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A B S T R A C T

With the increased frequency and intensity of landslides in recent years, there is growing research on
timely detection of the underlying subsurface processes that contribute to these hazards. Recent advances
in machine learning have introduced algorithms for classifying seismic events associated with landslides, such
as earthquakes, rockfalls, and smaller quakes. However, the opaque, ‘‘black box’’ nature of deep learning
algorithms has raised concerns of reliability and interpretability by Earth scientists and end-users, hesitant
to adopt these models. Leveraging on recent recommendations on embedding humans in the Artificial
Intelligence (AI) decision making process, particularly training and validation, we propose a methodology
that incorporates data labelling, verification, and re-labelling through a multi-class convolutional neural
network (CNN) supported by Explainable Artificial Intelligence (XAI) tools, specifically, Layer-wise Relevance
Propagation (LRP). To ensure reproducibility, a catalogue of training events is provided as supplementary
material. Evaluation from the French Seismologic and Geodetic Network (Résif) dataset, gathered in the Alps
in France, demonstrate the effectiveness of the proposed methodology, achieving a recall/sensitivity of 97.3%
for rockfalls and 68.4% for quakes.
1. Introduction

Seismic signal analysis is based on collecting, processing and per-
forming inference on seismic signals with the goal of detecting, under-
standing, classifying and locating seismic events, including not only
earthquakes, but also rockfalls and smaller quakes or tremors that
characterise landslides and their severity. The devastating effects of
landslides on humans and infrastructure have been making headlines,
and more recently have been often attributed to extreme weather
and/or human activities. Seismometers provide accurate recordings of
mechanical waves originating from various sources, but due to their
high sensitivity, distinguishing between mechanical waves originating
from tectonic activities and any other signals contained in the record-
ings (e.g., rainfall, animals, traffic, natural noise, machinery, etc.) is
not an easy task. Manually identifying events based on recordings
of seismometers is a time-consuming and subjective task, prone to
errors and bias. Thus, manual detection has gradually been replaced
by methods that automatically detect and classify seismic events. With
higher availability in seismic recordings and advances in AI, seismic
signal analysis has become a very much data-driven field and has
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spread well beyond seismology and geoscience, as it is now of interest
to much broader research communities (Mousavi and Beroza, 2022).

Deep learning has been shown to be achieve excellent detection and
classification performance for a range of applications where sufficient
amount of labelled data is available, including automated road extrac-
tion (Bayramoğlu and Uzar, 2023), pneumonia diagnosis from medical
imaging (Gülgün and Erol, 2020), satellite image analysis (Sariturk
et al., 2020; Dos, 2022), and car detection (Kaya et al., 2023). Due to
the availability of many well-maintained datasets, the number of deep
learning approaches used in seismology has also sky-rocketed in recent
years (see Fig. 1 in Mousavi and Beroza, 2022) using enormous amounts
of data to train the models. Consequently, recent literature is dominated
by deep learning techniques applied to diverse tasks such as seismic
event labelling using Residual Neural Network (ResNet) (Yi et al.,
2021), magnitude estimation using a network that combines CNN and
Recurrent Neural Networks (RNN) (Shakeel et al., 2021), event locali-
sation using CNN architectures (Perol et al., 2018), multitask learning
for classification with velocity models (Li et al., 2023b) and tackling
seismic inversion problems with conditional Generative Adversarial
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Networks (GAN) (Parasyris et al., 2023). A detailed review of deep
learning architectures, specifically proposed, for event classification
from seismic recordings can be found in Jiang et al. (2023).

For example, CNN-based model ‘DeepQuake’ (Trani et al., 2022)
as demonstrated robust performance for high-magnitude earthquakes,
hough it has limitations with microseismic events, as demonstrated
n Jiang et al. (2023). In Liao et al. (2022), RockNet, taking both 3-

channel time series window and a spectrogram of the vertical channel
of the window as inputs, is proposed for classifying rockfalls and earth-
quakes. The deep learning models achieve state-of-the-art performance
in detecting and classifying seismic signals avoiding cumbersome man-
ual feature generation, selection and extraction process, with their
ability to automatically learn most discriminative features from raw
recordings. However, this also means that these models are limited by
he used training set, and may learn specifically spurious correlations

with the prediction target (Soneson et al., 2014; Hägele et al., 2020).
Furthermore, the fact that the feature engineering task is taken away
from the designer, makes deep learning models opaque, and hence
often referred to as ‘‘black box’’, which limits their use. Indeed, geo-
cientists are still reluctant to use them and rather rely on less complex

interpretable methods based on hand-crafted features (Li et al., 2020)
hat ensure that relevant physical features are used for detection and
lassification (see, e.g., Table I in Li et al. (2020) and Table A1 in Li
t al., 2023a).

Explainable artificial intelligence (XAI) (Bau et al., 2020; Holzinger,
2018), is a research direction that provides human-interpretable expla-
ations that can potentially enhance training process, correct manual
ata annotation, improve models, and contribute towards building trust
n AI-generated outputs (Samek et al., 2016; Montavon et al., 2022).

XAI tools have been extensively used in computer vision (e.g., Lapuschki
et al., 2016) and time-series signal analysis problems (e.g., Murray
et al., 2021); however, the work on explaining the output of deep learn-
ng models for seismic signal analysis, and using these explanations to
mprove confidence in data labelling, model training and building trust
n inferred outputs, is still in its infancy.

In order to pave the way towards a regulatory framework for ensur-
ng trust in AI, the European Commission has published seven princi-
les of Trustworthy AI (European Commission and Directorate-General
or Communications Networks, Content and Technology, 2019), which

include Human Agency and Oversight, Technical Robustness and
Safety, Privacy and Data Governance, Transparency, Diversity, Non-
iscrimination and Fairness, Societal and Environmental Well-Being
nd Accountability.

