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Robust proteome profiling of cysteine-
reactive fragments using label-free
chemoproteomics

George S. Biggs 1,2,3,8, Emma E. Cawood 1,4,8, Aini Vuorinen 1,2,3,
William J. McCarthy 2, Harry Wilders 1,5, Ioannis G. Riziotis1,6,
Antonie J. van der Zouwen2, Jonathan Pettinger 1, Luke Nightingale6,
Peiling Chen7, Andrew J. Powell 1, David House 1, Simon J. Boulton 4,
J. Mark Skehel 3, Katrin Rittinger 2 & Jacob T. Bush 1

Identifying pharmacological probes for human proteins represents a key
opportunity to accelerate the discovery of new therapeutics. High-content
screening approaches to expand the ligandable proteome offer the potential to
expedite the discovery of novel chemical probes to study protein function.
Screening libraries of reactive fragments by chemoproteomics offers a com-
pelling approach to ligand discovery, however, optimising sample throughput,
proteomic depth, and data reproducibility remains a key challenge.We report a
versatile, label-free quantification proteomics platform for competitive profil-
ing of cysteine-reactive fragments against the native proteome. This high-
throughput platform combines SP4 plate-based sample preparation with rapid
chromatographic gradients. Data-independent acquisition performed on a
Bruker timsTOFPro2 consistently identified ~23,000cysteine sitesper run,with
a total of ~32,000 cysteine sites profiled inHEK293T and Jurkat lysate. Crucially,
this depth in cysteinomecoverage ismetwith highdata completeness, enabling
robust identification of liganded proteins. In this study, 80 reactive fragments
were screened in twocell lines identifying>400 ligand-protein interactions.Hits
were validated through concentration-response experiments and the platform
was utilised for hit expansion and live cell experiments. This label-free platform
represents a significant step forward in high-throughput proteomics to evaluate
ligandability of cysteines across the human proteome.

Small molecule probes offer powerful tools for the study of biological
systems and can serve as starting points for the development of
therapeutics1. The vast majority of human proteins lack such chemical
tools, which hinders our ability to explore the function of these

proteins in the context of health and disease2,3. The development of
high-quality ligands across the human proteome is now recognised as
a key objective to enable the functional studies of biological systems
and to accelerate identification of therapeutic opportunities4–6.
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Traditional methods for ligand and tool discovery, such as high-
throughput screening of small molecules with individual proteins, are
resource intensive, prohibiting their utility in expanding the liganded
proteome. Furthermore, the study of purified and often truncated
forms of proteins is a poor reflection of the interactions made by the
full-length proteins in their native cellular environment. Novel meth-
ods to enhance the throughput, scope, and accessibility of ligand
discovery, particularly in the context of the native proteome, will be
essential for realising the ambition of the research community to dis-
cover a chemical probe for every expressed protein2,3,7.

Mass spectrometry (MS)-based chemoproteomics methods are
emerging as powerful approaches to expand the ligandable proteome,
enabling the identification of small molecule-protein interactions in a
cellular context. Small molecule ligands that act via an irreversible
covalent mechanism are particularly suited to these studies, as the
interactions are retained through sample preparation and mass spec-
trometry analysis, allowing for the robust detection of binding events
from complex mixtures8–10. The covalent bond can also provide an
increase in potency due to prolonged target engagement, leading to
the discovery of probemolecules from relatively lowmolecularweight
chemotypes. The benefits of covalent fragment-based liganddiscovery
can then be exploited by using modestly sized libraries (~102–103) of
low molecular weight fragments (<300Da), while still efficiently cov-
ering chemical space11–13.

Chemoproteomics screening of covalent small molecules was
pioneered using activity-based probes (ABPs) for the development of
inhibitors against specific enzyme families, e.g., serine hydrolases and
de-ubiquitinases14–17. Screening compounds in competition with ABPs
enables excellent sensitivity and coverage within the targeted protein
family, but does not inform on the proteome-wide activity of these
small molecules. Recent studies have developed chemoproteomics
methods with expanded proteome coverage by using family-agnostic
probes for nucleophilic residues, e.g., cysteine and lysine18–21. In parti-
cular, hyperreactive iodoacetamide probes that enable enrichment
and quantification of cysteine-containing peptides have been
employed for competitive cysteinome profiling of electrophilic frag-
ments by chemoproteomics22,23.

Key challenges still exist in the development of chemoproteomics
platforms for competitive profiling of large compound libraries.
Sample preparation and analysis must have sufficient throughput to
profile entire libraries of covalent compounds, and the analytical
technique must deliver sufficient sensitivity to detect a significant
portion of the expressed proteome. Additionally, excellent reprodu-
cibility and data completeness is required to enable robust hit calling
and the generation of full matrix datasets, which are suited to the
implementation of machine learning models to drive iterative library
design. To date, methods have employed long MS-proteomics acqui-
sition times (~3-h chromatographic gradients) and data-dependent
acquisition (DDA) mass spectrometry. Improvements in throughput
have been achieved by multiplexing using tandem mass tag (TMT)
labelling, however these batch-based DDA analyses can give low data
completeness and poor reproducibility when combining datasets,
which, in addition to the costs associated with TMT reagents, limits
their accessibility for large library profiling24–26.

Here, we present a high-throughput label-free quantification
chemoproteomics (HT-LFQ) platform for profiling covalent libraries
against the cysteinome. The method offers sensitivity and cysteinome
coverage that compares favourably with reported methods to date,
and offers improved reproducibility and data completeness. Sample
preparation is performed using a 96-well plate-based workflow, con-
sisting of a low-cost protein clean-up method with no requirement for
isotopic labelling. Sample analysis employs label-free quantification
(LFQ) and data independent acquisition (DIA), which yields excellent
sensitivity and reproducibility of peptide detection. Importantly, the
fragmentation and analysis of all precursors in DIA affords improved

data completeness between experiments, which contrasts with more
variable peptide identification in DDA27–29. Using our HT-LFQ chemo-
proteomics platform, we screen a library of 80 chloroacetamide
fragments against the cysteinome in two cell lines (HEK293T and Jur-
kat), and identify ligands for over 400 cysteine sites, including a
number of protein families of high interest to drug discovery. The
high-throughput nature and reproducibility of our platform allows
ready access to further hit characterisation, including concentration-
response studies and interrogation of structure-activity relationships.
Collectively, we demonstrate that our HT-LFQ platform represents a
powerful methodology to enable efficient discovery of chemical tools
for proteins from biological samples.

Results
A high-throughput, label-free chemoproteomics workflow
To develop a high-throughput label-free quantification DIA chemo-
proteomics platform capable of screening compound libraries against
the cysteinome, we employed a competitive profiling strategy using a
previously reported hyperreactive iodoacetamide desthiobiotin (IA-
DTB) probe18. Cell lysates were treated with cysteine-reactive frag-
ments, followed by treatment with IA-DTB to enrich cysteine-
containing peptides. MS-based quantification of enriched peptides
and comparisonof thesepeptide intensities between fragment-treated
and DMSO control samples enabled calculation of the fragment
engagement of each cysteine, reported as a competition ratio (CR).

