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Abstract
Amathematical model for the evaporation of, the flowwithin, and the deposition from,
a thin, pinned sessile droplet undergoing either spatially uniform or diffusion-limited
evaporation is formulated and analysed. Specifically,we obtain explicit expressions for
the concentration of particles within the bulk of the droplet, and describe the behaviour
of the concentration of particles adsorbed onto the substrate as well as the evolution of
the masses within the bulk of the droplet, adsorbed onto the substrate, and in the ring
deposit that can form at the contact line. In particular, we show that the presence of
particle–substrate adsorption suppresses the formation of a ring deposit at the contact
line for spatially uniform, but not for diffusion-limited, evaporation. However, in both
scenarios, the final adsorbed deposit is more concentrated near to the contact line
of the droplet when radial advection due to evaporation dominates particle–substrate
adsorption, but is more concentrated near to the centre of the droplet when particle–
substrate adsorption dominates radial advection due to evaporation. In addition, in an
appendix, we investigate the formation of a ring deposit at the contact line for a rather
general form of the local evaporative flux, and show that the presence of particle–
substrate adsorption suppresses the formation of the ring deposit that can otherwise
occur when the local evaporative flux is non-singular at the contact line.
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1 Introduction

The evaporation of sessile droplets occurs in a wide variety of physical contexts,
with practical applications in, for example, coating (Layani et al. [1]), chemical and
biological assays (Garcia-Cordero and Fan [2]), and inkjet printing (Halls [3]), and
has therefore been the subject of extensive analytical, numerical, and experimental
investigation in recent years (see, for example, Cazabat and Guéna [4], Erbil [5],
Brutin and Starov [6], Giorgiutti-Dauphiné and Pauchard [7], Brutin and Sefiane [8],
Gelderblom et al. [9], and Wilson and D’Ambrosio [10], and the references therein).
Particular attention has been paid to the well-known “coffee-ring” effect in which a
ring deposit forms near to the location of the pinned contact line of a sessile droplet
as it evaporates. For the case of a thin, pinned droplet undergoing diffusion-limited
evaporation in which the local evaporative flux from the droplet is theoretically infinite
at the contact line, Deegan et al. [11] explained that the ring deposit is a consequence
of radially outward capillarity-driven flow inside the droplet that transports particles
towards its pinned contact line. In their study, Deegan et al. [11] obtained a theoretical
prediction for the growth of the ring deposit when radial particle diffusion is neglected.
Following Deegan et al. [11], the deposition of particles for an evaporating droplet has
been studied in great detail (see, for example, Larson [12], Mampallil and Eral [13],
Parsa et al. [14], Zang et al. [15], Kolegov and Barash [16], and Shoa et al. [17], and
the references therein). In particular, various authors have extended the basic particle-
transport model described by Deegan et al. [11] by, for example, incorporating high
concentration effects through particle jamming/gelation (see, for example, Popov [18],
Zheng [19], and Kaplan andMahadevan [20]) and particle diffusion (see, for example,
Moore et al. [21]) near to the contact line of the droplet. We note that, for a pinned
droplet, the mechanism underlying the coffee-ring effect is surprisingly robust, and
local evaporative fluxes that are non-singular, and even zero, at the contact line can
also induce a mean flow into the contact line, and hence can also give rise to a ring
deposit (see, for example, D’Ambrosio et al. [22]). In particular, spatially uniform
evaporation exhibits the same qualitative behaviour of the deposition of particles for a
pinned evaporating droplet (see, for example, Boulogne et al. [23] and D’Ambrosio et
al. [22]), and, due to its simplicity, is sometimes used to approximate diffusion-limited
evaporation (see, for example, Ozawa et al. [24], Man and Doi [25], Zigelman and
Manor [26, 27], and Mills [28]).

The shape of the deposit from an evaporating droplet is determined by both the
flow and particle interactions present within the droplet. In particular, previous authors
have reported a qualitative change in the deposition from an evaporating droplet by
promoting particle–free-surface, particle–particle, and particle–substrate interactions
through the addition of polymers (Kim et al. [29]), proteins (Devineau et al. [30]), and
surfactants (Anyfantakis et al. [31]), by changing the acidity of the fluid (Bhardwaj et
al. [32]), or by altering properties of the particles within the droplet, such as particle
concentration (Lee et al. [33]), material (Anyfantakis [34]), shape (Yunker [35, 36]),
and size (Ryu et al. [37]).

A number of theoretical investigations of the effect of particle interactions on the
deposition froman evaporating droplet have been performed (see, for example,Widjaja
and Harris [38], Siregar et al. [39], Crivoi and Duan [40], Crivoi et al. [41], Zigelman
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andManor [26, 27], Sung et al. [42], Ren et al. [43], andErdemet al. [44]). In particular,
Widjaja and Harris [38] and Sung et al. [42] numerically investigated the deposition of
particles fromapinned droplet undergoing diffusion-limited evaporation and identified
a variety of different final deposition patterns, including a ring deposit and an almost
uniform deposit, depending upon the relative strength of particle advection, particle
diffusion and particle–substrate adsorption. Sung et al. [42] also considered the effect
of particle–substrate desorption. Siregar et al. [39] numerically investigated the evo-
lution of, and the deposition from, both a pinned and an unpinned droplet undergoing
diffusion-limited evaporation, including the effects of particle–substrate adsorption
and desorption. In particular, they observed a transition from a ring deposit when the
contact line is pinned to a deposit that is more concentrated near to the centre of the
droplet when the contact line is unpinned. Crivoi and Duan [40], Crivoi et al. [41], and
Ren et al. [43] used a Monte Carlo method to study the transition from a ring deposit
to a more uniform deposit from a pinned droplet. In particular, Crivoi and Duan [40]
showed that, at least according to the model they employed, particle–free-surface
adsorption, long-range particle–particle attraction, and Marangoni effects must all be
present in order to suppress the formation of a ring deposit near to the contact line of the
droplet, again illustrating the robustness of the coffee-ring effect. Zigelman andManor
[26, 27] used a combination of numerical and analytical techniques to study the effect
of particle–substrate adsorption and particle–particle coagulation on the deposition
from a thin, pinned droplet undergoing spatially uniform evaporation. In particular,
Zigelman and Manor [26] identified a critical rate of particle–substrate adsorption at
which the final deposit is uniform, and observed a transition from a ring deposit below
this threshold to a deposit that is more concentrated near to the centre of the droplet
above it. Recently, Erdem et al. [44] numerically investigated the evolution of, and
deposition from, a thin two-dimensional droplet undergoing kinetically limited (i.e.
one-sided) evaporation. In particular, they analysed the effect of contact-line motion,
Marangoni effects, evaporative effects, particle–substrate adsorption rate, and parti-
cle diffusion on the final deposition pattern, and recovered several of the behaviours
observed by previous authors.

