element, the value of weighting coefficients is set to unity,
i.e., 𝑤𝑒 = 𝑤𝑘 = 1. Conversely, when discrete strain measures are miss-
ing, these coefficients are set to minimal values, i.e., 𝑤𝑒 = 𝑤𝑘 = 10−3.
This approach minimizes variations by keeping these factors constant,
allowing for a more straightforward interpretation of the iFEM results.

4.1. Shape-sensing of aircraft fuselage panel

Consider a wide-body aircraft operating at a cruise altitude of
39,000 ft while the cabin pressure is maintained at an equivalent
altitude of 8000 ft. This configuration results in a pressure differ-
ential of 8.06 psi (approximately 0.56 bar). Under these conditions,
the fuselage experiences a uniform pressure load of 55,571.71 Pa,
accurately reflecting the operational in-service scenarios where cabin
pressurization induces deformation within the fuselage structure.

The aircraft fuselage is constructed from thin, stiffened curved
panels, which are securely screwed and sealed along their edges to
the main airframe. This arrangement effectively simulates a clamped
boundary condition (BC) on all sides, enhancing the structural integrity
required to withstand aerodynamic loads and internal pressures during
flight.

The geometry of the fuselage panel, illustrated in Fig. 16, includes
a radius of 𝑟 = 1.960 m and a thickness of 𝑡 = 0.002 m, with dimensions
𝑎 = 0.563 m, 𝑏 = 0.795 m, 𝑐 = 0.198 m, and 𝑑 = 0.281 m. Reinforcing the
panel are three stiffeners, each with a height of 𝑙 = 0.019 m, positioned
along the width of the panel, in addition to a main stiffener located
at the center, extending along its length, with a height of 𝑝 = 0.038
m. The panel is fabricated from Aluminum Alloy 2024-T3, a material
commonly employed in aerospace applications due to its favorable
strength-to-weight ratio. The material properties are characterized by
Young’s modulus of 𝐸 = 73.1 GPa and a Poisson’s ratio of 𝜈 = 0.33.

In this case, the fuselage stiffened panel is initially analyzed via a
high-fidelity FEM model using 4160 structured quadrilateral elements.
Under the specified cabin pressurization conditions, the stiffened panel
experiences significant transverse deformations, often called ‘‘bulging,’’
which usually occurs between the frames and stringers. This defor-
mation results in a wavy surface profile influencing aerodynamic effi-
ciency. Fig. 17a illustrates the stiffened panel’s transverse displacement
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Fig. 16. Case IV — Aircraft fuselage stiffened panel under cabin pressurization.

profile, highlighting a maximum transverse displacement of 1.668 mm
at the center of the stiffened panel. The displacement field obtained
through the high-fidelity FEM model generates synthetic strain data and
serves as the reference solution for iFEM analysis.

For subsequent shape-sensing analysis, the iFEM framework utilizes
a considerably coarse discretization scheme with 260 iKS4 inverse shell
elements mapping the entire geometric domain (illustrated in Fig. 17b).
Only 62 inverse elements with discrete strain measures are provided
to reconstruct the displacement field considering a practicable sensor
arrangement scenario. The inverse elements with discrete strain mea-
sures are highlighted in yellow (refer Fig. 17b), and sensor locations
are indicated in red dots at the centroids of inverse elements.

The reconstructed transverse displacement contour shows good
agreement with the reference displacement contour obtained from the
reference FEM solution as depicted in Fig. 17c. Notably, the maximum
reconstructed transverse displacement exhibits an absolute error of only
2.4%, displaying the effectiveness of the iKS4 inverse shell element in
capturing the deformation characteristics of the fuselage under cabin
pressurization conditions. It offers significant advantages over FSDT-
based inverse elements in addressing the challenges of thin aerospace
structures, providing enhanced reliability and computational efficiency
for shape-sensing applications. The proposed inverse formulation re-
quires fewer onboard strain sensors while accurately reconstructing
full-field displacement profiles. While the sparse sensor arrangement
explored in this study has proven effective for this scenario, it aims
to inspire further designs for applications involving more complex
structures.