We developed a sample preparation protocol to ensure repro-
ducible recovery of cysteine-containing peptides from cell lysates in 96-
well plate-based format, without the need for isotopic labelling (Fig. 1a).
Following treatment of lysates with IA-DTB, a plate-based sample clean-
up was performed, employing solvent precipitation on glass beads fol-
lowedbyanon-bead trypticdigestion.Thisprecipitationapproachallows
for consistent protein recovery alongside efficient removal of excess
small molecules and detergents30. Finally, digested and desthiobiotin-
modified peptides were captured on high-capacity neutravidin resin and
recovered using mildly acidic aqueous/organic mixtures. In this work-
flow, samples remain in 96-well plate format from compound treatment
through tomass spectrometer injection, and a single experimentalist can
readily prepare 384 samples (4 plates) in 2–3 days. The plate-based and
label-free nature of this sample preparation method provides the
throughput and reproducibility required for efficient screening of large
libraries of covalent fragments.

Liquid chromatography-mass spectrometry (LC-MS) data was
acquired using an Evosep One coupled to a Bruker timsTOF Pro 2. On
this mass spectrometer, cysteinome coverage is maximised by separ-
ating peptides based on four properties (ion mobility, retention time,
mass-to-charge ratio and intensity) and employing DIA with parallel
accumulation-serial fragmentation (PASEF) for improved precursor
identification andquantification (Fig. 1b)31. Initially, a hybrid (DDA/DIA)
spectral library of IA-DTB-modified precursors was built utilising off-
line peptide fractionation and longer chromatographic gradients.
Subsequently, treated samples were analysed using short (21-min/60
samples per day) chromatographic gradients with DIA methods, and
raw data were searched against the hybrid reference library. Data
analysis was performed by comparison of the peptide intensities in
treated and control samples, along with calculation of key statistics
and data filtering (as described in the experimental methods) to
identify the most robust and selective interactions.

HT-LFQ chemoproteomics yields deep, reproducible peptide
detection
To probe the reproducibility and coverage of our platform, we pre-
pared 16 control (DMSO) samples from HEK293T and Jurkat lysates
(32 samples in total). From these samples, we identified ~35,000
cysteine-containing peptides using 21-min chromatographic gradients
(Fig. 1c and Supplementary Fig. 1a). On average, ~23,000 cysteine-
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containing peptides were detected in each replicate, which matches
the detection depth previously achieved with IA-DTB probes using 3-h
gradients and isotopic labelling strategies (Supplementary Fig. 1b)18,32.
Within each cell line, we observed high data completeness, with a
median overlap of 82% between the peptides detected in any two
replicates, and with two-thirds of all peptides being detected in over
75% of samples (Fig. 1d and Supplementary Fig. 1c, d). This high level of
data completeness is a key advantage of label-free/DIA over TMT/DDA
proteomics, and is essential for competitive profiling where incon-
sistent peptide detection can hinder comparison between control and
treatment conditions29. Furthermore, excellent reproducibility of the
peptide intensities was observed, with a median Pearson correlation

between replicates of 0.96 (Supplementary Fig. 1e), and a median
coefficient of variation of 24.8% (Supplementary Fig. 1f, g). Compar-
ison of the data acquired using HEK293T and Jurkat lysates revealed
that themajority of detected peptides were observed in both cell lines,
however inclusion of both cell lines allowed us to increase cysteine
coverage by 10–15%, highlighting the potential to expand cysteinome
coverage using cells of different biological origin (Supplemen-
tary Fig. 2).

Features of the detected cysteines and proteins
The ~32,000 cysteine sites detected by our HT-LFQ platform come
from over 8000 proteins, representing ~40% of the proteins in the
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Fig. 1 | Workflow and cysteinome coverage from our HT-LFQ chemoproteomic
method. a Schematic of our label-free sample preparation method that allows
detection of cysteine-containing peptides from lysates or live cells using a hyper-
reactive IA-DTB probe. b Data acquisition was performed using an Evosep One and
Bruker timsTOF Pro 2, followed by identification and quantification of peptides
using Spectronaut. Peptides that were bound by a covalent fragment are expected
to show a reduced intensity in compound-treated samples, relative to control
samples. c Our method allows detection of high numbers of peptides in HEK293T
and Jurkat lysates, providing the opportunity to detect liganding events at over
30,000 cysteine residues from over 8000 proteins (n = 16 DMSO control samples
from each lysate). dWe see high data completeness of peptide detection, with two-
thirds of peptides detected in≥ 75% of samples, allowingmore confident detection
of binding events. Data shown here is from HEK293T lysate; see Supplementary

Fig. 1c for Jurkat data. e Our detection of cysteine residues from an individual cell
lysate (HEK293T; orange) represents approximately ~40%coverage of residues that
can be considered to be feasibly detectable, based on their location relative to
tryptic cleavages sites (green) and the general detectability of proteins by global
proteomics methods (purple), as well as the presence of disulfide bonds and post-
translational modifications (see Supplementary Fig. 3). Tryptic peptides were
classified as being detectable if they were 7–40 residues (not considering missed
cleavages). f Distribution of proteins across protein families (top) and target
development levels (bottom), as defined by the ‘Illuminating the Druggable Gen-
ome’ programme3,7,35. The colour scheme in this figure follows that used in (e).
GPCRs: G protein-coupled receptors; TFs: transcription factors. Parts of both (a)
and (b) were created in BioRender. Cawood, E. (2025) https://BioRender.com/
m32r739. Source data are provided as a Source Data file.
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human proteome and 12% of all cysteine residues in the proteome.
Various features of these detected cysteines and proteins were eval-
uated to assess their biological relevance and to rationalise factors that
might affect detectability.

We rationalised that protein abundance and solvent accessibility
may impact cysteine coverage. Protein abundance was approximated by
the detection of proteins in global proteomics analysis of HEK293T cells,
which revealed 80% of IA-DTB detected peptides arise from these
abundant proteins, and cover ~30% of all cysteines in these proteins.
Other features that are likely to lead tonon-detectionof cysteines include
peptidephysicochemical properties, involvement in disulfidebonds, and
post-translational modifications (Fig. 1e and Supplementary Fig. 3)33. We
additionally observed ~5000 cysteine sites from proteins we do not
detect via global proteomics, likely due to the reduced complexity of
chemoproteomics samples following the enrichment step.

The solvent accessibility of the cysteine residues detected in our
platform was evaluated using previously reported prediction-aware
part-sphereexposure (pPSE) values as ameasureof solvent exposure34.
We observed that the distribution of pPSE values for cysteines detec-
ted by our platformmatches the distribution of the whole cysteinome
(Supplementary Fig. 4), confirming that the probe is not biased
towards the modification of highly exposed cysteine residues, con-
sistent with previous analyses of IA-DTB coverage32. This is an impor-
tant observation, as many functionally important cysteine residues lie
within pockets or regions that are not fully solvent accessible.
Engagement of more buried cysteine residues is expected due to
protein dynamics, and, in some instances, modification of a single
cysteine residue may lead to partial protein unfolding that increases
the accessibility of additional residues.

