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Abstract: Rotary friction welding is a solid-state welding process that can manufacture high-
integrity joints between similar and dissimilar materials with short weld times. However,
access to expensive and complex industrial-grade friction welding machines is not always
possible. This study explores the design process and functionality of a laboratory-scale
friction welding setup following the fundamentals of large-scale machinery. The proposed
setup is designed to be easily manufactured, employing the use of a calibrated drill press
and load cell, thus ensuring welding parameters such as rotational speed and applied
axial load are monitored. The decision to investigate rotary friction welding of aluminium
bronze Ca104 to austenitic stainless steel AISI316 was taken to explore the limitations of this
bespoke friction welding machine for prospective applications in the nuclear energy sector.
The workpieces were friction welded at four sets of rotational speeds with constant friction
and forging pressures. The microstructural evolution and mechanical properties of the dis-
similar material welds were investigated via optical and scanning electron microscopy with
energy dispersive spectroscopy, 4-point bend testing and microhardness measurements.
Results show a change in the hardness along the weld interface and evidence of metallic
diffusion between the dissimilar materials, demonstrating the successful application of the
small-scale experimental setup.

Keywords: dissimilar joining; rotary friction welding (RFW); lab-scale machinery;
AISI316/Ca104 alloys; nuclear fusion applications; metallurgical investigation

1. Introduction
Joining of dissimilar materials has been a long-lasting endeavour for engineers due

to the material’s inherent differences in physical, mechanical, metallurgical, and thermal
properties [1–3]. There has been an increased research interest for nuclear energy appli-
cations [4–7] of joined stainless steel and copper alloys. These sectors can greatly benefit
from combining high strength, low thermal diffusivity, with high corrosion resistance,
thermal and electrical conductivity. However, the materials’ metallurgical incompatibility
(solubility limits, solidification patterns, etc.) create challenges in their joining efforts [8].
Fusion-based welding processes present difficulties due to the varying properties of the ma-
terials involved [9,10]. Solid-state processes, however, maintain the integrity of the parent
workpieces without requiring lower-grade filler metals usually found in fusion welding [11].
Rotary friction welding (RFW), a variant of friction welding, is a well-established solid
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state joining process, proven capable of producing high-quality welds between workpieces
of similar and dissimilar materials [12–14]. It is a technique frequently employing large
industrial-scale machinery that is designed to convert mechanical energy into heat at the
contact surfaces of the workpieces, with the help of an applied relative motion. Limited
access to full-scale machinery restricts the range of research projects capable of utilising the
fundamentals and advantages of friction welding. Thus, the need to investigate potential
new outlets to design and develop small-scale, low-cost friction welding experimental
setups with existing workshop machinery is created. This is further driven by the need to
explore dissimilar materials compatibility for applications in demanding environments.

Across the available literature, researchers have been able to convert and utilise
the functionality of a lathe for friction welding similar and dissimilar materials. Shah
et al. [15] were able to design a fixture that would connect the pressure applying mechanism
to the stationary workpiece, converting a conventional lathe machine into a low-cost
friction welder. The experiments conducted expressed positive results for similar material
friction welding such as stainless steel 070M20 and AA2011-T3 solid rounds of 10 mm
and 12 mm diameters. Pressure was applied through a pneumatic system instead of a
hydraulic one, often found in large-scale machinery. Rotational speed (rpm) was the
main welding parameter with aluminium rods requiring much lower rpm compared to
the welds conducted with the stainless steel rods. The most successful welds for the
aluminium rods were identified at 1000 rpm, whereas for the stainless steel rods it was
found to be 1400 rpm [15]. With rotational speed being directly proportional to the energy
supplied to the system, welds at higher rpm led to increased temperatures generated
at the weld interfaces, increasing the joint efficiency on the steel side. Arun et al. [16]
successfully welded solid round rods of AA6063 with workpieces of 10 mm diameter by
implementing a novel hydraulic hand pump that allowed the controlled application of
axial pressure. Welding parameters such as friction pressure and time are predetermined
with rotational speed and forging pressure being controlled over a range of experiments,
with welds produced at 1000 rpm and 140 MPa, expressing the highest tensile strength
at 210 MPa. Parandhaman et al. [17] explored the functionality of a conventional lathe
without introducing any external components while using 12 mm diameter solid round
rods of mild steel and AA6063. The provided results were limited, which further fortifies
the need for this engineering task to be further explored and even consider other machinery
such as a drill press.