4.2. Detecting material discontinuities

In aerospace applications, the potential for Foreign Object Damage
(FOD), bird strikes on aircraft, and impacts from space debris on
spacecraft often result in material discontinuities necessitating real-
time detection as part of SHM implementation. Accurate assessment of
these discontinuities is crucial for effective decision-making regarding
mission continuation or termination, ensuring the safety and reliability
of aerospace operations.

The presence of material discontinuities can be effectively simulated
using a plate under tensile loading with a geometric discontinuity in
the form of a hole at the center of the plate. The stress concentration
effects around the hole can be successfully reconstructed using iFEM
analysis. For the given scenario, consider a plate of length 𝑎 = 0.1 m,
width 𝑏 = 0.3 m, and thickness 𝑡 = 0.001 m subjected to tensile loading
𝑃 = 1.2 × 106 N/m along the horizontal direction as illustrated in Fig. 18.
11 
Fig. 17. Case IV — Transverse displacement profile: (a) FEMRef, (b) Sparse sensor
arrangement, and (c) iFEM iKS4 under sparse sensor arrangement.

Fig. 18. Case V — Material discontinuity defect under tensile loading.
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Fig. 19. Case V — Horizontal displacement profiles: (a) FEMRef and (b) iFEM iKS4.

The material discontinuity in the form of a punched hole is modeled at
the center of the plate having a radius 𝑟 = 0.003 m. Symmetric boundary
conditions restricting horizontal and vertical translations are applied
along green and red lines. Isotropic material properties considered for
the plates are 𝐸 = 200 GPa and 𝜈 = 0.3.

The high-fidelity FEM analysis is conducted in the presence of a
geometric discontinuity, and discrete strain data is generated based on
the reference displacement field (shown in Fig. 19a). Subsequently, the
iFEM analysis employs 32 structured inverse quadrilateral elements to
reconstruct the horizontal displacement field, as illustrated in Fig. 19b.
The reference and reconstructed displacement contours are virtually
indistinguishable; moreover, the smaller size of the material disconti-
nuity (modeled as a hole) does not introduce significant variations in
the reference and reconstructed displacement fields. To overcome the
challenge of detecting minor defects from the reconstructed displace-
ment field, equivalent von Mises strains can be plotted to identify and
quantify subtle discontinuities. These equivalent von Mises strains can
be computed using the following mathematical expression:

𝜀𝑣𝑚 =
√

(𝜀1)2 − 𝜀1𝜀2 + (𝜀2)2 (37)

where, 𝜀1 and 𝜀2 can be calculated as:
⎧

⎪

⎨

⎪

⎩

𝜀1 = 𝜀𝑥𝑥+𝜀𝑦𝑦
2 +

√

( 𝜀𝑥𝑥−𝜀𝑦𝑦
2

)2
+
( 𝛾𝑥𝑦

2

)2

𝜀2 = 𝜀𝑥𝑥+𝜀𝑦𝑦
2 −

√

( 𝜀𝑥𝑥−𝜀𝑦𝑦
2

)2
+
( 𝛾𝑥𝑦

2

)2

Here, 𝜀𝑥𝑥, 𝜀𝑦𝑦, and 𝛾𝑥𝑦 are the in-plane normal and shear strain com-
ponents. These von Mises strain contours facilitate the identification of
localized defects by highlighting abnormal strain distributions within
the structure.