Depending on how the AI-based seismic analysis will be used, from
nderstanding the subsurface processes and mechanics to hazard and
isaster management, the AI systems can be seen as minimal risk to
igh risk, and therefore subject to strict oversight before they can
e used to ensure infrastructure and human safety. Therefore, the
ollowing principles are important for seismic analysis. First, AI systems
hould empower decision makers when it comes to hazard assessment
r infrastructure planning, allowing them to make informed decisions
rom the AI system outputs. The principle of Human Agency and Over-
ight caters for proper oversight mechanisms that need to be ensured,
hich can be achieved through human-on-the-loop and human-in-

ommand approaches. Second, the principle of technical robustness
nd safety, in part states that AI systems need to be accurate, reliable
nd reproducible to ensure unintentional harm can be minimised and
revented. Accuracy refers to the ability to correct predictions based
n AI models and can be implemented via rigorous evaluation and
ndication of likelihood of potential errors. Reproducibility describes
hether an AI experiment exhibits the same behaviour when repeated
nder the same conditions. A reliable AI system is one that works
roperly with a range of inputs and in a range of situations. Third, the
rinciple of privacy and data governance enables users to trust the data
athering process and that it does not contain inaccuracies, errors or
istakes, especially with respect to labelling or cataloguing by expert
 f

2 
geoscientists. Fourth, the principle of transparency states that the data
and AI system should be transparent through traceability mechanisms
in the form of documentation of datasets and processes that yielded
in decision, including data gathering, data labelling and algorithms
used. Furthermore, transparency also includes explainability, that is, AI
systems and their decisions should be explained in a manner adapted to
the stakeholder concerned. This includes XAI. Fifth, transparency also
states that humans need to be aware that they are interacting with an
AI system, and must be informed of the system’s capabilities and limi-
tations. Finally, the social and environmental well-being principle state
that the AI systems should be sustainable and environmentally friendly
— this can be through taking into considering the resource usage and
energy consumption for training the models. Moreover, they should
onsider the societal impact. Monitoring, understanding, modelling and
redicting landslide processes due to climate change, especially rainfall,

tackle United Nations (UN) Sustainable Development Goal (SDG) 13
on Climate Action (United Nations Sustainable Development Goal 13,
2023). As explained in Vouillamoz et al. (2018), shearing and friction
etween the soil grains results in release of seismic energy within

the landslide body. Therefore, passive seismic monitoring is a good
approach to monitor and mitigate slope instabilities, as it provides high
temporal resolution data in near real time that relate to the dynamics of
the landslide. This means that the transition (and rapid transformation)
of the landslide from slow rate sliding into a rapid slope failure may be
detected and therefore mitigate associated hazards.

2. Literature review on trustworthy AI for seismic signal analysis

To ensure trust and expert’s control of the decision process, machine
earning-based seismic signal analysis has been performed either in a
emi-automated manner (Renouard et al., 2021) using continuous ex-

pert oversight and monitoring (human-on-the-loop), using interpretable
models (Li et al., 2020), or using non-interpretable models (such as
Random Forests) but with numerous hand-crafted features (Provost
et al., 2017) to ensure that the inference is made on signal char-
acteristics identified by experts as important. In Li et al. (2023a) a
detailed study of feature importance is presented where 119 features
are constructed based on seismic signal literature and their importance
tested using four different feature importance methods and different
classifiers based on Support Vector Machine, Random Forest, and three
graph signal processing based semi-supervised approaches. The features
are experimentally ranked showing time-, frequency-, cepstrum and
polarity features that are of highest importance in inference making per
tudied class. The results show that out of 119 constructed features only
 subset contributed significantly to the decision. Note that this study

was based on quantifying the importance of hand-crafted features in
accurately classifying multiple event classes from continuous data, thus
deep learning networks were not considered.

In Trani et al. (2022), convolutional neural networks (CNNs) are
sed to classify isolated catalogued seismic events into noise, earth-

quake and other events. The authors developed a heatmap-based vi-
sualisation tool to explain model outputs via the outputs of activation
unctions of each filter in the convolutional layers and then overlapping
he result with the raw input signal. However, this study has several
eaknesses when it comes to gaining trust in model outputs. Firstly, it

is not clear how explanations are formed by fusing outputs of the activa-
tion functions from different layers. Secondly, only binary classification
is considered, i.e., identifying relatively well-defined earthquakes from
other signals. Thirdly, the approach does not exploit advanced XAI
methods, and it is not used to explain any false predictions.

In Bi et al. (2021), the authors proposed a Dual-Channel CNN
Module where one channel contains raw time-domain waveforms, and
the other channel contains frequency-domain information by Discrete
Cosine Transform (DCT) to classify input seismic waveform into rock
racturing and noise, together with an explanation module, EUG-CAM
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(Elaborate Upsampling-based Gradient-weighted Class Activation Map-
ping). It builds upon the principles of the gradient weighted class
activation mapping (GradCAM) (Selvaraju et al., 2019), harnessing the
influence of feature map values and gradients to elucidate the impor-
tance of diverse features in the last convolutional layer. Recognising
he discrepancy between feature map sizes and input data dimensions,

EUG-CAM uses a strategic amalgamation of transposed convolution,
unpooling, and interpolation, to generate feature mappings from a
oarse localisation map. This results in an explanation feature map

that effectively encapsulates class activation, learning insights, and
etwork architecture considerations. However, the model’s limitation

is in classifying only two classes (rock fracturing vs. noise) and its
onfinement to binary classification. Furthermore, the reliance on a 1-D
NN model facilitates explanations primarily within the time domain,
ossibly neglecting the benefits of frequency-domain insights garnered
rom the DCT. Additionally, the visualisation maps cannot show the
dverse input signal influence (negative contribution) on classification
esults, hampering a comprehensive and well-rounded comprehension
f the model’s decision-making process.