Little exploration has been conducted on joining aluminium bronze (Ca104), a copper
and iron alloy, to austenitic stainless steel (AISI316), in solid round geometries using a
non-industry-scaled rotary friction welding setup. Tsuchiya et al. [18] investigated the
optimum welding parameters that would be necessary to fabricate a joint between Cu-Cr-
Zr/AISI316 metal alloys for magnetic fusion energy applications, such as high-heat flux
components at the first wall of tokamak reactors, via friction welding. Welding parameters
of 2200 rpm at 353 MPa and 608 MPa friction and forging pressures, respectively, with 9 s
of total welding time exhibited tensile strength similar to the parent copper alloy. Optical
microscopy showcased a narrow intermetallic compound (IMCs) layer between the faying
surfaces of the workpieces, which was also the region of failure during tensile testing. The
effect of friction welding parameters on the impact strength between copper and AISI430
was evaluated by Shanjeevi et al. [19]. Layers of IMCs that signify elemental segregation
were found at the weld interfaces of every examined weld, which led to the degradation of
their mechanical properties. A ductile mode of fracture with dimple formations was found
at the interface of the fractured tensile samples in the thermomechanical affected zone
(TMAZ) of the copper workpieces. In a follow-up study [20], the researchers examined
the effect of welding parameters between AISI304L and oxygen-free copper. Across all
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welded samples, the measured tensile strength never exceeded that of the copper parent
material, with the ones performed at the highest rotational speed, 1500 rpm, being the
closest. Overall results showed low percentages of joint efficiency between the dissimilar
materials, with optical microscopy figures of the weld interface showing the stainless
steel grains practically unaffected by the process, while copper had undergone drastic
plastic deformation.

The primary engineering and scientific challenges in joining dissimilar materials,
such as stainless steel and copper alloys, stem from their significant differences in physical,
mechanical, and metallurgical properties. Metallurgical incompatibility, including solubility
limits and the formation of intermetallic compounds (IMCs) at weld interfaces, often leads
to mechanical property degradation and joint failure. The high-temperature sensitivity
of these materials further complicates the control of welding parameters like rotational
speed and friction pressure. Additionally, the lack of extensive research between those
material combinations makes it challenging to optimise the process parameters for reliable,
high-strength joints. While solid-state techniques such as rotary friction welding (RFW)
show promise, access to large-scale machinery is limited, prompting the need for small-
scale experimental setups. In this research paper, the effect of a range of rotational speeds
was investigated on joining AISI 316 to aluminium bronze Ca104 solid round rods using a
small-scale experimental friction welding setup. This study deepens the understanding
of joining efforts between dissimilar metal alloys by generating welds and performing
metallurgical and mechanical property investigations. A second key novelty showcased in
this publication is the identification and development of a solution to this lack of access for
large-scale machinery by implementing the fundamentals of friction welding with widely
available laboratory equipment.

2. Materials and Methods
The solid round rods of the parent materials were machined to the following dimen-

sions: 50 mm × 12 mm (length × diameter). The measured chemical composition of
AISI316 and Ca104 are given in Tables 1 and 2, measured with a glow discharge optical
emission spectrometer (GD-OES).

Table 1. Chemical composition of the AISI316 steel (weight %).

Fe Cr Ni Mn Mo Si C Rest

67.55 16.83 11.15 1.51 2.1 0.365 0.023 0.472

Table 2. Chemical composition of aluminium bronze Ca104 alloy (weight %).