To evaluate our coverage of the proteomewith respect to protein
function and prior knowledge of tractability, we referenced protein
annotations from the ‘Illuminating the Druggable Genome’ initiative,
which classifies proteins into one of four target development levels:
‘Tclin’, proteins that are already the targets of approved drugs;
‘Tchem’, proteins that have known small molecule ligands; ‘Tbio’,
proteins that lack chemical tools but have well-studied biology; and
‘Tdark’, proteins for which very little information is known3,7,35. Using
this protein classification, we detect ~7000 proteins in the Tbio and
Tdark categories, highlighting the opportunity to identify probes for
previously unliganded proteins (Fig. 1f). Furthermore, we see good
coverage of proteins from families of strong interest to pharmaceu-
tical drug development, such as kinases, as well as proteins from
underrepresented families, such as transcription factors and epige-
netic proteins36. Similarly, the families detected reveal good repre-
sentation from nuclear proteins and enzymes. The observed under-
representation of membrane-bound proteins (e.g., ion channels and
GPCRs) is expected given their low solubility under the cell lysis con-
ditions employed. Taken together, this analysis confirms that our HT-
LFQ chemoproteomics platform offers the opportunity for largely
unbiased profiling of a significant proportion of the proteome,
including many proteins that currently lack chemical tools or small
molecule drugs.

Reactive fragment screening by HT-LFQ chemoproteomics
To test the applicability of the HT-LFQ platform for library screening,
80 chloroacetamide-functionalised fragments were screened against
both the HEK293T and Jurkat proteomes. The library was designed to
cover diverse, fragment-like chemical space (molecular weights
160–320Da; hydrogen bond donors/acceptors ≤ 3), and included a
range of physicochemical properties and molecular shapes (Fig. 2a,
Supplementary Fig. 5 andSupplementaryTable 1)37,38.We also included
a degree of compound similarity to allow interrogation of structure-
activity relationships.

The 80-member library was screened in both HEK293T and Jurkat
lysates at 50μM following incubation for 1 h. Peptide intensities

measured in fragment-treated samples (n = 4) were compared to the
DMSO control samples (n = 16) and reported as competition ratios
(CR= IntensityDMSO=Intensitycompound). In total, this resulted in a data-
set of almost 5 million CRs and associated p-values, describing the
interaction of the 80 fragments with the >30,000 cysteine-containing
peptides detected across the two cell lines (Fig. 2b and Supplementary
Fig. 6a). To focus on the most robust liganding events in each screen,
we performed strict peptide filtering and have defined liganded pep-
tides as those with statistically significant competition of at least 50%
(log2(CR) ≥ 1.0, -log10(p-value) ≥ 1.3). The filters we have applied are
described in detail in the experimental methods and the results on
peptide numbers in Supplementary Table 2. From these 80 com-
pounds, we detected a total of 742 unique liganding events for 438
cysteine sites from 413 proteins (Supplementary Data 1). On average,
five liganded cysteines were identified per compound (Supplementary
Fig. 6b). Six compounds (PP23, PP219, PP57, PP225, PP147, PP207)
showed increased reactivity in both HEK293T and Jurkat lysate, each
liganding at least 35 cysteine sites. These compounds are expected to
bemorepromiscuous due to the presenceof certain functional groups
for example, electron withdrawing anilines (e.g., PP219) and α-
substituents that disrupt the planarity of the amide bond (e.g.,PP207).

We identified a number of ligands for proteins that already have
chemical probes, however, the majority of these proteins (>80%)
currently lack chemical matter to probe cellular function (i.e., Tbio or
Tdark target development level) (Fig. 2c). The proteins liganded also
come from a number of protein families of therapeutic value. We
ligand 22 kinases; as a protein family, kinases have drawn significant
interest for the development of targeted covalent inhibitors capable of
disrupting cell signalling pathways (Fig. 2c)39,40. In addition to kinases,
we liganded over 130 other enzymes, including 17 E3 ligases; these
interactions could prompt the development of novel hetero-
bifunctional molecules capable of inducing protein proximity
between an E3 ligase and a protein of interest for targeted protein
degradation41,42.

Liganded cysteine sites were further classified according to their
presence in protein pockets. To determine if a cysteine residue is
locatedwithin a compound-accessiblepocket, we applied the program
Fpocket to the predictedmonomer structure of the respective protein,
as obtained from AlphaFold Database v443–45. Across the proteome,
40% of cysteines are located in (or within 1.5 Å of) a protein pocket
(Fig. 2d). When applied to our liganded sites, the percentage of
cysteine residues located in pockets increases to 49%, which is further
increased to 55% when considering only liganded sites of high occu-
pancy (log2(CR) ≥ 2.0). This enrichment indicates that non-covalent
fragment recognition is a key contributing factor to protein engage-
ment. However, the observation of liganding events in regions that
lack detectable pockets in their structure, or in regions of protein
disorder, highlights the ability of covalent ligands to target regions of
proteins that have been traditionally challenging to target with non-
covalent molecules.

The strength and selectivity of the strongest interactions we
detected is summarised by the heatmaps in Fig. 2e (HEK293T) and
Supplementary Fig. 6c (Jurkat). Several cysteine sites were strongly
liganded by multiple fragments, indicating enhanced reactivity and/or
high ligandability of these residues. Indeed, the four most frequently
liganded cysteine sites are nucleophilic active site residues – ACAT1
Cys126, ALDH6A1 Cys317, NIT1 Cys203 and NIT2 Cys153 (liganded by
12–40% of the fragments) (Fig. 2f)46,47. Such interactions highlight
tractable opportunities for covalent inhibition of enzyme activity.
While these reactive cysteine residues are engaged by many com-
pounds, some compounds show high selectivity for these sites,
including PP187 for ACAT1 and PP173 for ALDH6A1 (indicated by
arrows in Fig. 2e; associated volcano plots shown in Supplementary
Fig. 6d) highlighting the opportunity to develop selective ligands for
highly reactive residues.
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To investigate trends in the observed compound-protein pairings,
hierarchical clusteringwas performed, grouping compounds based on
their molecular fingerprints (Morgan) and proteins based on their
competition ratios across the library48. This clustering approach
highlighted similar binding profiles between structurally similar com-
pounds and proteins. Notably, NIT1 and NIT2 proteins showed near-
identical binding profiles to the fragment library, in particular to hin-
dered tertiary chloroacetamides, consistent with the homology of the
active sites of these proteins (Fig. 2g). The selectivity of this enzyme
family for these compounds demonstrates the potential to identify
molecular chemotypes that can be developed towards activity-based
protein probes47.