In Jiang et al. (2023), the authors present CNN models with six
channel inputs for multi-class classification of earthquakes, quakes,
rockfalls and noise and use visualisation of feature maps to under-
stand the network’s internal workings. The authors examine feature
maps at various convolutional layers and the second fully connected
(FC) layer, gaining insights into feature extraction. Different models,
including time-series, Short-time Fourier Transform (STFT) and Contin-
uous Wavelet Transform (CWT)-based designs, highlight the network’s
focus on time, frequency, and wavelet characteristics. The main ob-
servation is that early layers locate event positions and extract basic
features, while deeper layers refine these features into abstract repre-
sentations for classification. The second FC layer’s feature distributions
vary across seismic events, indicating the network’s capability to dis-
tinguish three event types from noise based on learned features. In
addition, Layer-wise Relevance Propagation (LRP) showed promising
results in identifying the most relevant features for each class, further
enhancing the interpretability of the model (Jiang et al., 2024).

2.1. Contributions

The goal of this paper is to provide comprehensive explanations
to identify key features learnt by a deep neural network for multi-
lass classification, demonstrate that these features are in agreement
ith the physical properties of seismic signals and common hand-

rafted features used in the literature (Li et al., 2020). The generated
xplanations are then used to explain instances of misclassifications

and correct errors in manual labelling, jointly with a geoscientist, who
verified the corrected labels of the classified events and the features
ssociated with these events. This builds trust in the models confirming
hat the learnt feature representations agree with expert knowledge.

We use state-of-the-art XAI tools to explain deep learning models
for detection and classification of micro-seismic signals and show how
these explanations can be used to improve the designs and explain
correct and wrong predictions. In particular, we use a CNN-based archi-
tecture with a frequency-domain input, for detection and classification
of seismic signals into four classes: earthquake, micro-earthquake re-
ferred to as quake, rockfall and noise. These are the same classes as used
in Jiang et al. (2023) and Provost et al. (2017). There are three inputs
o the CNN, each comprising continuous recordings from the channels
f a typical three-component seismometer, usually deployed for seismic
onitoring.

Our models are trained and tested on a publicly accessible dataset
Résif (FrenchLandslideObservatorySeismologicalDatacenter/RESIF, 202
that has over 1000 labelled events, including earthquakes, quakes,
rockfalls and anthropological noise. After classification, we use Layer-
wise Relevance Propagation (LRP) (Bach et al., 2015) to explain the
decision making process. We analyse the basis of the model for event
3 
classification and communicate the reasons for misclassification of
individual events. Furthermore, if the predicted class is different to the
expert label, and after inspection of the filtered signal, its STFT and LRP
map, the event is sent back to the expert for re-labelling. This protocol
is used to correct possible labelling mistakes in the large annotated
seismic dataset.

In summary, our main contributions are:

1. ensuring data integrity by leveraging on a well-maintained ongo-
ing seismological data portal releasing checked seismic record-
ings publicly, as well as cataloguing/labelling by expert geosci-
entists — this aspect is by nature transdisciplinary

2. traceability to enable transparency by leveraging on public
datasets, where data gathering, labelling and performance with
different algorithms are well documented

3. an additional catalogue of 829 labelled events for a period of
3 days, classified by the CNN, verified by an expert and labels
corrected — provided as supplementary material

4. reproducibility by releasing the catalogue of 822 manually se-
lected high quality training events as supplementary material

5. designing a multi-classifier robust to noisy continuous recordings
for high performance but also indicating likelihood of potential
errors

6. reliability of design by ensuring that the multiclassifier design
works for a continuous input stream with noisy signals and low
signal to noise ratio events

7. explainability for transparency by providing explanations of the
multi-classifier outputs via XAI LRP maps

8. communication for transparency by clearly identifying the level
of performance and limitations

9. tackling the UN SDG 13 by accurately detecting landslide related
events that helps build trust in precursors to landslides such as
rockfalls and quakes

The first three contributions are presented in Section 3, where
we describe the dataset used and data pre-processing. Contributions
(4)–(5) are covered in Section 4, where the proposed CNN-based archi-
tecture, the sliding-window continuous detection method, the proposed
ost-processing and explainability tools used are described. Section 5

demonstrates our contributions (6)–(8). The significance of this work,
i.e., contribution (9) was discussed above and is demonstrated in
Section 5. Finally we conclude in Section 6 with suggestions for further
work.

3. Dataset

In this section we provide details about the data management,
ncluding collection, storage, release and labelling /cataloguing, de-
cribing the first three contributions of this paper.

3.1. Data gathering and context

Our raw seismometer recordings are obtained from the publicly
accessible Résif Seismological Data Portal, acquired by the French
Landslide Observatory OMIV (Observatoire Multi-disciplinaire des In-
stabilités de Versants). In particular, we focus on the Super-Sauze
(SZ) slow moving landslide monitoring array, acquired by the Super-
Sauze C (SZC) station of the French Landslide Observatory on the
Permanent seismological records on unstable slopes which are installed
at the centre of the Super-Sauze landslide deposit in Southeast France
(Latitude: 44.34787◦N, Longitude: 6.67805◦E). The location of the
SZC station is shown on the map in Fig. 1. The seismometer array
onsist of one central three-component sensor and three vertical one-

component sensors (organised as equilateral triangle), all recording
at 250 Hz sampling rate. In this project, we used data from the
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Fig. 1. Map showing the location of the Super-Sauze C (SZC) station.
three-component sensor. This choice aligns with common practices in
seismic waveform classification, where a 3-channel input is standard,
such as EQ-transformer (Mousavi et al., 2020) and DeepQuake (Trani
et al., 2022). Additionally, it facilitates transfer learning, as many
seismometers employ three-component sensors, ensuring compatibility
with various seismic datasets and applications. Using 3 channels also
reduces the number of false positives which can occur with arrival
mismatches and reduces the computational demand. The seismometers
recorded three periods: from 11 Oct. to 19 Nov. 2013; from 10 Nov. to
30 Nov. 2014; and from 9 June to 15 Aug. 2015.

The description of the SZ slope deformation, together with the
challenges of detecting the microseismic events is well documented
in Provost et al. (2018b). Additionally, description of how the cata-
logue of events was generated is documented in Provost et al. (2017),
where events were detected by the STA/LTA algorithm applied in the
frequency domain, and manually labelled into four classes: earthquake,
quake (micro-earthquake events), rockfall and natural/anthropogenic
(N/A) noise. All events except noise are classed as microseismic accord-
ing to Vouillamoz et al. (2018).

