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ABSTRACT
This study utilizes unsupervised machine learning to improve
the performance of robust optimization through construction
of compact uncertainty sets. Robust optimization aims to find
solutions that are resilient to uncertainties and variations in
input parameters, allowing decision-makers tomake informed
decisions in the face of uncertain conditions. However, tra-
ditional optimization approaches often assume known and
fixed datasets, which fails to reflect the inherent uncertain-
ties present in real-world problems. Accurate construction of
compact and reliable data-driven uncertainty sets is a criti-
cal challenge that directly impacts the effectiveness of robust
optimization. To address this challenge, we propose a Dirich-
let process mixture model for clustering to construct a data-
driven uncertainty set suitable for robust optimization prob-
lems, allowing for more accurate uncertainty modelling. This
data-driven uncertainty set is constructed by intersecting the
l1 and l∞ norms for each predicted cluster and then merg-
ing these multiple basic convex uncertainty sets to create a
comprehensive representation. This approach results in uncer-
tainty sets based on clustered data that flexibly capture a
compact region of uncertainty in a nonparametric manner.
An innovative aspect is the introduction of statistical boot-
strap toobtain amore robust clustering solution andoutcome.
Theproposedmethod is applied to productionplanningprob-
lems and a comparative analysis with existing approaches
highlights its advantages. Our method demonstrates effec-
tiveness in improving the accuracy and robustness of solu-
tions in robust optimization by constructing more compact
uncertainty sets.
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1. Introduction

In today’s dynamic and uncertain environments, the effective utilization of
machine learning techniques has become increasingly important [1,2]. These
methods have been applied in numerous applications across various domains,
including supply chain management among others [3,4]. The integration of
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machine learning algorithms allows organizations to utilize enormous amounts
of data to gain valuable insights and make informed decisions [2]. However, tra-
ditional optimization methods often face significant challenges in handling the
inherent uncertainties present in real-world scenarios [5]. Recently, to overcome
these challenges and harness the full potential of machine learning, researchers
have turned to robust optimization techniques [6] to tackle ‘decision-making
under uncertainty’. Specifically, researchers integrate robust optimization princi-
ples into the analysis of big data and apply advancedmachine learning algorithms
to explore robust and reliable strategies that effectively handle uncertainties,
maximize performance and achieve optimal outcomes in these dynamic envi-
ronments [6–8].

Robust optimization aims to find optimal solutions that are resilient to uncer-
tainties and variations in input parameters [9–11]. The uncertainty set, the
heart of robust optimization, defines the range of possible values that the uncer-
tain parameters can take [9,12]. Traditionally, robust optimization methods rely
on pre-defined uncertainty sets, mainly because they simplify the complexi-
ties of real-world problems. However, recent advancements in machine learning
techniques offer a huge opportunity to construct more accurate data-driven
uncertainty sets and thereby enhance the performance of optimization solu-
tions [13]. Specifically, diverse machine learning techniques can be employed
to tighten uncertainty sets which imply reducing the pessimism of robust solu-
tions [14]. For this work, a machine learning integration for two-stage Robust
Optimization problems is studied to enhance decision-making in the presence of
uncertainty. This approach accounts the dynamic nature of real-world problems
by incorporating adaptability.

This research paper focuses on leveraging unsupervised learning to improve
uncertainty modelling in robust optimization. The primary objective is to pro-
pose an adaptive framework that starts from data leading to high-quality robust
decisions and predictions [8]. Particularly, we aim to develop adaptive robust
optimization models and machine learning algorithms that can provide solu-
tions that are not overly sensitive to uncertainties in input parameters. This is
accomplished by focusing on the uncertainty set construction. With that we
aim to merge machine learning and robust optimization, and thus improve the
decision-making process by bridging the gap between a good prediction and a
good decision [6,9,12,13,15,16].

We apply Bootstrapped Dirichlet Process Mixture model to construct data-
driven uncertainty sets. These uncertainty sets capture the variability present
in the underlying data distributions without relying on predefined assumptions
[17,18]. The unsupervised learning model learns the parameters of the Gaussian
mixture components, such as means and covariances, from the data. However,
achieving precise inference for the mixture parameters and weights presents an
intractable challenge. Consequently, it becomes vital to identify optimal param-
eters and reasonably accurate coefficients within a novel modified uncertainty
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set [19]. Moreover, there is a need to approximate a distribution that closely
resembles the true data distribution, enabling the upcoming accurate construc-
tion of the uncertainty set [20,21]. Our goal is also to refine the model such that
it identifies significant patterns without being influenced by overfitting, thereby
ensuring that it recognizes genuine clusters in new and unseen uncertain data.
To avoid this overfitting issue during the clustering process, we propose incor-
porating an outlier detection mechanism [20], which also enhances the model’s
generalization capability. To tackle the robustness, we employ a bootstrap resam-
pling with replacement method for uncertainty set construction. This the first
time we have shown that the integration of bootstrap resampling in this specific
process leads to interesting improved results in some case studies. Consequently,
we can flexibly model the distribution of exported uncertain parameters and
adjust the uncertainty sets based on observed data patterns, allowing for a robust
data-driven representation of uncertainty. Our work is quite versatile and appli-
cable to various types of data, including real-time, historical, or synthetic datasets.
In domains such as production planning, where data patterns can demonstrate
a range of characteristics including symmetry, asymmetry, wide spread, and typ-
ical or non-typical distributions [4,22], our approach offers a robust solution
because we approximate the best parameters based on the machine learning
predictions.

Our interesting and novel research aims to address the limitations of exist-
ing approaches in constructing uncertainty sets and advance the state-of-the-art
uncertainty modelling for robust optimization utilizing machine leaning. The
major novelties of this paper are summarized as follows:

• Integration of a modified Unsupervised Learning framework in Data-Driven
Robust Optimization:
We utilize a modified combination of an unsupervised learning technique,
variational inference, stick-breaking and outlier detection to estimate the
parameters of the Gaussian Mixture Model (GMM) from observed data.
Variational inference enables efficient approximation of the posterior distri-
bution, while stick-breaking simplifies the process of allocating clusters within
the GMM. Additionally, the inner model’s outlier detection identifies the
influence of anomalous data points, ensuring robust parameter estimation.

• Introduction of Bootstrap Resampling for Enhanced Robustness:
We employ bootstrap resampling to further reinforce the robustness of the
exported parameters. It essentially provides a way to estimate the uncertainty
of the clustering results. Consequently, we obtain more robust estimates and
improve the overall performance of our approach.

• Development of more compact and adaptive data-driven uncertainty sets:
For data-driven uncertainty set construction, to ensure the desired level of
conservativeness in the solution, we devised an adaptive technique to compute
the minimum adaptive scale parameter. We manage to capture the variability
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in uncertainties and identify the fundamental patterns. In addition, we showed
that the final constructed uncertainty set is given by a finite union of convex
subsets and their intersected norms.

• Exploration of different experimental settings and data structures to showcase
the efficacy of the proposed method:
We tested our approach under various experimental settings and data struc-
tures to prove its superiority in solving (two-stage) robust optimization prob-
lems. Additionally, we evaluated the performance of the proposed data-driven
uncertainty set in comparison with traditional state-of-the-art and data-
driven methods in terms of solution quality, robustness, computational time
and different coverage rates. The findings of this study clearly show that the
constructed uncertainty set provides a more decent objective compared to
alternative sets, while still retaining its robustness.

The remainder of this paper is organized as follows: Section 2 provides a
comprehensive literature review on the intersection of machine learning with
robust optimization, mainly in uncertainty set construction. Section 3 presents
the problem statement, defining the challenges and objectives of the study.
Section 4 outlines the proposed methodology for constructing data-driven
uncertainty sets using the unsupervised learning technique. Section 5 presents
the numerical examples, experimental setup and comparative results. Finally,
Section 6 discusses the findings, conclusions, limitations, and future research
directions.

2. Literature review

In the context of robust optimization and data-driven uncertainty set construc-
tion, unsupervised learning techniques play a vital role [23]. The target is to
discover patterns and relationships within unlabelled data, without any guidance
[2], and to group similar data points, in order to construct relevant uncertainty
sets for each cluster [24]. Additionally, unsupervised anomaly detection tech-
niques supports this process by identifying outliers, which is vital for handling
extreme cases in uncertainty modelling [25].

Instead of enhancing the algorithmic performance [26–29], diverse machine
learningmodels have been applied to generate compact uncertainty sets fromhis-
torical data that lead to the learning of high quality representations, which is the
aim of our research. In [30] an unsupervised deep learning method is utilized
to construct non-convex uncertainty sets and the trained neural networks was
integrated into the robust optimization model. Their uncertainty set was defined
as a sphere of radius R and they trained their neural network employing one-
class classification, which minimizes the empirical centred total variation of the
projected data points [31]. After completing the training of the network, adjust-
ments are made to the radius R of the uncertainty set with the aim of achieving a
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desired coverage of the dataset. Some other ideas use principal component anal-
ysis and kernel smoothing in [32] for similar goal. In [33] the novel idea was to
apply support vector clustering and in [8] statistical hypothesis testing to con-
struct the data-driven uncertainty sets. Attempting to bridging the gap between
machine learning and robust optimization, [34] proposed a data-driven approach
for the construction of an uncertainty set using kernel-based support vector clus-
tering. However, kernel methods can face significant challenges when applied
to high-dimensional data [34], where the computational cost grows significantly
and leads to overfitting. To tackle the decision-making under uncertainty and
find a balance between robustness and performance, the authors in [14] used
machine learning predictive models to guide the optimization process. In [35],
the authors utilized clustering algorithms to analyse historical data, identify pat-
terns and thus create clusters that represent different scenarios of uncertainty and,
consequently, generate uncertainty sets.

