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Abstract: Holographic light potentials generated by phase-modulating liquid-crystal spatial
light modulators (SLMs) are widely used in quantum technology applications. Accurate
calibration of the wavefront and intensity profile of the laser beam at the SLM display is key to
the high fidelity of holographic potentials. Here, we present a new calibration technique that
is faster than previous methods while maintaining the same level of accuracy. By employing
stochastic optimization and random speckle intensity patterns, we calibrate a digital twin that
accurately models the experimental setup. This approach allows us to measure the wavefront
at the SLM to within λ/170 in ∼ 5 minutes using only 10 SLM phase patterns, a significant
speedup over state-of-the-art techniques. Additionally, our digital twin models pixel crosstalk on
the liquid-crystal SLM, enabling rapid calibration of model parameters and reducing the error
in light potentials by a factor of ∼ 5 without losing efficiency. Our fast calibration technique
will simplify the implementation of high-fidelity light potentials in, for example, quantum-gas
microscopes and neutral-atom tweezer arrays where high-NA objectives and thermal lensing can
deform the wavefront significantly. Applications in the field of holographic displays that require
high image fidelity will benefit from the novel pixel crosstalk calibration, especially for displays
with a large field of view and increased SLM diffraction angles.
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1. Introduction

Liquid crystal on silicon (LCOS) SLMs have become a useful tool in fields ranging from
holographic displays to state-of-the-art quantum computing [1–7]. Specifically, the rapidly
advancing field of neutral-atom quantum computing has benefited from highly uniform and
efficient light potentials that have been generated holographically using phase-modulating LCOS
SLMs [8–12]. Outside the scope of cold-atom experiments, tailored light potentials are used
in biomedical applications such as optogenetic stimulation [13], non-invasive imaging through
tissue [14], and high-resolution 3D imaging [15] and tomography [16]. Recent advances in
holographic displays for virtual and augmented reality applications have been driven by machine
learning techniques, greatly improving image quality and reducing the time taken to generate
holograms [17–19]. Phase-modulating LCOS SLMs imprint a phase pattern onto the incident
laser beam, achieving tailored phase and intensity distributions in the image plane located in
the far field or the Fourier plane of a lens. To determine the SLM phase pattern that creates the
desired potential in the image plane, one must solve the so-called phase retrieval problem. Several
iterative phase retrieval algorithms have been developed, achieving simulated light potentials
with root-mean-squared (RMS) errors well below 1% [17,18,20–23]. However, these algorithms
do not account for experimental effects and assume that the intensity profile of the incident laser
beam and the phase of the light immediately after the SLM are perfectly known.

In practice, aberrations introduced by optical elements cause imperfections in the intensity
profile and wavefront of the incident laser beam. The aberrated wavefront and deformations
of the SLM’s reflective surface cause a spatially varying phase offset in the plane of the SLM
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which adds to the phase delay introduced by each SLM pixel. To increase the uniformity of
the experimental potentials, both the intensity profile of the incident laser beam and the phase
at the SLM must be precisely measured [24,25]. Furthermore, the fringing field effect leads
to crosstalk between neighboring SLM pixels, causing inhomogeneities in the light potential
[26] that phase retrieval algorithms typically do not address. The magnitude of pixel crosstalk
depends on the thickness of the liquid crystal layer and the size of the pixel electrodes - smaller
pixel sizes and thicker liquid crystal layers amplify the effect. As manufacturers steadily increase
the resolution of modern LCOS SLMs and consequently shrink their pixel pitch, it has become
increasingly important to model pixel crosstalk to compensate for its effects. Recently, accurate
light potentials have been generated by limiting the gradient of the SLM phase pattern, reducing
the effect of pixel crosstalk [27]. It has also been shown that by modelling pixel crosstalk using a
convolution, experimental errors in the resulting light potentials can be reduced [19,25,28–31].
However, finding the optimal convolution kernel for the SLM phase pattern is time-consuming as
it involves measuring the intensity of higher diffraction orders [32] or iteratively optimizing the
camera image of a light potential [25,30]. Several schemes have been developed to measure the
phase and the intensity profile at the SLM. Methods that measure the phase in a few seconds using
a Twyman-Green interferometer have been proposed [33,34], however, they require additional
optical elements and their accuracy relies on the flatness of a reference mirror. Self-interfering
calibration schemes that do not require such additional components are typically slow as they
need to display hundreds of phase patterns on the SLM to achieve the desired spatial resolution
and are not straightforward to implement [24,25,35–37].

