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ABSTRACT
Information retrieval systems have historically relied on explicit
query formulation, requiring users to translate their information
needs into text. This process is particularly disruptive during read-
ing tasks, where users must interrupt their natural flow to formulate
queries. We present DEEPER (Dense Electroencephalography Pas-
sage Retrieval), a novel framework that enables direct retrieval
of relevant passages from users’ neural signals during natural-
istic reading without intermediate text translation. Building on
dense retrieval architectures, DEEPER employs a dual-encoder ap-
proach with specialised components for processing neural data,
mapping EEG signals and text passages into a shared semantic
space. Through careful architecture design and cross-modal nega-
tive sampling strategies, our model learns to align neural patterns
with their corresponding textual content. Experimental results on
the ZuCo dataset demonstrate that direct brain-to-passage retrieval
significantly outperforms current EEG-to-text baselines, achieving
a 571% improvement in Precision@1. Our ablation studies reveal
that the model successfully learns aligned representations between
EEG and text modalities (0.29 cosine similarity), while our hard
negative sampling strategy contributes to overall performance in-
creases.
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1 INTRODUCTION
Information Retrieval (IR) systems have historically been conceptu-
alised through the lens of cognitive and behavioural models that
characterise how users interact with information. Taylor’s fun-
damental model of information seeking [44] describes how users
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Figure 1: Data collection, illustrating the synchronisation of
eye-tracking fixations with EEG recordings during naturalis-
tic reading.

progress from a visceral, unexpressed information need to a com-
promised need that can be presented to an information system.
Similarly, Kuhlthau’s Information Search Process (ISP) model [25]
emphasises the cognitive and affective aspects of search, detail-
ing how users move from initial uncertainty and vague thoughts
to clearer, more focused understanding through interaction with
information systems. These theoretical frameworks highlight a
critical challenge in IR: there exists a fundamental gap between
users’ internal cognitive states and their ability to externalise these
states through traditional interaction mechanisms [2, 25, 44]. This
"semantic gap" is particularly evident during reading tasks, where
users frequently encounter information that prompts new search
needs [25]. Under current paradigms, users must interrupt their
reading flow to formulate explicit textual queries [2], a process
that both disrupts concentration and requires translation of their
emerging information needs into concrete search terms. Traditional
IR systems, which rely on explicit user interactions through key-
boards, mice, or voice commands, forcing users to undergo this
translation process, potentially losing critical information about
their true needs and intentions.

The emergence of Brain-Computer Interfaces (BCIs) represents
a promising direction for enabling more natural, continuous search
experiences by allowing systems to detect and respond to users’
information needs as they emerge during reading [11, 35]. Beyond
enhancing traditional search interactions, BCIs offer critical po-
tential for users with physical impairments who may be unable
to express their information needs through conventional input
methods, providing a direct neural pathway for information access.
Recent neuroscientific studies have demonstrated success in reveal-
ing how core IR concepts manifest in the human brain, including the
formation of information needs [33, 36], the process of relevance
judgment [1, 23], and the experience of satisfaction [40]. Particularly
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promising are findings showing that neural signatures of relevance
and information need emerge in brain activity before users can
consciously articulate these judgments [11], suggesting the poten-
tial for systems that can proactively identify and retrieve relevant
information during natural reading tasks. Several approaches have
been explored for neural query formulation, with Steady-State Vi-
sually Evoked Potentials (SSVEP) being one of the earliest [7, 46].
SSVEP-based systems attempt to translate brain signals into queries
by having users select characters on a virtual keyboard, with each
key assigned a unique flicker frequency that can be detected in
the user’s visual cortex. While innovative, these approaches still
require users to interrupt their natural reading flow to explicitly
construct queries through character selection, thereby maintaining
the fundamental barrier between organic information seeking and
query formulation.

More recent research has explored direct brain-to-text transla-
tion for query formulation using functional magnetic resonance
imaging (fMRI) and magnetoencephalography (MEG) data [17, 23,
29, 34, 50]. These studies have shown promising results in decoding
semantic information from brain activity directly, validating the
theoretical possibility of inferring information needs from neural
signals. However, both technologies face severe practical limitations
that prevent real-world deployment during reading tasks. fMRI re-
quires subjects to lay still within the confined space of the scanner
bore, with even slight head movements potentially corrupting the
data [37]. Similarly, MEG systems require specially shielded rooms
and restrict participant movement [23]. Beyond these physical con-
straints, both technologies involve substantial equipment costs and
spatial requirements that make them impractical for real-world IR
applications.

Electroencephalography (EEG) has emerged as a more practi-
cal alternative for capturing neural signals during natural reading,
offering higher temporal resolution and greater mobility at a frac-
tion of the cost [4]. Recent work has demonstrated that EEG can
effectively detect relevance judgments [1], satisfaction [40], and
enable direct recommendation of relevant documents from brain
signals during reading [11]. These findings suggest the possibility
of using EEG signals captured during natural reading as implicit
queries, potentially enabling continuous, non-disruptive search ex-
periences. However, current approaches attempting EEG-to-text
translation for query formulation [47] have shown limited success
in accurately decoding semantic information from EEG signals [19].
Even if such translation were successful, these approaches intro-
duce an unnecessary intermediate step - converting brain signals
to text queries before performing retrieval - which risks informa-
tion loss during translation. Recent findings in neurophysiological
IR have shown that neural signatures of relevance emerge before
users can consciously articulate their judgments [11, 33]. This sug-
gests that direct neural feedback could capture relevance judgments
both earlier and potentially more accurately than traditional ex-
plicit feedback methods. Building on this insight and the practical
advantages of EEG during reading tasks, we propose an alterna-
tive approach to neural query formulation. Rather than attempting
to translate brain signals into text queries, we hypothesise that
directly utilising EEG signals recorded during natural reading as
query representations will achieve better performance than EEG-
to-text translation approaches. To address these limitations, we

present DEEPER (Dense EEG Passage Retrieval), a framework that
explores the direct mapping of EEG signals to passage representa-
tions for retrieval tasks. Rather than attempting to translate neural
signals into explicit text queries, DEEPER projects EEG patterns
into the same semantic space as text passages, treating the neu-
ral activity itself as an implicit query representation (see Figure
2b). Building on the dual-encoder architecture of Dense Passage
Retrieval (DPR) [22], our framework incorporates specialised com-
ponents for processing neural data and implements cross-modal
negative sampling strategies. Our primary contributions include:

• A novel framework for investigating direct EEG-to-passage
retrieval without intermediate text translation, providing
insights into the feasibility of neural query representations.
• An adaptation of the Bi-Encoder Neural Retrieval Paradigm
to facilitate EEG Processing.
• Extensive empirical evaluation comparing direct neural re-
trieval against current EEG-to-text baselines using the ZuCo
dataset.

Our experimental results demonstrate that direct EEG-to-passage
mapping consistently outperforms existing EEG query formula-
tion methods that rely on intermediate text translation. This work
presents the first demonstration of direct semantic alignment be-
tween EEG signals and document representations, showing that
meaningful cross-modal retrieval is possible without intermediate
translation steps. These findings establish an important direction
in neural information retrieval, opening new avenues for research
into brain-computer interfaces for information access.

2 RELATEDWORKS
2.1 NeuraSearch
Over the past decade,NeuraSearch [35] has emerged as a novel inter-
disciplinary paradigm investigating the neurophysiological basis of
information seeking behavior. This field employs non-invasive neu-
roimaging techniques including magnetoencephalography (MEG)
[23], functional magnetic resonance imaging (fMRI) [21, 37], and
electroencephalography (EEG) [1, 12, 18, 33] to quantify and char-
acterise the neural processes underlying information retrieval tasks.
Empirical investigations have revealed distinct neural signatures
associated with key IR processes. Studies of information need for-
mation have identified activation patterns in the anterior cingulate
and inferior parietal regions that precede conscious awareness of
the need to search [33, 37]. Temporal analysis of relevance judg-
ments has demonstrated neural differentiation between relevant
and non-relevant content within 200ms of stimulus presentation
[1], with MEG-based decoding achieving 80% classification accu-
racy [23]. Satisfaction states during information seeking correlate
with specific activations in the insula and prefrontal cortex [40],
while query formulation processes manifest as modulations in P300
and N400 event-related potentials [21]. These findings establish a
quantitative framework for understanding the neural dynamics of
information-seeking behaviour.

2.2 Neural Interfaces & IR
The theoretical and empirical foundations established byNeuraSearch
have enabled increasingly sophisticated brain-computer interface
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(a) EEG2Text baseline approach showing the additional decoding step
required to translate EEG signals into text queries before retrieval.

(b) DEEPER architecture demonstrating direct matching between
EEG signals and text passages.

Figure 2: Overview of competing approaches. (a) Traditional EEG2Text pipeline requires intermediate query decoding before
retrieval. (b) Our proposed DEEPER architecture enables direct brain-to-text retrieval without translation.

(BCI) applications in IR systems. Initial work by Eugster et al. [11]
demonstrated the feasibility of inferring relevance feedback directly
from neural signals during naturalistic reading, enabling implicit
document recommendation without explicit user interaction. This
breakthrough catalysed further developments in neural feedback
mechanisms, with Kauppi et al. [23] achieving robust MEG-based
relevance classification and Allegretti et al. [1] implementing real-
time EEG-driven result re-ranking. While these feedback-based
approaches showed promise in improving search results post-query,
researchers recognised the potential for neural signals to enhance
earlier stages of the search process. McGuire and Moshfeghi [32]
demonstrated this by achieving 90% accuracy in real-time prediction
of information need formation using EEG signals during question-
answering tasks. Similarly, Ye et al. [50] showed that integrating
EEG-based relevance feedback with traditional behavioural signals
significantly improves document ranking, particularly when click
data is sparse. These successes in interpreting neural signals for
both information need detection and result refinement naturally
led researchers to explore whether brain activity could be leveraged
even earlier—at the query formulation stage itself.

Initial attempts at neural query formulation focused on translat-
ing brain signals into text queries through intermediate interfaces,
exemplified by Steady-State Visually Evoked Potential (SSVEP)
systems. These systems map visual keyboard elements to distinct
flicker frequencies, allowing users to input text by focusing on char-
acters that produce corresponding frequency patterns in the visual
cortex [46]. While Chen et al. [7] demonstrated a functional SSVEP-
based search system achieving 91% accuracy with 5-second average
input speeds, these approaches face significant limitations. The re-
quirement for sustained visual attention and character-by-character
input not only creates a cognitive burden but also maintains the
fundamental constraint of requiring users to consciously trans-
late their information needs into explicit queries. These limitations
have motivated investigation into more implicit approaches for
neural query formulation, particularly through attempts to decode
semantic information directly from brain signals.

2.3 Neural Decoding of Brain Signals
Recent advances in semantic decoding from functional magnetic
resonance imaging (fMRI) have demonstrated promising results
in reconstructing natural language from brain activity. Ye et al.
[50] achieved semantic reconstruction of continuous language by
leveraging large language models to map brain representations
to semantic space, while Ye et al. [51] demonstrated its potential
for query enhancement in retrieval models. MEG has also shown
promise as an alternative approach, with studies by Mitchell et al.
[34] and Kauppi et al. [23] successfully decoding semantic content
with superior temporal resolution. However, both technologies face
severe practical limitations that prevent real-world deployment
during reading tasks. fMRI requires subjects to lay still within the
confined space of the scanner bore, with even slight head move-
ments potentially corrupting the data [37]. Similarly, MEG systems
require specially shielded rooms and restrict participant movement
[23]. Beyond these physical constraints, both technologies involve
substantial equipment costs and spatial requirements that limit
their practicality for real-world IR applications.