Thus, while there have been previous investigations of the effect of particle interac-
tions on the deposition of particles from an evaporating droplet, there are no analytical
studies for the effect of particle–substrate adsorption on the deposition from a droplet
undergoing diffusion-limited evaporation. The aim of the present work is to rectify
this omission. Specifically, in Sect. 2, we will formulate a mathematical model for the
evaporation of, the flow within, and the deposition from, a thin, pinned sessile droplet
undergoing either spatially uniform or diffusion-limited evaporation. In Sect. 3, we
will obtain explicit expressions for the concentration of particles within the bulk of
the droplet, and describe the behaviour of the concentration of particles adsorbed onto
the substrate, the evolution of the masses within the bulk of the droplet, adsorbed onto
the substrate, and in the ring deposit that can form at the contact line. In Appendix A,
we investigate the formation of a ring deposit at the contact line for a rather general
form of the local evaporative flux.
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2 Problem formulation

Consider the evaporation of a small, thin, axisymmetric, sessile droplet on a planar
substrate with a pinned circular contact line with constant radius R̂0. We assume that
the suspension of particles within the droplet is sufficiently dilute that the presence
of the particles does not affect the flow, and refer the description to cylindrical polar
coordinates r̂ and ẑ with Oẑ along the axis of the droplet, perpendicular to the substrate
at ẑ = 0. The contact angle, free surface, and volume of the droplet are denoted by
θ̂ = θ̂ (t̂), ĥ = ĥ(r̂ , t̂), and V̂ = V̂ (t̂), respectively, where t̂ denotes time. The initial
values of θ̂ and V̂ at t̂ = 0 are denoted by θ̂0 and V̂0, respectively. After the droplet is
deposited onto the substrate at an initial time t̂ = 0, its volume decreases until it has
completely evaporated, i.e. until V̂ (t̂lifetime) = 0, where t̂lifetime denotes the lifetime
of the droplet.

We consider situations inwhich the droplet is thin, corresponding to a small value of
the initial contact angle of the droplet θ̂0 � 1.We consider droplets that are sufficiently
small such that the effect of gravity is negligible, corresponding to a small value of
the appropriately defined Bond number

Bo = ρ̂ ĝ R̂0

σ̂
� 1, (1)

where ρ̂ and σ̂ are the constant density and surface tension of the fluid, respectively,
and ĝ denotes the magnitude of acceleration due to gravity. We now consider the
coupled problems for the evaporation of, the flow within, and the deposition from, the
droplet, in turn.

2.1 The evaporative problem

According to the basic diffusion-limited model (see, for example, Murisic and Kondic
[45] andWilson and D’Ambrosio [10]), the quasi-static concentration of vapour in the
atmosphere, denoted by ĉ = ĉ(r̂ , ẑ, t̂), satisfies Laplace’s equation ∇̂2ĉ = 0 subject
to conditions of complete saturation on the free surface of the droplet and of no flux
of vapour through the unwetted part of the substrate.

We scale and non-dimensionalise variables appropriately for the atmosphere
according to

r̂ = R̂0r , ẑ = R̂0 z̄, V̂ = θ̂0 R̂
3
0V , ĉ = ĉ∞ + (ĉsat − ĉ∞)c, Ĵ = Ĵref J , t̂ = t̂reft, (2)

where ĉsat and ĉ∞ are the constant saturation concentration and far-field concentra-
tion of vapour, respectively, and Ĵref and t̂ref are the characteristic scale of the local
evaporative mass flux from the droplet, denoted by Ĵ = Ĵ (r̂), and the characteristic
timescale, respectively, which, for diffusion-limited evaporation, are given by

Ĵref = D̂(ĉsat − ĉ∞)

R̂0
, t̂ref = ρ̂θ̂0 R̂2

0

D̂(ĉsat − ĉ∞)
, (3a,b)
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in which D̂ is the constant diffusion coefficient of vapour in the atmosphere. Note that
the scaling for ẑ in the atmosphere that appears in (2) differs from that for ẑ in the
droplet introduced subsequently.

For a thin droplet the exact solution to the basic diffusion-limited model is well
known (see, for example, Wilson and Duffy [46]) and leads to the familiar expression
for J , namely

J = 2

π
(
1 − r2

)1/2 . (4)

Integrating J over the free surface of the droplet gives the total evaporative mass
flux from the droplet, denoted by F and non-dimensionalised by D̂(ĉsat − ĉ∞)R̂0. In
particular, for a thin droplet, this is given by

F = 2π
∫ 1

0
J r dr = 4. (5)

The volume of the droplet evolves according to the globalmass-conservation condition

dV

dt
= −F . (6)

In the present work, we will also consider a spatially uniform evaporative flux that
is independent of the radial position r defined by

J ≡ 4

π
, (7)

which,when integrated over the free surface of the droplet, has the samevalue of F = 4
as that for diffusion-limited evaporation given by (5). We will compare the deposition
of particles from a droplet undergoing either spatially uniform or diffusion-limited
evaporation in Sect. 3.

2.2 The hydrodynamic problem

The velocity and pressure within the droplet, denoted by û = (
û(r̂ , ẑ, t̂), 0, ŵ(r̂ , ẑ, t̂)

)

and p̂ = p̂(r̂ , ẑ, t̂), respectively, satisfy the usual mass-conservation and Stokes equa-
tions subject to no-slip and no-penetration conditions on the substrate and stress and
kinematic conditions on the free surface of the droplet.

We scale and non-dimensionalise variables appropriately for the droplet according
to

r̂ = R̂0r , ẑ = θ̂0 R̂0z, ĥ = θ̂0 R̂0h, û = ûrefu,

ŵ = θ̂0ûrefw, p̂ − p̂a = γ̂ θ̂0

R̂0
p, (8)

where γ̂ is the constant coefficient of surface tension at the free surface of the droplet,
p̂a is the constant atmospheric pressure, and ûref is the characteristic radial velocity
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scale given by

ûref = R̂0

t̂ref
= D̂(ĉsat − ĉ∞)

ρ̂θ̂0 R̂0
. (9)

We consider situations in which the capillary effects are sufficiently strong that
the droplet evolves quasi-statically, corresponding to sufficiently small values of the
capillary number Ca defined by

Ca = μ̂ûref

γ̂ θ̂30

= μ̂D̂(ĉsat − ĉ∞)

γ̂ ρ̂θ̂40 R̂0
, (10)

in which μ̂ is the constant dynamic viscosity of the fluid.More specifically, we assume
that θ̂20 ,Bo � Ca � 1 and therefore seek an asymptotic solution for the pressure p
in the form

p = p(0) + Ca p(1) + O(θ̂20 ,Bo,Ca2) (11)

(see, for example, D’Ambrosio et al. [22]). Note that, as we shall see, the first-order
pressure term p(1) is the only term required beyond leading order to describe the flow
within and the deposition from an evaporating droplet, and so, for clarity, we omit the
“(0)” superscript on all other leading-order quantities.