Exploring all the possible unsupervised machine learning algorithms, a rele-
vant work in [36] applied k-means to hedge the clustering result against unstruc-
tured errors in the observed data. k-means is the most well known unsupervised
method in the machine learning world and we aim to compare our results with
that. However, it has several limitations, such as when the data points in clusters
overlaps other clusters, making this approach not performing well. Furthermore,
the number k, the number of clusters, should be determined beforehand which
means that different initialization can lead to different final cluster assignments
and centroids. It heavily relies on the original data representations and thus suf-
fers from the curse of dimensionality [2,37]. Also, k-means may not perform
well when the clusters are non-spherical since it assumes that the data points are
distributed in a spherical shape [36].

In [38], the authors addressed uncertainty in optimization problems by focus-
ing on the expected value of the uncertain parameters. They applied clustering
and ensured that solutions are optimized against average and weighted scenarios
rather thanworst-case extremes. The result was less conservative solutions by uti-
lized k-means for their unsupervised learning approach. The primary drawback
of this mean robust optimization approach is the accurate estimation of mean
values. Furthermore, in their experimental settings they compare different num-
ber of clusters for the k-means and they determine the optimal number of clusters
with the elbow method to compare the objective. However, they need to define
the optimal number of clusters beforehand for every scenario.

For worst-case and predefined uncertainty sets, several attempts have been
madewith normbounds, l1 or l∞ norms. Prior research has typically been limited
to either offering empirical validation or providing certified assurances of model
robustness in constrained situations [34]. Overall, other methodologies involved
box set, ellipsoidal set, bounded by norms or polyhedral uncertainty sets [17,39].
However, these methods of l1 and l∞ norms on their own have some limitations
such as unable to capture the specific shape of uncertainty, as it only considers
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the magnitude of the individual parameters for l1 norm, as well as l∞ norm may
not capture correlations beyond the largest individual parameter [39].

In [40], the authors attempted to create two data-driven polyhedral uncer-
tainty sets that directly utilize l1 and l∞ norms respectively for their own purpose.
Their data-driven uncertainty set was a union of intersected polyhedral uncer-
tainty sets, where each specific norm uncertainty set covers the data belonging
to each calculated component. As a result, it forms the final uncertainty set
with the union of all constructed l1 and l∞ norms. A similar but more inno-
vative attempt was made by Ning and You [20] with the intersection of the
two l1 and l∞ norms. The suggested polyhedral uncertainty set comprises again
a combination of basic uncertainty sets, extending beyond the constraints of
a ’parallel-piped’ set. Subsequently, the resultant robust model produces solu-
tions of exceptional quality. Instead of the l1 uncertainty which relies solely
on the l1 norm, this new data-driven uncertainty set is defined using both
the l1 norm and l∞ norm. When the intersection of the two norm balls are
constructed, the final data-driven uncertainty sets differ and lead to distinct
optimization solutions due to the intersection. Both works use different scale
factors to adapt the data-driven uncertainty set with their data, Dirichlet Pro-
cess GaussianMixtureModel as the unsupervised learning algorithm to calculate
the important parameters and Variational Inference to approximate the poste-
rior prior distribution of latent variables. This is because the exact inference
for the mixture parameters was intractable, thus their uncertainty set con-
struction relied on those approximated parameters and predefined probability
guarantees.

In [41] the authors challenge the above model’s adaptability and cluster-
ing. They tried to improve the performance of the Dirichlet Process Mixture
Model (DPMM) with the introduction of deep neural networks in a novel
Deep DPMM. This is a deep unsupervised method that simultaneously per-
forms clustering and learn more expressive features. However, they employed
expectation-maximization, instead ofVariational Inference, and usedGibbs sam-
pling to sample from the posterior. In [42] apart from robust optimization,
the authors introduce recursive expectation-maximization algorithm ideal for
parameter estimation in DPMMs. The algorithm offers significantly improved
computational efficiency compared to Variational Bayes and Inference methods
but with its own limitations. Deep unsupervised learning was also employed
in [23] to learn and extract hidden structures and anomalies from data with
non-convex uncertainty sets for more robust solutions.

Most works focused on novel approaches that integrate unsupervisedmachine
learning with robust optimization to enhance decision-making under uncer-
tainty. The concept of just account exactly all the uncertain data points and
scenarios does not safeguard again data perturbations, uncertain data collection,
noise or parameters deviation.Wewill take it a step further and attempt to further
improve the robustness of solutions under perturbations, challenging the concept
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of balancing optimality and robustness. Our idea is to use a resampling method
in the uncertainty set construction, that to the best of our knowledge has not been
employed before. This provides more reliable estimates of parameters by gener-
atingmultiple samples from the data [43].While the predictive analytics phase of
unsupervised machine learning helps understand the data and make predictions
about the underlying structure, the prescriptive analytics phase of robust opti-
mization and uncertainty set construction will utilize these insights not only to
prescribe optimal decisions, but also robust decisions in the face of uncertainty.
This will improve the decision making under uncertainty. To this end, our work
seeks to address current challenges and limitations in uncertainty modelling by
using clustering to construct reliable nonparametric data-driven uncertainty sets
for robust optimization problems.

3. Problem statement

In this section, we formally define the research challenge in the uncertainty
modelling and the nonparametric uncertainty set construction for two-stage
robust optimization. We address the challenge of constructing uncertainty sets
where the decision-makers lack exact knowledge of the underlying distributions
of the data and its variations. Previous studies assume a predefined shape for
uncertainty sets, which, however, leads to suboptimal solutions and increased
risk in decision-making processes. To tackle this challenge, we propose a novel
approach called BootstrappedDirichlet ProcessMixtureModel, which will guide
the construction of the data-driven uncertainty set and thus improve the decision
making process under uncertainty.

Specifically, the research questions to tackle include:

RQ.1. How to strike the right balance between optimality and conservativeness in
the uncertainty set construction?

RQ.2. How to construct compact, nonparametric and non-convex uncertainty
sets?

RQ.3. How to derive a method to approximate the unknown distribution, specifi-
cally the posterior prior distribution of latent variables?

RQ.4. How to further enhance the robustness of the ML parameters that influence
the decisions?

From the theoretical perspective, a simple illustration of optimization
approach is given by the objective function J(x), which represents the quantity
that needs to be minimized in the optimization problem. A single data point p
over the function tries to find the local or global minimum minp J(p). Let us
assume that the parameters of the model involve some kind of uncertainty, for
instance p → p + �p, where�p is a derivation from noise as mentioned. In this
case, we do not have a single point but instead a disk of confidence interval that
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tries to find the best worst-case in

min
p

max
�p

J(p + �p) (1)

where �p ∈ U in uncertainty set. The difference between this robust solution
in contrast to nominal approach is the sensitivity to uncertainty. The nominal
solution is highly sensitive to any parametric uncertainty or changes in coeffi-
cients, while the robust solution does not give such high quality solution but it is
robust against these uncertainties, parameter variations and data perturbations,
everything inside the�p. As a result we have the general single stage robust opti-
mization formulation minxmaxu∈U f (x, u) and two stage robust optimization,
also called adaptive robust optimization, minx,ymaxu∈U f (x, y, u).

Consider the following two-stage robust optimization problem:

min
x,y

max
u∈U

(
c�(u)x + b�y(u)

)

s.t. A(u)x + By(u) ≤ d, u ∈ U (2)

where c� and A are involved in the uncertainty U, while b� and B are not. x ∈ X
denotes the set of initial decision variables that are determined before the uncer-
taintyu becomes known and y ∈ Y(x, u) represents the set of secondary decisions
which can be made after the uncertainty has been revealed [13]. The initial deci-
sions, known as ‘here-and-now’ decisions, and the secondary decisions, termed
as ‘wait-and-see’ decisions, can both encompass continuous or discrete variables.

Overall, the primarily target in two-stage (adaptive) robust optimization is
to calculate a first-stage solution xi such that for every uncertain scenario ui in
uncertainty set U = {u1, u2, . . .}, there is a feasible second-stage solution yi so
that the worst possible objective value over all scenarios is minimized. Hence,
the main challenge is to construct such precise, but also robust, uncertainty set
U that will influence the solution quality.

As mentioned, in robust optimization, the uncertainty set U is often prede-
fined as a single convex finite set and the uncertain parameters u are expressed
using a parametric distribution with a fixed set of parameters. For instance, u
might have a predefined bound or follow a multivariate Gaussian distribution
with fixed mean and covariance parameters.

U = {u|u ∈ Rm, ‖u‖ ≤ ε}
U = {u|u ∼ N(μ,�)} (3)

where ε is a predefined bound on the uncertainty, and μ and � are fixed param-
eters of the Gaussian distribution. The uncertainty set describes the uncertainty
information and it is often constructed based on a priori information and simple
assumptions, and thus implying overly conservative solutions [20].



OPTIMIZATION 9

The key difference between parametric and nonparametric uncertainty set
construction lies in how the uncertain parameters are represented. Nonparamet-
ric uncertainty set construction does not assume a fixed parametric form. Instead,
it learns the uncertainty set directly from data, represented as a set of {ui}ni=1 and
from the adoption of the specific nonparametricmodel. Each ui represents a real-
ization of the uncertain parameters, and together they form the nonparametric
uncertainty set U. The nonparametric uncertainty set is represented as:

Uj = {ui|ui ∈ Rm, i = 1, . . . , n}
Ufinal = U1 ∪ U2 ∪ · · · ∪ Uk (4)

where k is the number of components of the uncertain data, n the number of data
points of that specific j component and ui represents a realization of the uncer-
tain parameters. It allows the number j of mixture components Uj to grow with
the data, providing flexibility in modelling without specifying a fixed number of
parameters k.

