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S U M M A R Y

Background: Pseudomonas aeruginosa is a growing concern in healthcare-associated
infections and poses significant risk to those with serious underlying health conditions.
The antimicrobial resistance traits of the pathogen and ability to form biofilms make
effective mitigation and disinfection strategies difficult. Added to this challenge is the role
that free-living amoebae such as Acanthamoeba play in the detection, disinfection and
transmission of P. aeruginosa. P. aeruginosa can survive intracellularly within amoebae,
which has the potential to limit detectability and permit transmission into high-risk areas.
Methods/findings: We screened for the presence of Acanthamoeba spp. and P. aeruginosa
within a functioning general hospital in Scotland using a culture and molecular approach,
noting their presence at several sites over a four-month period, particularly within floor
drains connecting patient rooms. In addition, microbiome analysis revealed that amoebae
harbour a unique microbial community comprised primarily of Pseudomonas spp. that
were not readily detected using microbiome sequencing techniques on environmental
swabs. Having demonstrated that both organisms were consistently present in hospital
settings, we investigated the relationship between acanthamoeba and P. aeruginosa in the
laboratory, showing that (i) acanthamoeba growth rate is increased in the presence of
pseudomonas biofilms and viable pseudomonas persist within the amoebae and (ii)
hydrogen peroxide-based disinfectants are significantly less effective against an isolate of
P. aeruginosa in the presence of acanthamoeba than when the bacteria are incubated
alone.
Conclusions: These findings suggest that amoebae, and other protists, can influence the
detection and persistence of P. aeruginosa in high-risk areas and should be considered
when implementing mitigation strategies.
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Introduction

Pseudomonas aeruginosa is an opportunistic pathogen of
humans. At particular risk are people who have serious
underlying health conditions such as cystic fibrosis and patients
who are in augmented care units [1,2]. P. aeruginosa is docu-
mented as having a prevalence of 7.1e7.3% in healthcare-
associated infections [3e5], with this number increasing to
16.2% in intensive care unit (ICU) patients [5,6]. Treatment is
limited due the broad intrinsic resistance of the bacteria and
its ability to acquire or develop resistance traits through gene
transfer events or chromosomal mutations [7]. Outbreaks have
been linked to water sources or situations where high moisture
levels are found within the healthcare setting [8,9]. The out-
come of an independent review of P. aeruginosa outbreaks in
neonatal units in Northern Ireland recognized and reported on
the role of water distribution systems in the spread of infection
and made specific recommendations about the potential risk
from contaminated taps and use of sinks [8]. In this incident
four neonates died. Thus, a comprehensive approach to mon-
itoring these systems is essential.

We have previously worked with P. aeruginosa in the con-
text of device-related disinfection and have demonstrated
that environmental factors, including biofilm formation, have
the potential to drive disinfection efficacy [10]. Factors that
are less considered, however, are the consequences of inter-
actions between P. aeruginosa and other organisms within
their natural ecosystems such as predatory protists (e.g., free-
living amoebae). Acanthamoeba are a genus of free-living
amoebae, ubiquitous in the environment and highly efficient
predators of bacteria, engulfing and feeding via phagocytosis
[11,12]. However, some bacteria such as P. aeruginosa have
evolved strategies that prevent phagocytic breakdown within
the amoebae and instead permit intracellular survival
[13e15]. The risk of this vector-like association to human
health is unknown but there is evidence to suggest that bac-
teria existing within the amoebae are less readily detected,
capable of surviving at higher temperatures and antimicrobial
concentrations, and potentially capable of developing or
acquiring drug-resistant traits at an increased rate [15e17].
For example, Legionella pneumophila internalized by acan-
thamoeba are capable of surviving in chlorine concentrations
four-fold higher relative to extracellular cells and at tem-
peratures as high as 90 �C [16,17]. Similar findings for chlorine
disinfection against P. aeruginosa have been reported by
Sarink and colleagues [18]. Additionally, viable but non-
cultivable (VBNC) P. aeruginosa cells can be ‘resuscitated’ in
the presence of Acanthamoeba polyphaga in as little as 2 h
[13], posing increased risk to human health. These observa-
tions suggest that interactions between these two species are
complex and further work by Corsaro and colleagues demon-
strated that pathogenic bacteria, including P. aeruginosa,
could persist within free-living amoebae thus avoiding dis-
infection within water distribution systems [19]. Persistence
within Acanthamoeba spp. may well drive adaptation of
P. aeruginosa towards human infection. Leong and colleagues
reported finding single-nucleotide repeats in the genome of
P. aeruginosa after prolonged persistence in Acanthamoeba
castellanii leading to reduced virulence, enhanced fitness,
and enhanced survival in macrophage and neutrophils, similar
to strains recovered from cystic fibrosis patients [20].
Healthcare settings and hospitals, in particular, care for
individuals with greater susceptibility to infection and reduced
immune function. Such individuals are prone to infection by
opportunistic pathogens such as P. aeruginosa. Free-living
amoebae have been found in drinking water systems [21] and
isolated within healthcare settings [22e24], opening the pos-
sibility that interaction between Acanthamoeba spp. and
P. aeruginosa could play a role in the distribution, persistence
and survival of P. aeruginosa in healthcare settings. Herein, we
further elucidate the risks of this relationship within high-risk
areas, both in the detection of the pathogen and in its effec-
tive disinfection.