The reconstructed displacement field is used to compute the von
Mises strain field. Fig. 20 presents two von Mises strain contours: one
for the plate with a material discontinuity defect and the other for
the defect-free plate. The region of high von Mises strain gradient in
Fig. 20a accurately identifies the location of the punched hole in the
defective plate. In contrast, Fig. 20b illustrates the von Mises strain
contour for the plate without the defect, allowing for a direct com-
parison between the two cases. This comparison highlights the distinct
differences in strain distribution due to the geometric discontinuity.
The equivalent von Mises strain contour demonstrates the iKS4 inverse
element’s ability to detect material discontinuities, highlighting its
potential for aerospace SHM applications. It is particularly effective for
identifying and resolving minor geometric defects in thin structures.
12 
Fig. 20. Case V — iFEM iKS4 reconstructed equivalent von Mises strains: (a) With
material discontinuity and (b) Without material discontinuity.

Fig. 21. Case VI — Material degradation defect under transverse loading.

4.3. Detecting material degradation

In practical engineering applications, not all structural defects ap-
pear as geometric discontinuities, as discussed in the previous case.
Material degradation from cyclic loading is a significant concern in
aerospace structures, as repeated stress can cause fatigue and gradual
deterioration of material properties. Material degradation effects are
often latent, not readily appearing as visible structural defects or mate-
rial discontinuities. The hidden nature of these damages complicates
early detection, posing risks to the integrity and safety of critical
airframe components. Therefore, an effective SHM system enables early
detection of material degradation and facilitates timely maintenance,
thereby ensuring the reliability and safety of aerospace structures.

In this analysis, the geometric dimensions and material properties of
the structural specimen considered in the previous Section 4.2 remain
unchanged. However, the plate’s left and right edges are fixed, and a
uniform transverse pressure of 𝑞𝑜 = 1000 Pa is applied. The material
discontinuity is now replaced with a material degradation defect, as
illustrated in Fig. 21. To effectively model this defected material do-
main in FEM analysis, a damage degradation factor, 𝜆, is introduced,
where 0 < 𝜆 < 1. 𝜆 = 1 represents a healthy structural state that
retains its material properties, while 0 < 𝜆 < 1 corresponds to the
degraded state of the material. In high-fidelity forward FEM analysis,
the material degradation factor is set to 𝜆 = 0.6 and is incorporated into
the element stiffness formulation to represent the degraded stiffness
matrix accurately. The displacement field obtained from the reference
FEM analysis is then used to generate discrete strain measures for
the subsequent iFEM analysis. For brevity, reconstructed displacement
profiles are discussed here to access the defect resolution capability of
the iKS4 inverse shell element.

The iFEM results for the reconstructed transverse deflection 𝑤𝑧
and bending rotations 𝜃 and 𝜃 are presented in Fig. 22a, 22b, and
𝑥 𝑦
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Fig. 22. Case VI — iFEM iKS4 reconstructed displacement profiles: (a) Transverse
displacement, (b) Bending rotation 𝜃𝑥, and (c) Bending rotation 𝜃𝑦.

Fig. 23. Case VI — iFEM iKS4 reconstructed equivalent von Mises strains.

22c, respectively. While the 𝑤𝑧 and 𝜃𝑦 displacement contours exhibit a
slight bias in the regions affected by the material degradation defect,
the bending rotation contour for 𝜃𝑥 illustrates a more pronounced
displacement variation within the defective domain of the plate. The
sensitivity of the reconstructed transverse displacement 𝑤𝑧 and bending
rotations 𝜃𝑥 and 𝜃𝑦 to the material degradation defect depends on the
defect’s placement and orientation, as well as the given boundary and
loading conditions.