Using a single fixed set to describe uncertainty by fitting data and adjust-
ing parameters is not effective in dynamic environments. As such, we aim to
to derive the ‘optimal’ polyhedral uncertainty set to capture the entire space.
In addition, nonparametric machine learning models have a flexible number of
parameters. Even though convex optimization is always easier to solve, it presents
these highly conservative solutions because it includes unrealistic scenarios. The
idea is to combine many simple convex sets in Equation (4) in a non-convex way
to cover the entire region and exclude unnecessary space, than previous con-
servative ‘one-set-fits-all’ uncertainty set [20,39]. This is recently employed by
several authors, but not entirely explored due to the variety and complexity of
different machine learning models and their capabilities.

In general, the overall target for compact, efficient and robust uncertainty
modelling is to strike a balance between capturing sufficient uncertainty, to
account for variations in the data, while avoiding excessive shrinkage that could
lead to overfitting [40]. That said, we need an adaptive scale parameter that can
balance between conservativeness and optimality, but also play a role in avoid-
ing overfitting and ensuring the robustness.We will derive amethod to construct
for each component this crucial scaling parameter for controlling the clustering
behaviour and conservativeness in the following section.

4. Methodology

In this section, we develop a Dirichlet process mixturemodel to describe the data
pattern for situations where the number of clusters are unknown in the dataset.
Subsequently, stick-breaking is employed to flexibly represent the uncertainty
structure, through obtaining the weights of the mixture model by finding the
best number of components. The final vital step is to approximate the posterior
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distribution of the parameters in the DPMM. Although a handful optimiza-
tion methods have been tested, Variational Inference is used to estimate the
relative distributional parameters, by approximating the posterior distribution
and by obtaining an approximating distribution that is computationally tractable
[21,44,45]. We then proceed with the heart of the research, the formulation and
construction of the final data-driven uncertainty set. This includes the calculation
of the conservativeness with adaptive scale parameter, reinforcing the robustness
with bootstrapping and outlier detection. Additionally, we provide probabilistic
guarantees for the robust data-driven uncertainty set.

4.1. Dirichlet process Gaussianmixturemodel to describe the data pattern

To accurately model a given dataset, we employ the Dirichlet process mix-
ture model – a powerful nonparametric Bayesian statistical model. It is worth
noting that despite being labelled as ‘ nonparametric’ this machine learning
model does have parameters. However, the parameter space for this model is
infinite-dimensional, allowing for greater flexibility in representing uncertainty
[40]. Infinite-dimensional parameter can significantly increase the computa-
tional cost. To address this computational issues associated with the infinite-
dimensional parameter space, significant interest will be given to variational
inference which is a probabilistic modelling technique, enabling to estimate the
relative distributional parameters.

Denote the data as u = (u1, . . . , uN). The probability distribution of u, p(U|θ),
is described using a Gaussian mixture model (GMM):

p(u|π , θ) =
M∑
k=1

πkN(u|μk,�k) (5)

where θ = (μk,�k)
M
k=1,

∑M
k=1 πk = 1, πk ≥ 0 the weight for i component,

N(·) ∼ Gaussian Distribution, μk mean and �k covariance [40,46].
Due to the fact that the number ofGaussian components is unknown inGMM,

if the value ofM is not properly determined, there will be a significant disparity
between the observed data distribution and the GMM distribution. To address
this issue, we proposes the use of DPMM, which employs the Dirichlet process
as the prior distribution p(θ) to determine the number of components in the
model, which is considered as an infinite mixture model, thus eliminating the
need to specify the number of components in advance [22,40].

In Figure 1(a) we can observe that the attempt to fit a single Gaussian distribu-
tion to approximate two uncertain parameters, blue and orange, fails miserably
since we do not have a accurate representation of the uncertainty with only two
final exported parameters, θ = (μ,�). However, in Figure 1(b) the resulting pre-
dicted and exported parameters (πk,μk,�k)

M
k=1 from Equation (5) automatically

determine the number of components by considering infinite mixtures.
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Figure 1. Fitting Gaussian Mixture Model(s) to find the true representation of the data. (a)
Attempting to fit a Normal Distribution to represent the data, (b) Approximate the true posterior
distribution representation.

Based on the DPMM mixture technique [46], each uncertain parameter ui is
generated by first choosing a component that is distributed according to π =
(π1, . . . ,πM) and then the ui is generated from choosing the Gaussian compo-
nent with the parameter θi, which is generated from a prior distribution G that
follows a random draw in the Dirichlet process DP(α,G0) [40]:

θ ∼ G

G ∼ DP(α,G0)

xk ∼ N(u|μk,�k) (6)

where α ∼ Gamma(a0, b0) to avoid the requirement of direct specification of the
concentration parameter α and G0 is the base distribution. The concentration
parameter α has a tremendous effect on the number of components within the
data [24]. The mean μk and the covariance �k are unknown and we have to set
the base distribution G0 as a Normal–Wishart distribution:

G0 ∼ N(μ|μ0, (β0	)−1)Wk(	|
0, υ0) (7)

where Wk(·) denotes the Wishart distribution, 	 denotes the precision and μ0,
β0, 
0, υ0 are the hyperparameters of the base distribution G0.

4.1.1. Cluster allocation with stick-breaking
The distinct values of θ = (θ1, . . . , θn) lead to the division of the dataset into
clusters, where each cluster k consists of elements with the same value θ∗

k , and
the distribution that describes these divisions is known as the Chinese restaurant
process [40]. Specifically, a dataset is divided into an infinite number of clusters,
and each cluster can accommodate an infinite number of data points [47]. As a
sequence of data points {θ}N−1

k=1 = (θ1, . . . , θN−1) is observed, each data point is
assigned to a cluster and the Nth data point, θN , has the option to either join an
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existing cluster or form a new one. This process is provided and described in the
following form of distribution:

θN =

⎧⎪⎨
⎪⎩

Nc

α + N − 1
δ(θN = θ∗

k ), for an existing cluster
α

α + N − 1
θ , θ ∼ G0, for a new cluster

(8)

whereNc represents the total number of data points assigned to cluster k (i.e. the
total number of samples that have a value equal to θ∗

k ) and δ is the delta function.
It can be observed that the posterior distributionwhen assigning a value θN : there
is a probability of α

α+N−1 for it to be allocated to a new cluster, or a probability of
Nc

α+N−1 to be assigned to an existing cluster [40]. This means that parameter sets
should be automatically grouped into discrete clusters, with adjustments made
based on the samples allocated to each cluster.

As a result, the stick-breaking construction is a fundamental concept in
Bayesian nonparametric modelling for our cluster allocation [46,47]. It involves
breaking a unit-length stick into an infinite number of pieces, each representing
the weight assigned to the above potential cluster. The key idea behind stick-
breaking is to iteratively break off portions of the stickVk according to a sequence
of probabilities, which are determined by a beta distribution. The stick-breaking
construction and the two collections of random variables are provided as follows:

G =
∞∑
k=1

πk(V)δ(θ = θ∗
k )

Vk ∼ Beta(1,α)

θk ∼ G0 (9)

where the generation of the weight πk(V) = Vk
∏k−1

j=1 (1 − Vj). Initially, to
explain this process, we assume to have a stick of length 1, then we break at
V1 with corresponded weight of π1 which is the length of the broken-off por-
tion. Subsequently, we repeatedly break the remaining portion to obtain {πi : i =
1, 2, . . .}. Simultaneously, for each broken-off portion of the stick, a correspond-
ing cluster is created, represented by a unique parameter value drawn from a
base distribution G0. This allocates weights in an effective manner to an infinite
number of potential clusters, with the weights determined by the stick lengths
and the clusters defined by the drawn parameter values. The function δ(θ = θ∗

k )

represents an indicator function centred on the optimal θ∗
k [40].

4.1.2. Optimizing posterior approximations with variational inference
To approximate the posterior distribution of latent variables we will use Varia-
tional Inference (VI), an optimization-based approach applied to fit probabilistic
models. While Variational Inference involves optimization, it does not explicitly
have a step size parameter or a learning rate such as gradient-based optimization
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algorithms. Instead, we have parameters that control the optimization process,
such as the number of components in the data, the concentration parameter
and other associated hyperparameters. The target is to approximate the posterior
distribution through obtaining an approximating distribution that is computa-
tionally tractable. This is done by minimizing the divergence between the true
posterior distribution and the approximating (variational) distribution [24].

This posterior distribution is given below:

q(α,Z,V ,μ,�) = q1(α)

N∏
i=1

q2(Zi)
M−1∏
k=1

q3(Vk)

M∏
k=1

q4(μk,�k) (10)

where q1(α) denotes the previously mentioned Gamma distribution in
Equation (6), q2(Zi = k) = ρik∑M

j=1 ρij
, where ρ is the not-yet normalized proba-

bility component for data point i and cluster k [20], q3(Vk) the Beta distribution
and q4(μk,�k) the Normal-Wishart distribution from Equation (7) [20,46].