These constraints have motivated research into decoding lan-
guage from more accessible recording methods like EEG. The pio-
neering EEG-to-Text (EEG2Text) work by Wang and Ji [47] framed
the decoding task as neural machine translation, using BART to
translate EEG signals into text using the ZuCo dataset (see Figure
2a). This approach inspired several works such as DeWave [10],
which introduced discrete tokens to improve decoding. However,
recent analyses reveal critical methodological limitations in these
translation-based approaches. Jo et al. [19] demonstrated that these
models rely heavily on teacher forcing during evaluation, resulting
in artificially inflated performance metrics. More concerning, these
models achieve similar performance when given random noise as in-
put compared to actual EEG signals, suggesting they may primarily
memorise training data rather than learn meaningful brain-to-text
mappings.

Recent work has attempted to address these limitations by repur-
posing speech models for EEG decoding. BrainEcho [27] proposed
adapting theWhispermodel to decode EEG signals directly into text.
However, this approach faces inherent constraints when applied to
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naturalistic reading paradigms, as its audio-centric architecturemay
not adequately capture reading comprehension dynamics. Further-
more, these methods typically operate with substantially reduced
vocabulary sizes compared to datasets like ZuCo (as of writing), lim-
iting their ability to reconstruct complex linguistic content. These
limitations, combined with the fundamental challenges in EEG-to-
text translation, suggest that attempting to decode explicit queries
from neural signals may be an unnecessarily complex intermedi-
ate step. Instead, we propose that directly mapping EEG patterns
to semantic space could enable more effective neural information
retrieval while better preserving the rich information present in
brain signals. This insight motivates our investigation into direct
EEG-to-passage retrieval, which aims to bridge the gap between
users’ neural states during reading and their information needs
without requiring explicit query formulation.

3 PRELIMINARIES
3.1 Electroencephalography
Electroencephalography (EEG) is a non-invasive neuroimaging
method (requiring no surgery or insertion of instruments into the
body) that measures and records the electrical activity of the human
brain. Within the brain, neurons communicate through electrical
impulses, thus generating minute voltage fluctuations on the order
of microvolts (millionths of a volt). EEG facilitates the capture and
recording of these electrical impulses on a millisecond scale de-
pending on the fixed sampling rate of the system. To capture these
signals, sensors known as electrodes are affixed to a participant’s
scalp. Electrodes are typically comprised of silver/silver chloride
(Ag/AgCL), and they detect electrical activity from the underlying
cortical areas. The number of electrodes used can vary from one
study to another, however, a common setup involves the use of
an "EEG cap" - a flexible, lightweight cap with multiple electrodes
arranged in standardised positions. This arrangement, known as
the "10-20 System", ensures consistency in electrode placement
across subjects and studies, allowing for reliable comparison of
brain activity from various regions. The electrical signals captured
by the electrodes are amplified and digitised for analysis. The sam-
pling rate, measured in Hertz (Hz), determines how many times per
second the signal is recorded. For example, a sampling rate of 500
Hz means that the system will capture the electrical activity from
the brain 500 times each second.

3.2 Neural Information Retrieval
centred Information retrieval has traditionally centred on matching
user information needs to relevant documents through explicit
queries. While traditional lexical matching methods like BM25
have proven robust, the emergence of neural retrievers has enabled
more sophisticated semantic matching capabilities. These neural
approaches typically employ dual-encoder architectures where both
queries and documents are mapped to a shared dense vector space,
enabling semantic similarity computation. Dense retrievers have
shown particular effectiveness in scenarios with sufficient training
data, outperforming lexical methods across various IR tasks [22, 24,
42, 49].

A typical neural retriever consists of two main components:

• A query encoder that projects queries into a dense vector
space
• A passage encoder that maps documents to the same embed-
ding space

The relevance between a query and passage is typically com-
puted through a similarity function (e.g., cosine similarity, dot prod-
uct, or L2 distance). Training often employs contrastive learning
frameworks that optimise the alignment between queries and their
relevant documents while maintaining distance from irrelevant
ones.

4 METHODOLOGY
4.1 Task Formulation
While neural retrievers have advanced the state of information
retrieval, they still rely on users translating their information needs
into explicit textual queries, a process that Belkin [2] identified as in-
herently lossy and potentially distorting of the original information
need. Recent work in brain-computer interfaces has demonstrated
the feasibility of decoding semantic information directly from neu-
ral signals [5, 17, 34]. While these advances suggest promising
directions for enhancing query formulation, current approaches
face significant practical and technical limitations when applied to
naturalistic reading paradigms [19, 47]. Rather than attempting to
translate neural signals into explicit queries, we propose a direct
brain-to-passage mapping approach that could better preserve the
richness of users’ cognitive states during reading while avoiding
the complexities of intermediate translation steps.

Formally, let𝐷 = {𝑤1,𝑤2, ...,𝑤𝑙 } be a sequence of 𝑙 words from a
passage being read, and let 𝐸 = {𝑒1, 𝑒2, ..., 𝑒𝑙 } be the corresponding
sequence of EEG signals recorded during the reading of each word,
where 𝑒𝑖 ∈ R𝑐 ·𝑓 represents the concatenated features from 𝑐 EEG
channels across 𝑓 frequency bands for word 𝑤𝑖 . Given a large
corpus 𝐶 = {𝑝1, 𝑝2, ..., 𝑝𝑁 } of 𝑁 passages and an EEG signal query
representation 𝑞𝑒 ∈ R𝑙×(𝑐 ·𝑓 ) , our goal is to retrieve a small subset
of 𝑘 passages 𝑅𝑞𝑒 = {𝑝𝑖1 , 𝑝𝑖2 , ..., 𝑝𝑖𝑘 } ⊂ 𝐶 that are most relevant to
the reader’s information need. This formulation extends traditional
dense passage retrieval by replacing text queries with neural signals
while maintaining the same passage representation space.