Cu Al Fe Ni Mn

Min 83.5 8.50 4.00 4.00 -
Max 78 11.00 5.00 5.50 0.5

The employed welding process parameters are presented in Table 3. Loss of weld
energy due to vibrations was prevented by having 2/3 of the total length of the work-
pieces secured inside the shaft of the friction welding machine. The applied axial load
measurements using P = F/A (with area being the measured area of both workpieces before
welding) was converted into friction and forging pressure, accordingly, as seen in Table 3.
In total, 16 welds were produced, four for each set of parameters as per Table 3.
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Table 3. Welding parameters applied during the RFW process.

Welds No. RPM
Friction
Pressure

(MPa)

Forging
Pressure

(MPa)
Total Time (s) Dwell Time (s)

1–4 800 18–28 8–14 25–35 s 5

5–8 1200 18–28 8–14 30–35 s 5

9–12 2200 18–28 8–14 20–25 s 5

13–16 3000 18–28 8–14 15–20 s 5

The manufactured joints of the dissimilar alloys were examined following the in-
ternational standard BS EN ISO 15620 [21] used for friction welding metallic materials.
Metallographic samples were machined and prepared following standard metallographic
preparations and etched using a solution of 10% ferric nitride in distilled water. Optical
and scanning electron microscopy were used to evaluate the microstructural evolution
during the process as well as investigating any metallic diffusion via energy dispersive
spectroscopy (EDS). The phase identification on the aluminium bronze alloy was further
investigated via X-ray diffractometry (XRD). The welds were subjected to 4-point bend
testing to determine flexural strength using the as-welded sample geometry. Vickers micro-
hardness (HV) measurements were taken along the cross-sections of the welds in the form
of line profiles in the center and outer regions, covering base material (BM), heat affected
zone (HAZ), thermomechanically affected zone (TMAZ) and weld zone (WZ). A 0.5 HV
load was applied over a 10 s dwell time and measurements were taken along the centre
of the welds and along their outer area. The in-house assembly of the small-scale friction
welding machine consisted of a load cell, workpiece housing shaft and support table with
the addition of shoulder bolts. This assembly was designed with the rotating and fixed com-
ponents safely secured during the welding process while allowing for ensuring accurate
axial load applied readings. The full schematic and assembly can be seen in Figure 1.
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Workpiece stability during friction welding is of the highest importance to guarantee
that the weld interface from both sides is in perfect alignment [22–24]. Pressure (frictional
and forging) was applied manually compared to a large-scale, friction welding machine
that employs a hydraulic pressure system. Additional machining was required on the
non-rotating workpieces of the assembly so that both M5 grub screws hold the metal rods
in place, replicating the jaws of a power drill chuck. A flat face of 35 mm × 5 mm (length
× width) is machined to precise dimensions needed for this arrangement (Figure 2).
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3. Results and Discussion
Visual inspection of the stainless steel workpieces shows a discoloration near the

contact area, with flash formed from the Ca104 side as seen in Figure 3. On average, the
Ca104 rods experienced a total length reduction of approximately 7.3 mm from the initial
50 mm. There was no increase in upset and flash formation with the higher rotational
speed joints.
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3.1. Microstructural Characterisation
3.1.1. Optical Microscopy

The microstructure of the weld produced at 800 rpm is presented in Figure 4 in the
axial direction (AD). The investigation is focused on the Ca104 side and not the AISI316 due
to the former showcasing visible signs of deformation and change in microstructure. Grains
in the BM exhibit linear directionality, seen in Figure 4a, and, as seen in Figure 4b,c, their
elongated morphology has been transformed into fine spheroids towards the HAZ and
TMAZ. The grain boundaries between TMAZ and WZ on Figure 4d are not as identifiable as
in the BM (Figure 4a), due to the material becoming highly deformed, exhibiting martensitic
structures as a result of fast cooling rates in the WZ towards the stainless steel side.
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The change of microstructure towards the weld interface at the WZ for welds per-
formed at the higher rpm is equally important to consider on the Ca104 side, which is
presented in Figure 5a–c (bright side is AISI316). Following the fundamentals of friction
welding, when opting for higher rpm during the welding process, this equates to more
energy supplied into the system [12]. A higher energy input during welding leads to higher
temperatures between the workpieces at a much faster rate [25], allowing for a viscous flow
and plastic deformation.