Of particular interest were instances where specific interactions
were observed between non-hyperreactive cysteines and non-
promiscuous fragments49. We determined the selectivity of each
detected interaction by calculating the differencebetween theCR for a
given interaction and the mean of the five strongest interactions that
were detected both for that cysteine site and compound, respectively.
By this metric, the top five most selective interactions that were
detected in both HEK293T and Jurkat lysate were: MOB4 (Cys134) with
PP48, MKLN1 (Cys82) with PP156, VCP (Cys522) with PP183, TPMT
(Cys70) with PP222, and the active site residue of GSTO1 (Cys32) with
PP1 (highlighted by boxes in the heatmaps in Fig. 2e; volcano plots
shown in Fig. 3)50. The interaction between GSTO1 Cys32 and PP1 was
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deprioritised for follow up, as it has been liganded by covalent frag-
ments in multiple other datasets50.

Interestingly, previously reported TPMT and VCP inhibitors bear
strong resemblance to the ligands we have identified. Thiopurine

S-methyltransferase (TPMT) activity is inhibited by a range of non-
covalent benzoic acid derivatives (e.g., 5-aminosalicylic acid, 5-ASA),
and our hit fragment, PP222, contains the same benzoic acid core
(Fig. 3a)51. The targeted cysteine, Cys70, lies within a buried substrate-

Fig. 2 | The80-compoundscreenperformed inHEK293Tand Jurkat lysateusing
HT-LFQ chemoproteomics. a Distribution of molecular weights (MW) and
hydrogen-bond acceptor/donor (HBA/HBD) counts for the 80 chloroacetamide
fragments in the screening library.bVolcano plot showing an overlay of all the data
obtained in this experiment, where each data point represents the interaction
measured in each cell line between a fragment (50μM) and a cysteine-containing
peptide. Liganding events are definedwhere a fragment shows strong, statistically-
significant competition (measured by a competition ratio, CR) with IA-DTB:
log2(CR)≥ 1 and -log10(p-value) ≥ 1.3, as indicated by dotted lines. This experiment
was performed with technical replicates (n = 4 for compound-treated samples,
n = 16 for DMSO control samples) in both cell lines. c Distribution of liganded
proteins across ‘Illuminating the Druggable Genome’ protein families (top) and
target development levels (bottom). GPCRs: G protein-coupled receptors; TFs:
transcription factors. d The proportion of cysteine residues that lie within or near

pockets (grey) increaseswhenconsidering cysteines that are liganded (log2(CR)≥ 1)
or strongly liganded (log2(CR) ≥ 2) by at least one fragment, compared to the
cysteinome as a whole. e Heatmap of all the interactions detected in HEK293T
lysate. For clarity, this heatmap only includes cysteines that are liganded by at least
one compoundwith log2(CR) ≥ 1.5. fVolcanoplots showing interactions detected in
HEK293T lysatewith active site cysteine residues– these residues showbinding to a
high proportion (≥10%) of fragments in the screening library. gNIT1 and NIT2 show
very similar binding profiles to tertiary chloroacetamides (heatmap is clustered by
molecular fingerprint), which reflects the high structural similarity of these pro-
teins. The colour scheme used for the volcano plots/heatmap in (f, g) matches that
used in (e). In the NIT1 and NIT2 structures (AlphaFold2)44, the side chain of the
liganded cysteine residue (Cys203andCys153, respectively) is shownas spheres. All
p-values were calculated usingWelch’s t-test (two-sided). Source data are provided
as a Source Data file.
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binding cavity of this enzyme, with a high density of basic residues
nearby that can engage acidic small molecules. VCP is a homo-
hexameric ATPase that has been targeted for the treatment ofmultiple
diseases including acute myeloid leukemia. Covalent inhibitors have
been identified that target Cys522, which lies in one of the nucleotide
binding pockets, to inhibit enzyme activity and cell growth52–54. One of
these inhibitors, FL-18, bears structural similarity to the 5-6-fused
heterocyclic ring system of PP183 (Fig. 3b).

Both MOB4 and MKLN1 belong to the Tbio target development
category and therefore have no known chemical tools to probe cellular
function. The globular adaptor protein, MOB4, is a key component of
STRIPAK (striatin-interacting phosphatase and kinase) complexes that
play key roles in regulating diverse cellular functions, including cell
cycle control andmotility55,56.MOB4performs a scaffolding function in
STRIPAK complexes, and Cys134 lies adjacent to two protein-protein
interaction interfaces (Fig. 3c). Therefore, PP48 offers a route to a tool
molecule to modulate complex formation or dissociation, and thus
STRIPAK function57,58.MKLN1 (muskelin) is part of theCTLHcomplex, a
multi-subunit RING E3 ubiquitin ligase59. PP156 binds to Cys82 which
lies adjacent to a proposed self-association interface in muskelin
(Fig. 3d) and could be used to probe the functional relevance of this

interface60. Intriguingly, neither the MOB4 orMKLN1 cysteine sites are
located in pockets according to Fpocket analysis of monomeric pro-
tein structures, and thus these ligands may bind to pockets formed in
multimeric protein complexes.

Proteome-wide concentration-response analysis
The throughput of the HT-LFQ chemoproteomics platform enables
fragment screening atmultiple concentrations to accurately assess the
potency and selectivity of liganding events. We selected eight com-
pounds for screening in HEK293T cell lysate via 10-point concentra-
tion-response (0.4–200μM, quadruplicate measurements). Four of
these compounds were those that were identified to form highly
selective interactions in the initial screen: PP183 (VCP),PP222 (TPMT),
PP156 (MKLN1), and PP48 (MOB4). This compound set was supple-
mented with four additional fragments that varied in their overall
promiscuity: PP207 (high promiscuity), PP156 (medium promiscuity),
PP152 (low promiscuity), and PP216 (low promiscuity) (Fig. 4a).

From this experiment, we identified 761 liganding events at the
highest concentration of 200μM, tenfold greater than the number of
interactions detected at 50μM (81 liganding events) (Fig. 4b). The
overall promiscuity of the compounds screened broadly matched the
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Fig. 4 | Concentration-response chemoproteomics experiment. aThe structures
of four compounds that showed a range of promiscuity levels in the initial screen.
These four compounds, along with the four compounds that showed specific
interactions with a protein target (Fig. 3), were tested in a 10-point concentration-
response experiment in HEK293T lysate (n = 4 for compound-treated samples;
n = 25 DMSO control samples). The total number of liganding events detected for
eachof these eight compounds variedwidely across the concentration range tested

(b, c); p-values were calculated using Welch’s t-test (two-sided). d The
concentration-response experiment was analysed by performing logistic regres-
sion to identify any concentration-dependent interactions between each com-
pound and all detectable cysteine residues. eHeatmap showing the pTE50 values of
all concentration-dependent interactions that were confidently identified in this
experiment. The selective interactions that were identified in the initial screen are
highlighted by black boxes. Source data are provided as a Source Data file.
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initial screen, with a significant range in the number of cysteine sites
engaged by different compounds. The high promiscuity of com-
pounds such as PP207 (which bound 426 cysteine sites at 200μM)
highlight its utility as a ‘scout-like’ fragment to identify cysteine resi-
dues across the proteome amenable to covalentmodification61. For the
lowly reactive compounds PP152 (39 sites) and PP216 (11 sites),
screening at a high concentration can be used to identify selective
interactions that can be optimised. These data also illustrate how the
screening concentration used can affect the apparent selectivity of a
compound (e.g., PP207 at 100 µM and 6.25 µM) (Fig. 4c), highlighting
the value of methods that offer sufficient throughput and flexibility in
experimental design to allow screening at multiple concentrations.