Our model employs a dual-encoder architecture with the follow-
ing components:
• An EEG encoder 𝐸𝜓 : 𝑞𝑒 → R𝑑 that projects brain signals
to dense vectors
• A passage encoder 𝐸𝑃 : 𝑝 → R𝑑 that maps text to the same
embedding space

During inference, relevance between an EEG query and passage
is computed as:

𝑠𝑐𝑜𝑟𝑒 (𝑞𝑒 , 𝑝) = 𝑠𝑖𝑚(𝐸𝜓 (𝑞𝑒 ), 𝐸𝑃 (𝑝)) (1)

The final retrieval process identifies the top-𝑘 most relevant
passages by maximising the cumulative relevance scores:

𝑅𝑞𝑒 = arg,max
𝑅⊂𝐶, |𝑅 |=𝑘

∑︁
𝑝∈𝑅

𝑠𝑐𝑜𝑟𝑒 (𝑞𝑒 , 𝑝) (2)

This framework enables direct mapping between neural signals
and text passages while preserving the rich information present in
brain activity during natural reading tasks.
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4.2 EEG Query Encoder
The EEG query encoder architecture builds upon the transformer
framework introduced by Vaswani [45], with specific modifications
to handle the unique characteristics of neural signals. Given an
input EEG sequence 𝑋 ∈ R𝑙×𝑓 , where 𝑙 represents the sequence
length and 𝑓 = 840 represents the concatenated features from 105
channels across 8 frequency bands, the encoder first projects the
input to the model dimension 𝑑 through a linear transformation:

𝐻0 = 𝑋𝑊𝐸 + 𝑏𝐸 (3)
where𝑊𝐸 ∈ R𝑓 ×𝑑 and 𝑏𝐸 ∈ R𝑑 are learnable parameters. A

learnable [CLS] token embedding 𝑒𝑐𝑙𝑠 ∈ R𝑑 is prepended to the
sequence to facilitate global sequence representation:

𝐻 ′0 = [𝑒𝑐𝑙𝑠 ;𝐻0] (4)
The transformer layers then process this sequence through self-

attention and feed-forward networks:

𝐻𝑙 = TransformerLayer𝑙 (𝐻𝑙−1), 𝑙 ∈ [1, 𝐿] (5)
Each transformer layer incorporates multi-head self-attention

(MSA) followed by a position-wise feed-forward network:

MSA(𝑄,𝐾,𝑉 ) = Concat(head1, ..., headℎ)𝑊𝑂 (6)

head𝑖 = Attention(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖 ) (7)

Our empirical investigation of sequence pooling strategies re-
vealed that utilising the [CLS] token representation consistently
outperforms both mean and max pooling alternatives for EEG se-
quence representation. This finding aligns with previous work in
cross-modal representation learning [28, 30], suggesting that the
[CLS] token effectively aggregates global sequence information
through self-attention mechanisms. The final EEG query represen-
tation is therefore computed as:

𝑞 =𝑊𝑂𝐻𝐿 [0] + 𝑏𝑂 (8)
where𝐻𝐿 [0] represents the [CLS] token from the final layer, and

𝑊𝑂 , 𝑏𝑂 are learnable projection parameters mapping to the final
output dimension.

4.3 EEG Negative Sampling
Effective negative sampling strategies have proven crucial for con-
trastive learning in dense retrieval systems [22, 49]. Our approach
combines in-batch negative sampling with hard negative mining to
create a robust training signal. For each EEG query 𝑞𝑒 in a batch,
we utilise a multi-faceted negative sampling strategy that leverages
both in-batch dynamics and semantic similarity. In-batch nega-
tive sampling treats all other query-passage pairs (𝑞𝑒 , 𝑝+) within a
batch of size 𝐵 as potential negatives, providing 𝐵 − 1 diverse nega-
tive examples while maintaining computational efficiency through
batch-wise computation. To handle the complexity of our dataset
where multiple subjects read identical passages, we implement a
careful negative sampling mechanism using subject-specific pas-
sage lookup tables defined as:

𝐿(𝑝, 𝑠) = {(𝑝𝑖 , 𝑠 𝑗 ) ∈ 𝑃 × 𝑆 : 𝑝𝑖 ≠ 𝑝} (9)

where 𝑃 represents the set of all passages and 𝑆 the set of all sub-
jects. These lookup tables prevent the incorrect selection of neural
responses from different subjects reading the same passage as neg-
ative examples, ensuring the model learns genuine semantic dis-
tinctions rather than subject-specific variations. For hard negative
mining, we exploit the semantic structure of our text corpus. Given
a positive passage 𝑝+, we identify semantically similar passages
using BM25:

𝐻 (𝑝+) = top-k𝑝∈𝐶\{𝑝+ }BM25(𝑝+, 𝑝) (10)

where 𝐶 represents the corpus and 𝑘 = 5 in our implementation.
The corresponding EEG recordings 𝑒𝑠,𝑝ℎ from these hard negative
passages 𝑝ℎ ∈ 𝐻 (𝑝+) are incorporated into the negative pool. This
approach is particularly effective given neuroscientific evidence
suggesting consistent neural patterns for similar semantic content
[17, 34]. The training objective unifies these negative sampling
strategies in a contrastive learning framework:

L = − log exp(𝑠 (𝑞𝑒 , 𝑝+)/𝜏)
exp(𝑠 (𝑞𝑒 , 𝑝+)/𝜏) +∑𝑝−∈𝑁 exp(𝑠 (𝑞𝑒 , 𝑝−)/𝜏) (11)

where 𝑁 = 𝑁𝑏 ∪ 𝑁𝑟 ∪ 𝑁ℎ represents the combined set of in-batch
(𝑁𝑏 ), random (𝑁𝑟 ), and hard (𝑁ℎ) negatives, and 𝜏 is the tempera-
ture parameter controlling the sharpness of the distribution. This
comprehensive negative sampling approach enables the model to
learn robust representations that effectively distinguish between
neural patterns associated with semantically similar but distinct
content, while properly handling the many-to-one relationships
inherent in our dataset’s structure.