The Dirichlet process mixture model from the previous subsection gives
the distribution p(U,α,Z,V ,μ,�), the joint distribution of both the observed
data U and the parameters (α,Z,V ,μ,�). The posterior distribution com-
bines the prior distribution p(α,Z,V ,μ,�) with the likelihood of the observed
data p(U|α,Z,V ,μ,�) to update those beliefs. The overall target of that infer-
ence is to find the posterior distribution of the latent variables and parame-
ters (α,Z,V ,μ,�) given the observation uncertain parameters U, expressed
as p(α,Z,V ,μ,�|U), which represents the true posterior distribution and the
updated belief after observing the data, combining the prior and the likeli-
hood. q(α,Z,V ,μ,�) is the variational distribution, or variational mean-field
approximation [46], we are trying to approximate. The parameters of each
term in Equation (10) are estimated by minimizing an upper bound on the
KL-divergence between the true posterior and the approximated variational
distribution [46]:

minE
(

q(α,Z,V ,μ,�)

p(α,Z,V ,μ,�|U)

)
(11)

We note that the above KL divergence is a distance metric between the distri-
butions q(·) and p(·), consequently the goal of the variational algorithm is to
minimize the KL divergence to achieve the optimal approximation, which is
equivalent to maximizing the evidence lower bound (ELBO) [25], as detailed in
Algorithm 1.

Figure 2 elaborates the Variational Inference process. This iterative process
continues until convergence is reached. Stick-breaking allows for automatic
determination of the number of clusters based on the available data. For the
DPMM, we are able to estimate the optimal number of components, M, along
with the exported parameters, (α,Z,V ,μ,�). Finally, we employ the useful
approximate parameters, (πk,μk,�k)

M
k=1, for the construction of the data-driven

uncertainty set.
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Algorithm 1 Variational Inference Algorithm
1: Input uncertainty data set ui and model p(·)
2: Initialize Variational factors q(α,Z,V ,μ,�) in Equation (10)
3: while ELBO �→ converge do
4: Update q1(α)

5: for i = 1,· · · ,N do
6: Update q2(Zi) in Equation (10)
7: end for
8: for k = 1,· · · ,M do
9: Update q3(Vk) in Equation (10)
10: Update q4(μk,�k) in Equation (10)
11: end for
12: Compute ELBO = E{log p(U,α,Z,V ,μ,�)} − E{log q(α,Z,V ,μ,�)}
13: end while
14: Result: Variational Mean-Field Approximation q(α,Z,V ,μ,�) in

Equation (10)

Figure 2. The process for Variational Inference in DPMM.

4.2. Construction of the data-driven uncertainty set

The target is to construct a compact uncertainty set U directly from data that
captures the realization of uncertain parameters in u, in Equation (4). This
computational tractable data-driven uncertainty set is constructed based on
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the previous approximated parameters of the distribution in Equation (10). We
iteratively solve the Algorithm 1, initializing the prior, running the variational
inference, and exporting a set of optimal parameters {μk,�k}Mk=1. Based on these
extractedGMMcomponents and parameter estimates, the uncertainty set is con-
structed as a combination of multiple diverse uncertainty sets. Mathematically,
the proposed union of data-driven uncertainty sets can be expressed as follows:

U =
⋃

πk≥π∗

(
u|‖τk(u − μk)‖1 ≤ (1 + σμk)�

α
1,k,

‖τk(u − μk)‖∞ ≤ (1 + σμk)�
α
∞,k

)
(12)

where u is the uncertainty introduced. The threshold π∗ is usually set to
5% [20,40], while πk is the weight of the k component for k = 1, 2, . . . ,M,
meaning the probability of that k mixture component. It is calculated from
Algorithm 1 and q3(Vk) of Equation (10), where q3(Vk) = Beta(τk, νk), and thus
πk = τk

τk+νk

∏k−1
j=1

τj
τj+νj

, for k = 1, . . . ,M − 1 and πM = 1 − ∑M−1
k=1 πk [20,46].

Components with a weight πk greater than the threshold π∗ are included in the
uncertainty set. The coverage rate α is a predetermined value representing the
desired extent of the uncertainty set, for example α = 1 means 100% coverage
rate. This solely influences the adaptive scale parameters �α

1,k and �α
∞,k, which

are associated with each cluster and determine the structure and size. In detail,
the coverage rate α is set in advance according to the predefined data coverage
rate the user prefers, how conservative or flexible the user wants to be. For sim-
plicity, we will proceed with the full data coverage rate in this study and it aligns
well with [40], where the authors chose 99.99% predefined data coverage rate.
Thus, we will choose to include all relevant (non-outlier) data points within the
uncertainty range, while we already set 95% coverage in the distribution before
to focus on the most significant uncertainty. μk the mean and σμk the standard
deviation of the mean belong to the bootstrap resampling step in the following
subsection. σμk slightly expand this boundary to account for small perturbations
or variations in the data.

Our construction is based on the classical uncertaintyU =
{
z|‖ (z−z0)

σ ‖p ≤ ρ
}

[7,8,37,39]. For our uncertainty set construction, τk will have a new role and will
be an adaptive parameter that changes depending on the type, structure, and vari-
ability of each component around the mean μk. We assign it as τk = �−1

k , which
is the value of the corresponding inverse covariance matrix for each component,
or as τk = (L−1

k )T , which is the Cholesky decomposition of �−1
k , where �−1 =

(LLT)−1 = (LT)−1L−1. This is because in some cases the cluster data points are
spread in an unbalanced way around the μk and there is uneven variability. We
need a more accurate and adaptive manner to better capture the structure of
the cluster, as well as less conservative bounds compared to fixed uncertainty
sets, leading to better clustering performance. The uncertainty set construction
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Figure 3. Intersection of l1 and l∞ norms.

is inspired by Dai et al. [40], where the authors used a similar way to fix the orien-
tation of their components but utilized the upper triangular matrix derived using
the Cholesky decomposition of the result of the inverse covariance inference for
each component. This representation is especially useful for estimating distances
between observations in these Gaussian processes. However, the authors did not
integrate the intersection of the norms into a holistic uncertainty set, utilizing
each norm on its own. In general, as presented in Figure 3, for each compo-
nent/cluster, we construct the intersection of: {‖τk(u − μk)‖1 ≤ (1 + σμk)�

α
1,k}

and {‖τk(u − μk)‖∞ ≤ (1 + σμk)�
α
∞,k}. Subsequently, we take the union of all

the constructed data-driven uncertainty sets. Our framework is a combination
of both probabilistic and worst-case approaches.

The union of intersected uncertainty sets results in significant challenges,
and thus we divide the problem into manageable subproblems. Particularly,
we employ the master-subproblem framework combined with Column-and-
Constraint Generation to solve the optimization problem. This approach is used
by several authors [20,29,40], because it is easy to implement and it is particularly
effective due to its ability to handle non-convexity.

4.2.1. Calculating the conservativeness
The level of conservativeness in the uncertainty set is determined by the scale
parameters �α

1,k and �α
∞,k. However, when dealing with the U uncertainty set,

there is no straightforwardmethod to compute the scale parameter and therefore
we need to choose the best hyperparameter � for U. To address this, we have
propose a modified methodology from [40] to determine the minimum scale
parameter that achieves the desired data coverage rate. In this proposed method,
we input the mean valueμk and τk of each component k into the equation below,
and then calculate ξi for each data ui:

ξi = ‖τk(ui − μk)‖ (13)

where τk is defined as above and the ‖ · ‖ norm changes depending the norm we
are calculating, ‖ · ‖1 for �1 and ‖ · ‖∞ for �∞. For the desired data coverage
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rate α, �α
1,k and �α

∞,k are considered as the N
th
1 smallest ξi, which is calculated as

follows:

N1 = round(Nk × α) (14)

where round(x) is a function that returns the closest integer to x. For each
component k, Nk is the number of total data points.

For illustration, we sketch the the calculation process in Figure 4 where 10 data
points with each representing 1 identified component. Red point is considered
the meanμ and blue points are the data points ui. ξi = ‖(ui − μ)‖ calculates the
distance of each point from its mean. We get a sorted array with the distance for
each ξi. For α = 1, we apply these to theN1 = round(Nk × α) = 10. So we select
the 10th smallest ξ from our sorted array which is the d10. As can be observed,
selecting ξ10 = d10 as our �∞ for that component, we include all the data points
in our green dashed box lines. If we select α = 0.8 coverage rate, we apply these
to the N1 = round(Nk × α) = 8. Hence we select the 8th smallest ξ , thus the
distance with d8 as our �∞ for that component, observing that we exclude 2 data
points from the red dashed line box. The same will be applied for �1 for that
component and the same for every predicted component.

4.2.2. Bootstrapped resamplingmethod
To tackle the trade off between optimality and conservativeness, we establish a
bootstrapping method to further enhance the robustness, which, to the best of
our knowledge, has not been attempted yet. We employ bootstrap resampling as
a robust statistical technique to estimate the variability of the exported parame-
ters {μk,�k}Mk=1 of the DPMM for each k cluster andM the predicted maximum
number of clusters. Our bootstrap approach involves randomly samplingn obser-
vations, size of the dataset, from the observed dataset X with replacement to

Figure 4. Calculation of Gamma for l∞ norm.
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create bootstrap samples X∗. Repeating this process L = 1000 times, we obtain a
collection of bootstrap samples X∗

1 ,X
∗
2 , . . . ,X

∗
L upon which we apply our DPMM

to each single subset to obtain the estimatedmeanμX∗
j
∀ 1 ≤ j ≤ L. Subsequently,

we take the mean of all the estimated means resulting the final mean all the col-
lection of bootstrap samples, μ∗, which we will replace instead of the normal
non-bootstrapped exportedμ in Equations (12) and (13). For simplicity, in those
equation we will refer them asμ but they are actually the bootstrapped meanμ∗.
In Figure 5 we present the histogram of the means for each uncertain parame-
ters, the mean of those mean, observing the standard deviation and presenting
the final cluster behaviour of a single cluster mean in contrast to normal DPMM.
Furthermore, the confidence level and standard deviation σμ∗ of the estimated
final bootstrapped mean is added as a percentage to � to enhance the robust-
ness by accounting the actual deviation of the bootstrapped parameters. This
implies that we do not solely rely on the calculation of the conservativeness from
above method in Equation (13), but we also further enhance the robustness of
our statistical inference [43].