At leading order inCa � 1, the Stokes equation reduces to ∂ p(0)/∂r = ∂ p(0)/∂z =
0, i.e. p(0) = p(0)(t) is independent of r and z, and hence is determined simply by the
normal stress condition on the free surface of the droplet, namely

p(0) = −1

r

∂

∂r

(
r
∂h

∂r

)
. (12)

The leading-order free-surface profile h = h(r , t) therefore takes the familiar
paraboloidal form

h = θ
(
1 − r2

)

2
, (13)

and the leading-order volume is given by

V = 2π
∫ 1

0
h r dr = πθ

4
. (14)

Substituting the expressions for F and V given by (5) and (14), respectively, into (6)
and solving for θ yields the well-known solution for the evolution of a thin, pinned
droplet undergoing diffusion-limited evaporation, namely

θ = 1 − 16

π
t, V = π

4

(
1 − 16

π
t

)
(15a,b)

(see, for example, Wilson and Duffy [46]). Note that, since they have the same value
of the total evaporative flux F = 4, the solution (15) also describes the evolution of a
droplet undergoing spatially uniform evaporation given by (7). Setting either θ = 0 or
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V = 0 in (15) shows that, for both diffusion-limited and spatially uniform evaporation,
the lifetime of the droplet is given by

tlifetime = π

16
. (16)

The mass-conservation equation is

1

r

∂(ru)

∂r
+ ∂w

∂z
= 0, (17)

and at first order in Ca � 1, the Stokes equation reduces to

∂2u

∂z2
= ∂ p(1)

∂r
, 0 = ∂ p(1)

∂z
, (18)

which is to be solved subject to no-slip and no-penetration conditions on the substrate,
i.e. u(r , 0, t) = w(r , 0, t) = 0, and the tangential stress condition ∂u/∂z = 0 on the
free surface of the droplet (see, for example,Wray et al. [47]). The kinematic condition
may be expressed by

∂h

∂t
+ 1

r

∂(r Q)

∂r
= −J , (19)

where Q = Q(r , t) is the local radial volume flux, defined by

Q =
∫ h

0
u dz = hū, (20)

and ū = ū(r , t) is the depth-averaged radial velocity, defined by

ū = 1

h

∫ h

0
u dz = Q

h
. (21)

As we shall see in Sect. 2.3, knowledge of ū is sufficient to describe the evolution of
the concentration of particles at leading order, and hence the evolution of the mass of
particles within the droplet.

For future reference, we note that the kinematic condition (19) may be rearranged
and integrated with respect to r to yield

Q = −1

r

∫ r

0

(
∂h

∂t
+ J

)
r̃ dr̃ . (22)

2.3 The particle-transport problem

The concentration of particles per unit volume within the bulk of the droplet, denoted
by φ̂ = φ̂(r̂ , ẑ, t̂), satisfies an advection–diffusion equation subject to an adsorption
condition on the substrate and a condition of conservation of particles at the free
surface of the droplet.
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Non-dimensionalising according to φ̂ = φ̂refφ, where φ̂ref is the spatial average
of the initial concentration of particles within the droplet, shows that φ = φ(r , z, t)
satisfies

Pe∗
(

∂φ

∂t
+ u

∂φ

∂r
+ w

∂φ

∂z

)
= θ̂20

1

r

∂

∂r

(
r
∂φ

∂r

)
+ ∂2φ

∂z2
, (23)

where Pe∗ (= θ̂20 Pe) is the appropriately defined reduced particle Péclet number that
characterises the ratio of advective and diffusive particle-transport timescales, namely

Pe∗ = θ̂20 R̂0ûref

D̂p
= θ̂0 D̂

(
ĉsat − ĉ∞

)

ρ̂ D̂p
, (24)

in which D̂p is the constant diffusivity of the particles in the fluid.
The adsorption of suspended particles onto a solid substrate is a complicated process

that is driven by short-range interactions between the particles and the substrate and can
depend on a variety of physical effects, including hydrodynamic, van der Waals, and
electrostatic forces (see, for example, Elimelech et al. [48] and Adamczyk [49]). In the
present work, we adopt a simple phenomenological model for the particle–substrate
adsorption that simply states that adsorption is irreversible and that the diffusive flux
of particles onto the substrate is proportional to the local concentration of particles on
the substrate with the constant adsorption coefficient k̂a, i.e.

D̂p
∂φ̂

∂ ẑ
= k̂aφ̂ on ẑ = 0, (25)

(see, for example, Widjaja and Harris [38] and Zigelman and Manor [26, 27]). The
non-dimensional form of (25) is

∂φ

∂z
= Pe∗Daφ on z = 0, (26)

where Da (= O(1)) is the appropriately defined Damköhler number that characterises
the ratio of particle–substrate adsorption and advective timescales, namely

Da = k̂a t̂ref

θ̂0 R̂0
= ρ̂k̂a R̂0

D̂(ĉsat − ĉ∞)
. (27)

Conservation of particles at the free surface of the droplet requires that

D̂p∇φ · n̂ = Ĵ φ̂

ρ̂
on ẑ = ĥ, (28)
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where n̂ is the unit outward normal to the free surface (see, for example, Zigelman
and Manor [26, 27]).1 The non-dimensional form of (28) is

1
√
1 + θ̂20 (∂h/∂r)2

(
∂φ

∂z
− θ̂20

∂h

∂r

∂φ

∂r

)
= Pe∗ Jφ on z = h. (29)

The concentration of particles per unit area adsorbed onto the substrate within
the footprint of the droplet, denoted by φs = φs(r , t) and non-dimensionalised by
θ̂0 R̂0φ̂ref, satisfies

∂φs

∂t
= Daφ(r , 0, t). (30)

The final adsorbed deposit, i.e. the adsorbed deposit at t = tlifetime, is denoted by
φs, lifetime = φs, lifetime(r) and given by φs, lifetime = φs(r , tlifetime).

We consider situations in which the vertical diffusion of particles within the droplet
is fast relative to the rate of evaporation and particle–substrate adsorption, corre-
sponding to small values of Pe∗. More specifically, we assume that θ̂20 � Pe∗ � 1
and therefore seek an asymptotic solution for φ in the form

φ = φ(0) + Pe∗φ(1) + O
(
θ̂20 ,Pe∗2) (31)

(see, for example, Wray et al. [47] and D’Ambrosio et al. [22]).
At leading order in Pe∗ � 1, equation (23) reduces to ∂2φ(0)/∂z2 = 0, subject

to ∂φ(0)/∂z = 0 on the substrate and the free surface of the droplet, and hence
φ(0) = φ(0)(r , t) is independent of z.