Rockfalls mainly occur at the main scarp of the landslide, where the
rigid block falls from the steep slope (height > 100 m). The quake is
likely to be triggered by material damage, surface cracks and openings
within the landslide main flow. The earthquakes class includes regional
seismic events in this area and the teleseisms (global large magnitude
earthquakes). N/A noise events include all anthropogenic and environ-
mental noise, due to, e.g., transportation, pedestrian walking, heavy
rain, animals, strong wind, etc. It does not include noise in the form of
instrumentation error.

3.2. Labelling

The SZ recordings over the data gathering duration described in
the previous subsection were labelled as described in Provost et al.
(2017), using STA/LTA in the frequency domain to pick events, and
4 
manual labelling of these events by an expert based on their ampli-
tude, duration, spectrogram and location. The number of labels in this
catalogue, which will be referred to as the original catalogue, for each
class, is reported in Li et al. (2023a) and Jiang et al. (2023), where the
events were classified on continuous recordings with classifiers using
manual feature generation, and deep-learning-based classifiers with
automated feature extraction, respectively. Since detection and classifi-
cation were performed on the continuous data stream, the Normalised
Graph Laplacian Regularisation (normGLR)-based (Li et al., 2023a) and
CNN-based (Jiang et al., 2023) classifiers also reported classification of
hundreds of additional non-catalogued events, with a high density of
events in the period 25th to 28th Nov. 2014, which coincided with a
period of high activity on the SZ slope (Provost et al., 2018a).

As reported in Li et al. (2023a), all four types of events are present
in this 4-day time period, and in addition to the 120 events (65
rockfalls, 18 quakes, 23 earthquakes and 14 noise) labelled in the
original catalogue, 17 quakes, 89 earthquakes and 92 rockfalls events
were detected and classified by the normGLR classifier whereas an
additional 260 quakes, 174 earthquakes and 32 rockfalls were detected
and classified with the CNN approach of Jiang et al. (2023). These
algorithms only missed 1 earthquake, 1 rockfall and 2 noise events that
were present in the original catalogue.

All events detected by the normGLR classifier, the CNN classifier
and an additional classifier based on Siamese networks (Murray et al.,
2023) were reviewed by an expert for labelling following the methodol-
ogy used to build the original catalogue, which is based on the seismic
signal waveform and spectrogram features. The final outcome of the
expert reviews for this 4-day period were 69 quakes, 29 earthquakes
and 126 rockfalls. Note that the normGLR classifier was too sensitive,
overestimating the number of earthquakes (Li et al., 2023a). The CNN-
based 6-channel input multi-classifier of Jiang et al. (2023) was too
sensitive for quakes and earthquakes but missed a number of rockfalls.

This exercise demonstrated the value of machine learning-based
classification on continuous streaming recordings, since it is tedious for
experts to manually review continuous data streams, as well as pick up
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the microseismic events, especially quakes and rockfalls, that are often
‘‘hidden’’ or ‘‘unclear’’ within ambient noise present in the recordings.
These newly detected and expert-labelled events during the period 25th
to 28th Nov. 2014, not present in the original catalogue, are released
with this paper and are focus of this study.

4. Methodology

In this section, we describe our methodology. First, building on our
prior work (Jiang et al., 2023), we propose an improved multi-class
CNN-based classifier that utilises 3-channel inputs and a modified train-
ing strategy (see Section 4.3) to enhance precision in detecting quakes
and earthquakes, as well as improve recall/sensitivity rates for rock-
falls. Second, we analyse the outputs of the improved multi-classifier,
as part of our human-on-the-loop contribution to verify instances of la-
belling error, likely to occur for large volumes of continuous streaming
seismic recordings. This is carried out via the XAI-based LRP tool to
visualise the features of misclassifications, which are then queried for
re-evaluation by the expert.

4.1. Proposed CNN-based architecture

An STFT-based CNN model, inspired by VGGNet (Simonyan and
Zisserman, 2015) and adapted from Jiang et al. (2023), is used. The
influence of seismometer characteristics such as sensitivity, frequency
band, and axis configuration on the reliability and effectiveness of our
results was explored in Jiang et al. (2023), whereby good transferability
was demonstrated with recordings from different seismometers with
varying sensitivity levels and sampling rates, and geographic loca-
tion. Additionally, we examined the performance impact of different
seismometer configurations, comparing one-axis (single-channel) seis-
mometers with multi-channel inputs during training. We use STFT maps
as inputs for the CNN model, as these inputs were shown to provide bet-
ter results on average compared to directly feeding time-series signals.
Additionally, the generalisability and robustness of this architecture
across different sites has been demonstrated in prior work (Jiang et al.,
2023). Particularly, as evidenced by the recent trend in CNN-based
architectures for analysis of seismic recordings, such networks excel
in extracting hierarchical and discriminative features from complex
data, making them highly effective for seismic event classification. The
value of binary vs multi-class networks in terms of how multi-class
models are able to achieve similar performance while requiring less
models to be trained and run, and hence lower overall complexity,
was demonstrated in Jiang et al. (2023). Multi-class CNN models offer
enhanced feature extraction, adaptability to various data patterns that
are often indistinguishable (such as local quakes and rockfalls), and
improved classification performance compared to state-of-the-art DL
approaches for seismic analysis, discussed in Introduction Section, that
mostly focus on binary classification.

The architecture of the model is composed of convolutional layers,
max pooling layers and FC layers, adapted to the input shapes and
output categories, as shown in Fig. 2. Convolutional layers perform
feature representation and extraction, followed by max-pooling layers
that downsample the extracted feature into a feature map with smaller
size.