In this work, we present a technique to measure the phase and intensity profile in a Fourier
imaging setup that does not require any additional hardware. Our scheme is faster than previous
self-interfering methods [24,25,35], requiring significantly fewer camera images and maintaining
their high accuracy. Inspired by recent work [18,38], we calibrate a digital twin of the experimental
setup by minimizing the difference between random speckle images captured by the camera and
those simulated by the digital twin (Fig. 1). In the second part of this study, we use our digital
twin to simulate pixel crosstalk and thereby optimize the parameters of different crosstalk models

Fig. 1. A digital twin (red box) simulates our experimental Fourier imaging setup (blue
box). To train the digital twin, parameters of the simulation (the laser beam intensity, I, and
phase at the SLM, φ, the pixel crosstalk kernel, K, and the affine transformation matrix, U)
are adjusted to minimize the difference between the simulated images, Isim, and the camera
images, Icam, when displaying random phase patterns, θ, on the SLM. The physical lens in
the experimental setup is modelled using a Fourier transform.
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in ∼ 2 minutes. In addition to accounting for pixel crosstalk using a convolution [19,28–30,32],
we propose a model that is more efficient to compute, despite containing a larger number of
parameters [26]. We benchmark the accuracy of the different crosstalk models by generating
a top-hat potential using a camera feedback algorithm [25] and demonstrate that the optimum
model reduces the error of the light potentials using fewer camera feedback iterations [25].

2. Stochastic optimization technique

Current state-of-the-art techniques measure the phase by utilizing the interference from multiple
beams diffracted by small SLM phase patterns that are displayed locally on the SLM to map out
spatially varying phase differences [24,35]. Here, we take a different approach and use several
speckle images created by random SLM phase patterns to recover the phase, φ, and laser intensity
profile, I, at the SLM (Fig. 1). Instead of modelling them using smooth analytical functions
[18], we optimize each pixel value of the phase and the intensity profile using adaptive moment
estimation [39], a variant of stochastic gradient descent (SGD). Initially, we display a sequence of
semi-random phase patterns, θ, on the SLM and record the corresponding camera images, Icam
(Fig. 1). The details of the experimental setup can be found in Section 3.1. We then simulate the
expected camera images, Isim, by propagating the electric field, E, from the SLM plane to the
image plane using a type-1 non-uniform fast Fourier transform (NUFFT) [40],

Isim = |F {E}|2 , (1)

with Ekl = Akl ei(ϕkl + θkl), where Akl is the amplitude profile of the laser beam with its intensity,
Ikl = |Akl |

2, its spatially varying phase, φkl, and the phase displayed on the SLM, θkl, with indices,
k, l. Using a NUFFT instead of a fast Fourier transform (FFT) allows us to choose the pixel pitch
and the region of interest in the Fourier plane arbitrarily, lowering the memory requirements
at the cost of execution speed. We chose the pixel pitch in the Fourier plane to match the pixel
pitch of our camera and calculated only the area of the computational image plane that is covered
by the camera. In practice, this mapping of the camera coordinates to the coordinates in the
Fourier plane is not sufficiently accurate due to experimental imperfections. To account for
the mismatch between the camera image and the simulated image, we employ a partial affine
transformation, TU , with the transformation matrix, U, to account for rotation, translation and
scaling of the camera image [25]. We applied this coordinate transform to compare the simulated
images generated by our digital twin, Isim, with the experimental images, Icam, taken by the
camera (Fig. 1). By adjusting the value of every pixel in the phase, φ, and intensity, I, as well as
the partial affine transformation matrix, U, we minimize a cost function using adaptive moment
estimation [39,41]. Our cost function calculates the mean squared error (MSE) to minimize the
difference between the camera images and the simulated images,