4.4 Dataset Creation
Training neural retrieval models requires pairs of queries and rele-
vant documents, along with carefully selected negative examples.
However, unlike traditional IR datasets, EEG datasets of sufficient
scale with predefined query-document pairs are not readily avail-
able. To address this limitation, we adapt the inverse cloze task
(ICT) framework [6, 26] to construct synthetic training data from
our EEG recordings. The ICT approach enables us to generate
query-document pairs by treating spans of text as implicit queries
while considering their surrounding context as relevant documents.
This setup is particularly well-suited for our scenario, as it mirrors
the natural reading process captured in the ZuCo dataset [15, 16]
where EEG signals are recorded as 30-subjects read continuous text
passages.

Formally, given a document represented as a sequence of to-
kens 𝐷 = {𝑤1,𝑤2, . . . ,𝑤𝑚} and its corresponding EEG recordings
𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑚} where 𝑒𝑖 ∈ R𝑐 ·𝑓 represents the neural signal
captured during the reading of token 𝑤𝑖 , we extract a text span
𝑄 = {𝑤𝑙 ,𝑤𝑙+1, . . . ,𝑤𝑟 } to serve as a pseudo-query. The EEG signals
corresponding to this span 𝑞𝑒 = {𝑒𝑙 , 𝑒𝑙+1, . . . , 𝑒𝑟 } form our query
representation. With probability 𝑝𝑚𝑎𝑠𝑘 (set to 0.9 in our imple-
mentation), we remove this span from the document to form the
positive document: 𝐷 \ 𝑄 = {𝑤1, . . . ,𝑤𝑙−1,𝑤𝑟+1, . . . ,𝑤𝑚}. Other-
wise, with probability 1 − 𝑝𝑚𝑎𝑠𝑘 , we retain the query span in the
document, creating a more challenging learning scenario where the
model must learn robust matching strategies beyond exact token
matching.
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Algorithm 1 Inverse Cloze Test for Neural Query Generation

Require: Document tokens 𝐷 = {𝑤1,𝑤2, . . . ,𝑤𝑚}, EEG signals
𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑚}, mask probability 𝑝𝑚𝑎𝑠𝑘

Ensure: EEG query 𝑞𝑒 , modified document 𝐷′
1: 𝐿 ← ⌊𝑚 · 0.3⌋ ⊲ Set query length to 30% of document
2: Select random index 𝑙 where 0 ≤ 𝑙 ≤ 𝑚 − 𝐿
3: 𝑄 ← {𝑤𝑙 ,𝑤𝑙+1, . . . ,𝑤𝑙+𝐿−1} ⊲ Extract text span
4: 𝑞𝑒 ← {𝑒𝑙 , 𝑒𝑙+1, . . . , 𝑒𝑙+𝐿−1} ⊲ Extract corresponding EEG
5: 𝑢 ∼ Uniform(0, 1) ⊲ Sample uniform random number
6: if 𝑢 < 𝑝𝑚𝑎𝑠𝑘 then
7: 𝐷′ ← {𝑤1, . . . ,𝑤𝑙−1,𝑤𝑙+𝐿, . . . ,𝑤𝑚} ⊲ Remove span
8: else
9: 𝐷′ ← 𝐷 ⊲ Keep original document
10: end if
11: return 𝑞𝑒 , 𝐷′

Algorithm 1 details our ICT implementation. The algorithm takes
as input the document tokens, their corresponding EEG signals,
query length ratio, and mask probability, then:

(1) Computes the query length as a fraction of the total docu-
ment length

(2) Randomly selects a starting position for the query span
(3) Extracts both the text query and its corresponding EEG sig-

nals
(4) Randomly decides whether to remove the query span from

the document based on 𝑝𝑚𝑎𝑠𝑘
(5) Returns the EEG query and document pair for training

Our data processing pipeline incorporates several key design
choices that promote robust model learning. First, random span
selection prevents the model from learning positional biases or
developing heuristics based on span location. This randomisation
ensures the model must learn to match content semantically rather
than relying on position-based patterns. Second, the probabilistic
removal of the query span prevents the model from overly relying
on exact token matching, encouraging it to develop more sophis-
ticated semantic matching strategies. Third, the query length is
determined by a consistent ratio (𝑞 = 0.3 in our implementation)
of the document length, ensuring queries are proportional to doc-
ument length while maintaining sufficient context in both query
and document.

5 EXPERIMENTAL SETUP
In this work, we aim to address the following research questions:

• RQ1: To what extent can EEG signals recorded during natu-
ralistic reading be effectively utilised as implicit queries for
passage retrieval without intermediate text translation?
• RQ2: How does direct EEG-to-passage retrieval (DEEPER)
compare with existing EEG-to-text translation approaches
in terms of retrieval effectiveness?
• RQ3: Can EEG signals be generalised across participants to
facilitate passage retrieval?
• RQ4: How does the retrieval effectiveness of neural queries
compare to traditional text-based retrieval methods?