Compared to Jiang et al. (2023), to effectively process long-duration
seismic events within continuous data streams, we increase the input
window of the CNN model to 15 s (from 10 s). We also reduce
convolution kernels and neural nodes in each layer, achieving a balance
between model complexity and performance. Moreover, recognising
the prevalence of waveforms captured by three-component sensors, the
input to the network is 3-channel input data, in contrast to 6-channel
used in Jiang et al. (2023), which significantly expands the model’s
applicability across a wider range of scenarios.
5 
Fig. 2. STFT-based CNN for seismic classification. Kr denotes the number of kernels,
and ‘Flatten’ function transforms the input data into a 1D array.

4.2. Sliding window-based detection

Raw signals recorded by 3-channel (North, East and vertical direc-
tion) seismic recorders are used. Since the classes of interest are 5-60 Hz
bandwidth, we first use a band-pass filter to remove low frequency
noise (denoising) as in Jiang et al. (2023). To allow prediction on a
continuous stream of signals, a sliding window method is used to seg-
ment the continuous stream into smaller windows as in Saad and Chen
(2020, 2021). The window size and overlap are selected based on the
temporal resolution required for the events of interest. A window size
of 3750 samples (i.e., 15 s) is used. The overlap between consecutive
windows is set to 93% of window size (3500 samples (14 s)), which
corresponds to a shift by 1 sec, allowing the CNN model to capture the
temporal dynamics of the events of interest. For each window, the CNN
model is used to predict the probabilities of each class being present.

Furthermore, since the peak amplitude of signals belonging to dif-
ferent classes is large, to improve the learning ability of the models,
we perform normalisation of the filtered recordings. In particular, in
order to enable the model to focus on classifying the input signals and
facilitate the subsequent explanation of the classification results, we
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normalise each 15-s window by subtracting mean and dividing by the
maximum of the absolute value of each input window.

For the STFT map input, in order to get good time and frequency
esolution, ‘Boxcar’ window with length of 128 samples with 70%
verlap is used. We perform STFT on denoised and normalised time
eries input window. Thus, the input shape for the STFT-based model
s 65 × 95 × 3 samples.

4.3. Training and testing

The inputs to the model for both training and testing comprise STFT
aps generated from the raw recordings as discussed in the previous

ubsection. Our prior work in Jiang et al. (2023) demonstrate that
NN models tend to be overly sensitive. To address this, we refine
he sensitivity of our CNN by only using the high-quality events to
rain the model. Specifically, we visually inspected and chose events
rom the original catalogue to ensure that the set used for training
omprised only high-quality events based on signal clarity and high-
NR (Signal-to-Noise Ratio) for earthquake, quake and rockfall classes.
ll noise events originate from the original catalogue. In addition to the

manually selected events, we utilise the labelled events from the 25th
November 2014 (one day) to train the model further. These additional
ata allows us to augment the training set with events that are not
ncluded in the high-quality subset of the original catalogue and help
o improve precision and recall.

The list of all the high-quality events from the original catalogue as
well as the events from the 25th November 2014 used for training can
be found as supplementary material for the purposes of reproducibility,
as the second principle of Trustworthy AI. During testing phase, we use
STFT maps from 26th to 28th Nov. 2014, which are not included in
the training set. These labelled events are released with this paper as
supplementary material.

4.4. Post-processing

While the sliding window technique enables continuous detection,
it can introduce certain challenges. One of the main issues is that it
may break the continuity of the event waveform, leading to potential
inconsistencies or artefacts in the classification results. This occurs be-
cause the sliding window segments are treated independently, without
onsidering the temporal context or smooth transitions between adja-

cent windows. To address this problem, post-processing techniques are
ften employed to refine and enhance the detection output by taking
nto account the temporal relationships between adjacent windows.

The proposed post-processing system is based on threshold filtering,
median filtering, and Gaussian kernel filtering of the softmax output
f the CNN. In addition, a peak selection method is applied to resolve
ases where two classes of events have very similar detection results.
1) Threshold filtering: the softmax output of the CNN is filtered with a
hreshold value (set to 0.5), and all values below this threshold are set
o zero. This is done to remove low-probability detections. (2) Median
iltering: After the threshold filtering step, the probability distribution
ay contain isolated spikes. To remove these isolated spikes, we apply
 median filter to each class separately. In addition to removing isolated
pikes, the median filter can also merge spikes that are very close
ogether, resulting in smoother and more continuous probability dis-
ributions. We set the size of the median filter to 5. (3) Gaussian kernel
iltering: a Gaussian kernel filter is applied to the median filtered output
o smooth the probability distribution. Gaussian kernel is defined with
 sum of 1 and a length of 15. Its standard deviation is 5. (4) Peak
election: after using Gaussian kernel filtering, we select the highest
eak (i.e., the longest duration) as the final output. This peak selection
ethod allows us to choose the class of the event with the longest
uration, as it indicates a higher confidence level in the classification

esult. 5

6 
4.5. Explainability-informed re-labelling

Unlike classifiers such as RF, SVM and (norm)GLR-based classifiers
that take hand-crafted features as inputs and where feature importance
was studied in detail in Li et al. (2023a), the CNN multi-classifier is
ssentially a ‘‘black box’’ since we do not know what features were
eemed important. We therefore utilise LRP to understand feature

importance for the deep-learning CNN multi-classifier.
LRP (Bach et al., 2015) is a state-of-the-art XAI method, that shows

the contribution of each sample in the input data to the classification
results and can be implemented in the pre-trained model (Chan et al.,
2023). In this paper, LRP is used to help identify which parts of the
seismic signal are most important in making the final classification
decision. This helps understanding which features of the seismic signal
are most relevant for seismic detection, and identify any potential
biases in the model. In addition, LRP can provide interpretable and
detailed explanations of the model’s decision-making process, which
can be useful for communicating the model’s results to human experts.