At first order in Pe∗ � 1, equations (23), (26), and (29) reduce to

∂2φ(1)

∂z2
= ∂φ(0)

∂t
+ u

∂φ(0)

∂r
(32)

subject to
∂φ(1)

∂z
= Daφ(0) on z = 0 (33)

and
∂φ(1)

∂z
= Jφ(0) on z = h. (34)

Integrating (32) with respect to z from 0 to h, subject to the boundary conditions (33)
and (34), and dropping the superscript “(0)” on φ for clarity, yields the following
governing equation for the leading-order concentration of particles φ = φ(r , t),

∂φ

∂t
+ ū

∂φ

∂r
= (J − Da)φ

h
, (35)

1 Note that the conditions of conservation of particles at the free surface of the droplet given in equation
(13) of [38] and equation (9) of [42] both contain (different) minor typographical errors that fortunately do
not appear to affect the numerical results presented in either of these works.
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where ū is given by (21). As mentioned in Sect. 2.3, determining the leading-order
evolution of the concentration of particles from (35) only requires knowledge of ū, not
u and w. Setting Da = 0 in (35) recovers the familiar governing equation for φ when
there is no flux of particles onto the substrate, i.e. in the absence of particle–substrate
adsorption (see, for example, Deegan et al. [11] and Wray et al. [47, 50]). From (30),
the leading-order concentration of particles adsorbed onto the substrate is then given
simply by ∂φs/∂t = Daφ, which has the following solution in terms of the temporal
integral of φ,

φs = Da
∫ t

0
φ(r , t̃) dt̃ . (36)

Equation (35) may be put into characteristic form, i.e.

dφ

dt
= (J − Da)φ

h
on the characteristics determined by

dr

dt
= ū = Q

h
, (37)

and solved subject to a prescribed initial concentration φ(r , 0) = φ0(r) using the
method of characteristics. In particular, following D’Ambrosio et al. [22], the charac-
teristic equations (37) may be expressed as

dr

dθ
= dr/dt

dθ/dt
= Q

θ∂h/∂t
,

dφ

dr
= dφ/dt

dr/dt
= (J − Da)φ

Q
, (38a,b)

which can be integrated to yield

log θ =
∫ r

r0

∂h/∂t

Q
dr̃ , log

φ

φ0
=

∫ r

r0

J − Da

Q
dr̃ , (39a,b)

where r0 satisfies 0 ≤ r0 ≤ 1 and is determined by solving (39a). Adding (39a) and
(39b) and using (19) yields

log θ + log
φ

φ0
=

∫ r

r0

∂h/∂t + J − Da

Q
dr̃ = −

∫ r

r0

1

r̃ Q

∂(r̃ Q)

∂ r̃
dr̃ −

∫ r

r0

Da

Q
dr̃ ,

(40)
and therefore

log θ + log
φ

φ0
= log

r0Q(r0, t)

r Q(r , t)
−

∫ r

r0

Da

Q
dr̃ . (41)

Hence, the implicit solution of (35) can be expressed as

log θ = − 8

π

∫ r

r0

1 − r2

Q
dr̃ ,

φ

φ0
= r0Q(r0, t)

θr Q(r , t)
exp

(
−

∫ r

r0

Da

Q
dr̃

)
. (42a,b)

Setting Da = 0 in (42) recovers the corresponding solution in the absence of particle–
substrate adsorption obtained by D’Ambrosio et al. [22].

The mass of particles per unit area within the droplet is φh, and so the mass of
particles in the bulk of the droplet as it evaporates, denoted by Mdrop = Mdrop(t) and
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non-dimensionalised by θ̂0 R̂3
0 φ̂ref, is given by

Mdrop = 2π
∫ 1

0
φ h r dr . (43)

The initial mass of particles in the droplet is Mdrop(0) = M0, where

M0 = 2π
∫ 1

0
φ0(r) h(r , 0) r dr . (44)

For the present model, during the evaporation of the droplet particles are lost from
the bulk of the droplet due to adsorption of particles onto the substrate and/or the flux
of particles into the contact line. Therefore, during the evaporation the total mass of
particles is divided between the mass of particles in the bulk of the droplet, the mass
of particles adsorbed onto the substrate, and the mass of particles in the ring deposit
that can form at the contact line of the droplet.

Themass of particles that have been adsorbed onto the substrate, denoted byMsub =
Msub(t) and also non-dimensionalised by θ̂0 R̂3

0 φ̂ref, is given by

Msub = 2π
∫ 1

0
φs r dr . (45)

The mass flux of particles from the bulk of the droplet into the contact line is
limr→1− 2π(φ Q r), and so the mass of particles in the ring deposit that can form
at the contact line, denoted by Mring = Mring(t) and also non-dimensionalised by
θ̂0 R̂3

0 φ̂ref, is given by

Mring = 2π
∫ t

0
lim

r→1−(φ Q r) dt̃ . (46)

It is straightforward to show that

d

dt

(
Mdrop + Msub + Mring

) = 0, (47)

i.e. that the total mass of particles is conserved.
For simplicity, in the remainder of the present workwe take the initial concentration

of particles in the bulk of the droplet to be spatially uniform such thatφ0(r) ≡ 1. In this
case, the initial mass of particles within the droplet given by (44) is simply M0 = π/4.

3 Deposition from an evaporating droplet

We will now determine the deposition of particles from a droplet undergoing either
spatially uniform or diffusion-limited evaporation.
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Fig. 1 a Q given by (48) and b ūθ given by (49) plotted as functions of r for a droplet undergoing spatially
uniform evaporation

3.1 Spatially uniform evaporation

Substituting the expressions for J and h given by (7) and (13), respectively, into (22)
and evaluating the integral yields the familiar expressions for Q, and hence ū, for a
thin droplet undergoing spatially uniform evaporation,

Q = 2r

π

(
1 − r2

)
(48)

and

ū = 4r

πθ
(49)

(see, for example, Boulogne et al. [23] and D’Ambrosio et al. [22]). Figure1 shows
Q and ūθ (both of which are independent of t) plotted as functions of r .

Substituting the expression for Q given by (48) into (42) and evaluating the integrals
yields

r0 = θ1/4r , φ = 1

θ

(
r20
r2

)1+πDa/4 (
1 − r20
1 − r2

)1−πDa/4

, (50a,b)

and using (50a) to eliminate r0 from (50b) yields an explicit expression for the concen-
tration of particles within a droplet undergoing spatially uniform evaporation, namely

φ =
(

θ−1/2 − r2

1 − r2

)1−πDa/4

. (51)

Equation (51) is equivalent to the corresponding expression obtained by Zigelman
and Manor [26] [their equation (21)] in which J is spatially uniform and defined by
J ≡ 1, and setting Da = 0 in (51) recovers the solution for φ in the absence of
particle–substrate adsorption (see, for example, Zheng [19]).

Figures 2 and 3 showφ given by (51) plotted as a function of r at various times for (a)
Da = 2/π (typical of 0 ≤ Da < 4/π ) and (b) Da = 6/π (typical of Da > 4/π ), and
as a function of r at t = tlifetime/2 = π/32 for various values of Da, respectively. Note
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Fig. 2 The concentration of particles within the droplet φ given by (51) plotted as a function of r at times
t = (0, 1/10, . . . , 9/10)×tlifetime for a droplet undergoing spatially uniform evaporationwhen aDa = 2/π
and b Da = 6/π . The dashed lines correspond to the initial concentration φ ≡ 1 at t = 0, and the arrows
indicate the direction of increasing t

Fig. 3 The concentration of
particles within the droplet φ
given by (51) plotted as a
function of r at
t = tlifetime/2 = π/32 for a
droplet undergoing spatially
uniform evaporation when
Da = (0, 1/2, . . . , 4) × 4/π .
The dotted and dashed lines
correspond to Da = 0 and
Da = 4/π , respectively, and the
arrow indicates the direction of
increasing Da

that φ ≡ 1whenDa = 4/π , and so, for brevity, this special case is omitted from Fig. 2.
In particular, Figs. 2 and 3 illustrate that the behaviour of φ is qualitatively different
for 0 ≤ Da < 4/π , Da = 4/π , and Da > 4/π . Specifically, for 0 ≤ Da < 4/π , φ is
a monotonically increasing function of r that takes its minimum value at r = 0 and
is singular at the contact line according to φ = O

(
(1 − r)−(1−πDa/4)

) → ∞, and is
a monotonically increasing function of t . For Da = 4/π , as previously mentioned, φ
remains spatially uniform and constant and is given by φ ≡ 1. For Da > 4/π , φ is
a monotonically decreasing function of r that takes its maximum value at r = 0 and
goes to zero at the contact line according to φ = O

(
(1 − r)−(1−πDa/4)

) → 0+, and
is a monotonically decreasing function of t .