For the thermal energy to circulate along the axial direction, longer heated times are
required, leading to a larger amount of material heated. According to Banerjee et al. [26], the
amount of heat dissipated or transferred to the adjustment regimes is directly proportional
to the weld energy and is expressed as:

Q =
π2PµNR3

20
(1)

where Q, P, R, N and µ represent the heat, pressure, radius of the weld component, rotational
speed and coefficient of friction, respectively. A challenge when exploring friction welding
of dissimilar materials is reducing the formation of intermetallic compounds at the joint
interfaces, which are brittle and negatively affect the mechanical properties of the weld [27].
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3.1.2. Phase Identification of Ca104

Stainless steel is an alloy of Fe-Cr-Ni (with additions of Mn, Mo, Si and C) and has
a face-centred cubic (FCC) crystal structure which is the product of the addition of Ni to
the Fe, eliminating the ductile-to-brittle transitional behaviour of Fe [8,28]. Oxygen free
copper is a metal with an inherent FCC crystal structure; however, with the inclusion of Fe,
Ni and Mn in the Ca104, it is also considered a copper alloy with additional phases within
the crystal structure [29–31].

XRD analysis was employed to determine the space groups of the identified crystal
structures on the aluminium bronze side, which are provided in Figure 6. This analysis has
helped identify the current phases found in both the BM and WZ as shown in Figure 7a,b.
Within the three-dimensional micellar sphere packing, there are three identified space
groups that are correlated to a specific crystal structure [32]. Im-3m is a BCC structure,
Fm-3m is FCC and P63/mmc is HCP. The space groups identified on the Ca104 workpiece
are two, Im-3m and Fm-3m, indicating the existence of both α phase with an FCC and β

phase with a BCC crystal structure, as reported by Xu et al. [33]. The existence of these
phases can significantly alter the corrosion resistance of the aluminium bronze alloy [29,34].
In addition to the existing phases, metastable intermetallic k particles are present, scattered
throughout the microstructure of Ca104, which are directly correlated to the dynamic
softening of the material that is recorded [33]. The existing phases in the crystal matrix and
the additional particles are identified in Figure 7.

3.1.3. Elemental Diffusion Investigation

Elemental diffusion can be considered to be a complimentary bonding mechanism
in friction welding of metallic systems [11,35–37] and the evidence of it can demonstrate
a higher-quality weld [11,37,38]. SEM images and the location of the line scan analysis
performed at the weld interfaces of the AISI316 to Ca104 rotary friction welds are provided
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in Figure 8. Each data point of the scanned lines has been plotted in Figure 9, for each
element identified in both materials, as described in Tables 1 and 2. The penetration of
Cr and Fe, respectively, is measured to a depth of 0.5–2.3 µm from the AISI316 side to the
Ca104 side. In contrast, no traces of Cu or Al can be found on the AISI316 side, signifying
that the temperatures generated at the interface were not high enough to create diffusion
conditions for the stainless steel side. This can be linked to the limitations of the suggested
friction welding setup. Studies have presented indicative temperatures where Cu has
been found to diffuse into stainless steel as high as 950 ◦C [36,39], while Cr can diffuse
into Fe-Cr systems as low as 600 ◦C [40–42]. Out of all the welds investigated, the one
produced at 3000 rpm showcased the deepest penetration of Cr and Fe from the AISI316 to
the Ca104 side at a depth of 2.2 µm. This can be linked to the fact that the higher rotational
speed on the interface is directly correlated to a higher heat input between the workpieces,
suggesting higher temperatures generated while welding. The opposite is found for the
weld at 800 rpm, where the Cr diffusion can be found at depths of 0.5 µm, i.e., a decrease
of 77.72%.
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3.2. Mechanical Properties
3.2.1. Flexural Strength Analysis