The LRP method starts from the output of the model, sets the
utput value before activation function as relevance, and gradually

back propagates relevance, iteratively, layer by layer, to the input
nodes. In the backpropagation, relevance follows the conservation law,
that is, a neuron’s relevance equal to the sum of relevance as it flows
out towards all other neurons. Various propagation rules have been
proposed, such as LRP-𝛾, LRP-𝜖 and LRP-0 rule (Montavon et al., 2022).
n this paper, we used LRP-𝜖 rule which is suitable for convolutional
ayers and max pooling layers (Montavon et al., 2017), and is defined

as:

𝑅𝑗 =
∑

𝑘

𝑎𝑗𝑤𝑗 𝑘
𝜖 +

∑

0,𝑗 𝑎𝑗𝑤𝑗 𝑘
𝑅𝑘, (1)

where 𝑅𝑗 represents an LRP relevance score assigned to neuron 𝑗, 𝑎𝑗
denotes an input activation, 𝑤𝑗 𝑘 is the weight connecting neuron 𝑗 to
neuron 𝑘 in the layer above, ∑0,𝑗 denotes that we sum over all neurons 𝑗
in the lower layer plus a bias term 𝑤0𝑘 with 𝑎0 = 1. 𝜖 is a regularisation
term, i.e., a small value that prevents the denominator from being 0.

We generate LRP maps for all events whose CNN-based predicted
lass does not correspond to the event class label as provided by the
xpert via the procedure described in Section 3.2 (i.e., misclassifi-

cation). Then, we ask the same expert to review the recording, this
time together with the LRP feature importance map, to ensure trust
in the labels. The ‘‘corrected’’ labels (those that the expert agrees were
originally wrongly labelled) are then marked and released as part of
the supplementary material together with their STFT and LRP maps.

he whole process is shown in Fig. 3.

5. Results

In this section, we first demonstrate our Contribution (5 & 6), by
eporting the performance of the proposed models on the test dataset
sing standard classification performance measures as in Jiang et al.

(2023). Then, we present our explainability results as per Contribution
(7) and discuss main reasons behind misclassification (Contribution
(8)).

5.1. Analysis of classifier output

Our models are implemented in Keras framework. Since the ac-
ivation function of the output layer is softmax, we use categorical
ross entropy as loss function. The used optimiser is Adam with an
nitial learning rate of 0.0007. Adaptive learning rate adjustment is
mplemented, which reduces the learning rate by a factor of 0.9 when
oss improvements plateau for 5 epochs. Training is performed over
00 epochs with a batch size of 128. For the second training session,
tilising the data from November 25, the model is trained over a total of
0 epochs. To prevent the risk of overfitting due to additional training,
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Fig. 3. Flowchart of the proposed human-on-the-loop process.
Table 1
Confusion Matrix - Proposed CNN-based network with post-processing against expert labels (the numbers in brackets indicate
recall/sensitivity rates).

Model

Quake Earthquake Rockfall Noise

Expert

Quake 26 (56.5%) 2 9 9
Earthquake 0 15 (83.3%) 1 2
Rockfall 2 0 72 (97.2%) 0
Noise 110 13 58 538 (75.1%)
early stopping is implemented; that is, if the training accuracy did
not exhibit significant improvement within 5 consecutive epochs, the
training process is terminated early.

In the 3-day testing period (26th–28th Nov.), the expert labelled
46 quakes, 18 earthquakes, 74 rockfalls and 719 noise events. The
confusion matrix in Table 1 compares the output of the proposed
CNN-based network, with post-processing (Section 4.4), to the expert
labels. As is common practice for seismic signal classification on con-
tinuous data (Provost et al., 2017), the confusion matrix also includes
recall/sensitivity values in brackets. Recall is the ratio of true positives
to the sum of true positives and false negatives. In Section 3.2, it is
demonstrated that during the 4-day period from November 25th to
28th, there are 6 additional earthquakes not labelled in the original
catalogue (Provost et al., 2017). The model discussed in Jiang et al.
(2023) detected a much larger number, specifically 174 additional,
earthquakes. This comparison shows the significant improvement in the
precision of earthquake classification achieved by our model. Addition-
ally, our model achieved high recall (sensitivity) for rockfall events.
As expected, quake and noise events can be confused with the other
3 classes, due to heterogeneity of the noise signal and very low signal
amplitude of quake signals. Next, we leverage on LRP to explain the
origin of misclassifications.

5.2. Explainability

The used package for embedding LRP into our models is iNNvesti-
gate (Alber et al., 2019) which supports Keras framework in Python 3.
Default parameters of the LRP-𝜖 rule are used.
7 
Fig. 4(a) shows an example of a correctly classified earthquake
event. Positive and negative values of the LRP relevance represent
positive and negative contributions to the classification results, of the
corresponding STFT, respectively. The distribution of LRP relevance
is focused on the high frequencies (about 40 to 50 Hz) when the P-
wave is picked as well as the low frequencies (around 15 to 20 Hz)
of the P-wave and, after roughly 5sec, the low frequencies of the S-
wave with intermediate noise shown in light blue correctly identified as
not contributing (negative contribution). This example shows that the
model learnt, and uses as basis for its predictions, that the P-waves of
earthquake events tend to have both high and low frequencies (around
50 Hz and 20 Hz, respectively) and that high energy content of S-Waves
follows in time.

Fig. 4(b) shows an example of a correctly classified quake event.
Quake events are of shorter duration than earthquakes, have lower
amplitudes, and energy focused in low frequencies. LRP relevance is
concentrated in the single peak (positive and negative) of the event
waveform, suggesting that the normalised maximum amplitude is the
key distinguishing feature. In the frequency domain, the LRP map
clearly shows the importance of the peak that has energy mainly
focused below 30 Hz while there is also a small positive contribution
between 30 to 40 Hz.

Fig. 4(c) shows an example of a correctly classified rockfall event.
While the relevance score of quake events is concentrated on a single
peak, relevance of rockfall events is concentrated on multiple peaks,
which also shows an important property of rockfall events − multiple
significant peaks. Looking at the LRP map, relevance has multiple
focused points corresponding to multiple short waves − a characteristic
of rockfalls. In addition, although both rockfall and quake events have
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Fig. 4. Correctly classified examples of earthquake, quake and rockfall: The first column shows the time-series signal, middle column the STFT, and the right column is the LRP
relevance heatmap.
a frequency band between 10 to 30 Hz, LRP relevance is mostly
concentrated at frequencies greater than 20 Hz for rockfalls and below
20 Hz for quakes.