5.1 Implementation
Our EEG encoder consists of a transformer neural network with
6 layers and 8 attention heads. Each transformer layer contains a
multi-head self-attention mechanism followed by layer normalisa-
tion and a position-wise feed-forward network. The input dimen-
sion of 840 (corresponding to 105 channels × 8 frequency bands)
is projected to a model dimension of 512. A dropout rate of 0.3 is
applied throughout the network for regularisation. The training
was conducted on an NVIDIA H100 GPU. We utilise the AdamW
optimiser with an initial learning rate of 1e-4 and linear warm-up
over the first 10% of steps, followed by a linear decay schedule.
The training batch size is set to 32 with gradient accumulation
every 4 steps for an effective batch size of 128. Gradient clipping is
employed with a maximum norm of 1.0. Layer normalisation ep-
silon is set to 1e-6. Model checkpointing occurs at the end of each
epoch, saving the weights that achieve the lowest validation loss.
Early stopping is implemented with a patience of 5 epochs. For the
contrastive learning objective, we employ InfoNCE loss [39] with
a temperature parameter T = 0.07. During training, we use a mix
of in-batch negatives and hard negatives sampled from the top-k
retrieved passages that are semantically similar but not temporally
aligned with the EEG signals.

Table 1: Dataset statistics and lexical overlap between splits.

Metric Train Dev Test

Number of examples 10,391 1,292 1,367
Total unique queries 783 101 104
Total unique passages 784 101 104
Total words 166,623 19,718 23,216
Unique words 3,716 717 814
Avg. passage length 16.0 ± 7.0 15.3 ± 7.7 17.0 ± 6.9
Avg. query length 6.4 ± 3.1 6.1 ± 3.5 6.8 ± 2.9

Lexical Overlap

Train-Split – 0.105 0.115
Dev-Split – – 0.148

5.2 Training & Evaluation
To comprehensively evaluate our proposed approach and address
our research questions, we implement a multi-faceted experimental
framework that examines both the effectiveness of direct neural
retrieval and its generalisation capabilities. All experiments are con-
ducted using 5-fold cross-validation, where the dataset is divided
into five equal parts, with each fold serving as the test set once
while the remaining folds constitute the training data. Within each
fold, we further partition the training data to maintain our 80-10-10
split between training, development, and test sets. Our primary eval-
uation compares three distinct methodological approaches: direct
EEG-to-passage retrieval (DEEPER), EEG-to-text translation fol-
lowed by retrieval (EEG2Text+Retriever), and traditional text-based
retrieval as a reference point.

This three-way comparison allows us to assess both the viabil-
ity of direct neural retrieval (RQ1) and its performance relative
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Table 2: Retrieval performance comparison across different query modalities and retrieval methods. Results are averaged across
5-fold cross-validation, with models evaluated on test sets containing varying degrees of query-passage overlap. * indicates
statistically significant improvement over random noise baseline using a paired t-test (p < 0.05).

Query Modality Retriever Precision@1 Precision@5 Precision@10 MRR
Noise DEEPER(ours) .0007 (±.0002) .0037 (±.0008) .0066 (±.0012) .0056 (±.0011)
EEG E2T+BM25 .0007 (±.0002) .0032 (±.0007) .0064 (±.0013) .0051 (±.0010)

E2T+ColBERT .0007 (±.0002) .0034 (±.0008) .0062 (±.0012) .0053 (±.0011)
DEEPER(ours) .0047* (±.0009) .0161* (±.0025) .0366* (±.0042) .0206 (±.0031)

Text BM25 .0128* (±.0221) .0538* (±.0264) .0825* (±.0289) .0531* (±.0268)
ColBERT .0361* (±.0341) .0834* (±.0392) .1027* (±.0415) .0784* (±.0387)

to existing approaches (RQ2). We utilise the ZuCo dataset, gen-
erating query-passage pairs using our modified ICT framework
(Algorithm 1). Through empirical testing of various masking proba-
bilities ranging from 0.0-1.0, we found that 𝑝𝑚𝑎𝑠𝑘 = 0.9 provides the
optimal balance between query span removal and retention during
training, maximising the model’s ability to learn robust semantic
relationships while maintaining sufficient context (see Figure 3).

Figure 3: DEEPERmodel performance at query-passage over-
lap ratios

To investigate semantic understanding beyond surface-level pat-
terns (RQ1, RQ4), we construct five distinct test sets with systemat-
ically varying degrees of query-document lexical overlap [0%, 25%,
50%, 75%, and 100% text removed]. This evaluation approach en-
ables us to distinguish between models that rely primarily on exact
matching versus those that capture deeper semantic relationships.
The EEG2Text baseline model follows the implementation parame-
ters specified in Jo et al. [19], with decoded queries evaluated using
both BM25 (lexical baseline) and ColBERT (neural retrieval model
fine-tuned on our training split).

Following standard practice in neural retrieval evaluationwith bi-
nary relevance judgments, we report Mean Reciprocal Rank (MRR)
and Precision at different cutoffs (Precision@k for k = 1,5,10). These
metrics are particularly suitable for our ICT-based evaluation setup,
where passages containing the removed span that generated the
EEG query are considered relevant, while all other passages are
treated as non-relevant. All metrics are computed using 5-fold cross-
validation to ensure robust evaluation across different data splits.

Recent work by Jo et al. [19] has raised important methodological
concerns about EEG-to-text models, demonstrating that some sys-
tems perform similarly whether given real EEG signals or random
noise as input. To address these concerns and ensure the validity
of our approach (RQ2), we conduct additional control experiments
using random noise queries scaled to match the statistical proper-
ties (mean, standard deviation, range) of the real EEG signals in our
test set. This validation step is crucial for demonstrating that our
model learns meaningful neural-semantic mappings rather than
exploiting dataset artefacts or statistical regularities.