Substituting the solution for φ given by (51) into (36) and evaluating the inte-
gral yields an explicit expression for the concentration of particles adsorbed onto the
substrate φs, namely

φs = πDa
(
1 − r2

)−(1−πDa/4)

8r2(1+πDa/4)

[
Br2

(
1 + πDa

4
, 2 − πDa

4

)

− Bθ1/2r2

(
1 + πDa

4
, 2 − πDa

4

)]
, (52)
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Fig. 4 The concentration of
particles adsorbed onto the
substrate at the end of the
evaporation φs, lifetime given by
(54) plotted as a function of r for
a droplet undergoing spatially
uniform evaporation when
Da = (1/4, 1/2, . . . , 3) × 4/π .
The dashed line corresponds to
Da = 4/π , and the arrow
indicates the direction of
increasing Da

where Bz(a, b) denotes the incomplete Beta function defined by

Bz(a, b) =
∫ z

0
xa−1(1 − x)b−1 dx . (53)

Equation (52) is equivalent to the corresponding expression obtained by Zigelman and
Manor [26] [their equation (22)] in which, as previously mentioned, J ≡ 1. When
Da = 0, there is no adsorption onto the substrate and so trivially φs ≡ 0, while
when Da = 4/π , φs is spatially uniform throughout the evaporation and is given by
φs = (1 − θ)/4. From (52), the final adsorbed deposit is given by

φs, lifetime = πDa
(
1 − r2

)−(1−πDa/4)

8r2(1+πDa/4)
Br2

(
1 + πDa

4
, 2 − πDa

4

)
. (54)

Figure 4 shows φs, lifetime given by (54) plotted as a function of r for various values
of Da > 0. In particular, Fig. 4 shows that φs, lifetime has qualitatively the same spatial
behaviour as that of φ shown in Figs. 2 and 3. Specifically, for 0<Da<4/π , φs, lifetime
is amonotonically increasing function of r that takes its minimumvalue at r = 0 and is
singular at the contact line according toφs, lifetime = O

(
(1 − r)−(1−πDa/4)

) → ∞; for
Da = 4/π , it is spatially uniform and is given by φs, lifetime ≡ 1/4; and for Da > 4/π ,
it is amonotonically decreasing function of r that takes itsmaximumvalue at r = 0 and
goes to zero at the contact line according toφs, lifetime = O

(
(1 − r)−(1−πDa/4)

) → 0+.
In other words, as Da increases a switch from a final adsorbed deposit that is more
concentrated near to the contact line of the droplet to one that ismore concentrated near
to the centre of the droplet occurs atDa = 4/π , withφs, lifetime → h(r , 0) = (1−r2)/2
as Da → ∞.

Substituting the expressions for h and φ given by (13) and (51), respectively, into
(43) and evaluating the integral yields an explicit expression for the mass of particles
in the bulk of the droplet, namely

Mdrop = M0
2θ(1+πDa/4)/2

1 + πDa/4
2F1

(
1,−1 + πDa

4
; 2 + πDa

4
; θ1/2

)
, (55)

where M0 = π/4 and 2F1(a, b; c; z) denotes the Gaussian (i.e. the ordinary) hyper-
geometric function.
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Fig. 5 The evolutions of a Mdrop/M0 given by (55) and b Msub/M0 given by (56) plotted as functions of
t/tlifetime for a droplet undergoing spatially uniform evaporation when Da = (0, 1/2, . . . , 4) × 4/π . The
dotted and dashed lines correspond to Da = 0 and Da = 4/π , respectively. When Da = 0, Msub ≡ 0,
and so the dotted line in (b) shows Mring/M0 rather than Msub/M0. The arrows indicate the direction of
increasing Da

Similarly, substituting the expression for φs given by (52) into (45) and evaluating
the integral yields an explicit expression for the mass of particles adsorbed onto the
substrate, namely

Msub = M0

[

1 − 2θ(1+πDa/4)/2

1 + πDa/4
2F1

(
1,−1 + πDa

4
; 2 + πDa

4
; θ1/2

)]

= M0 − Mdrop. (56)

When Da = 0, φs ≡ 0 and hence Msub ≡ 0, and substituting the solution for φ

given by (51) when Da = 0 into (43) and (46) and evaluating the integrals recovers the
solutions for Mdrop and Mring in the absence of particle–substrate adsorption, namely

Mdrop = M0

[
1 −

(
1 − θ1/2

)2]
, Mring = M0

(
1 − θ1/2

)2 = M0 − Mdrop (57)

(see, for example, D’Ambrosio et al. [22]), showing that in the absence of particle–
substrate adsorption all of the particles initially in the bulk of the droplet are
eventually advected to the contact line, where they form a final ring deposit of mass
Mring(tlifetime) = M0.

On the other hand, when Da > 0, equations (48) and (51) show that φ Q r → 0+ as
r → 1− [see equation (A11) in Appendix A for the exact expression], and therefore
(46) gives Mring ≡ 0, showing that in the presence of particle–substrate adsorption,
all of the particles initially in the bulk of the droplet are eventually adsorbed onto the
substrate, where they form a (in general, spatially non-uniform) final adsorbed deposit
of mass Msub(tlifetime) = M0.

Figure 5 shows the evolutions of Mdrop/M0 given by (55) and Msub/M0 given by
(56) plotted as functions of t/tlifetime for various values of Da. In particular, Fig. 5a
illustrates that for all values of Da ≥ 0, Mdrop decreases monotonically from M0 at
t = 0 to 0 at t = tlifetime, and Fig. 5b illustrates that for Da > 0, Msub increases
monotonically from 0 at t = 0 to M0 at t = tlifetime, i.e. all of the particles initially in
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Fig. 6 a Q given by (58) and b ūθ given by (59) plotted as functions of r for a droplet undergoing diffusion-
limited evaporation

the bulk of the droplet are eventually advected to the contact line when Da = 0, but
are eventually adsorbed onto the substrate when Da > 0.

3.2 Diffusion-limited evaporation

Substituting the expressions for J and h given by (4) and (13), respectively, into (22)
and evaluating the integral yields the familiar expressions for Q, and hence ū, for a
thin droplet undergoing diffusion-limited evaporation,

Q = 2

πr

[
(1 − r2)1/2 − (1 − r2)2

]
(58)

and

ū = 4

πrθ

[
(1 − r2)−1/2 − (1 − r2)

]
(59)

(see, for example, Boulogne et al. [23], Gelderblom et al. [9], and D’Ambrosio et
al. [22]). Figure 6 shows Q and ūθ (both of which are again independent of t) plotted
as functions of r .