In the previous case, the von Mises strain contour exhibited reliable
sensitivity for detecting material discontinuities that can be physically
measured, facilitating practical structural health assessments based
on defect sizing following OEM guidelines. However, in the case of
material degradation defects, the von Mises strain contour (as shown
in Fig. 23) is insufficient for effective defect detection and structural
health assessment during field and intermediate-level maintenance op-
erations. Therefore, in such scenarios, employing damage index criteria
based on von Mises strains offers more accurate insights into defect
location, sizing, and a comprehensive structural integrity evaluation.
The damage index criterion is more general and allows for structural
health assessment in the presence of various defects, including material
degradation, material discontinuities (cracks, voids), delaminations,
and corrosion. Mathematically, the damage index can be computed as:

DI
(

𝜀𝑣𝑚
)

=
|

|

|

𝜀𝑣𝑚 − 𝜀∗𝑣𝑚 |

|

| × 100% (38)

|

|

𝜀𝑚𝑎𝑥𝑣𝑚 |

|

13 
Fig. 24. Case VI — iFEM reconstructed damage index profile: (a) iKS4 inverse shell
element and (b) iQS4 inverse shell element.

where 𝜀𝑣𝑚 represents the equivalent von Mises strain calculated using
the iFEM framework under the assumption of intact material and 𝜀𝑚𝑎𝑥𝑣𝑚
denotes the maximum reconstructed von Mises strain observed during
the analysis. The term 𝜀∗𝑣𝑚 represents the reconstructed von Mises
strains for structures exhibiting material degradation defects. In SHM
applications, the damage index (DI) is a valuable metric that quantifies
the severity of material degradation and enables informed decision-
making regarding preventive maintenance to ensure structural safety
and reliability.

Fig. 24 presents the damage index (DI) contours for the given case,
providing a comparative analysis of the iKS4 and iQS4 inverse shell
elements. The damage index values assist in interpreting structural
integrity, with a DI ≈ 10 typically classified as minor damage. While
such damage may not significantly compromise structural integrity, it
does warrant ongoing monitoring.

Fig. 24a shows that the iKS4 inverse element performs better in
structural damage assessment by providing precise damage localiza-
tion, higher DI sensitivity, and smoother gradient transitions. The
contour plot illustrates a peak DI of 12.00 at the center of the struc-
ture, accurately identifying and outlining a well-defined damage zone.
In contrast, the iQS4 inverse element produces a broader and less
precise damage zone, with a peak DI value of 11.13, as depicted in
Fig. 24b. The broader damage zone may result in overestimating the
affected area while underestimating the damage severity, leading to
inefficient and less reliable structural health evaluation. This analysis
highlights the utility of the iKS4 inverse shell element in assessing struc-
tural health and identifying areas requiring preventive maintenance,
contributing to the overall reliability and safety of aerospace structures.

5. Conclusion

This study uses discrete Kirchhoff assumptions to introduce a four-
node quadrilateral inverse shell element (iKS4) for thin plates and
shell structures commonly used in aerospace. The inverse formulation
neglects transverse shear effects, consistent with discrete Kirchhoff
assumptions, simplifies the error functional, and enhances computa-
tional efficiency compared to existing inverse elements based on First-
Order Shear Deformation Theory (FSDT). Incorporating the drilling de-
gree of freedom (DOF) improves interelement continuity and improves
compatibility between the membrane and bending behavior.

The proposed inverse formulation is numerically validated against
established benchmark problems under in-plane, bending, and mixed-
loading conditions. Its full-field displacement reconstruction capabil-
ity is compared to the existing iQS4 inverse shell element. The pro-
posed formulation exhibits numerical stability and outperforms the
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iQS4 inverse shell element in convergence rates for pure bending and
eneral loading conditions. Consequently, the iKS4 inverse element
ffers computational advantage and improved accuracy while reduc-
ng the number of onboard sensors needed in real-time shape-sensing
pplications.

After extensive numerical validation, the iKS4 inverse shell element
s further evaluated for Structural Health Monitoring (SHM) applica-
ions, considering real-world cases from the aerospace industry. The
nverse formulation shows reliable accuracy in shape-sensing and defect

resolution studies, successfully detecting and quantifying material dis-
continuities and degradation defects. These capabilities are critical for

odern health monitoring systems, facilitating efficient maintenance
cheduling while ensuring airframe reliability and safety. Eventually,
he iKS4 inverse shell element, with its straightforward inverse for-
ulation and computational efficiency, holds significant potential for

erospace Structural Health Monitoring (SHM) applications by reducing
ensor requirements and minimizing overall project costs.
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Appendix

A.1. Quadrilateral basis functions

The explicit forms of isoparametric bi-linear basis functions used
or the quadrilateral inverse element are expressed here. These basis

functions are utilized for geometric mapping and interpolation of the
in-plane translational displacement variables.