Screening at multiple concentrations allows for curve fitting to
obtain half-maximal target engagement (TE50) values for each fragment-
cysteine interaction. After filtering, based on potency and the quality of
curve fitting, a heatmap was generated to enable visualisation of
concentration-dependent binding events, which showed strong agree-
ment with the interactions detected in the initial single-shot screen
(Fig. 4d, e and Supplementary Fig. 7). The four compound-protein pairs
of interest were confirmed with the following pTE50 (i.e., -log10(TE50))
values: MOB4-PP48 pTE50 = 5.4 ±0.1, VCP-PP183 pTE50 = 4.9 ±0.1,
TPMT-PP222 pTE50 = 5.7 ±0.4, and MKLN1-PP156 pTE50 = 5.2 ±0.2.
Noneof these four cysteine siteswere liganded by any other fragment at
any concentration, highlighting the specificity of the cysteine site for the
respective fragment (Fig. 5a), and no other peptides from these proteins
showed a concentration-dependent change in intensity upon fragment
treatment (Supplementary Fig. 8). Each compound had no more than
three off-targets within ΔpTE50≤0.5, including sites commonly bound
by chloroacetamide fragments, such as ALDH6A1 Cys317 and ATP6V1A
Cys138 (Fig. 5b)50.

HT-LFQ chemoproteomics for hit expansion and live cell
treatments
PP48, which bound to MOB4 Cys134, as well as to the active site
cysteines NIT1 Cys203 and NIT2 Cys153, was selected for hit expansion
to explore how our chemoproteomics platform could be used to drive
structure-activity relationships (SAR). The non-covalent core of PP48
contains three molecular features: a diazepane ring, an amide linker,
and a substituted aromatic ring. Binding profiles from structurally-
similar compounds that were tested in the initial library screen sug-
gested an important role for the terminal aromatic ring in MOB4
binding (Fig. 2g). To further explore SAR around PP48, we designed
seven additional analogues (Supplementary Fig. 9a), varying the nat-
ure of the linker, the substituents on the aromatic system, and the
structure of the diazepine ring. Each analogue (PP48a-g) was screened
in five-point concentration-response (3–50μM) in HEK293T lysate.

This screen highlighted divergent SAR and opportunities to drive
compound selectivity. We identified several useful control com-
pounds:PP48a, PP48d andPP48e (Fig. 5c andSupplementaryFig. 9b).
Compared to PP48, PP48a (chloro to methoxy) and PP48e (amide to
urea linker and loss of aromatic substituent) both showed similar
engagement to the primary off-targets NIT1 and NIT2, but showed
either reduced or completely abolished binding toMOB4. Conversely,
for PP48d, where the amide carbonyl is removed, engagement of NIT1
and NIT2 is significantly reduced compared to MOB4. These com-
pounds could therefore act as useful controls in deconvoluting the
effects of on-target and off-target binding in functional assays.

The aforementioned screening and concentration-response
experiments were all performed in cell lysates to maximise sample
throughput. However, any hits identified through such screens have
most applicability in functional and phenotypic experiments performed
in live cells. Therefore, live HEK293T cells were treated with PP48,
PP48a, PP48d and PP48e at 25 µM for 2 h, followed by cell lysis, IA-DTB
treatment, andquantificationofmodifiedpeptides (Fig. 5c). Importantly,
we confirmed the binding of PP48 to MOB4 Cys134, NIT1 Cys203 and

NIT2 Cys153, with additional off-targets also identified (e.g., SORD
Cys45), potentially due to the increased incubation time employed for
the live cell treatment (1 h vs 2 h) or increased temperature (room tem-
perature vs 37 °C) (Supplementary Fig. 9c). The selectivity profile of the
control compounds, PP48a, PP48d and PP48e, also showed con-
cordance between lysate and cell treatment. These results highlight that
profiling of compounds in lysates is an effective method to improve
throughput and simplify workflows while being an effective surrogate
for measurement of interactions formed in live cells62.

Discussion
Identifying chemical tools for the unliganded proteome is essential to
accelerate the exploration of protein function and the discovery of
therapeutic opportunities. Various initiatives, such as ‘Target 2035’,
have been established with the aim to identify pharmacological mod-
ulators for every protein in the human proteome7,35. Achieving this
ambition requires the development of high-throughput platforms to
screen molecules in complex cellular environments and identify novel
protein-ligand interactions. Platforms that combine competitive pro-
filing of covalent fragments with chemoproteomics have drawn
interest fromacademia and industry, allowing screens tobeperformed
in cells and lysates, and providing a quantitative readout of fragment-
protein engagement.

We have developed a label-free chemoproteomics platform for
screening reactive fragments across the proteome by competition
with a hyper-reactive IA-DTB probe. We have moved away from
recently reported DDA and TMT labelling-based platforms to over-
come limitations of these methods associated with incomplete data-
sets and batch effects. By employing LFQ and DIA, our platform offers
high analytical throughput, deep cysteinome coverage, and high
sample reproducibility and data completeness, whilst avoiding the
need for costly isotopic labelling reagents.

Our LFQbased chemoproteomics platform allows for comparison
of peptide quantities between an unlimited number of samples. This
offers excellent flexibility in experimental design, facilitating screening
of large libraries at multiple concentrations. Performing DIA ensures
every peptide in the sample is fragmented regardless of abundance,
maintaining data reproducibility and completeness. Furthermore, an
extra level of peptide separation was performed via trapped ion-
mobility using PASEF (on a Bruker timsTOF Pro 2), which provides
unrivalled cysteinome depth for DIA-based cysteine profiling (~23,000
cysteines identified per run; ~30,000 per experiment)29. Finally, dia-
PASEF enabled short (21-min) chromatographic gradients without
compromising identification depth31. A remaining limitation in che-
moproteomics studies is the overall cysteinome coverage. OurHT-LFQ
chemoproteomics platform achieves coverage of ~40% of the pro-
teome but less than 15% of the entire cysteinome. From our analysis,
protein abundance, lysis conditions and peptide properties were key
factors in determining cysteine detection, and so we anticipate that
performing screens in different cell lines with varied protein expres-
sion profiles maybe beneficial in improving cysteine coverage.