The algorithm of the bootstrapping resampling is presented in Algorithm 2.
Specifically, we calculate the standard deviation of the bootstrapped resampled
means, σμ∗

k
for each k cluster, and add it algebraically to the �k in Equation (12)

which slightly expand the boundary to account for any potential small varia-
tion in the data. This standard error represents the single standard deviation of
the bootstrap mean and holds the variability associated with the estimate of the
mean obtained through the bootstrapping process. (1 + σμk)�

α
∞,k provides us

a controlled expansion of the modified uncertainty set, ensuring that it is nei-
ther too conservative nor too restrictive, without overestimating the uncertainty.
Although, 2 ∗ σ in (1 + 2σμk)�

α
∞,k covers approximately 95% of the data dis-

tribution in distance and offers more robustness, it is not necessary since �α
∞,k

already captures the essential spread of cluster’s data. This wouldmake ourmodel
overly conservative.

Algorithm 2 Bootstrap Procedure
1: Initialize X dataset and StoredParameters = ∅
2: for j = 1,. . . ,L do
3: Take n random observations from X with replacement
4: Create collection of bootstrap estimation X∗

j
5: Solve the DPMM with X∗

j data
6: Export estimated parameter μX∗

j
7: Store μX∗

j
→ StoredParameters

8: end for
9: Calculate the mean of the StoredParameters, μ∗
10: Return: μ∗ and σμ∗
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Figure 5. Bootstrapping method with 1000 iteration resampling for a single cluster. How to cal-
culate themeans of bootstrappedμ for one single cluster and theμ∗

k of that k cluster. Comparison
is also made with DPMMmean without bootstrapped resampling.

However, even though this novel introduction and extra step of bootstrapped
resampling results in slightly higher computational time in contrast to normal
DPMM approach, it has a huge impact on the solutions. We may argue that the
parameters already have well-defined confidence intervals in the data distribu-
tion, thus additional bootstrapping may be redundant and leads to this extra
computational effort, but we assume the computational resources are available.
As a result, for the exported parameter μ, the mean location of the uncertainty
set will shift to represent a more generalized centre of the data and will ensure
that the uncertainty set doesn’t rely on one specific data sample.

To summarize, we propose a two-layer bootstrap framework to constructmore
reliable uncertainty sets and address uncertainty from different directions and
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perspectives. The first layer of bootstrapping within the DPMM, which esti-
mates distributions overmixture components using resampling. The second layer
involves the introduction of statistical bootstrap, essentially bootstrap of boot-
strapping, which further updates the uncertainty set by resampling the previous
estimated parameters. The reason we employ this additional layer of resampling
is to further reinforce the robustness, better capture the variability and obtain a
more robust clustering solution.

4.2.3. Outlier detection
Here, we present the procedure on how our framework identifies anomalous
data points in our dataset. Particularly, our approach utilizes the likelihood val-
ues from the previous DPMM to evaluate each data point. In this variational
inference step, the model identifies which cluster each data point belongs to and,
specifically, the main target is to identify data points with low likelihood values
which implies potential outliers. The outlier detection algorithm is summarized
inAlgorithm3 and provides a framework for identifying and isolating anomalous
data points based on their likelihood values. If a data point has a low posterior
probability of belonging to any cluster, it is considered an outlier. This is deter-
mined by the threshold, usually 5%, to decide whether a point is an outlier in
our dataset. This will also help us in terms of generalization and robustness on
unseen data, since any future data points that form new clusters with very few
members are considered outliers. Our method is quite similar to the inner-outer
layers system from [20], which provides us robustness to any potential variation
in the resulting CleanedDataset.

Algorithm 3 Outlier Detection method of DPMM
1: Fit DPMM to the data c ∈ X
2: Initialize CleanedDataset = {c1, c2, . . . , cN}
3: Initialize OutlierDataset = ∅
4: Calculate the log probability of each data point LogProb(ci) using the rele-

vant score samples function
5: We set threshold
6: for i = 1,. . . ,N do
7: if LogProb(ci) ≤ thresshold then
8: ci → Outlier
9: Remove ci from CleanedDataset
10: Store ci to OutlierDataset
11: end if
12: end for
13: Return: CleanedDataset
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4.3. Probabilistic guarantees of the proposedmethod

The following outlines the probabilistic guarantees and its importance to
show the robustness of our approach. The algorithms presented–Algorithm 1,
Algorithm 2 and Algorithm 3 – are justified by their role to estimate the impor-
tant parameters for constructing the final data-driven uncertainty set. In general,
this uncertainty set comes with a predetermined level of probability, which shows
the likelihood that the true parameter values will fall within the proposed uncer-
tainty set. The robust complexity, ρ(U), will be used to compute how hard and
how difficult we satisfy a robust constraint given the uncertainty set U.

In the outlier detection process of Algorithm 3, we create an uncertainty set
which is free from data points that would lead to extreme results. We will now
provide the theoretical properties of the intersection and union of the uncertainty
sets, because wewant to ensure that we are working with reliable uncertainty sets.
Particularly, within this context of data-driven uncertainty sets, the concept of
intersection between the l1 and l∞ norms is explored. The intersection l1 ∩ l∞
set and uncertainty u ∈ RL is defined as:

Ul∞∩l1 = {u : ‖u‖∞ ≤ 1, ‖u‖1 ≤ ρ} (15)

Based on the previous work from [39], we have the following:

Proposition 4.1: For two uncertainty sets, U1 andU2 such that ri(U1) ∩ ri(U2) �=
∅, the robust complexity of U1 ∩ U2 satisfies ρ(U1 ∩ U2) ≥ mini=1,2 ρ(Ui).

Proof: Denote δ∗ as the support function of U and the relative interior of
U, ri(U) := {x ∈ U : ∀ y ∈ U∃ λ > 1, y + λ(x − y) ∈ U}, where U is any
non-empty convex set. If U = U1 ∩ U2 with ri(U1) ∩ ri(U2) �= ∅, we have
δ∗(y|U) = minν(δ

∗(ν|U1) + δ∗(y − ν|U2)). By definition of the robust com-
plexity δ∗(·|Ui) ≥ ρ(Ui)‖ · ‖2, it follows:

δ∗(y|U) ≥ min
i=1,2

ρ(Ui)min
ν

{‖ν‖2 + ‖y − ν‖2} ≥ min
i=1,2

ρ(Ui)‖y‖2 �

To generate a flexible uncertainty set construction, we use the unique char-
acteristics of l1 and l∞ norms. The union of the norms, U1 ∪ U2, . . . offers a
comprehensive approach to include a range of uncertainties. For l1 + l∞ set and
u ∈ RL, define:

Ul∞+l1 = {u = u1 + u2 : ‖u1‖∞ ≤ ρ1, ‖u2‖1 ≤ ρ2} (16)

Proposition 4.2: For two uncertainty sets, U1 and U2, the robust complexity of the
Minkowski sum U1 + U2 satisfies ρ(U1 + U2) ≥ ρ(U1) + ρ(U2).
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Proof: Given U = U1 + U2, it follows δ∗(y|U) = δ∗(y|U1) + δ∗(y|U2). By
definition of the robust complexity δ∗(·|Ui) ≥ ρ(Ui)‖ · ‖2, we have:

δ∗(y|U) ≥ ρ(U1)‖y‖2 + ρ(U2)‖y‖2.
Taking the minimum over all y such that ‖y‖2 = 1 proves the above. �

Algorithm 1 generates the parameters for the uncertainty set construction,
which are then further reinforced their robustness and generate more robust
estimates with Algorithm 2. Furthermore, we identify the actual mixture com-
ponents that contribute to this process. Below, we show how the union of
these exported uncertainty sets, which each represent a mixture component,
contributes to robust constraints and that the final uncertainty set U provides
probabilistic guarantees.

Based on the previous work from [46], we have the following:

Proposition 4.3: For any robust constraint c�x ≤ b, ∀ c ∈ U, if the uncertainty
set U can be expressed as a union U(ε) = ∪M

k=1Uk, then the robust constraint is
equivalent to c�x ≤ b ∀ c ∈ Uk, k = 1, . . . ,M.

Proof: Let the uncertainty set U be expressed as a union of subsets U(ε) =
∪M
k=1Uk. For any c ∈ U, there exists at least one subset Uk such that c ∈ Uk.

Therefore, the constraint c�x ≤ bmust hold for all c ∈ Uk for each k = 1, . . . ,M.
Hence, the original robust constraint c�x ≤ b ∀ c ∈ U is equivalent to c�x ≤
b ∀ c ∈ Uk, ∀ Uk [46]. �

Proposition 4.4: The probability of feasibility of the constraint Pr(c�x ≤ b) is
bounded below (≥ ) by (1 − ε)

∑
k:πk≥π∗ πk.