𝑁1 = −(𝜂 − 1)(𝜉 − 1)
4

(A.1.1a)

𝑁2 = −(𝜂 − 1)(𝜉 + 1)
4

(A.1.1b)

𝑁3 =
(𝜂 + 1)(𝜉 + 1)

4
(A.1.1c)

𝑁4 = −(𝜂 + 1)(𝜉 − 1)
4

(A.1.1d)

where 𝜉 and 𝜂 are the natural coordinates of the four-node quadrilateral
element.

Similarly, the explicit forms of quadratic basis functions for the
ight-node quadrilateral element are outlined below for interpolating
ut-of-plane displacement variables.

𝑆1 = −1
4
(1 − 𝜉)(1 − 𝜂)(1 + 𝜉 + 𝜂) (A.1.2a)

𝑆2 = −1
4
(1 + 𝜉)(1 − 𝜂)(1 − 𝜉 + 𝜂) (A.1.2b)

𝑆3 = −1
4
(1 + 𝜉)(1 + 𝜂)(1 − 𝜉 − 𝜂) (A.1.2c)

𝑆4 = −1
4
(1 − 𝜉)(1 + 𝜂)(1 + 𝜉 − 𝜂) (A.1.2d)

𝑆5 =
1
2
(1 − 𝜉2)(1 − 𝜂) (A.1.2e)

𝑆 = 1 (1 + 𝜉)(1 − 𝜂2) (A.1.2f)
6 2

14 
𝑆7 =
1
2
(1 − 𝜉2)(1 + 𝜂) (A.1.2g)

8 =
1
2
(1 − 𝜉)(1 − 𝜂2) (A.1.2h)

Here, 𝜉 and 𝜂 are the natural coordinates of the eight-node quadri-
ateral element.

A.2. Drilling rotation DOF

The anisoparametric shape functions 𝐿𝑖 and 𝑀𝑖 are crucial for
capturing rotational degrees of freedom in finite element models. These
functions allow accurate representation of drilling rotations and are
defined as follows for the inverse quadrilateral element:

𝐿1 =
𝑆8𝑦14 − 𝑆5𝑦21

8
(A.2.1a)

2 =
𝑆5𝑦21 − 𝑆6𝑦32

8
(A.2.1b)

𝐿3 =
𝑆6𝑦32 − 𝑆7𝑦43

8
(A.2.1c)

4 =
𝑆7𝑦43 − 𝑆8𝑦14

8
(A.2.1d)

𝑀1 =
−𝑆8𝑥14 + 𝑆5𝑥21

8
(A.2.2a)

𝑀2 =
−𝑆5𝑥21 + 𝑆6𝑥32

8
(A.2.2b)

𝑀3 =
−𝑆6𝑥32 + 𝑆7𝑥43

8
(A.2.2c)

4 =
−𝑆7𝑥43 + 𝑆8𝑥14

8
(A.2.2d)

Here, 𝑆5 to 𝑆8 are basis functions for the eight-node quadrilateral
lement defined in Eqs. (A.1.2e)–(A.1.2h), and the nodal distances 𝑥𝑖𝑗

and 𝑦𝑖𝑗 defined as:

𝑥14 = 𝑥1 − 𝑥4, 𝑦14 = 𝑦1 − 𝑦4
𝑥21 = 𝑥2 − 𝑥1, 𝑦21 = 𝑦2 − 𝑦1
𝑥32 = 𝑥3 − 𝑥2, 𝑦32 = 𝑦3 − 𝑦2
𝑥43 = 𝑥4 − 𝑥3, 𝑦43 = 𝑦4 − 𝑦3

A.3. Discrete Kirchhoff’s quadrilateral shape functions

In this section, the shape function vectors 𝑯𝑥 and 𝑯𝑦 are defined
in the local element coordinate system based on discrete Kirchhoff
assumptions and proposed by Batoz et al. [26]. The anisoparamet-
ric shape functions satisfy continuity requirements for displacement
and rotation across the element edges, which is crucial for accurate
structural analysis, particularly for thin plates.