As in Sect. 3.1, substituting the expression for Q given by (58) into (42) and eval-
uating the integrals yields an implicit solution for φ (the details of which are omitted
for brevity), and eliminating r0 yields an explicit expression for the concentration of
particles within a droplet undergoing diffusion-limited evaporation, namely

φ = s

θ1/4s0

[
(1 − s)2(1 + s0 + s20 )

(1 − s0)2(1 + s + s2)

]πDa/12

× exp

[
πDa

2
√
3
arctan

( √
3(s0 − s)

2 + s0 + s + 2s0s

)]

, (60)

where s = s(r , t) is given by

s = θ1/4
[
θ−3/4 − 1 + (1 − r2)3/2

]1/3
, (61)
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Fig. 7 The concentration of particles within the droplet φ given by (60) plotted as a function of r at
times t = (0, 1/10, . . . , 9/10) × tlifetime for a droplet undergoing diffusion-limited evaporation when a
Da = 1/π , b Da = 2/π , c Da = 3/π , and d Da = 6/π . The dashed lines correspond to the initial
concentration φ ≡ 1 at t = 0, and the arrows indicate the direction of increasing t

Fig. 8 The concentration of particles within the droplet φ given by (60) plotted as a function of r at
t = tlifetime/2 = π/32 for a droplet undergoing diffusion-limited evaporationwhenDa = (0, 1/2, . . . , 4)×
2/π . The dotted line corresponds to Da = 0, the dashed and dot-dashed lines correspond to the asymptotic
expressions for φ near to the centre and near to the contact line of the droplet given by (64) and (65),
respectively, and the arrow indicates the direction of increasing Da

and s0 = s(r , 0) = (1 − r2)1/2. Setting Da = 0 in (60) again recovers the solution
for φ in the absence of particle–substrate adsorption (see, for example, Zheng [19]).

Figures 7 and 8 show φ given by (60) plotted as a function of r at various times for
(a) Da = 1/π (typical of 0 ≤ Da < 2/π ), (b) Da = 2/π , (c) Da = 3/π (typical of
2/π < Da ≤ 3/π ), and (d) Da = 6/π (typical of Da > 3/π ), and as a function of r
at t = tlifetime/2 = π/32 for various values of Da, respectively. In particular, Figs. 7
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Fig. 9 Plot of rcrit given by (62)
as a function of t/tlifetime at
Da = (101/100, 21/20, 11/10,
6/5, 7/5, 8/5, 9/5, 2, 5/2) × 2/π .
The dashed line corresponds to
rcrit = 1 and the arrow indicates
the direction of increasing Da

and 8 illustrate that, unlike for spatially uniform evaporation,φ is always singular at the
contact line, and that the behaviour of φ is qualitatively different for 0 ≤ Da < 2/π ,
Da = 2/π , 2/π < Da ≤ 3/π , and Da > 3/π . Specifically, for 0 ≤ Da ≤ 3/π , φ

is a monotonically increasing function of r , but for Da > 3/π , φ first decreases to a
minimum before increasing as a function of r . On the other hand, for 0 ≤ Da ≤ 2/π ,
φ is an increasing function of t for all values of r (with φ(0, t) ≡ 1 when Da = 2/π ),
but for Da > 2/π , φ is a decreasing function of t for 0 ≤ r < rcrit and an increasing
function of t for rcrit < r ≤ 1, where rcrit = rcrit(Da, t) is determined by solving the
equation ∂φ/∂t = 0 for r to yield

rcrit =
√√√√1 − θ−1/2

[

θ3/4 − 1 +
(

2

πDa

)3
]2/3

. (62)

Figure 9 shows rcrit given by (62) plotted as a function of t/tlifetime for various values
of Da > 2/π . In particular, Fig. 9 illustrates that rcrit is a monotonically increasing
function ofDa for Da > 2/π that satisfies rcrit → 0+ asDa → (2/π)+ and rcrit → 1−
as Da → ∞. Figure9 also illustrates that rcrit is amonotonically increasing function of

t for 0 ≤ t ≤ tcrit that satisfies rcrit → √
1 − (2/(πDa))2

+
as t → 0+ and rcrit → 1−

as t → t−crit, where tcrit = tcrit(Da) (0 < tcrit < tlifetime) is given by

tcrit
tlifetime

= 1 −
[

1 −
(

2

πDa

)3
]4/3

. (63)

In particular, near to the centre of the droplet

φ = θ(−1+πDa/2)/4
[
1 + r2

2

(
1 − πDa

3

) (
1 − θ3/4

)]
+ O

(
r4

)
(64)

as r → 0+, confirming the behaviour of φ near to the centre of the droplet described
above. On the other hand, near to the contact line

φ = s1
θ1/4

(
(1 − s1)2

1 + s1 + s21

)πDa/12

exp

[

−πDa

2
√
3
arctan

( √
3s1

2 + s1

)]

×
(

1√
2
√
1 − r

+ πDa

2

)
+ O

(
(1 − r)1/2

)
(65)
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Fig. 10 The concentration of
particles adsorbed onto the
substrate at the end of the
evaporation φs, lifetime given by
(36) plotted as a function of r for
a droplet undergoing
diffusion-limited evaporation
when Da = (1/2, . . . , 8) × 2/π .
The arrow indicates the direction
of increasing Da

as r → 1−, where s1 = s(1, t) = (1 − θ3/4)1/3, confirming that φ is always singular
at the contact line. Figure8 includes dashed and dot-dashed lines corresponding to
the asymptotic expressions for φ near to the centre and near to the contact line of the
droplet given by (64) and (65), respectively.

Unlike for spatially uniformevaporation, the temporal integral ofφ givenby (60) has
no closed-form analytical expression, and so the concentration of particles adsorbed
onto the substrate φs given by (36) must be calculated numerically.

Figure10 shows φs, lifetime given by (36) plotted as a function of r for various values
of Da > 0. In particular, Fig. 10 shows that φs, lifetime is always singular at the contact
line, and for 0 ≤ Da ≤ 3/π , it is a monotonically increasing function of r , but for
Da > 3/π , it first decreases to a minimum before increasing as a function of r , i.e.
while there is always an adsorbed deposit near to the contact line, as Da increases the
adsorbed deposit becomes increasingly more concentrated near to the centre of the
droplet, and a switch from a local minimum to a local maximum in the concentration at
the centre of the droplet occurs at Da = 3/π , and, as for spatially uniform evaporation,
φs, lifetime → h(r , 0) = (1− r2)/2 as Da → ∞. Using (64), it is possible to obtain an
expression for φs near to the centre of the droplet, namely

φs = πDa

12 (1 + πDa/6)

[
1 − θ3(1+πDa/6)/4

+ r2
1 − πDa/3

1 + πDa/4

(
1 − θ3(1+πDa/6)/4

{
2 + πDa

2
−

(
1 + πDa

6

)
θ3/4

})]

+ O
(
r4

)
(66)

as r → 0+, and hence

φs, lifetime = πDa

12 (1 + πDa/6)

(
1 + r2

1 − πDa/3

1 + πDa/4

)
+ O

(
r4

)
(67)

as r → 0+, confirming the behaviour of φs, lifetime near to the centre of the droplet
described above.