Proof: Considering the probability of feasibility, denote � ≥ 0 as the adaptive
scale parameter that satisfies Pr(‖ξ‖ ≤ �k) ≥ 1 − ε and ξ ∼ tn(0, I), following
a Student’s t-distribution with n degrees of freedom, the overall probability of
feasibility is the weighted sum of the probabilities over the subsets. Hence, it is
bounded below by 1 − ε ≥ (1 − ε)

∑
k:πk≥π∗ πk [46]. �

5. Experiments

This section provides a series of numerical examples to test the performance of
the proposed method. To implement the examples, we coded in Python with rel-
evant libraries, such as scikit-learn for machine learning and RSOME (Robust
Stochastic Optimization Made Easy) [48] for Robust Optimization. All the opti-
mization problems were solved with Gurobi and implemented on a university
laptop with an Intel(R) Core(TM) i5-1145G7 @ 2.60GHz and 16GB RAM.
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5.1. Motivating example – a toy problem

In this section we provide an illustrative motivating example adapted from [20]
to test the proposed data-driven uncertainty set and the data-driven robust
optimization framework. The motivating example is defined as follows:

min
x

3x1 + 5x2 + max
u∈U min

y
6y1 + 10y2

s.t.

x1 + x2 ≤ 70

x1 + y1 ≥ u1
x2 + y2 ≥ u2
x1, x2, y1, y2 ≥ 0

(17)

This is a classical two-stage adaptive robust optimization and minmax problem
where the scope is to minimize x and y, while maximizing the uncertainty u. x1
and x2 are the first-stage decision variables, while y1 and y2 are the second-stage
decision variables. u1 and u2 are the uncertain parameters of a possible produc-
tion plan that perform well across all possible realizations within the defined
uncertainty set U.

5.1.1. Dataset and scenarios
The experimental setting for the above problem is to create two uncertain param-
eters, u1 and u2, which for example can be considered as uncertain demand
in a production planning problem. We create 500 data points which are split
into 3 distinct scenarios of different data structures and variability, such as sym-
metric, asymmetric, correlated, non-correlated patterns and no patterns. The
purpose of selecting multiple and different scenario-based approaches is to cap-
ture a wide range of possible outcomes, so these 500 points represent each time
one scenario and different outcomes. We note from Equation (17) that potential
supervised learning predictions can determine the problem’s constraint bound-
ary and shrink the solution based on those forecasting, butwe didn’t examine and
expand for this experiment. Our goal is to ensure the robustness and effectiveness
of our approach by testing the performance of our proposed data-driven uncer-
tainty set. We aim to determine if it can accurately detect and exclude outliers, as
well as capture the correct number of components and the shape of each cluster
within the data and across different scenarios. We will also compare the objec-
tive, solutions, robustness, computational time and coverage rate. The scenarios
are as follow:

• SCENARIO 1:We create 5 obvious distinct separate clusters and some outliers
with 5% of all the data – 25 data points.
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Table 1. Comparisons of different data-driven approaches.

Proposed
Proposed Method with

Box Gamma Method with k-means 5 predicted
Uncertainty Uncertainty 1 pre-defined Uncertainty exported

Set Set component Set components

Minimize Objective 347.43 391.56 336.27 242.05 228.90
First-Stage Decisions x1 = 30.09 x1 = 14.89 x1 = 14.68 x1 = 18.53 x1 = 18.45

x2 = 39.90 x2 = 30.98 x2 = 28.67 x2 = 27.68 x2 = 26.99
Second-Stage y1 = −1.59 y1 = 17.64 y1 = 14.93 y1 = 6.97 y1 = 6.19
Decisions y2 = 0 y2 = 8.61 y2 = 6.91 y2 = 0.61 y2 = 0.13
Coverage Rate 100% 96% 96% 95% 95%
Computation 4 (+4 for bootstrap 4 4 (+20 for bootstrap
time (s) 3 3 resampling) 4 resampling)

• SCENARIO 2: We test the same problem and data on a more symmetric data
structure with normal linear pattern.

• SCENARIO 3: We evaluate our uncertainty set on wide asymmetric data
variation spread, with noise such that the data appears at irregular intervals.

5.1.2. Results
For SCENARIO 1, a detailed table is provided in Table 1 with respect to differ-
ent uncertainty set constructionmethods, coverage rate, objective, first-stage and
second-stage decisions. Different types of traditional uncertainty sets, such as
Ubox and Ubudget , as well as other unsupervised learning methods such as k-
means, are constructed based on the same uncertainty data to test against our
framework and approach.

We set the threshold as 5%. With the proposed data-driven uncertainty set,
our nonparametric unsupervised learning model correctly captures the true
number of components of the data, M = 5. The output of the means {μ}5k=1= [13.83, 16.88], [18.39, 24.24], [10.19, 16.23], [18.16, 20.70], [12.96, 12.16],
while the output of {�1}5k=1 = [3.17, 3.35, 4.36, 4.66, 4.53] and for {�∞}5k=1 =
[1.93, 2.47, 2.26, 2.50, 2.83], ∀ k = 1, 2, 3, 4, 5 and α = 100% coverage rate.

In Figure 6 we present the process to construct the data-driven uncertainty
set, with identification of the outliers and remove them in Figure 6(b) and then
our method determines the optimal number of components, with their means in
Figure 6(c) for uncertain parameters u1 and u2.

In Figure 7 we experiment with the traditional uncertainty sets that are
widely used in Robust Optimization, Box (Figure 7(a)) and Budget/Gamma
(Figure 7(b)) Uncertainty Sets, which shows overly conservativeness. In this
example, the solution being on the edge makes sense because the box set pushes
the solution to the limits of the variable ranges tominimize the objective function
within those extreme points, from the first constraint. We also experiment our
approach with different pre-defined number of components and test the impact
on the constructed data-driven uncertainty set. In Figure 7(c), after we identify
and remove the outliers noted as data points with (∗), we export the uncertainty
set with 1 pre-defined component, while in Figure 7(d) we export the uncertainty
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Figure 6. SCENARIO 1: Process for the construction of the Data-Driven Uncertainty Set. (a) initial
data, (b) Outlier identification, (c) Inference in black the parametermean of each predicted cluster.

set with 3 pre-defined component where we can observe that it is less conser-
vative than the previous one. In Figure 7(e,f) we automatically determine the
optimal number of components, where optimal number of components are 5,
but we examine each norm separately and their affects on our approach, with the
same predicted number of components, means, covariance, but different norms
and Gammas. We observe that for solely l∞ norm that the initial ‘here-and-
now’ first-stage decisions are positioned at the top right of the box. It can be
observed that out approach produces no ‘wait-and-see’ second-stage decisions
with y1 = 0 and y2 = 0, resulting in a less conservative approach, as it does not
introduce robustness against uncertainty and no flexibility. This shows that no
robustness is introduced into the model, and it essentially treats the problem as a
deterministic optimization. Consequently, no irreversible decisions are selected
in the first-stage decisions, which is not necessarily wrong because it is allowed in
our constraints, but we would prefer to have these future adjustments that makes
our frameworkmore robust. The second-stage decisions equal to zero essentially
eliminates the flexibility provided because it is confident that the nominal solu-
tions x1 and x2 are robust enough to handle all possible scenarios without the
need for adjustments and deviations. In general, larger values of y1 and y2 lead to
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a more conservative robust solution but might sacrifice some level of optimality.
However, the solution of l1 norm uncertainty set is optimal and inside the dia-
mond shape, with both first and second-stage decisions robust enough. The data
distribution is formed in a way that the l1 norm, |u1| + |u2|, sufficiently cap-
tures the spread and the l∞ norm, max(|u1|, |u2|), does not provide additional
constraints.

As a result, our comprehensive framework and final concrete uncertainty
set modelling suggests that the optimal number of components are 5, and
thus we perfectly capture all the uncertain information and region in Figure 8,
constructing and producing the best approach of our data-driven framework,
the union of the above norms in a very nice uncertainty representation. This
data-driven influenced uncertainty set accounts for deviations which lead to
solutions that balance robustness rather than just pushing to the extremes
of individual variables such as the previous conservative classical set. That’s
why the solution is more central, balancing deviations from multiple direc-
tions and avoiding pushing any single variable to its extreme, resulting in
finding a solution that remains feasible under all possible scenarios within the
uncertainty set.

To test the power of our framework against other existing unsupervised
approaches, we implemented the k-meansmethod to infer the parameters that we
integrate to the same proposed data-driven uncertainty set. Since the drawback
of k-means is that we have to determine beforehand the number of components,
we utilize in Figure 9(a) the ‘elbow method’ on the same dataset without outlier,
since k-means is extremely sensitive to that. We found that the optimal num-
bers of components can be 2, since we can split the data into two clusters (of
two and three), or 5, as we correctly predicted. In Figure 9(b) we constructed the
data-driven uncertainty set with k-means and we observe it is quite similar to
our method. Delving deeper in Figure 9(c), we compared the main parameters
influencing the efficiency of the uncertainty set, specifically the means.We found
that the centroids from the k-means algorithm differ from our DPMM centres.
While k-means generally performs well when the components are distinct from
each other, our methodology outperformed it by paying closer attention to the
actual weight of the data points in each cluster and their predominant locations
within each component. We anticipate k-means to fail in other scenarios where
data are asymmetrical and exhibit spread variation due to its inherent drawbacks,
as well as the need to find and determine beforehand the optimal number of
clustering.

In Figure 10 we present the objective with different coverage rates among the
traditional and proposed data-driven uncertainty sets. As shown, the proposed
data-driven uncertainty set with automatically defined 5 components results in
lower objective values across various coverage rates. In contrast, the other meth-
ods yield higher objective values due to the overly conservative creation of the
uncertainty set and unnecessary space. The k-means method was the closest to
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Figure 7. (a) and (b) are Traditional Box and Budget Uncertainty Sets. (c) is our approach with
1 predefined component, (d) our approach with 3 pre-defined components. (e) is our approach
with just l∞ norm uncertainty set and (f ) with just l1 norm uncertainty set.

our approach, largely because we use the same data-driven uncertainty set and
adaptive scale parameters.