CMSE(φ, I, U) =
1

NFN2

NF∑︂
n=1

N∑︂
k, l

[︃(︂
In
sim, kl − TU

{︁
In
cam

}︁
kl

)︂2
]︃
, (2)

where NF is the number of random phase patterns used in the optimization and N the number
of pixel rows and columns on the SLM (N = 1024 for our specific SLM). We introduce two
regularization terms, Cϕ and CA, to reduce fast spatial fluctuations of the phase and the intensity
profile, respectively (Section 3.2). We calculate the cost function as

C = s
(︁
CMSE + sϕCϕ + sACA

)︁
, (3)

with the overall steepness, s, and weighing parameters, sϕ and sA. The regularization terms ensure
that the phase, φ, and the amplitude profile at the SLM, A, remain smooth as expected from the
wavefront of a Gaussian beam and its intensity profile. They reduce overfitting and promote
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global convergence by reducing the likelihood of getting stuck in a local minimum. The cost
function steepness, s = 1014, and weighing parameters sϕ = 5 × 10−3 and sA = 2 × 10−2 were
chosen empirically.

2.1. Calibration of the intensity and phase

To determine the intensity profile and phase, we run our optimization algorithm without modelling
pixel crosstalk (Fig. 1) using smooth, semi-random phase patterns that suppress the effect of pixel
crosstalk [38] (details in Section 3.2). The phase, φ, is initialized with zeros and the intensity
profile, I, with an array of ones. After 2000 iterations using NF = 10 different random SLM
phase patterns (∼ 7 minutes on an NVIDIA RTX A5000 GPU), we stop the optimization as
stagnation is reached.

We compare the recovered phase and intensity profile to the results obtained from a calibration
method that displays blazed gratings on small square regions at different positions on the SLM,
locally probing I and φ at each position [24,25]. We further improved the accuracy of this local
sampling technique by compensating for pointing fluctuations of the incident laser beam during
the measurement using a reference pattern, resulting in a residual error of <λ/100. Comparing
the intensity profile measured by the local sampling method (Fig. 2(a)) with the result of our
stochastic approach (Fig. 2(b)), we find that the beam diameter calculated from the stochastic
approach is ∼ 9% larger. The intensity profile obtained from the local sampling method contains
a visible vertical line at the centre of the SLM (Fig. 2(a)), caused by the addressing scheme used

Fig. 2. Comparison of the results generated by the local sampling method and by our
stochastic approach. Laser intensity profiles, I, measured using (a) the local sampling
method with 64 × 64 local phase patterns [24,25], and (b) our stochastic approach with
NF = 20 phase patterns. The region B lies within the 1/e2 intensity threshold (white line).
(c) Phase at the SLM measured using the local sampling method, φLS, with 124 × 124 local
phase patterns and (d) using our stochastic approach, φSGD, with NF = 20. Due to the width
of the small phase patterns used in the local sampling method, the phase at the very edge of
the SLM cannot be measured as indicated by the black border in (c). (e) RMS error, ϵ , of
the difference between the phases generated using each method, ∆φ, as a function of the
number of phase patterns, NF, used in the stochastic approach. For each value of NF, the
measurement of φSGD was repeated four times using different semi-random phase patterns
each time.



Research Article Vol. 32, No. 27 / 30 Dec 2024 / Optics Express 48961

to update the phase pattern on the LCOS SLM [42]. This artefact is no longer present in the
intensity profile of the stochastic approach since we use global SLM phase patterns instead of
small, local ones. The phases recovered using the stochastic approach (Fig. 2(c)) and from the
local sampling method (Fig. 2(d)) agree well in the centre of the SLM, however, they deviate
significantly from each other in regions on the SLM where the intensity of the laser beam is
low. To characterize φ, we only consider a region, B, on the SLM in which the intensity is
larger than 1/e2 of the maximum intensity. To determine the recalibration error of the phase
measurement using the stochastic method, we subtract the initially measured phase from the
semi-random phase patterns and display the resulting phase, θ − φ, on the SLM. When re-running
the stochastic method using those wavefront-corrected phase patterns, we obtain a residual phase,
δφ, after removing the tilt within B. To quantify the recalibration error, we calculate the standard
deviation of the residual phase

σ =

⌜⎷
1

NBk2

∑︂
i, j∈B

(︂
δφij − δφ

)︂2
, (4)

where δφ is the mean value of δφ in B, containing NB pixels with indices i, j and k = 2π/λ. With
the stochastic approach (NF = 10), we obtain a similarly small standard deviation, σ = λ/170,
compared to the local sampling method, σ = λ/180.