The flexural strength of the dissimilar material welds was examined by subjecting
samples to a 4-point bend testing regime. The flexural strength of each weld was measured,
and their average value was compared to that of the BM, as seen in Figure 10. The 4-point
bend test results were examined in sets of three samples per set of welding parameters.
For every set of parameters, all samples failed at the weld interface of both workpieces
with relative homogeneity, as seen in Figure 11 at 800 rpm, while displaying a higher
flexural strength than that of AISI316 with a mean value of 258 MPa. The samples showcase
uniform brittle failure with micro-traces of Ca104 on the AISI316 workpieces. Amongst the
four examined sets, the welds joined at 1200 rpm exhibited the highest average flexural
strength of 386 MPa, while the welds joined at 2200 rpm had the lowest average flexural
strength of 308 MPa. Ductility measurements taken from all examined welds showcased
no additional increase for that of the base materials. Contrary to maximum diffusion
correlation with highest rpm, maximum bond strength does not occur at highest rpm
due to the other material interdependencies. This is again supported by the statement
that diffusion bonding is an aspect of complete metallurgical bonding between dissimilar
alloys [43,44].
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3.2.2. Hardness Distribution

The hardness distribution of AISI 316 to Ca104 rotary friction welds for each set of
parameters is represented in Figure 12 for the outer region and centre region along the axis
of the welded joint. The hardness values of the parent materials are measured within the
range of 190–220 HV for AISI316 and 195–210 HV for Ca104. Both graphs follow a similar
trend of hardness evolution with the only difference found in the outer region (Figure 12a),
where all four welds experienced a steeper increase from the HAZ to TMAZ on the Ca104
side. The finer-grained microstructure that is found in the TMAZ and WZ of the Ca104 was
responsible for the highest hardness values. This hardness increase can be attributed to
the grain refinement experienced by the material as a result of dynamic recrystallisation
which has been reported in similar studies [45–47], further supported by the microstructure
changes presented in Figure 4. Furthermore, there is a decreasing trend from the weld’s
centre towards the parent material, with a steep transition between the WZ, TMAZ and
HAZ. The maximum hardness in the WZ from the Ca104 side was measured at 268, 255,
277 and 270 for 800, 1200, 2200 and 3000 rpm, respectively, indicating minor changes in
hardness with increasing rotational speed. Nevertheless, a decrease in rotational speed led
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to a lower generation of heat that may result in a smaller fraction of grain refinement and
conservation of the original microstructure in the WZ post-cooling (i.e., higher ductility,
decreased hardness).
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4. Conclusions
In this present study, the capabilities of a bespoke laboratory-scale, rotary friction

welding machine were explored. Solid cylindrical rods of AISI316 and Ca104 were rotary
friction welded with four sets of welding parameters and subject to metallographic and
mechanical property investigations to assess the joint integrity. The key findings of this
study are summarised as the following:

1. Based on the principles of already existing industry-grade friction welding machines,
it was made possible to design and manufacture components that, when used in con-
junction with a drill press, allowed for the exploration of friction of welding dissimilar
metals. Friction welding of dissimilar materials was made possible employing this
experimental, small-scale friction welding machine.

2. Changes in the microstructure of the Ca104 alloy were visible with grains transforming
from an elongated to a fine equiaxed shape near the weld interface with the material
becoming heavily deformed. This is envisaged to be due to the fact that the grains
have experienced dynamic recrystallisation during welding.

3. The existence of two different crystal structures and the presence of intermetallic k
particles on the Ca104 is demonstrated through XRD analysis.

4. EDS analysis showed that Cr diffused further from the AISI316 side to Ca104 when
increasing rotational speed as a result of the higher heat input. However, temperatures
at the weld interface were not high enough to promote Cu diffusion into the AISI316
workpiece. The greater the difference in concentration, the quicker will be the rate of
diffusion between the dissimilar metals.

5. All four sets of weld parameters generated joints between the dissimilar materials
with a flexural strength higher than that of the AISI316 base material.

6. The microhardness evolution in two different regions for each weld showed a similar
trend of increase and decrease, with the hardness in the WZ of the Ca104 being the
highest at 268, 255, 277 and 270 HV for 800, 1200, 2200 and 3000 rpm, respectively.
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