In the end, we will compare our bootstrap approach in contrast to the non-
bootstrap one in Figure 11. We observe that the the bootstrap approach, straight
line set, is more robust in contrast to the non-bootstrapped approach, dashed line
set. Even though the objective is slightly higher (228.90 in contrast to 224.74),
the robustness of our uncertainty set makes it a far better choice for general-
ization because we account the actual deviation of means and uncertain data
points. This makes our model robust enough to cover any potential data or
parameters perturbations, but also precise and accurate, because we let the data
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Figure 8. Proposed Bootstrap DPMM approach to construct the optimal number of components
automatically.

behaviour and deviation influence the extension of the set. This is our trade off
between conservativeness and optimally. For SCENARIO 2, we test the same
motivational example on a more symmetric data structure with a normal linear
pattern. Our aim is to observe the outcome of our proposed framework on dif-
ferent data structures, as shown in Figure 12. Once again, our method accurately
captures the shape of the data, constructing a well-fitted data-driven uncertainty
set that includes all necessary information and possible scenarios. This allows us
to incorporate it into the same robust optimization problem and achieve the best
objective.

Lastly, for SCENARIO 3, wewill evaluate our uncertainty set on a dataset char-
acterized by wide asymmetric variation and noticeable noise, where data appears
irregularly, as shown in Figure 13. In Figure 13(c), we observe different clus-
tering behaviour from k-means model compared to our proposed approach in
Figure 14, indicating different parameter inferences for the uncertainty set con-
struction that influence the solutions and objectives. Once again, for different
data structure and different range of the two uncertain parameters than pre-
vious scenarios, our proposed machine learning methodology and data-driven
uncertainty set construction method effectively capture the uncertainty, iden-
tify outliers, and produce less conservative objective of 121.04 instead of 122.38
fromk-means, where the other two classical traditional sets producemuch higher
objective as expected.

To evaluate the robustness of our approach we perform ourmethod on out-of-
sample and unseen data with train-test split. Then, we perform cross-validation
5 times to evaluate the generalizability of our uncertainty modelling. We split
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Figure 9. k-means algorithm, resulting uncertainty set construction and comparison.

the data to 400 training data and 100 test data, applied our above method to
the train and evaluate on the test data. The results in Figure 15 are promising
as expected on average of the 5 folds and running the data sample 100 times. For
this example, we present in eclipse the previous uncertainty set as an approx-
imation of how our uncertainty set construction performs. The test data fall
inside our final combined trained approach with average P-Value of 0.77 which
implies that that our model’s uncertainty set is statistically similar to the true
data distribution, indicating a good fit. At last, for SCENARIO 1, to further test
the robustness and adaptability of our approach, we will add additional 100 data
points, to see how our method’s uncertainty set reacts to that, how the uncer-
tainty modelling shifts in terms of the objective and solution in an iterative loop.
Intentionally we add 2 more clear cluster to the existing dataset to evaluate if
our clustering model will adapt and capture them, visualize dashed eclipses as



30 A. NEOFYTOU ET AL.

Figure 10. Coverage Rate Comparisons over different percentages of the same data.

Figure 11. Bootstrap vs. Non-Bootstrap approach: difference between uncertainty set size, solu-
tions and objectives.

approximation of our uncertainty set. We observe from Figure 16 that after 15
newdata points, themodel predicted andmarked themajority as outliers without
forming any new cluster or change solutions (orange point), but instead just
adjusting the existing uncertainty set to the new modified distribution. After 35
data points, it predicted them correctly as new components and started forming
2 new clusters, changing the solution by trying to find the best approximation
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Figure 12. SCENARIO 2: Our framework works well on correlated dataset with linear pattern.

Figure 13. SCENARIO 3: Asymmetric dataset variation spread with noise in irregular intervals. (a)
Traditional Box Uncertainty Set, (b) Traditional Budget Uncertainty Set, (c) Clustering behaviour of
k-means after its own outlier detection.
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Figure 14. SCENARIO 3: Proposed data-driven uncertainty sets on dataset with data variation.

Figure 15. Train-test split and cross validation. Testing data fall inside the trained method and
uncertainty set.

distribution and parameter that can express. In the end, after all the 100 data
points are introduced, our method, changes the solution and final uncertainty
set construction representation based on the constraints, proving that it can be
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Figure 16. Testing on SCENARIO 1 to see how our approach behaves with additional 100 unseen
out-of-sample data points over time: (a) Results after 15 new data points, (b) Results after 35 new
data points, (c) Results after 100 new data points.

adaptive to new unseen data and not just solving the uncertain data without any
knowledge.

5.2. Production planning example

5.2.1. Experimental settings
We will now consider a production planning problem in the context of a man-
ufacturing company that produces electronic devices. The aim is to optimize a
company’s production decisions to meet customer demand while minimizing
costs, and the objective is to determine the optimal production quantities and
scheduling decisions to minimize costs. To address this problem, we applied a
robust optimization technique considering uncertainties in demand, decisions,
and production capacity. Our goal is to construct a compact uncertainty set by
considering a range of possible scenarios and finding a production plan that per-
forms well in all of those scenarios. See [49,50] for further reading. We present
a simplified formulation of the production planning problem with additional
details:
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(1) Decision Variables:
(a) Production Quantities: – xt represents the quantity of devices produced

at time period t.
(b) Inventory Levels: – It represents the inventory level of devices at the end

of time period t.
(c) Setup Variables: – zt is a binary variable that indicates whether a pro-

duction setup is initiated at time period t. – vt is a binary variable that
indicates whether a production setup is completed at time period t.

(2) Robust Objective Function: The objective function is to minimize the costs
under this worst-case scenario. For the production and inventory costs, the
robust objective function can be written as:

min
x,I

max
d∈U

∑
t

(
Cprod · xt + Chold · It

)

where Cprod is the production cost per device, and Chold is the holding cost
per device per time period.

(3) Constraints:
(a) Demand Constraint: It = It−1 + xt − Dt ∀ t
(b) Production Capacity Constraint: xt ≤ Ccap ∀ t
(c) Setup Variables Constraint: zt − vt = 0 ∀ t, vt−1 − zt ≥ 0 ∀ t
(d) Setup Time Constraint:

∑
t(vt − zt) ≤ Tmax

The traditional Box uncertainty set for the demand, as explained above, can
be defined as a range that encompasses possible values. For instance, let us
define the uncertain demand at time period t as Dt and define its uncertainty
set as:

Ut = {Dt | Dt ∈ [Dmin
t ,Dmax

t ]} (18)

where [Dmin
t ,Dmax

t ] represents the lower and upper bounds of the demand at
time period t. But this uncertainty set as explained is highly conservative and
will not give us the optimal results. As a result and for comparison purposes,
we will proceed with our proposed constructed data-driven uncertainty set in
Equation (12).

5.2.2. Data, analysis and results
We consider the following scenario and uncertain synthetic demand data as the
experiment: We have two products A and B, such as electronic devices. In this
scenario, the demand for these devices fluctuates seasonally due to changes in
customer preferences and market trends. Winter and Summer months exhibit
higher demands than other months, over a period of 365 days. The demand Dt
for each time period t is uncertain and vary. Theminimumdemand for a period t
is denoted asDmin

t and themaximumDmax
t .We set the production cost per device

to Cprod = 100 and the holding cost per device per time period Chold = 10. The
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production capacity is determined Ccap = 1000 per time period t and the maxi-
mum setup time predicted isTmax = 3.We have also experimentedwith different
numerical values for these. For each time period t, d1 represents the uncertain
demand for electronic device A and d2 represents the uncertain demand for elec-
tronic device B. In this experiment, we will have 12 solutions for 12 days for
each time period t = 1, 2, . . . , 12, instead of 1 like a usual robust optimization
approach.

Initially, we addressed the experiment using conservative approaches with a
box uncertainty set and Budget uncertainty set. In Figure 17, the visualization of
the data over the 12 time periods, derived using the classical uncertainty sets,
are shown. The overall 12 solutions (orange points) for both Product A and
Product B using the Box and Budget Uncertainty set are shown there. Our frame-
work chose to produce at the same maximum demand for each time period for
each product, highlighting an extremely conservative approach. Budget approach
performed slightly better than Box, but it was still highly conservative, disre-
garding seasonal fluctuations in demand and resulting in extremely conservative
approach. Finally, the results of our approach are presented in Figure 18. Our
ML algorithm initially captured the demand structure by approximating the data
distribution variability and proposing the optimal number of components, the
mean and covariance of each cluster, along with Gammas of l1 and l∞ norms
for each component. This approach produced a less conservative uncertainty

Figure 17. Traditional Uncertainty Sets for Production Planning experiment. Box vs Budget
Uncertainty Sets.
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Figure 18. Proposeddata-driven approach for experiment 2over different timeperiods (t = 12).

set, avoiding unnecessary space, identifying outlier (marked as ‘∗’) and infeasi-
ble scenarios/solutions. For this experiment, the proposed uncertainty sets were
manually constructed from scratch and adjusted accordingly based on the data.
As such, ourmethodology identified the best predicted demand for each product,
accounting for seasonal fluctuations and the original demand’s possible interval
levels.

When implemented, the objectives, first-stage decisions and inventory levels
are presented in Table 2 for Product A and Product B. The solutions remained
within the bounds of the constructed data-driven uncertainty sets, where boot-
strap produce more robustness, ensuring no solutions fell outside the range of
actual production and data points. The framework adjusted and adapted for
subsequent 12 timeperiods, providing the best solutions for both electronic prod-
ucts. In addition, the objectives for the demand of Product A and Product B were
significantly lower compared to the previous highly conservativemethods. Lastly,
the inventory level is lower due to the varying production in each period (t),
which accounts for demand fluctuations. This approach is less conservative but
remains robust across the different scenarios.

5.3. Robust vehicle pre-Allocation example

In this example, we solve a modified vehicle pre-allocation problem, initially
introduced by Hao et al. [51]. Given I supply nodes and J demand nodes in an
urban area, after random demand dj, j ∈ [J] is realized, the operator allocates xij
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Table 2. Results and Comparison with existing approaches.