6 RESULTS
DEEPER enables direct brain-to-passage retrieval. Our results
(Table 2) demonstrate that DEEPER successfully enables direct
matching between EEG signals and text passages without interme-
diate translation, achieving statistically significant improvements
over random noise queries across all metrics (p < 0.05). The direct
brain-to-passage approach shows relative gains of 571% in Preci-
sion@1 (.0047 vs .0007) and 454% in Precision@10 (.0366 vs .0066)
compared to noise baselines. This substantial improvement across
different retrieval cutoffs indicates DEEPER captures meaningful
patterns in neural signals rather than exploiting dataset artifacts.
The consistent gains at both early and later ranks suggest the model
learns robust neural-semantic representations that maintain their
discriminative power even for more challenging retrieval scenarios.

DEEPER improves over EEG-To-Text. Both baseline EEG-to-
text methods perform nearly identically to random noise queries,
with Precision@1 scores of .0007 and MRR around .005 (Table 2).
These results suggest that attempting to decode explicit queries
from neural signals introduces unnecessary information loss. The
failure of both traditional lexical (BM25) and neural (ColBERT) re-
trievers when operating on decoded queries further validates our
hypothesis that intermediate text translation creates a problem-
atic bottleneck. In contrast, DEEPER’s direct mapping approach
achieves a Precision@1 of .0047 and MRR of .0206, demonstrating
that preserving the rich information in neural signals through end-
to-end learning leads to substantially better retrieval performance.

Direct EEG retrieval shows promise despite text-EEG gap.
While there remains a performance gap between EEG-based and
text-based retrieval (BM25 Precision@1: .0128, ColBERT Preci-
sion@1: .0361), DEEPER demonstrates that direct brain-to-passage
mapping is feasible (Table 2). The relative performance difference
between DEEPER and text retrieval (approximately 3x) is notably



Conference’17, July 2017, Washington, DC, USA Trovato and Tobin, et al.

smaller than the gap between DEEPER and EEG-to-text baselines
(approximately 5x), suggesting direct mapping may be a more
promising direction for bridging neural and text retrieval. This
smaller gap is particularly encouraging given the inherent chal-
lenges of working with neural signals compared to clean text input
and suggests that further advances in neural signal processing and
representation learning could continue to narrow this divide.

DEEPER displays robust performance across evaluation.
The stability of DEEPER’s performance is evidenced by the rela-
tively low standard deviations across all metrics (approximately
15-20% of mean values) (Table 2). This consistency is particularly
noteworthy given both the inherently noisy nature of EEG signals
and our challenging evaluation setting: DEEPER maintains statisti-
cally significant improvements over baselines across 30 participants
engaged in naturalistic reading tasks with unconstrained vocab-
ulary. Unlike previous approaches that often rely on controlled
vocabularies or specific task conditions, our model demonstrates
robust performance in an open vocabulary setting where readers en-
counter natural language variations. The model’s ability to handle
both neural signal variability across participants and linguistic vari-
ability in natural reading suggests strong potential for real-world
applications. This robustness is further validated by consistent
performance across varying query-passage overlap conditions, in-
dicating DEEPER learns meaningful neural-semantic mappings that
generalise beyond surface-level patterns.

These results not only validate the feasibility of direct EEG-to-
passage retrieval but also establish an important new direction in
neural information retrieval. By demonstrating that brain signals
can be effectively mapped to passage representations without inter-
mediate translation steps, DEEPER opens new possibilities for more
natural and efficient search interactions through brain-computer
interfaces.

7 ABLATION
To better understand the effectiveness of our approach, we conduct
two key ablation studies: (1) an analysis of learned representation
spaces between EEG and textmodalities, and (2) an evaluation of our
hard negative sampling strategy’s impact on retrieval performance.

7.0.1 Cross-Modal Representation Analysis. To understand how ef-
fectively our model maps between neural and textual modalities, we
first examine the learned representation space through t-SNE visu-
alisation of our test set (Figure 4). The visualisation reveals distinct
clustering behaviours between EEG signals (blue) and text passages
(red), with six annotated pairs representing the spectrum of cross-
modal alignment from weakest (Pair 1, sim: 0.002) to strongest
(Pair 6, sim: 0.537). The EEG embeddings demonstrate structured
organisation, particularly visible in the curved formation at the
right, while text embeddings exhibit a more dispersed distribution
with multiple semantic clusters. High-performing pairs (Pairs 4, 5,
and 6 with similarities of 0.437, 0.444, and 0.537 respectively) show
close spatial proximity between their EEG and text representations,
with an average similarity score of 0.29 ± 0.21 across all inputs,
suggesting successful semantic alignment in these cases.

Given these encouraging patterns in visualisation, a natural ques-
tion arises: how does EEG-based retrieval compare to traditional
text-based approaches when controlling for architectural and data

Table 3: Retrieval performance comparison between Text
and EEG query encoders

Modality Precision@1 Precision@5 Precision@10 MRR

Text .0058 .0209 .0424 .0289
EEG .0047 .0161 .0366 .0206

Figure 4: t-SNE embedding space visualisation from EEG
query and Text passage encoders

differences? To investigate this, we train a parallel text query en-
coder following the same architectural design as our EEG encoder
using the same number of samples from the ZuCo dataset, replac-
ing the 840-dimensional EEG input features with 768-dimensional
BERT token embeddings. Table 3 shows that our EEG encoder
achieves comparable performance to the text encoder across all
metrics, with only marginally lower scores (Precision@1: .0047 vs
.0058, MRR: .0206 vs .0289). This relatively small performance gap
when controlling for architecture and dataset size suggests that
neural signals can effectively serve as query representations with
nearly the same effectiveness as explicit text queries.