Like φs, Mdrop, Msub, and Mring given by (43), (45), and (46), respectively, must,
in general, all be calculated numerically.

123



    1 Page 20 of 28 H. D’Ambrosio et al.

Fig. 11 The evolutions of a Mdrop/M0 given by (43), b Msub/M0 given by (45), and c Mring/M0 given
by (46) plotted as functions of t/tlifetime for a droplet undergoing diffusion-limited evaporation when
Da = (0, 1/2, . . . , 4) × 2/π . The dotted lines correspond to Da = 0, the dots in (b) and (c) correspond to
the values ofMsub(tlifetime)/M0 andMring(tlifetime)/M0, respectively, and the arrows indicate the direction
of increasing Da

As for spatially uniform evaporation, when Da = 0, φs ≡ 0 and hence Msub ≡ 0,
and substituting the solution for φ given by (60) when Da = 0 into (43) and (46) and
evaluating the integrals recovers the solutions for Mdrop and Mring in the absence of
particle–substrate adsorption, namely

Mdrop = M0

[
1 −

(
1 − θ3/4

)4/3]
, Mring = M0

(
1 − θ3/4

)4/3 = M0 − Mdrop

(68)
(see, for example, Deegan et al. [11] and D’Ambrosio et al. [22]), showing that in the
absence of particle–substrate adsorption, all of the particles initially in the bulk of the
droplet are eventually advected to the contact line, where they again form a final ring
deposit of mass Mring(tlifetime) = M0.

On the other hand, unlike for spatially uniform evaporation, when Da > 0, from
equations (58) and (60) it may be shown that φ Q r = O(1) as r → 1− [see equation
(A12) in Appendix A for the exact expression], and therefore (46) gives Mring > 0,
showing that in the presence of particle–substrate adsorption not all of the particles
initially in the bulk of the droplet are eventually adsorbed onto the substrate, and
so the final deposit consists of a (in general, spatially non-uniform) final adsorbed
deposit of mass Msub(tlifetime) and a final ring deposit of mass Mring(tlifetime) = M0 −
Msub(tlifetime).

Figure11 shows the evolutions of Mdrop/M0 given by (43), Msub/M0 given by
(45), and Mring/M0 given by (46) plotted as functions of t/tlifetime for various val-
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Fig. 12 Msub(tlifetime)/M0
plotted as a function of Da/π for
a droplet undergoing
diffusion-limited evaporation

ues of Da. In particular, Fig. 11a shows that, like for spatially uniform evaporation,
for all values of Da ≥ 0, Mdrop decreases monotonically from M0 at t = 0 to 0 at
t = tlifetime, and Figs. 11b, c show that Msub and Mring increase monotonically from 0
at t = 0 to Msub(tlifetime) and Mring(tlifetime), respectively, at t = tlifetime, i.e. all of the
particles initially in the bulk of the droplet are eventually advected to the contact line
when Da = 0, but, unlike for spatially uniform evaporation, they are eventually either
advected to the contact line or adsorbed onto the substratewhenDa > 0. Figures 11b, c
also show, as might have been anticipated, that as Da increases, an increasing propor-
tion of the particles are adsorbed onto the substrate, with Msub(tlifetime) → M−

0 and
Mring(tlifetime) → 0+ as Da → ∞. This behaviour is illustrated in Fig. 12, which
shows Msub(tlifetime)/M0 plotted as a function of Da/π .

Note that the present theoretical prediction of a final deposit consisting of an
adsorbed deposit within the footprint of the droplet and a ring deposit at the contact
line is in qualitative agreement with the experimental results of Devineau et al. [30],
Anyfantakis et al. [31], and Bhardwaj et al. [32]. In particular, Anyfantakis et al. [31]
showed that when the particles and substrate are oppositely charged, electrostatic
particle–substrate attraction forces lead to a large number of particles being adsorbed
onto the substrate within the footprint of the droplet, but that a ring deposit still occurs
at the contact line due to the radially outward flow. Similarly, Bhardwaj et al. [32]
observed that when the pH value of the fluid is decreased, the Derjaguin–Landau–
Verwey–Overbeek (DLVO) forces present due to electrostatic and van derWaals forces
cause particle–substrate attraction. As a result, the particles initially close to the sub-
strate are attracted to, and form a layer of deposit on, the substrate. However, theDLVO
forces are not sufficiently strong to attract all of the particles, and some of them are
transported to the contact line by the radially outward flow to form a ring deposit. In
addition, both of these studies showed that a switch from particle–substrate attraction
to repulsion can be achieved by, for example, the addition of oppositely charged sur-
factant at sufficiently high concentrations (Anyfantakis et al. [31]) or increasing the
pH value of the fluid (Bhardwaj et al. [32]), resulting in particles being transported to
the contact line by the radially outward flow to form only a ring deposit.
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4 Conclusions

In the present work we formulated and analysed a mathematical model for the evap-
oration of, the flow within, and the deposition from, a thin, pinned sessile droplet
undergoing either spatially uniform or diffusion-limited evaporation. Specifically, we
obtained explicit expressions for the concentration of particles within the bulk of the
droplet, and described the behaviour of the concentration of particles adsorbed onto the
substrate as well as the evolution of the masses within the bulk of the droplet, adsorbed
onto the substrate, and in the ring deposit that can form at the contact line. The nature of
the final deposit depends on the relative strengths of the depth-averaged radial velocity
driven by evaporation that advects particles towards the contact line of the droplet and
particle–substrate adsorption that adsorbs particles onto the substrate. In particular,
we showed that, whereas for spatially uniform evaporation the presence of particle–
substrate adsorption suppresses the formation of a ring deposit at the contact line and
the final deposit consists of a (in general, spatially non-uniform) final adsorbed deposit
of mass M0, for diffusion-limited evaporation the final deposit consists of a (in gen-
eral, spatially non-uniform) final adsorbed deposit of mass Msub(tlifetime) and a final
ring deposit of mass Mring(tlifetime) = M0 − Msub(tlifetime). The theoretical prediction
of a final deposit consisting of an adsorbed deposit within the footprint of the droplet
and a ring deposit at the contact line is in qualitative agreement with the experimental
results of Devineau et al. [30], Anyfantakis et al. [31], and Bhardwaj et al. [32]. For
both spatially uniform and diffusion-limited evaporation, the theoretically predicted
final adsorbed deposit is more concentrated near to the contact line of the droplet
when radial advection due to evaporation dominates particle–substrate adsorption, but
is more concentrated near to the centre of the droplet when particle–substrate adsorp-
tion dominates radial advection due to evaporation. For spatially uniform evaporation,
as Da increases, a switch from a final adsorbed deposit that is more concentrated near
to the contact line of the droplet to one that is more concentrated near to the centre of
the droplet occurs at Da = 4/π . In the special case Da = 4/π , the effects of radial
advection and adsorption exactly cancel each other out, and so the concentration of
particles remains at its spatially uniform and constant initial value throughout the evap-
oration. On the other hand, for diffusion-limited evaporation, while there is always a
final adsorbed deposit near to the contact line (at which φs, lifetime is singular), as Da
increases the final adsorbed deposit becomes increasingly more concentrated near to
the centre of the droplet, and a switch from a local minimum to a local maximum in the
concentration at the centre of the droplet occurs at Da = 3/π . In both scenarios, the
final adsorbed deposit approaches a paraboloidal shape in the limit of strong particle–
substrate adsorption. In addition, in Appendix A, we investigated the formation of a
ring deposit at the contact line for a rather general form of the local evaporative flux,
and showed that the presence of particle–substrate adsorption suppresses the forma-
tion of the ring deposit that can otherwise occur when the local evaporative flux is
non-singular at the contact line.