Product A Product B

Demand dA = [876, 638, 666, 522, 774, 314,
514, 424, 212, 814, 450, 388]

dB = [234, 450, 452, 486, 608, 866,
860, 500, 232, 786, 258, 580]

Minimum Demand (dA)min = 212 (dB)min = 232
Maximum Demand (dA)max = 876 (dB)max = 866
Minimum/Maximum Demand
estimated after final period

[2544, 10512] [2784, 10392]

Objective with Box Uncertainty
Set

1,567,879 1,532,380

Initial Solution with Box
Uncertainty Set

[752, 1000, 876, 876, 876, 876, 876,
876, 876, 876, 876, 876]

[ 732, 1000, 866, 866, 866, 866, 866,
866, 866, 866, 866, 866]

Inventory Levels with Box
Uncertainty Set

[752, 1752, 2628, 3504, 4380, 5256,
6132, 7008, 7884, 8760, 9636,
10512]

[732, 1732, 2598, 3464, 4330,
5196, 6062, 6928, 7794, 8660,
9526, 10392]

Objective with Gamma/Budget
Uncertainty Set

1,219,960 1,207,860

Initial Solution with Gamma
Uncertainty Set

[1252, 1000, 876, 876, 876, 876, 876,
876, 876, 876, 876, 876]

[1232, 1000, 866, 866, 866, 866,
866, 866, 866, 866, 866, 866]

Inventory Levels with Gamma
Uncertainty Set

[1252, 2252, 3128, 4004, 4880,
5756, 6632, 7508, 8384, 9260,
10136, 11012]

[1232, 2232, 3098, 3964, 4830,
5696, 6562, 7428, 8294, 9160,
10026, 10892]

Objective with Proposed Data-
Driven Uncertainty Set

705,537.84 655,962.93

Initial Solution with Proposed
Data-Driven Uncertainty Set

[0, 678.78, 860.61, 392.53, 409.75,
230.54, 447.27, 473.49, 416.86,
784.74, 807.53, 750.36]

[0, 523.86, 860.61, 392.53, 409.75,
230.54, 447.27, 473.49, 416.86,
784.74, 807.53, 750.36]

Inventory Levels with Proposed
Data-Driven Uncertainty Set

[0, 678.78, 1539.39, 1931.93,
2341.68, 2572.22, 3019.50,
3492.99, 3909.85, 4694.60, 5502.14,
6252.50]

[0, 523.86, 1384.47, 1777.01,
2186.76, 2417.30, 2864.57,
3338.07, 3754.93, 4539.68,
5347.22, 6097.58]

vehicles from supply node i ∈ [I] to demand node j ∈ [J] at a unit cost cij. The
detailed parameters are listed as below:

• Number of supply nodes I = 1
• Number of demand nodes J = 10
• Revenue coefficients r=(4.50, 4.41, 3.61, 4.49, 4.38, 4.58, 4.53, 4.64, 4.58, 4.32)
• Cost coefficients cj = 3, where j = 1, 2, . . . , J
• Maximum supply of vehicles qi = 400, where i = 1, . . . , I

The vehicle pre-allocation was solved by the robust and sample robust opti-
mization [48], where the decision under demand uncertainty was formulated by
solving the robust optimization problem below:

min
x,y

max
u∈U

⎛
⎝ I∑

i=1

J∑
j=1

(cij − rj)xij +
J∑

j=1
rjyj

⎞
⎠

s.t.

yj ≥
∑
i
xij − uj ∀ u ∈ U, ∀ j ∈ [J], ∀ i ∈ [I] (19)
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Table 3. Robust Vehicle pre-allocation results.

Box uncertainty set
ε-neighborhood
uncertainty set

Proposed data-driven
uncertainty set
construction

Objective −62.59 −103.65 −108.55
Pre-allocation decisions [0, 0, 0, 0, 0, 39.61, 0, 0,

0, 0]
[0.34, 0.35, 0, 4.28, 0, 69.45,
2.45, 4.57, 5.22, 2.48]

[0, 0.11, 0, 1.55, 0, 75.86,
0.52, 2.76, 1.74, 0]

Coverage rate 100% 100% 100%
Computational time 10 sec 13 sec 31 sec

∑
j
xij ≤ qi

xij, yj ≥ 0

where the wait-and-see decision y represents the bookkeeping revenue. It was
initially solved with a conservative box uncertainty set where the upper and
lower bounds are identified using a sample demand dataset (taxi − rain.csv). The
dataset includes the demands of 10 regions associated each revenue coefficient
and 77 day time demands.

Our target is to construct a more compact uncertainty set that will
produce precise but also robust results. We compare with two alterna-
tive uncertainty set construction approaches [48,51]: the sample average
approximation approach with the conservative Box uncertainty set, defined
as Ubox = (d|dmin ≤ d ≤ dmax) , and the two-stage sample robust model
approach with the ε-neighborhood uncertainty set, which is defined Uε =(
d|dmin ≤ d ≤ dmax, ‖d − d̂s‖ ≤ ε

)
for a collection

(
d̂1, d̂2, . . . , d̂S

)
, given in

[52]. In Table 3 we present the results and the existing approaches in compar-
ison with our algorithm and data-driven uncertainty set construction. We also
demonstrate in Figure 19 the difference in quantity allocation for each model for
each region. The results indicate that our proposedmethod perform significantly
better than the conservative sample average approximation approach and slightly
better than the sample robust approach.However, although our approach exhibits
less conservative and more precise allocation, it is computationally more expen-
sive especially in such small dataset. This is due to the bootstrap resampling that
increases the computational burden.

5.4. Adaptive robust lot-sizing example

In this experimental setting, we examine a modified lot-sizing problem, initially
proposed byBertsimas anddeRuiter [53] and revisited byChen et al. [48].Within
a network comprisingN stores, the allocation of stock, represented by xi for each
store i, is established prior to the realization of the actual demand at each location.
The demand, d, is subject to uncertainty and presumed to belong to a budget
uncertainty set.
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Figure 19. Experiment 3: Allocation Quantity by region and comparison between Box vs epsilon-
neighborhood vs proposed data-driven uncertainty sets.

Following the observation of the demand realization, stock yij, the transporta-
tion from store i to j, aims to meet all demand with an associated cost tij. The
goal is to minimize the total cost. The proposed uncertainty set and formulation
of this example is given as below:

U = (d : 0 ≤ d ≤ dmax, d ≤ �)

min
x,y

max
d

N∑
i=1

cixi +
N∑
i=1

N∑
j=1

tijyij

s.t.

di ≤
N∑
j=1

yji −
N∑
j=1

yij + xid ∈ U

0 ≤ xi ≤ Ki i = 1, . . . ,N

(20)

For comparisons we set N = 50 locations and storage cost ci = 20. tij is given
from the Euclidean distance between the two stores. dmax is the maximum
demand and Ki is the stock capacity both set to 20. The target is to identify
the appropriate stock allocation at each location. The results are presented in
Table 4 and the different visualization in the vehicle allocations for each store
in Figure 20. For this experiment, the proposed uncertainty set was manually
constructed from scratch and adjusted accordingly based on the data.

The experimental results demonstrate superiority of our proposed data-driven
uncertainty set in optimizing stock allocation within the modified lot-sizing
problem. Despite the increase in computational time, our method consistently
outperforms the traditional budget uncertainty set in terms of objective cost,
achieving a lower total cost of 3633.19 compared to 3647.01. The coverage rate
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Figure 20. Experiment 4: Lot sizing allocation. Difference allocation between (a) Budget uncer-
tainty set and (b) proposed bootstrapped DPMM uncertainty set.

Table 4. Adaptive robust lot-sizing results.

Budget uncertainty
set

Proposed data-driven
uncertainty set
construction

Objective 3647.01 3633.19
Coverage rate 100% 100%
Computational time 27 sec 58 sec

remains robust at 100% for both methods, demonstrating the reliability of the
stock allocations under varying demand scenarios. The findings of this study
clearly show that even though we slightly outperform and cannot fully leverage
the unsupervised learning capabilities with only a limited amount of available
data, the integration of Bootstrapped DPMM in constructing uncertainty sets
enhances the decision-making process when faced with uncertain environments.

6. Conclusion

Our work advances decision-making under uncertainty by integrating unsuper-
vised learning clustering and prescriptive analytics with data-driven uncertainty
set construction for robust optimization. This versatile methodology is applica-
ble to various robust optimization problems acrossmultiple domains.We address
the limitations of traditional methods by employing Dirichlet process mixture
model to automatically shape uncertainty sets in robust optimization problems,
where each predicted distribution corresponds to a cluster. This the first time we
have shown that the novel and promising introduction of bootstrap resampling
within this process significantly improves the efficiency and robustness of our
solutions. Our extensive examples demonstrate the effectiveness and superior-
ity of our approach, outperforming existingmethods in terms of solution quality.
However, the effectiveness of the approach relies on the quality and availability of
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data. In scenarios with limited data, our constructed uncertainty sets accurately
captured the true underlying uncertainties, resulting in a minor improvement in
the objective value but at the cost of increased computation time compared to
conservative methods.

Future research can expand on our methodology to build robust optimization
models with automated training and validation procedures. Handling data spar-
sity more effectively and exploring weight allocation on data points or clusters
through weighted stick-breaking modifications are areas for further investiga-
tion. Additionally, future research can explore the ideal coverage rate to set in
advance and the most appropriate method for expanding the boundary of the
uncertainty set in order to account for all vital data variations. Finally, advanced
deep learningmethods can be employed in robust optimization to calculatemore
optimal coefficients and provide valuable insights.
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