Methods

Sample collection and storage

Sample collection for this study was undertaken over a four-
month period in a functioning general hospital within Scotland
with permissions. Hospital water samples were collected in
sterilized bottles, approximately 1 L per sample. Swabs were
also taken from surfaces, swabbing each surface for a total of
10 s to ensure the entirety of the swab made contact, before
placing into sterile phosphate-buffered saline (PBS). A total of
four sampling events were conducted. Sampling events 1e3
gathered samples from five locations: water tank, sink, show-
erhead, tap head and floor drain. Sampling event 4 gathered
samples from the floor drain only. All sampling apart from the
water tank was carried out in clinical areas.

Extraction of genomic DNA and molecular screening
using polymerase chain reaction

DNA was extracted using the QIAmp Fast DNA Stool kit using
a modified protocol [25]. Prior to extraction, 1 L of water was
filtered through a 0.22-mm filter and DNA extracted directly
from the filter; or for swabs, DNA was extracted directly from
the swab and PBS. Upon elution, DNA was quantified using the
Qubit 4 (Invitrogen) and stored at �20 �C prior to downstream
use. Successful extractions were screened by polymerase chain
reaction (PCR) using the Expand Hi-Fidelity PCR kit (Merck), as
per the manufacturer’s instructions, to determine the pres-
ence of P. aeruginosa and Acanthamoeba spp. using species-
and genus-specific primers, respectively: P. aeruginosa F 50-
GGGGGATCTTCGGACCTCA-30 and R 50-TCCTTAGAGTGCCCACCC
G-30 [26], Acanthamoeba spp. JDP1 50-GGCCCAGATCGTTTACC
GTGAA-30 and JDP2 50-TCTCACAAGCTGCTAGGGAGTCA-30 [27].

Isolation of Pseudomonas species and free-living
amoebae from samples

Hospital surfaces and water samples were assessed for the
presence of Pseudomonas spp. by directly streaking swabs from
sinks, shower heads, floor drains and tap heads on 0.3% w/v
cetrimide agar (CA) or passing water through filters and cul-
turing on CA to recover Pseudomonas spp. after which the
plates were incubated at 37 �C for 24 h. One litre of each water
sample taken for the sink and water tank were filtered through
a 0.45-mm PVDF sterile filter after vigorous agitation for
homogeneity and this filter was then placed directly on to CA;
this was performed in triplicate for each water sample.
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Culturable free-living amoeba (FLA) species were isolated from
samples by filtering 500 mL of water through a 0.45-mm filter
and placing the filter on non-nutrient amoeba saline agar (NN-
agar) [28] or by direct streaking of the swab. Amoebae were
identified microscopically before being placed on a fresh NN-
agar plate and allowed to migrate across a heat-killed
Escherichia coli gradient. Upon isolation, samples were main-
tained as trophozoites using a modified media (minimal
amoebic detection (MAD) media; potassium dihydrogen ortho-
phosphate 360 mg/L, methionine 300 mg/L, salt solution 1ml/L
(stock salt solution: CaCl2.2H2O, 150 mg; FeCl3, 20 mg;
MgSO4.7H2O, 2.46 g; distilled H2O, 100 mL), thiamine 1200
mg/L, arginine-HCl 825 mg/L, biotin 16.66 mg/L, B12 8.33 mg/L,
serine 1050mg/L, lysine 1250 mg/L, aspartic acid 750 mg/L and
distilled H2O) to limit bacterial or fungal growth and incubated
at 25 �C for one to two weeks. Morphological identification of
the isolated acanthamoeba-like organisms was based on both
trophozoite and cyst morphology before being confirmed
through PCR amplification using genus-specific primers JDP1
and JDP2.
Microbiome sequencing