𝑯𝑥 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

3
2

(

𝑎5𝑆5 − 𝑎8𝑆8
)

𝑏5𝑆5 + 𝑏8𝑆8
𝑆1 − 𝑐5𝑆5 − 𝑐8𝑆8
3
2

(

𝑎6𝑆6 − 𝑎5𝑆5
)

𝑏6𝑆6 + 𝑏5𝑆5
𝑆2 − 𝑐6𝑆6 − 𝑐5𝑆5
3
2

(

𝑎7𝑆7 − 𝑎6𝑆6
)

𝑏7𝑆7 + 𝑏6𝑆6
𝑆3 − 𝑐7𝑆7 − 𝑐6𝑆6
3
2

(

𝑎8𝑆8 − 𝑎7𝑆7
)

𝑏8𝑆8 + 𝑏7𝑆7

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥
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⎥
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⎥

(A.3.1)
⎣
𝑆4 − 𝑐8𝑆8 − 𝑐7𝑆7 ⎦
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𝑯𝑦 =

⎡
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𝑑5𝑆5 − 𝑑8𝑆8
)

−𝑆1 + 𝑒5𝑆5 + 𝑒8𝑆8
−𝑏5𝑆5 − 𝑏8𝑆8

3
2
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𝑑6𝑆6 − 𝑑5𝑆5
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−𝑆2 + 𝑒6𝑆6 + 𝑒5𝑆5
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𝑑7𝑆7 − 𝑑6𝑆6
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−𝑆3 + 𝑒7𝑆7 + 𝑒6𝑆6
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(

𝑑8𝑆8 − 𝑑7𝑆7
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−𝑆4 + 𝑒8𝑆8 + 𝑒7𝑆7
−𝑏8𝑆8 − 𝑏7𝑆7

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.3.2)

Here, 𝑆5 to 𝑆8 are basis functions for the eight-node quadrilateral
lement defined in Eqs. (A.1.2e)–(A.1.2h). Since the shape functions

are derived based on the local coordinates of the quadrilateral element,
denoted by subscripts 𝑝 and 𝑞, representing the positions of the element
nodes. The expressions for 𝑥𝑝𝑞 , 𝑦𝑝𝑞 , and 𝑟𝑝𝑞 define the geometric rela-
tionships between adjacent nodes, essential for ensuring the consistency
and smoothness of the shape functions.

𝑥𝑝𝑞 = 𝑥𝑝 − 𝑥𝑞 (A.3.3)

𝑦𝑝𝑞 = 𝑦𝑝 − 𝑦𝑞 (A.3.4)

𝑟𝑝𝑞 = 𝑥2𝑝𝑞 + 𝑦2𝑝𝑞 (A.3.5)

𝑤ℎ𝑒𝑟𝑒𝑟 = 5, 6, 7, 8 𝑤ℎ𝑒𝑛𝑝𝑞 = 12, 23, 34, 41

The coefficients 𝑎𝑟, 𝑏𝑟, 𝑐𝑟, 𝑑𝑟, and 𝑒𝑟 depend on the quadrilateral’s
eometry and node positions.