We evaluated the platform by profiling a reactive fragment library
of 80 chloroacetamides in quadruplicate in two cell lines, producing a
robust dataset of liganding interactions across the cysteinome. The
screen identified 438 liganded cysteine sites from 413 proteins,
including over 300 proteins from the Tbio and Tdark target develop-
ment categories, for which no chemical tools exist3,7,35. While exam-
ination of the location of liganded cysteines highlighted anenrichment
of cysteines near pockets, many liganded cysteines were in regions
predicted to be disordered and many others may lie adjacent to
pockets that only develop upon the formation of protein complexes63.
Together, these observations highlight the value of screening com-
pounds against proteins in an endogenous setting, and the potential
for covalent compounds to ligand proteins previously considered to
be undruggable. The majority of the interactions displayed good
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selectivity (with each compound engaging only ~5 cysteines, on aver-
age, at 50μM), representing promising starting points for the devel-
opment of chemical probes. Furthermore, screening of hit fragments
across a concentration gradient produced rich datasets of
concentration-response curves for every detected cysteine residue,
allowing for prioritisation of compounds for further development
based on potency and proteome selectivity.

The throughput and flexibility of the platform facilitates the
exploration of structure-activity relationships by chemoproteomics.

We explored the selectivity and potency of structural analogues of
PP48, which engaged the adaptor protein MOB4 as well as cysteine
residues in NIT1 and NIT2. SAR analogues showed differential binding
profiles, highlighting opportunities to improve selectivity forMOB4 or
NIT1/2.While themajority of screeningwas performed in cell lysates to
facilitate plate-based workflows, a number of SAR compounds were
profiled in live cells, validating the interactions detected in lysate-
based experiments. The simultaneous quantification of cellular on-
target potency as well as proteome-wide off-target binding is a key
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benefit for chemoproteomics screening of covalent compounds and
has the potential to streamline early drug discovery efforts. This
information is particularly challenging to obtain when screening non-
covalent compounds in cellular assays or screening against purified
proteins.

Looking forward, we anticipate application of this robust
screening platform to profile larger compound libraries against the
native proteome. The resulting full matrix datasets will offer oppor-
tunities for machine learning approaches to predict ligandability and
drive iterative library design towards selective chemical probes, and
thus expand the liganded proteome.

Methods
Compounds
All chloroacetamide fragmentswerepurchased fromEnamine (catalogue
numbers provided in Supplementary Table 1) and stored either as solids
at −20 °C or as DMSO stocks at −80 °C. Iodoacetamide desthiobiotin (IA-
DTB) was synthesised according to literature reports18. The product was
purified via silica gel chromatography (ISCO 80g RediSep Gold column,
0–20%methanol in dichloromethane, 60ml/min flow rate, dry loaded as
silica gel powder). Fresh stock was prepared from solid at a concentra-
tion of 50mM in DMSO and used immediately.

Cell culture
HEK293T cells were maintained at 37 °C, 5% CO2 in Dulbecco’s
modified eagle medium (Gibco, 41966-029) supplemented with
10% (v/v) fetal bovine serum (Gibco, 10270-106) and 1% v/v
penicillin–streptomycin-glutamine (Gibco, 10-378-016). Jurkat cells
were maintained at 37 °C, 5% CO2 in RPMI-1640 GlutaMAX (Sigma
Aldrich, R8758) supplemented with 10% v/v fetal bovine serum (Gibco,
10270-106) and 1% v/v penicillin-streptomycin (Sigma Aldrich, P4333).

Preparation of chemoproteomics samples
Lysate compound treatment. Cell pellets (pre-washed twicewith PBS)
were suspended in RIPA lysis buffer (150mM NaCl, 1.0% IGEPAL CA-
630 (SigmaAldrich, I8896), 0.5% sodiumdeoxycholate (SigmaAldrich,
D6750), 0.1% SDS (Fisher Scientific, 10607633), 50mMHEPES, pH 8.0)
containing protease inhibitor cocktail (SigmaAldrich, P1860). Samples
were sonicated with a Branson probe sonicator (3–5 × 2 s pulses, 10%
amplitude) and filtered through a 0.22 µM filter. The protein con-
centration of the lysate was determined using a Pierce™ BCA assay kit
(Thermo Scientific, 23227) according to manufacturer’s instructions.
Lysate was diluted to the desired concentration and used on the day
of lysis.

For cell lysate treatment, compounds were first prepared at an
appropriate concentration in DMSO (2μL) in a 96-well plate. To this,
cell lysate (200 or 500 µg protein) was added to each well to reach a
final volume of 200μL and the plates were then shaken on a Ther-
momixer (room temperature (rt), 600 rpm, 1 h). Experiments were
performed with technical replicates, where multiple identical samples
were prepared in parallel.

Live cell compound treatment. HEK293T cells were cultured in 10 cm
dishes to 90% confluency. Each plate was treated with a compound
(25μM,finalDMSOconcentrationof0.4%v/v) orDMSOalone for 2 h at
37 °C.Mediawas removed and cells were washed three times with PBS.
Cell lysis and protein quantification methods were performed as
reported above, with samples clarified by centrifugation (16,000 rcf,
10min, 4 °C) instead of filtration. Replicate samples were prepared
from cells that had been grown separately for one doubling time.
Compound treatment and subsequent sample preparation on these
replicate samples was performed in parallel.

IA-DTB treatment. IA-DTB (500 µM; fresh DMSO stock) was added to
wells containing compound-treated cell lysates on 96-well plates (rt,

600 rpm, 1 h; performed in the dark). Following treatment, samples
were reduced with dithiothreitol (Thermo Scientific, R0861) (5mM, rt,
600 rpm, 30min) and alkylated with iodoacetamide (Thermo Scien-
tific, 122270250) (10mM, rt, 600 rpm, 30min; performed in the dark).

Glass bead slurry preparation. To prepare stock glass beadmixtures,
glass spheres (Supelco, 440345) were first suspended at a concentra-
tion of 100mg/mL in ultrapure water (LC/MS grade)30. The resulting
slurry was then vortexed and centrifuged (1500 rcf, 5min, 4 °C), and
the buoyant beads were gently aspirated to leave a glass bead pellet.
This process was repeated twice with ultrapure water and twice with
acetonitrile. After the final wash, the bead pellet was resuspended in
acetonitrile (making the solution up the same volume as the original
100mg/mL solution in water), and a final concentration of 50mg/mL
was assumed, as half of the beads are typically lost during the washing
procedure. The beads were stored at 4 °C until needed.

Glass bead assisted sample clean up and digestion. Glass beads
from the pre-prepared stock solution were diluted in acetonitrile
(6.25mg/mL) and this bead slurry was dispensed into MultiScreen
deep filter plates (Merck Millipore, MDRLN0410) (800 µL/well). IA-
DTB-treated cell lysates were transferred to the bead slurry and agi-
tated (600 rpm, 5min), inducingprotein precipitation. Theplateswere
centrifuged (1500 rcf, 2min) to remove the supernatant and washed
with 80% v/v ethanol (1500 rcf, 2min, 3×). Proteins were resolubilised
in HEPES (50mM, pH 8.5, 250 µL/well) containing Pierce™ Trypsin
Protease (Thermo Scientific, 90059) (1:100 enzyme/protein ratio) and
digested overnight (rt, 800 rpm). Peptides were recovered into col-
lection plates through centrifugation (1500 rcf, 5min) and subsequent
washes of the glass beads with HEPES (50mM, pH 8.5, 2 × 75 µL/well).