Microbiome analysis was carried out using the 16S rRNA gene
universal primers specific to the conserved region V1eV3 to
assess the shift in the overall population dynamics. Samples
were sequenced using an Illumina platform. Chimeric reads
were removed using the VSEARCH package [29]. High-quality
reads were partitioned into operational taxonomic units
(OTUs) using minimum entropy decomposition [30,31] and DC-
MEGABLAST was used for taxonomic assignment. The lowest
taxonomic unit for each OTU was then assigned. A sequence
identity of 70% across at least 80% of the representative
sequence was a minimal requirement for considering reference
sequences. Further processing of OTUs and taxonomic assign-
ments was performed, and Alpha (Shannon index) and Beta
(BrayeCurtis dissimilarity) diversity metrics were generated
using the QIIME software package (version 1.9.1, http://qiime.
org/). Abundances of bacterial taxonomic units were normal-
ized using lineage-specific copy numbers of the relevant
marker genes to improve estimates [32].
In vitro culture of Pseudomonas spp. and A. castellanii

Culture of Pseudomonas spp.
P. aeruginosa NCTC 10332 and Pseudomonas putidamCherry

[33] were cultured in Luria Broth (LB; Oxoid) and 0.3% w/v
Cetrimide Agar (Oxoid) and quantified by turbidity of centri-
fuged, washed and resuspended cells (OD 0.2 value at 600 nm
approximating 109 cfu/mL).

Biofilm formation
Biofilms of P. aeruginosa were prepared in microtitre plates

in full LB, 10% LB/90% autoclaved tap water, and filter-
sterilized tap water at temperatures of 25 and 37 �C for
seven days. Biomass was assessed at days 1, 3, 5 and 7 by
Crystal Violet assay, using 70% v/v ethanol dissolution and
measuring absorbance at 570 nm with a Tecan plate reader
(Tecan Infinite F200 Pro).
Culture of A. castellanii
A. castellanii (ATCC 50370) were grown under sterile con-

ditions in peptone-glucose (PG) media [34] at 25 �C. Tropho-
zoites were maintained in PG media prior to experimental
work. Stationary phase trophozoites were converted to cysts by
removing PG media, washing once with PBS and adding
encystment media [34]. Cells were then incubated for one
week at 25 �C to allow complete encystation.

Cytotoxicity work

P. aeruginosa, P. putida mCherry and A. castellanii tropho-
zoites and cysts were exposed to various concentrations of a
commercial preparation of silver-stabilized hydrogen peroxide
(SS-H2O2), 5% (w/w) H2O2 with trace silver. The minimum
inhibitory concentration was observed after incubating with SS-
H2O2 overnight at 37

�C (Pseudomonas) or exposing to SS-H2O2

for 30 minutes, washing and incubating for 25 �C (Acantha-
moeba). Both Pseudomonas species were seeded at a density of
1 � 105 cfu/mL and incubated with or without SS-H2O2

(25,000 ppme0.1 ppm). Recovery was measured by absorbance
at 600 nm (Tecan Infinite F200 Pro). Similarly, A. castellanii
trophozoites and cysts were seeded at a density of 8 �
104 cells/mL and given 1 h to adhere to the plate surface. Cells
were then treated with or without the SS-H2O2 solution
(25,000 ppme0.1 ppm) for 30 min. Media were then removed
from each well and centrifuged to recover planktonic cells
before being resuspended in PGmedia and placed back into the
relevant wells. Trophozoites and cysts were given 24 h and one
week to recover, respectively, before viability was assessed
using Alamar blue as described previously [35].