To investigate the accuracy of the phase measured using the stochastic approach, φSGD, we
quantify its deviation from the phase measured using the local sampling method, φLS, by
calculating the RMS error of their difference, ∆φ = φSGD − φLS, in region B,

ϵ =

⌜⎷
1

NBk2

∑︂
i, j∈B

(︂
∆φij − ∆φ

)︂2
, (5)

where ∆φ is the mean value of ∆φ in B. Using our stochastic approach with only one SLM phase
pattern (NF = 1) in the optimization, we already obtain ϵ = λ/97. To investigate if the RMS
error, ϵ , decreases further when using more than one SLM phase pattern, we measure φSGD using
different values of NF and calculate ϵ for each measurement (Fig. 4(e)). When increasing NF, the
error decreases and reaches ϵ = λ/110 at NF = 10. When the number of SLM phase patterns is
increased further to NF = 20, the RMS error only decreases slightly. Artefacts caused by the
local sampling method are a significant source of error at this scale (Fig. 7 in Section 3.3). The
runtime of the stochastic method is much shorter and requires significantly fewer phase patterns
and camera images compared to the local sampling method (∼ 7 minutes runtime with NF = 10
patterns, compared to ∼ 2.5 hours and ∼ 20000 patterns). Another advantage of the stochastic
approach is the spatial resolution of 1 × 1 pSLM, with the SLM pixel pitch, pSLM = 12.5 µm,
whereas the spatial resolution of the local sampling method depends on the number of images
taken (8 × 8 pSLM for the phase and 16 × 16 pSLM for the intensity profile in this study). For
this reason, the local sampling method relies on upscaling the image of the measured phase and
intensity to the native resolution of the SLM which is not required with our stochastic approach.

This increased speed and simplified method allow for the use of holographic light potentials in
demanding settings such as those involving high-NA objectives or other optical elements that
distort the beam profile [43,44]. At higher laser beam intensities, the SLM surface can deform
due to thermal lensing, causing the calibration to depend on power [45]. With a calibration
time of only a few minutes, recalibration is possible in such scenarios. This makes it easier to
optimize light potentials using lightshifts on ultracold atoms in quantum-gas microscopes and
neutral-atom tweezer arrays, as fewer iterations and images are needed overall.
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2.2. Modelling pixel crosstalk

The effect of pixel crosstalk is most noticeable for light potentials with high spatial frequencies
in the SLM phase pattern, containing many 0 to 2π phase jumps which are affected most by
pixel crosstalk. To model pixel crosstalk, one generally convolves the displayed phase pattern
with a kernel that mimics the non-discrete phase changes between neighboring SLM pixels
[19,25,28–30,32]. Recently, a fast crosstalk model that avoids the computationally expensive
convolution has been proposed [26]. Finding the optimal parameters for the pixel crosstalk
model has previously been achieved by an exhaustive search approach, where a small number
of parameters were optimized to obtain the best agreement between a simulated image and the
corresponding camera image [25,30]. More sophisticated pixel crosstalk models have been
developed [26], however, optimizing their large parameter space via a direct search is infeasible.
Alternatively, pixel crosstalk parameters have been found by measuring higher diffraction orders
[26,28,32] which are not accessible in our experiment as they lie outside the field of view of our
camera.

Here, we investigate four different pixel crosstalk models (details in Section 3.4). Models I,
II and III convolve the displayed phase pattern with a kernel parameterized in three different
ways: Model I considers a radially symmetric super-Gaussian kernel, KI (Eq. (9)). Model II
uses a piecewise super-Gaussian kernel, KII, to allow for asymmetries in the x and y directions
(Eq. (10)). Finally, Model III treats every pixel in the kernel, KIII, as a learnable parameter. The
SLM phase after modelling pixel crosstalk is then calculated using a convolution (Eq. (8)) after
upscaling the SLM phase pattern by a factor P using nearest-neighbor interpolation. In addition
to the three convolutional models, we investigate the fast Model IV, based on previous work [26].
Model IV utilizes eight matrices, T i with i ∈ 0, 1, . . . , 7, that each correspond to the crosstalk
caused by the eight neighboring pixels (Eq. (11) and Fig. 8). The crosstalk of each SLM pixel is
calculated in parallel on the GPU, making this model faster to compute than a convolution. In
contrast to previous work [26], where each T i was constructed from one-dimensional analytical
functions, we treat each of the P × P elements in every T i as a learnable parameter.