𝑎𝑟 = −𝑥𝑝𝑞
𝑟𝑝𝑞

(A.3.6)

𝑏𝑟 =
3
4
𝑥𝑝𝑞𝑦𝑝𝑞
𝑟𝑝𝑞

(A.3.7)

𝑐𝑟 =
1
4𝑥

2
𝑝𝑞 −

1
2 𝑦

2
𝑝𝑞

𝑟𝑝𝑞
(A.3.8)

𝑟 = − 𝑦𝑝𝑞
𝑟𝑝𝑞

(A.3.9)

𝑒𝑟 =
1
4 𝑦

2
𝑝𝑞 −

1
2𝑥

2
𝑝𝑞

𝑟𝑝𝑞
(A.3.10)

A.4. Coordinate transformation system

Typically, two-dimensional shell elements, formulated by super-
imposing membrane and bending components, are computationally
fficient and relatively simple. In such formulations, the transformation
etween the element’s local and global coordinate systems is crucial,
articularly for the proposed inverse shell element. Given the position
ectors between any two nodes within the element, the unit vectors
efining the local coordinate system (𝑥′, 𝑦′, 𝑧′) can be determined using

vector calculus.
The vector between two nodes 𝑖 and 𝑗 is defined as:

𝐕𝑒
𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑥𝑗 − 𝑥𝑖
𝑦𝑗 − 𝑦𝑖
𝑧𝑗 − 𝑧𝑖

⎫

⎪

⎬

⎪

⎭

𝑒

=

⎧

⎪

⎨

⎪

⎩

𝑥𝑖𝑗
𝑦𝑖𝑗
𝑧𝑖𝑗

⎫

⎪

⎬

⎪

⎭

𝑒

(A.3.11)

The corresponding unit vector is:

�̂�𝑒𝑖𝑗 =
1
𝑙𝑒𝑖𝑗

⎧

⎪

⎨

⎪

𝑥𝑖𝑗
𝑦𝑖𝑗

⎫

⎪

⎬

⎪

𝑒

=
𝐕𝑒
𝑖𝑗

‖𝐕𝑒
𝑖𝑗‖

(A.3.12)
⎩

𝑧𝑖𝑗
⎭
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where 𝑙𝑒𝑖𝑗 is the length of the side between nodes 𝑖 and 𝑗.

𝑙𝑒𝑖𝑗 =
√

(

𝑥2𝑖𝑗 + 𝑦2𝑖𝑗 + 𝑧2𝑖𝑗
)𝑒

(A.3.13)

First, the unit vector along the local 𝑧′ axis is determined to de-
fine the local coordinate system. For the given quadrilateral inverse
element, this transverse local unit vector is calculated using the cross
product of vectors 𝐕𝑒

12 and 𝐕𝑒
13, which lie along nodes 1–2 and 1–3,

respectively.

�̂�𝑒𝑧′ =
𝐕𝑒
12 × 𝐕𝑒

13
‖𝐕𝑒

12 × 𝐕𝑒
13‖

=

⎧

⎪

⎨

⎪

⎩

𝜆𝑧′𝑥
𝜆𝑧′𝑦
𝜆𝑧′𝑧

⎫

⎪

⎬

⎪

⎭

𝑒

(A.3.14)

The local 𝑦′ axis is now defined by intersecting the element with a plane
parallel to the global 𝑦𝑧 plane, and the unit vector along the local 𝑦′
axis is:

�̂�𝑒𝑦′ =
⎧

⎪

⎨

⎪

⎩

0
𝜆𝑦′𝑦
𝜆𝑦′𝑧

⎫

⎪

⎬

⎪

⎭

𝑒

(A.3.15)

Here, the projection of 𝑥′ onto the global 𝑦 axis is zero. The unknown
components 𝜆𝑦′𝑦 and 𝜆𝑦′𝑧 are determined by ensuring the unit vector
̂𝑒𝑦′ maintains a length of unity:
(