A mixed species assay was undertaken using both
A. castellanii and P. aeruginosa. P. aeruginosawere seeded at a
density of 1 � 105 cfu/mL with or without A. castellanii
trophozoites (8 � 104 cells/mL). Amoebae were given 1 h to
engulf bacteria prior to the addition of the SS-H2O2 solution.
Samples were then exposed for 30 min before removal. LB was
subsequently added to each well and incubated at 25 �C for 18 h
before placing at 37 �C for 24 h. Media from each well were
then placed into a new well for analysis. Acanthamoeba
trophozoites remained adhered to the original well surface
under all conditions (verified microscopically), allowing
P. aeruginosa density to be assessed by absorbance at 600 nm
(Tecan Infinite F200 Pro).

Results

Pseudomonas spp. and Acanthamoeba spp. presence in
hospital systems

Swab and water samples were collected from several
high-risk areas within a Scottish hospital that are subject
to regular disinfection: water storage tank, patient sink,
patient showerhead and patient tap head. Additionally,
samples from the floor drain within the patient’s room were
also taken. Four sampling events were carried out within a
four-month period. These sites were screened for the
presence of Acanthamoeba spp. and P. aeruginosa using a
culture and molecular approach (Table I). Acanthamoeba
isolates were morphologically identified by the characteristic

http://qiime.org/
http://qiime.org/


Table I

Culture and molecular screening of multiple sites within an unnamed Scottish hospital for the presence of Acanthamoeba spp. and
Pseudomonas spp.

PCR, polymerase chain reaction; S, swab; W, water. Red box ¼ negative, green box ¼ positive, grey box ¼ not screened.
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cyst structure and P. aeruginosa isolates by meeting the
following criteria: Gram-negative, tolerant of cetrimide,
oxidase positive, catalase positive, and capable of growing
at 41 �C. Furthermore, DNA was extracted from swabs,
filtered water and cultured isolates and screened using
the acanthamoeba genus-specific JDP primers [27] and
P. aeruginosa specific primers [26].

Culture based results found no evidence of Pseudomonas
spp. at any site with the exception of the floor drain (Table I).
Of all culturable Pseudomonas spp., only one sampling event
(Table I; sampling event 2) contained organisms that met the
necessary criteria for classification as P. aeruginosa. FLA were
observed in and around the sink and tap areas during sampling
event 3 and frequently in the floor drain (Table I). Molecular
screening for Acanthamoeba spp. and P. aeruginosa found
evidence of both at the sink area during sample event 1 and in
the floor drain during sample events 1, 2 and 4 (Table I). The
frequency of these organisms in the floor drain microbiome
poses a potential risk given the potential for FLA to act as
migratory vectors of known pathogens, such as P. aeruginosa,
and the interactions of these organisms within this system
warrant further consideration.
16S rRNA profile of the overall floor drain microbiome
relative to the intracellular microbiome of FLA from
the same system

The total genomic DNA from the floor drain was extracted
(Figure 1; extracellular) as was the DNA from the isolated
Acanthamoeba spp. (Figure 1; intracellular) at the same
site. Prokaryotic profiling was achieved by next-generation
sequencing of the 16S rRNA gene, region V1eV3, and
the lowest taxonomic unit (LTU) assigned. A significant
variability can be observed between the sites with the total
gDNA sequences dominated primarily by anaerobic bacteria
such as Olsenella spp. (Figure 1a), of which some members
are capable of causing infections in humans, e.g., Olsenella
uli [36]. Interestingly, the total gDNA from isolated Acan-
thamoeba spp. including that of its microbiome was
dominated by Pseudomonas spp. and other Gram-negative
aerobes (Figure 1a) with Pseudomonas spp. accounting for
56% of all reads.

The extracellular samples revealed a higher diversity than
the intracellular samples (Figure 1a), with Shannon index
scores of 2.94 and 1.88, respectively. Of the assigned OTUs,
there was an almost even split of known Gram-negative and
Gram-positive organisms in the extracellular sample
(Figure 1b: 60%e40% for negative and positive, respectively);
however, only Gram-negative organisms were detected from
the intracellular samples (Figure 1b). The degree of diversity
between samples was further evidenced by the level of
unique OTUs observed, with only one shared OTU detected
(Figure 1c: Rhizobiaceae) and a BrayeCurtis dissimilarity
score of 1. We demonstrate here that protists such as FLA can
harbour a unique microbiome which can go undetected using
current microbiome sequencing techniques and could act as
a vector for potential pathogens such as P. aeruginosa in high-
risk areas.
Intracellular survival of Pseudomonas spp. in
A. castellanii