To optimize each of the four models, we include them in our digital twin of the experiment
(Fig. 1). We generate entirely random SLM phase patterns with uniformly distributed values
between 0 and 2π on each SLM pixel, increasing the effect of pixel crosstalk compared to the
smooth phase patterns used in Section 2.1. After applying the pixel crosstalk model, we upscale
the laser amplitude profile, A, and the phase, φ, by a factor P using Lanczos interpolation [46] to
match the resolution of the upscaled SLM phase, Θ. Then, the camera images, Icam, are simulated
by propagating the upscaled electric field from the SLM to the image plane via a NUFFT (Fig. 1).
Similar to Section 2.1, we optimize the parameters of the pixel crosstalk model using adaptive
moment estimation by minimizing the mean-squared error between camera images, Icam, and the
corresponding simulated images, Isim, using the cost, CCT = s CMSE. For NF = 10 phase patterns
with an upscaling factor P = 3, the optimization converges after ∼ 300 iterations with a runtime
of ∼ 4 minutes for Models I-III and ∼ 2 minutes for Model IV using our GPU.

Optimizing Model I results in similar parameters compared to previous work using the same
LCOS SLM [25,29] (Fig. 3 I). We obtain a similar kernel using Model II, with a slight asymmetry
along the x and y directions (Fig. 3 II). Both models were initialized with parameters qi = 2
and σi = 1 pSLM (Section 3.4). In the optimized kernel of Model III, horizontal asymmetry is
visible with negative pixel values in the left half (Fig. 3 III). We initialized this kernel by setting
the central pixel of KIII to one and the remaining pixels to zero. For Model IV, we investigate
different upscaling factors, P = 3, P = 5, and P = 7. Each T i is initialized by setting all elements
to zero. The optimized T i show noticeable asymmetry along the horizontal axis that is consistent
for different values of P (Fig. 3 IVa–IVc). For each value of P, we repeat the optimization three
times using different phase patterns and camera images during each run, resulting in very similar
T i for P = 3, with their standard deviation not exceeding 1% (Fig. 9 in Section 3.4). When
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increasing P, the standard deviation of individual elements only rises marginally due to the larger
number of parameters. We conclude that the information provided by NF = 10 phase patterns and
camera images is sufficient to train crosstalk Model IV, containing 392 free parameters at P = 7.

Fig. 3. Optimized pixel crosstalk models. (I–III) Convolution kernels found using the
optimization, normalized by their pixel sum. (I) Kernel, KI, found using Model I (Eq. (9))
with parameters q = 1.20 and σ = 2.03 pSLM. (II) Kernel, KII, after Optimizing Model II
(Eq. (10)) resulting in qxp = 1.85, qxn = 1.15, qyp = 1.75, qyn = 1.12 and σxp = 1.02 pSLM,
σxn = 2.72 pSLM, σyp = 1.06 pSLM, σyn = 3.04 pSLM. (III) Optimized kernel, KIII, using
Model III, where each pixel is a learnable parameter. (IVa–IVc) Optimized T i of Model IV
(Eq. (11)) with upscaling factors (IVa) P = 3, (IVb) P = 5, and (IVc) P = 7.