Enrichment. Peptide solutions were transferred to a sealed Microlute
plate (Porvair Sciences, 240002). Pierce™ High Capacity NeutrAvidin™
Agarose resin (Thermo Scientific, 29204) was prepared by washing with
HEPES (50mM,pH8.5, 3×), and thendispensed (50μLof slurry) intoeach
well of the sealed Microlute plate and agitated with the peptides
(800 rpm, 2h). The drain cap seal was removed and the plate was cen-
trifuged (700 rcf, 1min) to remove the supernatant. Beads in each well
were washed with 0.1% SDS in HEPES (50mM, pH 8.5; 850 µL/well, 3×),
HEPES (50mM, pH 8.5, 850 µL/well, 3×), and finally ultrapure water
(850 µL/well, 3×). Enriched peptides were eluted from the neutravidin
resinwith 1:1 acetonitrile/water, containing0.1% formic acid (200 µL/well,
700 rcf, 1min). This elution step was repeated (100 µL/well, 2×). The
collection plate was frozen and samples were dried using a Speedvac at
4 °C. Plates were stored at −80 °C.

Desalting. C18 Nest desalting plates (The Nest Group Inc, HNS S18V)
were conditioned with acetonitrile (300 µL/well) and centrifuged
(50 rcf, 1min). Plates were equilibrated with ultrapure water/0.1% tri-
fluoroacetic acid (300 µL/well, 2×) and centrifuged (500 rcf, 5min).
Samples were re-dissolved in ultrapure water/0.1% trifluoroacetic acid
(200 µL/well) on a Thermomixer (rt, 600 rpm, 5min), then loaded into
the prepared C18 NEST plate(s) and centrifuged (500 rcf, 5min).
Samples were washed with ultrapure water/0.1% trifluoroacetic acid
(200 µL/well, 2×). Peptideswere eluted using 1:1 acetonitrile/waterwith
0.1% trifluroacetic acid (150 µL/well, 2×) by centrifugation (500 rcf,
5min). The collection plate was frozen and samples were dried using a
Speedvac at 4 °C. Plates were stored at −80 °C.

Preparation of global proteomics samples
Samplepreparationandpeptide recovery. HEK293T cell pelletswere
lysed in RIPA lysis buffer according to the lysis procedure reported
above for chemoproteomics samples. Lysate was prepared at 1 µg/µL
and diluted further to 0.5 µg/µL with S-Trap lysis buffer (10% SDS
(Fisher Scientific, 10607633), 100mM triethylammonium bicarbonate
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(Sigma Aldrich, T7408), TEAB, pH 7.55). Samples were reduced and
alkylated as reported above. Samples were then acidified with 10 µL of
12% phosphoric acid (Supelco, PX1000). S-Trapbinding buffer (750 µL,
90% methanol, 100mM, TEAB, pH 7.1) was added to each sample and
gently agitated. Acidified mixtures were transferred into wells of a 96-
well S-Trap™ plate (Protifi, C02-96well-1) and centrifuged (1500 rcf,
2min). Captured protein was washed with S-Trap binding buffer
(1500 rcf, 2min, 3×) and digested with S-Trap digestion buffer (125 µL,
50mM TEAB) containing Pierce™ Trypsin Protease (1:25 enzyme/pro-
tein ratio) (47 °C, 1 h). Following digestion, S-Trap digestion buffer
(80 µL) was added and peptides were collected into a 96 well plate by
centrifugation (1500 rcf, 2min). Each well was washed with 80 µL of
0.1% aqueous formic acid, followed by 80 µL of 50% aqueous acetoni-
trile containing 0.1% formic acid. The collection plate was frozen and
samples were dried using a Speedvac at 4 °C. Plates were stored
at −80 °C.

Liquid chromatography-mass spectrometry
High pH off-line fractionation. To generate a library of IA-DTB mod-
ified peptides, high pH off-line fractionation was performed. High pH
off-line fractionation was either performed with an XBridge BEH C18
XP column (2.5 µm×3mm× 130mm, Waters, 186006710) coupled to
an UltiMate 3000 HPLC system, or with a Pierce™ High pH Reversed-
Phase Peptide FractionationKit (ThermoScientific, 84868). For theoff-
line fractionation on the XBridge BEH C18 column a 60-min acetoni-
trile gradient (1–35% acetonitrile) was performed at a flow rate of
200 µL/min using the following buffers: 10mM ammonium hydroxide
pH 10 (buffer A), and 90% acetonitrile, 10% 100mM ammonium
hydroxide pH 10 (buffer B). 24 fractions were consolidated and dried
using a Speedvac at 4 °C. For the off-line fractionation kit, samples
were prepared according to manufacturer’s instructions. These sam-
ples were dried using a Speedvac at 4 °C.

Evotip sample loading. Prepared samples were re-dissolved in
Optima™ water/0.1% formic acid (100 µL/well) on a Thermomixer (rt,
600 rpm, 5min). Evotips (Evosep, EV2001 or EV2011)were conditioned
according to manufacturer’s instructions. Approximately 200ng (the
desired loading) of each peptide mixture spiked with indexed reten-
tion time (iRT) peptides (Biognosys, Ki-3002-1) was loaded onto a
conditioned Evotip and queued on an Evosep One liquid chromato-
graphy system with the pre-defined 30 and 60 SPD (samples per day)
methods and the corresponding Evosep Performance columns (Evo-
sep, EV1109 and EV1137). Mobile phases A and B were 0.1% (v/v) formic
acid in water and 0.1% (v/v) formic acid in acetonitrile, respectively.

Mass spectrometry: general. The Evosep One was coupled online to a
hybrid (trapped ionmobility spectrometry) TIMS quadrupole TOF (time
of flight) mass spectrometer (Bruker timsTOF Pro 2) via a captive spray
nano-electrospray ion source. All chemoproteomics samples were ana-
lysed with an ion mobility range from 1/K0= 1.638 to 0.6Vs cm−2 and
global proteomics samples were analysed with an ion mobility range
from 1/K0= 1.6 to 0.6Vs cm−2. Equal ion accumulation time and ramp
times were applied in the dual TIMS analyser of 100ms each. Mass
spectra were recorded from 100–1700m/z. The ion mobility dimension
was calibrated regularly using all three ions from an Agilent electrospray
ionisation LC/MS tuning mix (m/z, 1/K0: 622.0289, 0.9848Vs cm−2;
922.0097, 1.1895Vs cm−2; and 1221.9906, 1.3820Vs cm−2). When operat-
ing the mass spectrometer in ddaPASEF mode, 10 PASEF/MS-MS scans
were used per topN acquisition cycle. Singly charged precursors were
excluded by their position in the m/z-ionmobility plane, and precursors
that reached a target value of 20,000 arbitrary units were dynamically
excluded for 0.4min. When operating the mass spectrometer in diaPA-
SEF mode, 8 diaPASEF scans per TIMS-MS scan were used, giving a duty
cycle of 0.96 seconds. For chemoproteomics DIA analysis, variable ion
mobilitywindowswereusedwithfixedmasswindowsof 25m/z andwith

a mass range of 400–1000m/z (Supplementary Table 3). For global
proteomics DIA analysis, recent developments in window optimisation
were incorporated to allow for variable ion mobility windows and vari-
able mass windows, between a mass range of 262.18–1398.68m/z (Sup-
plementary Table 4)64.