Acanthamoeba species are bacterivores, feeding on bac-
teria via phagocytosis [11,12]. We found that incubation of
A. castellanii on P. aeruginosa biofilms resulted in a 5.3-fold
increase in A. castellanii cell density. However, Pseudomonas
spp. are known phagocyte-resistant organisms and as such can
overcome the predatory behaviours of Acanthamoeba spp. by
surviving intracellularly [13e15]. To demonstrate the fate of
biofilm associated Pseudomonas spp. when incubated with
A. castellanii trophozoites, 1 � 104 trophozoites were seeded
on to an mCherry labelled Pseudomonas putida biofilm and the
fate of fluorescent bacteria monitored over 72 h (Figure 2). A
visible reduction of the biofilm was observed relative to a
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biofilm-only control (Figure 2a compared with 2c). Notably, a
shift from a non-specific localization of P. putida cells at day 0
to localization within amoebae vacuoles after day 3 suggests
that the bacteria were internalized by the amoebae (Figure 2b
compared with 2c).

Inhibitory effect of silver-stabilized hydrogen
peroxide on P. aeruginosa in the presence of
A. castellanii

To determine the role of acanthamoeba in protecting
Pseudomonas spp. from antimicrobial compounds, a co-
incubation assay was undertaken using A. castellanii tropho-
zoites (8 � 104 cells/mL) and P. aeruginosa (1 � 105 cfu/mL).
P. aeruginosa were incubated for 1 h with or without
A. castellanii trophozoites (Figure 3; green and blue bars,
respectively) before being exposed to three concentrations of
SS-H2O2 (400 ppm, 800 ppm and 1600 ppm). Control wells using
P. aeruginosa and A. castellanii individually were clear at all
concentrations of SS-H2O2 (Figure 3; green and red bars,
respectively). Interestingly, in wells containing both
A. castellanii and P. aeruginosa, a significant increase in tur-
bidity was observed below the A. castellanii trophozoite min-
imum inhibitory concentration (MIC) (400 ppm and 800 ppm)
relative to P. aeruginosa alone (Figure 3; blue bars relative to
green bars, P<0.01). These results demonstrate that
A. castellanii can protect P. aeruginosa from disinfection.
Growth of P. aeruginosa was possible at concentrations 64-fold
higher than required to inhibit growth in planktonic mono-
cultures when the bacteria were incubated for 1 h with
A. castellanii trophozoites (Supplementary Figure S2). It is also
worth noting here that the survival of the bacteria appears to
be reliant on the survival of A. castellanii, with no bacterial
regrowth observed at MICs for acanthamoeba (Figure 3; blue
bar, 1600 ppm; amoebic MIC shown in Supplementary
Figure S2).

Discussion

While research into the impact of microbial interkingdom
relationships is increasing, the consequences of these inter-
actions with regards to human health remains relatively
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unexplored. P. aeruginosa is a significant clinical concern and
the implementation of effective detection and mitigation
strategies in high-risk areas is paramount. We have demon-
strated that, as part of these efforts, consideration must be
given to the wider microbiome and the interactions of other
organisms with potential pathogens such as P. aeruginosa. Our
results found that both P. aeruginosa and Acanthamoeba spp.
can be readily detected in high-risk areas such as hospitals.
However, detection using standard approaches can be incon-
sistent and can fail to detect intracellular Pseudomonas spp. In
addition, we have shown that the relationship between Acan-
thamoeba and Pseudomonas spp. can influence antimicrobial
susceptibility and growth rate.