2.3. Light potential quality and efficiency

To benchmark the performance of the different pixel crosstalk models and to show that our
calibration method produces accurate light potentials, we generate square, top-hat-shaped light
potentials (Fig. 4(a)) using conjugate gradient (CG) minimization [21] and a camera feedback
algorithm [12,25] with 10 camera feedback iterations and 50 CG iterations each. We investigate
the convergence of the RMS error [25], εM, of the light potential generated by each crosstalk
model (Fig. 4(b)) and measure the efficiency, ηM (Table 1, details in Section 3.5). Without
modelling pixel crosstalk, the RMS error of the square, top-hat shaped light potential reaches
its minimum of 9.8% after n = 7 feedback iterations (blue square in Fig. 4(b)). Using Model
I and II, this error reduces to 2.6% and 2.4%, respectively. Interestingly, the error before any
camera feedback (n = 1) using Models I and II is slightly larger than without modelling crosstalk.
Model III results in a significantly lower RMS error before any camera feedback (εM = 16%
compared with 29%). Furthermore, the error using Model III converges at a faster rate compared
with Models I and II. An error of 2.4% is reached after n = 4 feedback iterations which required
n = 9 feedback iterations using Model II. The lowest error reached with Model III is εM = 1.8%
after n = 6 feedback iterations. We find that for this model, increasing the upscaling factor from
P = 3 to P = 5 does not further reduce the RMS error. Using Model IV, the error converges
at a rate similar to that of Model III. Before any camera feedback, the RMS error is slightly
lower and the lowest error, εM = 2.0%, is reached after n = 6 iterations. Here, increasing the
upscaling factor to P = 5 shows a small improvement (Table 1), however, using P = 7 did not
further reduce the RMS error.
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Fig. 4. Benchmark of different crosstalk models. (a) Large 15.5 mm2 top-hat potential
generated using Model IV after n = 6 feedback iterations. (b) Convergence of the RMS
error, εM, during the camera feedback process as a function of feedback iterations, n, using
pixel crosstalk Models I - IV. The lowest error reached without modelling pixel crosstalk
(blue square) is ∼ 5 times larger than the lowest error reached using pixel crosstalk Model IV
(red triangle). (c) Profiles of the top-hat potential in (a) along the white dashed line using
crosstalk Model IV (red line) and without modelling crosstalk (blue line). (d) The RMS
error, εM, after camera feedback increases as a function of the area of the top-hat potential.

In Fourier imaging setups, the effect of pixel crosstalk becomes particularly noticeable for
large light potentials which require high spatial frequencies to be displayed on the SLM [25].
To investigate this effect, we vary the width of the square target potential from ∼ 0.5 mm
to ∼ 4.0 mm and perform 10 camera feedback iterations for each square without modelling
pixel crosstalk. To obtain similar efficiencies for the differently sized potentials, we vary the
curvature, R, of the quadratic initial phase guess [25] linearly with the area of the potential, from
R = 0.2 mrad/ pSLM

2 to R = 1.6 mrad/ pSLM
2 (Fig. 4(d)). We then repeat this measurement

with crosstalk Model IV using an upscaling factor of P = 3. The RMS error increases linearly as

Table 1. Summary of results presented in Fig. 4.

Crosstalk modela P εM [%] ηM [%]

n = 1 n = nmin

Without 1 29.5 9.8 14

Model I 3 32.7 2.6 11

Model II 3 32.6 2.4 11

Model III 3 15.1 1.8 13

Model IV 3 15.8 2.0 14

Model III 5 15.8 2.0 14

Model IV 5 13.9 1.9 14

aA top-hat potential was generated using crosstalk Models I - IV with an
upscaling factor of P = 3. Models III and IV were also investigated using P = 5.
The lowest RMS error, εM, reached during the camera feedback process (at
n = nmin) and before any camera feedback (n = 1) is shown.
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a function of the light potential’s area for both sets of measurements, however, at different rates.
For the smallest square potential, modelling the pixel crosstalk does not reduce the RMS error
below εM ∼ 0.8%. The RMS error of the largest square potential is reduced from ∼ 10% without
modelling pixel crosstalk to ∼ 2% using Model IV.