Chemoproteomics data analysis. Mass spectrometry raw files for
chemoproteomics were analysed using Spectronaut (Biognosys;
version 16).

Generation of a hybrid library of IA-DTBmodified peptides. In total,
72 mass spectrometry files were used to generate a hybrid DDA/DIA
library of IA-DTBmodified peptides frombothHEK293T and Jurkat cell
lysates. This library was generated in Spectronaut using the search
algorithm Pulsar. Peptide lengths of 7–52 amino acids and with up to
two miscleavages were permitted. The following variable modifica-
tions were applied: oxidation (methionine, +15.99Da), IA-DTB
(cysteine, +296.18Da), acetylation (N-terminus, +42.01 Da), and car-
bamidomethylation (cysteine, +57.02Da). All searches were per-
formed against three FASTA files that contained the canonical UniProt
human protein sequences, common contaminants65, and iRT fusion
peptides, respectively.

Data analysis for compound screening. For analysis of diaPASEF files,
standard Biognosys settings were used with minor modifications. In
brief, a precursor Q-value cutoff of <0.01 was used with an experiment
wide protein Q-value cutoff of <0.01 and a probability cut off for PTM
localisation of >0.75. Subsequent analysis was performed using
Python. Quantification was performed on the precursor level and
intensities associated with equivalent peptides (i.e., only differed in
charge state or methionine oxidation state) were summed together to
give a single peptide-level intensity. The ability of a compound to
complete with the IA-DTB probe was quantified through competition
ratios (CR= IntensityDMSO=Intensitycompound) and the significance of
the difference between control and compound-treatment samples was
calculated using Welch’s t-test. The following criteria were used to
identify binding events: mean log2(CR) ≥ 1 and -log10(p-value) ≥ 1.3. In
addition, the peptidewas required to be robustly detectedwithout any
confounding factors: the peptide must have been detected in at least
two of the compound-treated replicates and in ≥90% of all samples in
the experiment; thepeptidemust have a coefficient of variation (CV)of
≤40% in the control samples; the peptide must only have a single DTB
modification and, if multiple cleavage forms of the same peptide exist
in the dataset, then only the most abundant of these peptides is
considered.

In cases where data was acquired at multiple compound con-
centrations, the mean intensity of each peptide (percent relative to
the DMSO control) at varying concentrations (log10-transformed)
of each compound was fit to a 4-parameter logistic function:

Einf +
E0�Einf

1 + 10nðlog10ðTE50Þ�xÞ, where E0 is the relative peptide intensity when

no compound is present (typically the top plateau), Einf is the relative
peptide intensity when infinite compound is present (typically the
bottom plateau), n is the slope, and TE50 is the relative peptide
intensity at themidpoint of the curve. Fitting was performed in Python
using lmfit66, with the following bounds: 60 ≤ E0 ≤ 140; Einf ≥0;
−50 ≤ n ≤0; and log10(TE50) was varied up to 3 log units outside the
concentration range tested. The reported errors for best fit values are
estimated standard errors calculated by lmfit.

Global proteomics data analysis. Raw mass spectrometry data files
were analysed using Spectronaut (version 18) with directDIA. The fol-
lowing search parameters were used for directDIA: peptide lengths of
7–52 amino acids with up to two miscleavages were permitted, with
one fixed modification (carbamidomethylation; cysteine, +57.02Da)
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and the following variable modifications: oxidation (methionine,
+15.99Da) and acetylation (N-terminus, +42.01Da). All searches were
performed against three FASTA files that contained the canonical
UniProt human protein sequences, common contaminants65, and iRT
fusion peptides, respectively.

Protein and residue annotations. All proteins in the humanproteome
and their sequences (‘one sequence per gene’) were obtained from
UniProt. The location of cysteine residues within sequences was
extracted and annotation of whether these cysteines lie within MS-
detectable tryptic sequences was determined through in silico trypsin
digestion with the following rules: cleavage after lysine or arginine as
long as the next residue is not proline, and permitting peptides with a
length of 7–40 amino acids.

Annotations concerning the Illuminating the Druggable Genome
(IDG) protein families and target development levels were obtained
from the Pharos database. Residue-specific annotations for post-
translational modifications and disulfide bonds were obtained from
UniProt67. Residue-specific pPSE values were obtained from published
data34.

Chemical and physical properties of the 80-member chlor-
oacetamide library. Physiochemical properties of the reactive frag-
ments were calculated using LiveDesign (Schrodinger Suite 2023-2).
Bemis-Murcko frameworks were assigned manually68,69.

Principal moment of inertia (PMI) values were calculated using
Molecular Operating Environment (MOE: Chemical Computing Group,
version: 2019.0101)70. A three-dimensional model was first generated
for each compound from the SMILES string, by performing a con-
formational search with the following parameters: force field –

MMFF94x; method – stochastic; rejection limit – 200; iteration limit –
10000; amide bond rotation allowed; unconstrained double bond
rotation allowed; chair conformations not enforced; not refined with
quantum mechanics; root mean squared deviation limit – 0.15; con-
formation limit – 1. Normalised principal moment of inertia ratios
(NPRs) were then calculated from the resulting PMI values.

Molecular similarity was quantified using Morgan fingerprints
(radius = 2, bits = 1024) and Tanimoto similarity scores, calculated
using RDKit (2022.09.5)71. Hierarchical clustering of compounds based
on molecular similarity was performed using SciPy with the Ward
variance minimisation algorithm72.

Fpocket analysis. To identify which cysteines are located within
ligandable pockets, the program Fpocket was applied on monomeric,
three-dimensional protein models, as predicted by AlphaFold243,44.
Fpocket detects impressions on the protein surface by rolling a series
of sphere probes (alpha spheres) with sizes spanning over a specified
range of radii. If an alpha sphere touches three atoms of the protein
simultaneously, it is placed at that position. By default, a pocket is
reported if it contains at least 35 alpha spheres. The range of radii used
in our case was 3.0–5.0Å. We defined a cysteine residue as being
located in a pocket if its thiol atomwas within 1.5 Å of the closest alpha
sphere. The parameters of these calculations were defined empirically,
after examining several examples of cysteine liganding events.

Figure preparation
Figure 1a, b was created using image templates from BioRender.com
under the institutional license belonging to the Francis Crick Institute
(https://BioRender.com/m32r739).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw mass spectrometry proteomics files and database search
results have been deposited at the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the PRIDE partner
repository with data set identifiers PXD054105, PXD054127 and
PXD05414573. Source Data is provided with this paper as a Source Data
file. Source data are provided with this paper.
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