𝜆𝑒𝑦′𝑦
)2

+
(

𝜆𝑒𝑦′𝑧
)2

= 1 (A.3.16)

and the second necessary equation comes from the condition that the
calar product of the unit vectors 𝐯𝑒𝑦′ and 𝐯𝑒𝑧′ is zero. Additionally, the
nit vectors �̂�𝑒𝑦′ and �̂�𝑒𝑧′ must be orthogonal, which provides the second
quation:

𝜆𝑒𝑦′𝑦𝜆
𝑒
𝑧′𝑦 + 𝜆𝑒𝑦′𝑧𝜆

𝑒
𝑧′𝑧 = 0 (A.3.17)

From Eq. (A.3.16) and (A.3.17), the unknown components (𝜆𝑦′𝑦, 𝜆𝑦′𝑧) of
the unit vector �̂�𝑒𝑦′ can be obtained easily.

𝜆𝑒𝑦′𝑦 =
1

√

1 +
(

𝜆𝑧′𝑧
𝜆𝑒
𝑧′𝑦

)2
(A.3.18)

𝜆𝑒𝑦′𝑧 =
1

√

1 +
(

𝜆𝑒
𝑧′𝑦

𝜆𝑒
𝑧′𝑧

)2
(A.3.19)

Finally, the unit vector along the local 𝑥′ axis is obtained by taking the
ross product of �̂�𝑒𝑦′ and �̂�𝑒𝑧′ .

�̂�𝑒𝑥′ = �̂�𝑒𝑦′ × �̂�𝑒𝑧′ =
⎧

⎪

⎨

⎪

⎩

𝜆𝑥′𝑥
𝜆𝑥′𝑦
𝜆𝑥′𝑧

⎫

⎪

⎬

⎪

⎭

𝑒

(A.3.20)

These local unit vectors �̂�𝑒𝑥′ , �̂�
𝑒
𝑦′ , �̂�

𝑒
𝑧′ define the direction cosines

hat describe the orientation of the local coordinate system [𝑥′, 𝑦′, 𝑧′]
elative to the global coordinate system [𝑥, 𝑦, 𝑧]. The transformation
atrix 𝑻 can be assembled using Eq. (A.3.14), (A.3.15) and (A.3.20).

𝑻 =

⎛

⎜

⎜

⎜

⎝

𝜆𝑒𝑥′𝑥 𝜆𝑒𝑥′𝑦 𝜆𝑒𝑥′𝑧
𝜆𝑒𝑦′𝑥 𝜆𝑒𝑦′𝑦 𝜆𝑒𝑦′𝑧
𝜆𝑒𝑧′𝑥 𝜆𝑒𝑧′𝑦 𝜆𝑒𝑧′𝑧

⎞

⎟

⎟

⎟

⎠

(A.3.21)

Here, 𝑻 is a 3 × 3 matrix that transforms global coordinates [𝑥, 𝑦, 𝑧] to
local coordinates [𝑥′, 𝑦′, 𝑧′] = 𝑻 [𝑥, 𝑦, 𝑧]. This transformation is critical in
shell element formulations to ensure accurate alignment between local
nd global coordinate systems.

After computing the local stiffness matrix 𝑘′𝑒, it is transformed into
a global stiffness 𝒌𝑒 matrix using the element transformation matrix 𝑻 𝑒.

𝒌𝑒 =
[

𝑻 𝑒]T 𝒌′𝑒
[

𝑻 𝑒] (A.3.22)

For the entire iKS4 inverse shell element, which has six degrees of
freedom (DOFs) per node, the complete element transformation matrix
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is represented as:

𝑻 𝑒 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑻
𝑻 𝟎

𝑻
𝑻

𝑠𝑦𝑚 𝑻
𝑻

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.3.23)

This 24 × 24 block-diagonal matrix 𝑻 𝑒 is used to transform local
element stiffness matrices into the global coordinate system. Its struc-
ure is essential for accurately mapping the local stiffness contributions
o the global system, especially in three-dimensional problems where
ach node has six DOFs (three translations and three rotations).

Data availability

Data will be made available on request.
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