Similar visualisation maps are produced for other correctly classi-
fied events. In summary, the model searches: (a) for P-wave and S-wave
peaks and their corresponding frequency contributions to predict an
earthquake; (b) a short wave with a single peak below 20 Hz to decide
quake; (c) multiple significant frequency components around 25 Hz to
decide that the target signal is rockfall. This is in accordance to the
characteristics of the three signal classes (Provost et al., 2017; Li et al.,
2020; Jiang et al., 2023). Next, we will analyse misclassified events to
explain why they occur and how they can be avoided.

5.3. Explaining origin of misclassification

In this section, we show how LRP can be used for model diagno-
sis. The confusion matrix presented in Table 1 shows that the quake
signals are sometimes misclassified as rockfalls. Interestingly, however,
rockfall signals are rarely misclassified as quakes (only 2 misclassified
events). To investigate this further, Fig. 5(a) shows an example of
a quake event misclassified as rockfall. In the LRP map, relevance
distribution is very scattered. That is, the LRP relevance is not focused
on the quake event’s peak, but instead picked up several consecutive
peaks, where the positive relevance is correctly concentrated at 5 s.
This indicates that the model correctly recognised a quake event’s peak
appearing around 5 s, but there was a high energy signal in nearby
frequency bands, influencing the final prediction. On the other hand,
there are many positive relevancies at different times that correspond to
frequencies between 20 Hz to 30 Hz, which is akin to the learnt rockfall
‘behaviour’. Thus, the main reason of misclassification between quake
and rockfall is that the signal-to-noise ratio of the quake event was
8 
very low, with a noise signal appearing immediately after, mimicking
multiple peaks of rockfall events.

In Fig. 5(b), we show an instance in which a rockfall event is
misclassified as a quake. The rockfall event displays multiple peaks;
however, these peaks, aside from the principal one, are of low mag-
nitude and the event has a very short time span. Analysis of the LRP
representation illustrates a concentration of positive effects (depicted in
red) at the primary peak of the event. Conversely, numerous negative
contributions (depicted in blue) are observed at the secondary peaks,
suggesting that the presence of these multiple peaks is not taken into
account due to their limited magnitudes; hence, the model finally
classifies this event as a quake.

In Fig. 5(c), we present an instance of a quake misclassified as an
earthquake. This misclassification is evident in the LRP map, where
both high-frequency and low-frequency components simultaneously
exhibit positive contributions around the 3-s period. Thus, the model
interprets this segment as a P-wave. Furthermore, at approximately
5 s into the waveform, a positive contribution appears in the low-
frequency range. Although the primary peak of this event occurs around
3 s, the spectrogram reveals that the low-frequency component per-
sists for an extended duration. Moreover, the event is influenced by
higher-frequency noise (exceeding 30 Hz), and this high-frequency
noise coincides with the primary waveform peak around the 3 s. Con-
sequently, this led the model to mistakenly identify it as a P-wave, with
the prolonged low-frequency component being mistakenly identify as a
S-wave. These observations align with seismic features of earthquakes,
thereby causing the model’s misclassification as an earthquake event.

In Fig. 5(d), we encounter an instance where an earthquake is
mistakenly classified as a rockfall. The LRP map highlights multiple
spectral peaks, which is a feature of rockfall events. However, this event
may have resulted from an earthquake occurring amidst background
noise, exhibiting a distinctive multi-peak pattern. Thus, despite the



J. Jiang et al. Science of Remote Sensing 11 (2025) 100189 
Fig. 5. Misclassified examples.
presence of a P-wave at approximately 1 s and an S-wave at roughly
4 s, complex background noise caused misclassification.

In Fig. 5(e), the misclassification of noise as an earthquake is
shown. The noise signal exhibits prominent peaks around 4 s and 5.5 s.
Examination of the LRP map reveals the model’s recognition of low-
frequency and high-frequency components (15–20 Hz) around the 4-s
mark, along with low-frequency signals at 5.5 s (15 Hz). This aligns
with the characteristic features of P-waves and S-waves in earthquake
signals, resulting in the model’s misclassification as an earthquake. The
result might have been different if time-series signals were inputted
to the network instead of the STFT maps as can be seen from the left
time-series plot that shows high level of noise throughout the signal.
9 
We can see from these examples that most misclassifications are
due to high level of background noise. The next example highlights
another origin of error related to the filtering process. Fig. 6 displays
an unfiltered earthquake waveform with a frequency below 3 Hz,
characteristic of low-frequency earthquakes that are rarely associated
with active landslides (Masuda et al., 2020). Since our focus is on
detecting local seismic events related to landslides, we apply a bandpass
filter in the 5–60 Hz range (see Section 4.2), which excludes these
low-frequency earthquakes. Consequently, this filter removed the low-
frequency event’s waveform, leaving only background noise as input to
the CNN. As illustrated in Fig. 7, the LRP map indicates that the model
failed to extract meaningful features from the filtered input, resulting in
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Fig. 6. Waveform (left) and STFT map (right) of the unfiltered low-frequency earthquake.
Fig. 7. Waveform (left), STFT map (middle) and the LRP map (right) of the filtered low-frequency earthquake.
the earthquake being misclassified as noise. This misclassification can
be attributed to the rarity and uniqueness of low-frequency earthquakes
on landslides, as our filter inadvertently eliminated their distinctive
waveforms, confounding the CNN’s classification process.