It should, of course, be emphasised that the mathematical model considered in the
present work is based on various simplifying assumptions, and futurework could focus
on relaxing these assumptions. For example, the particle-transport model in Sect. 2.3
considers the regime in which the vertical diffusion of particles within the droplet is
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fast relative to the rate of evaporation and particle–substrate adsorption, i.e. θ̂20 �
Pe∗ � 1; however, it would also be of interest to explore the effect of radial particle
diffusion within the droplet (see, for example, Moore et al. [21]) and to investigate
the competition between particle diffusion and particle–substrate adsorption on the
deposition fromanevaporatingdroplet. Itwould also beof interest to further investigate
the effect of particle–substrate adsorption on the deposition from non-thin droplets
(see, for example, Masoud and Felske [51, 52]) and droplets with moving contact lines
(see, for example, Freed-Brown [53]), as well as from non-axisymmetric droplets (see,
for example, Sáenz et al. [54] and Wray and Moore [55]) and multiple evaporating
droplets (see, for example, Wray et al. [47, 56]).

Appendix A Themass flux of particles into the contact line

In this Appendix, we investigate the formation of a ring deposit at the contact line
for a rather general form of the local evaporative flux J , and show that the presence
of particle–substrate adsorption suppresses the formation of the ring deposit that can
otherwise occur when J is non-singular at the contact line.

For a general local evaporative flux of the form J = J (r), the general expression
for the local radial volume flux Q given by (22) may be written as

Q = I (1)H(r) − H(1)I (r)

r H(1)
, (A1)

in which H = H(r) and I = I (r) defined by

H =
∫ r

0
η(r̃) r̃ dr̃ , I =

∫ r

0
J (r̃) r̃ dr̃ (A2)

are the incomplete radial integrals of η r and J r , respectively, where η = η(r) =
h(r , t)/θ(t) = (1 − r2)/2 is the spatial component of the free-surface profile given
by (13) (see, for example, D’Ambrosio et al. [22]).

We assume that J has the rather general local form

J ∼ Jn(1 − r)n (A3)

as r → 1−, where Jn (> 0) is a strictly positive constant and the exponent n must
satisfy n > −1 in order for J to be integrable, but is otherwise arbitrary, and so J is
singular, finite and non-zero, and zero at the contact line for −1 < n < 0, n = 0, and
n > 0, respectively.

Using F = 4, (A1), (A3), H(r) = (2 − r2)r2/8, and I (1) = F/(2π) = 2/π , the
local behaviour of Q near the contact line is
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Q ∼

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Jn
n + 1

(1 − r)n+1 for − 1 < n < 1
(
J1
2

− 8
π

)
(1 − r)2 for n = 1

− 8

π
(1 − r)2 for n > 1

(A4)

as r → 1− for all Da ≥ 0, and hence for n > 1 and for J1 < 16/π when n = 1,
the local radial volume flux Q (< 0) is directed away from the contact line, and so
a ring deposit cannot form there, i.e. Mring ≡ 0. However, for −1 < n < 1 and for
J1 > 16/π when n = 1, the local radial volume flux Q (> 0) is directed towards the
contact line, and so in the absence of particle–substrate adsorption, a ring deposit can
form there, even when J is finite and non-zero (n = 0) or zero (0 < n ≤ 1) at the
contact line (see, for example, D’Ambrosio et al. [22] and Wilson and D’Ambrosio
[10]).

However, as we shall now show, the presence of particle–substrate adsorption sup-
presses the formation of the ring deposit when 0 ≤ n ≤ 1.

Using (42) and (A3), the local behaviour of the concentration of particles within
the bulk of the droplet φ near the contact line when Da > 0 is

φ = O
(
(1 − r)−(n+1)

)
→ ∞ for − 1 < n < 0, (A5)

φ = O
(
(1 − r)(Da−J0)/J0

)
→

⎧
⎪⎨

⎪⎩

∞ for Da < J0
O(1) for Da = J0
0+ for Da > J0

for n = 0, (A6)

and

φ = O

(
(1 − r)−(n+1) exp

[
− (n + 1)Da

nJn
(1 − r)−n

])
→ 0+ for 0 < n ≤ 1

(A7)
as r → 1−. The mass flux of particles from the bulk of the droplet into the contact
line is limr→1− 2π φ Q r , and so, using (A4)–(A7), is given by

lim
r→1− 2π φ Q r = O(1) for − 1 < n < 0, (A8)

lim
r→1− 2π φ Q r = O

(
(1 − r)Da/J0

)
→ 0+ for n = 0, (A9)

and

lim
r→1− 2π φ Q r = O

(
exp

[
− (n + 1)Da

nJn
(1 − r)−n

])
→ 0+ for 0 < n ≤ 1

(A10)
as r → 1−, and hence, using (46), Mring ≡ 0 for 0 ≤ n ≤ 1, i.e. the presence
of particle–substrate adsorption suppresses the formation of the ring deposit at the
contact line that can otherwise occur when J is non-singular at the contact line.
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In the case of spatially uniform evaporation treated in Sect. 3.1, J ≡ 4/π is finite
and non-zero at the contact line (corresponding to J0 = 4/π and n = 0),

2π φ Q r = O
(
(1 − r)πDa/4

)
→ 0+ (A11)

as r → 1− when Da > 0, and so, as we have already seen, particle–substrate adsorp-
tion suppresses the ring deposit that occurs when Da = 0.

On the other hand, in the case of diffusion-limited evaporation treated in Sect. 3.2,
J = 2/(π(1 − r2)1/2) is singular at the contact line according to J = O((1 −
r)−1/2) → ∞ as r → 1− (corresponding to J−1/2 = √

2/π and n = −1/2),

2π φ Q r ∼ 4s1
θ1/4

(
(1 − s1)2

1 + s1 + s21

)πDa/12

exp

[

−πDa

2
√
3
arctan

( √
3s1

2 + s1

)]

= O(1),

(A12)
where again s1 = s(1, t) = (1 − θ3/4)1/3, as r → 1− when Da > 0, and so, as
we have already seen, particle–substrate adsorption reduces the mass of, but does not
entirely suppress, the ring deposit that occurs when Da = 0.
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