7.0.2 Impact of Hard Negative Sampling. To evaluate the effective-
ness of our proposed hard negative sampling strategy, we compare
our full model against a variation trained using only random nega-
tive sampling. Table 4 presents the results:

The results demonstrate that incorporating hard negatives dur-
ing training leads to consistent improvements across all metrics,
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Table 4: Impact of hard negative sampling on retrieval per-
formance

Negative Precision@1 Precision@5 Precision@10 MRR

DEEPER (Rnd) .0031 .0142 .0298 .0173
DEEPER (hard) .0047 .0161 .0366 .0206

with relative gains of 51.6% in Precision@1 and 19.1% in MRR. This
suggests that exposing the model to challenging negative examples
during training helps it develop more robust discriminative features
for cross-modal matching. The performance gap is particularly pro-
nounced for Precision@1, indicating that hard negative sampling
is especially beneficial for precise retrieval tasks where only the
top result matters.

These ablations provide several key insights: (1) despite the
inherent noise and variability in EEG signals, our model learns
representations that achieve near-parity with text-based queries
when controlling for architecture and dataset size, (2) the visuali-
sation reveals clear structure in how neural signals are mapped to
semantic space, with strong pairs showing close spatial alignment,
and (3) our hard negative sampling strategy plays a crucial role in
improving the model’s ability to distinguish between semantically
similar passages. Together, these findings validate both our archi-
tectural choices and training strategy while highlighting promising
directions for future improvements in brain-to-text retrieval.

8 DISCUSSION AND CONCLUSION
This work demonstrates that direct mapping between EEG signals
and passage representations enables more effective retrieval com-
pared to intermediate translation approaches. The performance
differential between DEEPER and EEG-to-text baselines (571% im-
provement in Precision@1) aligns with findings that preserving
high-dimensional neural patterns is crucial for brain-computer in-
terfaces [5, 34]. While traditional text-based methods show stronger
absolute performance, similar to patterns observed in other cross-
modal tasks [28, 30], our controlled experiments with architec-
turally identical query encoders trained on matched quantities of
data show only modest differences in performance between EEG
and text approaches (Precision@1: .0047 vs .0058). This relative per-
formance difference is particularly encouraging given the inherent
challenges of working with noisy neural signals compared to clean
textual input, suggesting that direct mapping may be a promising
direction for bridging neural and text retrieval.

Our findings advance discussions about brain-based information
retrieval architectures [11, 35] in several key ways. First, direct
brain-to-passage mapping could benefit users during naturalistic
reading tasks, where traditional query formulation requires inter-
rupting the reading flow and explicitly translating information
needs into text [44]. Moreover, the system offers potential bene-
fits for users with physical impairments who may struggle with
traditional text input methods [48], providing a more accessible
pathway to information access. Second, our contrastive learning
framework’s effectiveness in aligning neural and textual represen-
tations (cosine similarity 0.29 ± 0.21) extends cross-modal repre-
sentation learning [28, 30] to neural signals, demonstrating that
meaningful semantic alignment between brain activity and text is

achievable above random noise. This alignment, achieved in a nat-
uralistic reading environment, suggests that neural patterns during
reading contain recoverable semantic information that can be effec-
tively mapped to textual representations. Third, our performance
gains through hard negative sampling (51.6% improvement in Pre-
cision@1) validate the importance of careful training strategies for
cross-modal learning with neural data, particularly in addressing
the unique challenges posed by the high dimensionality and noise
characteristics of EEG signals.

As a foundational work in direct brain-to-passage retrieval, our
approach opens several promising research directions. The single-
vector representation approach establishes a baseline while leaving
room for more sophisticated modelling approaches such as multi-
vector representations that have been demonstrated in both dense
retrieval [14, 24] and re-ranking cross-encoder contexts [31, 38].
These methods could enable more nuanced brain-text matching,
while EEG encoder pre-training could improve representation qual-
ity [9]. The relatively small performance gap between EEG and
text encoders when trained on matched data, combined with recent
work showing favourable scaling properties of EEG-based mod-
els [43], suggests that increased dataset sizes could substantially
improve performance. This is particularly important for capturing
the wide variability of neural responses across different readers and
reading contexts, especially given the current limitations of our
ICT-based training approach. Our use of the Inverse Cloze Task,
while enabling systematic evaluation, points to opportunities for
developing dedicated datasets that capture neural signals during
active information seeking with explicit relevance judgments [18].
Beyond naturalistic reading, future work could explore further per-
ceptual modalities including auditory processing [3, 8] and imag-
ined speech [41], which engage distinct neural mechanisms [13, 20].
Understanding how these different processing pathways affect re-
trieval performance could expand the utility of brain-based search
interfaces across diverse interaction scenarios, from multimedia
content exploration to hands-free information access [48].

In conclusion, DEEPER represents an important step toward im-
proving the accessibility and efficiency of information retrieval
systems through direct neural interfaces. By demonstrating direct
EEG-to-passage mapping, our work establishes a promising direc-
tion for neural IR research that could benefit both users with specific
accessibility needs and those seeking more efficient information
access methods. As the field advances, direct neural feedback mech-
anisms could enhance how users interact with search systems,
particularly in scenarios where traditional input methods are im-
practical or limiting. This foundation enables the development of
more accessible information systems aligned with human cogni-
tive processes, while our experimental results provide evidence
that direct brain-to-passage retrieval is both feasible and poten-
tially beneficial to current IR approaches. The success of DEEPER
in achieving significant performance improvements over baselines
while maintaining robust performance across different evaluation
conditions suggests that direct neural retrieval could complement
existing IR systems, expanding the range of available interaction
methods for diverse user needs and contexts.
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