5.4. Re-labelling results

Fig. 8 shows three examples of misclassifications, which could be
due to human error during expert labelling. The example shown in
Fig. 8(a), is an event classified by the model as noise, though the
domain experts labelled it as a quake. In the STFT representation of
the signal, no obvious peak corresponding to the event was discernible.
Moreover, the LRP map exhibits a disordered distribution of relevance.
Collectively, these findings lead to the argument that the event in
question is more likely to be anthropogenic noise rather than a quake.
Fig. 8(b) illustrates a similar situation where the event is mistakenly
labelled as an earthquake. There are no clear P-waves at both low and
high frequencies, and there are no S-waves with high energy content.
For this earthquake event, we also examined the unfiltered raw signal,
and it still did not exhibit any earthquake waveform characteristics.
Fig. 8(c) shows an example that was classified as a rockfall by the
CNN model, while the expert labelled it as a seismic quake. It can
be concluded from the LRP map that the model focused on multiple
peaks in the event, with a frequency distribution centred around 30 Hz,
characteristics that align with typical rockfall patterns. In contrast,
quakes tend to exhibit a single dominant peak, a feature that was
notably absent in the input STFT map, where multiple peaks were
discernible. Consequently, based on these distinctive patterns and spec-
tral features, it becomes evident that the event in question is more
accurately classified as a rockfall.

Here we list all corrections made to the expert catalogue, following
above explainability and queries. Specifically, 7 quakes were relabelled
as noise as per example Fig. 8(a), 1 earthquake was relabelled as noise
(shown in Fig. 8(b)), and 1 quake as rockfall (Fig. 8(c)). In addition,
some noise events were labelled by the expert though these events
occurred very close to earthquake, quake and rockfall events, which
potentially caused confusion. Hence, we removed all noise events that
occurred in close proximity (within 30s) to the earthquake, quake and
rockfall events — this way 38 noise events were removed.

Thus, after this relabelling there are 38 quakes, 17 earthquakes,
75 rockfalls and 689 anthropogenic noise events in total. The verified
10 
catalogue of events is provided as supplementary material to this
paper, as a contribution to address the second and third principles of
Trustworthy AI, related to reproducibility and data access. Specifically,
the 260 verified events on the 25th Nov. 2015 are listed in the Training
events supplementary material, identified by the date. The 819 verified
events on 26th to 28th Nov. 2014 are listed in the Additional 3-day
catalogue supplementary material. In order for other researchers to
enable benchmarking, Table 2 and Table 3 show the confusion matrix
and classification performance after the re-labelling, respectively. Al-
though the F1-score for quake events is low, we have a high recall but
precision is low because of 8 instances of false positives for rockfall.
There are relatively few instances of quake and earthquake, which
explains why the F1-score is not the best indicator of performance
and the confusion matrix provides a more explainable and trustworthy
measure of performance.

6. Conclusions and future work

The paper discusses the significance of the 7 principles of Trustwor-
thy AI, including human oversight, technical robustness, data gover-
nance and transparency to the challenging problem of micro-seismic
signal analysis. To this effect, we propose a human-on-the-loop mi-
croseismic multi-class classification method together with LRP to shed
light on feature importance in order to in turn verify any possible
human labelling error.

We demonstrate that the generated LRP maps assist human experts
in manual event classification. LRP clearly identifies properties of the
signals extracted by the network when making decisions. Based on this,
we concluded, for example, that the main reason why quake events are
often misclassified as rockfall is due to appearance of a noise signal
at multiple higher frequencies that mimics rockfalls. Due to human
error, experts may occasionally mislabel events in the catalogue due
to the similarity of event characteristics, complexity of seismic data
and large volume of data that needs to be processed. However, the
availability of LRP maps as a visual aid can offer a valuable tool to
verify and refine the expert’s classifications. This collaborative synergy
between automated and manual classification can enhance the accuracy
of microseismic catalogues, contributing to a better understanding of
geological processes.

Besides assisting with event labelling, another application of the
LRP maps is improving the model’s performance. Indeed, by observing
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Fig. 8. Three examples of events with labels corrected.
Table 2
The confusion matrix after label correction. The numbers in the brackets show the recall values.

Model

Quake Earthquake Rockfall Noise

Expert

Quake 26 (68.4%) 2 8 2
Earthquake 0 15 (88.2%) 1 1
Rockfall 2 0 73 (97.3%) 0
Noise 95 11 37 546 (79.2%)
Table 3
The classification performance after label correction.

Precision Recall F1-score

Quake 0.21 0.68 0.32
Earthquake 0.54 0.88 0.67
Rockfall 0.61 0.97 0.75
Noise 0.99 0.79 0.88

the insights gained through XAI tools, we discern specific features of
input events that are prone to misclassification by the CNN, which is
instrumental in enhancing the robustness and generalisability of the
model that can be achieved by adding more events in the training set
that closely resemble the challenging input patterns identified through
XAI. For example, when we discover that certain event features con-
sistently lead to misclassifications, we collect and add more events
with similar attributes into the training dataset. This targeted data
augmentation approach has the potential to improve the model’s ability
to distinguish between challenging seismic events, thereby increasing
model’s robustness and classification performance.

Since LRP assigns relevance scores to highlight the most influential
features for each classification, it is important to determine if these
relevance patterns remain stable across various geographic areas and
seismometer characteristics, such as sensitivity, sampling rate, and axis
11 
configurations. This evaluation will help ascertain the reliability of LRP
explanations across diverse equipment types and environments. In fu-
ture work, we plan to test our system in various geographic regions and
with different seismometer configurations to assess the consistency and
robustness of LRP interpretability, enhancing the broader applicability
and trustworthiness of our approach.

Given the potential variability in expert interpretations, it is im-
portant to explore how different experts’ insights may affect labelling.
Future studies could employ a multi-expert assessment framework that
incorporates confidence levels, based on the methodologies proposed
by Sobot et al. (2024), to better understand this variability and further
enhance the reliability of the classification process.

Since classification of quakes remains challenging, the current
model could be adapted to classify a broader range of events, including
low frequency events and types of anthropogenic noise, by expanding
the training set and retraining the model, with LRP providing the
explanations. To maximise accuracy and trust in AI-driven seismic
signal analysis, integrating human expertise with AI models is impor-
tant. Developing interactive explainability tools that facilitate iterative
feedback from geoscientists could lead to continuous improvements
in model performance and foster greater confidence in AI-generated
outputs.
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