As part of this research, we screened for the presence of
Pseudomonas spp., P. aeruginosa and Acanthamoeba spp. using
both culture-based and molecular approaches in several sites
within an unnamed Scottish hospital over four sampling events.
While we were able to identify Acanthamoeba spp. at four of
the sites (sink water, sink swab, tap head and floor drain),
P. aeruginosa was only identified using PCR in the sink water
and floor drain. Disinfection and cleaning processes may
explain the variability between sample events and sites. In
areas like tap heads, which are more accessible, cleaning and
disinfection may be easier, when compared to floor drains for
example. DNA extracted from swabs taken at the hospital floor-
drain showed anaerobic bacteria to dominate the environment,
perhaps indicative of the time in which the biofilm had been
undisturbed. Contrastingly, isolation of Acanthamoeba from
the site into a new sterile environment resulted in a major shift
to a microbiome comprised almost entirely of unique genera.
Genomic DNA extracted from the isolated acanthamoeba was
dominated by Pseudomonas spp., however other potentially
pathogenic genera were also detected, such as Steno-
trophomonas. It is worth noting that many amoebae can form a
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highly resilient cyst stage when faced with unfavourable con-
ditions caused by exposure to antimicrobials or disinfectants
[34,37,38]. These cysts are significantly more resistant to dis-
infection than the active trophozoite stage and can remain
dormant for years in wait for optimal conditions [39]. Thus, it is
possible that Acanthamoebae cysts in these environments
could be shielding intracellular bacteria from environmental
pressures and limiting detection capabilities. Due to the ability
of amoebae to harbour potential pathogens [15e17,23,40,41],
it is becoming increasingly evident that effective mitigation
and detection strategies should consider these, and similar
protists, as potential vectors of disease. While culture-based
methods remain an important metric for monitoring key
pathogens, the data demonstrated within this work serve as a
reminder that utilizing a combined molecular and culture-
based approach is essential to maximize monitoring coverage
and minimize patient risk. Furthermore, it is worth considering
that culture-based and molecular screening could be widened
to encompass associated organisms such as acanthamoeba that
have the potential to conceal pathogenic organisms and pose
an underlying risk post-disinfection.

The ability of planktonic Pseudomonas spp. to survive inside
Acanthamoeba spp. has been well established [13]. However,
the interaction of amoebae with Pseudomonas spp. biofilms is
less understood. It is largely considered that the emergence of
the amoeboid cell type was due to the selective advantages it
provides in relation to biofilm grazing [42], and studies have
shown that amoebae are capable of significantly influencing
biofilm composition [43]; however it is unclear as to what
impact the resistance of Pseudomonas spp. to amoebic pre-
dation plays on the grazing activity of amoebae on Pseudo-
monas spp. biofilms. Interestingly, our results found that
Acanthamoebae and Pseudomonas spp. existed in an almost
mutualistic relationship, with Acanthamoebae capable of using
the biofilm as a food source, increasing Acanthamoeba spp. cell
density by 5.3-fold relative to the no-biofilm control, before
going on to act as a vector for the internalized bacteria.
However, the exact nature of this relationship requires further
investigation.

Finally, Acanthamoeba spp. are significantly more resistant
to many antimicrobials than planktonic Pseudomonas spp. We
have shown that the resistance of A. castellanii to SS-H2O2, a
hydrogen peroxide-based disinfectant, could be extended to
the intracellular bacteria, with P. aeruginosa capable of sur-
viving in the presence of concentrations 64-fold higher than the
minimum inhibitory concentration of P. aeruginosa alone. This
protective role is concerning and raises questions on the effi-
cacy of current disinfection strategies against mixed microbial
communities. An additional noteworthy observation that was
not investigated within this work is what role amoebae play in
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the transformation of bacteria from VBNC to culturable states
upon treatment with SS-H2O2, or indeed other oxidizing agents
known to trigger this conversion (e.g., hypochlorous acid). It
has been shown that these compounds can cause a shift to non-
culturable states [44e49], while amoebae have been shown to
facilitate transformation back to the culturable state [13,16].
Thus, it is conceivable that, in addition to providing a pro-
tective role, FLA such as Acanthamoebae could act as catalysts
for the re-emergence of pathogenic bacteria post-disinfection
in high-risk environments such as hospitals.

In conclusion, given the capabilities of P. aeruginosa to
readily form biofilms that permit survival in unfavourable
conditions [50] alongside the high propensity for acquiring
antimicrobial resistance traits [7], the ability to utilize amoe-
bae as an alternative resistance mechanism is concerning. We
have demonstrated here that amoebae are present in high-risk
areas and have a close association with Pseudomonas spp. Our
results have further demonstrated the protective role of
amoebae against effective disinfection of P. aeruginosa and
suggest that the implementation of effective mitigation
strategies should account for the increased tolerance of these
vectors to ensure risk is minimized. Similarly, the routine
screening for these organisms should consider the reduced
detectability of intracellular bacteria and the role of amoebae
as potential vectors of disease. Our results have demonstrated
the risk that protistebacterial interactions could pose in
healthcare settings, and further emphasize that the adoption
of a ‘One Health’ approach to effectively monitor and mitigate
the risk of pathogenic organisms in high-risk areas is a
necessity.
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