Without modelling pixel crosstalk, the experimentally measured efficiency of the largest top
hat is ηM ∼ 14% (Section 3.5). The total efficiency is affected by multiple factors of which
the dominant terms are the reflectance of the SLM (76%), the diffraction efficiency (60%)
and the algorithms’ predicted efficiency. When no pixel crosstalk is considered, the algorithm
overestimates the predicted efficiency (41%) as it does not consider higher diffraction orders,
leading to a total estimated efficiency of 19%. With crosstalk modelling, the estimate is more
accurate (19% for Model IV) which gives a total estimated efficiency of 14%, matching the
measurement. We find that the efficiency is not changed significantly by Models III and IV, an
improvement over Models I and II which caused a similar relative drop in efficiency as observed
in our previous work [25]. The efficiencies of the top hats are relatively low since a large curvature,
R, of the initial phase guess was necessary to prevent the formation of optical vortices in the light
potential during the feedback process. This large phase curvature causes a significant loss of
optical power to areas outside the signal region [25]. Employing a vortex-removal technique [25]
or adding a phase gradient term to the cost function when solving the phase retrieval problem [17]
would allow the use of smaller values of R in the initial phase guess, increasing the efficiency of
the light potential. Alternatively, an efficiency term can be added to the cost function to optimize
the optical power in the potential [8,47].

To demonstrate that our protocol can produce more complex light potentials, we generated a
square array with 1296 Gaussian spots on a small, constant background measuring 5 mm across.
Additionally, the spot intensity is varied in each column, increasing from left to right. After
n = 6 iterations using Model IV with P = 3, the RMS error of the spot array reached εM = 1.6%
with an efficiency of ηM = 11%. A few optical vortices are present in the spot array which
could be eliminated using a vortex removal technique [25]. The standard deviation of the spot
intensities in the most intense column of spots is especially low at 0.7 % which is sufficient for
tunnel-coupled tweezers in Hubbard arrays [48,49]. Using our protocol, we also generated a
smaller (0.06 mm2) top-hat potential (Fig. 5(b)) with an especially high efficiency ηM = 39%
and low error, εM = 0.9%.

Fig. 5. Light potentials generated using camera feedback with crosstalk Model IV. (a) Spot
array containing 36 × 36 Gaussian spots with an RMS error, εM = 1.6%, and efficiency,
ηM = 11%. (b) Small top-hat potential with εM = 0.9% and ηM = 39%. (c) Close-up of the
potential within the red box in (a). The insets in (b),(c) show the profiles of the potentials
along the dashed white lines.
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3. Methods

3.1. Experimental setup

We use an SLM (Hamamatsu X13138-07, pSLM = 12.5 µm pixel pitch, 1272 × 1024 pixels) in a
Fourier imaging setup, similar to our previous work [25]. A laser beam (λ = 670 nm wavelength)
from a single-mode fibre is collimated using a triplet lens (Melles Griot 06 GLC 001) and
polarized horizontally by passing it through a polarizing beam splitter. The beam is expanded
using a telescope (Thorlabs GBE10-B) to a beam diameter of ∼ 7.4 mm and is incident onto the
SLM at an angle of ∼ 10°. The light reflected by the SLM passes through a 2" doublet lens with
focal length f = 250 mm (Thorlabs ACT508-250-B) to form an image at the camera (Andor Zyla
5.5, pCAM = 6.5 µm pixel pitch, 2560 × 2160 pixels) in its Fourier plane. At λ = 670 nm, our
SLM can display phases of up to 4π.

3.2. Implementation of the stochastic optimization

The semi-random phase patterns used in Section 2.1 are generated from a 128 × 128 array
containing random values between 0 and 3π. This array is upscaled to the resolution of the SLM
(we use the central N ×N pixels on the SLM with N = 1024) using nearest neighbor interpolation
and convolved with a Gaussian kernel of 8 pSLM width, producing smooth phase patterns with
phase values between 0 and ∼ 2.5π.

We calculate the two regularization terms, Cϕ and CA, to reduce the gradient of the phase and
the intensity profile at the SLM using the forward difference,

Cϕ =
1

(N − 1)2
N−1∑︂
i, j

[︂ (︁
φi, j − φi+1, j

)︁2
+

(︁
φi, j − φi, j+1

)︁2
]︂

and (6)

CA =
1

(N − 1)2
N−1∑︂
i, j

[︂ (︁
Aij − Ai+1, j

)︁2
+

(︁
Ai, j − Ai, j+1

)︁2
]︂

. (7)

To determine the NUFFT coordinates of the camera pixels in the computational Fourier plane
in the range [−π, π), we find the position of the zeroth-order diffraction spot on the camera by
fitting a Gaussian to it. We then convert the pixel pitch of the camera in the Fourier plane to
radians, pNUFFT =

2π
λf pSLM × pCAM.

3.3. Characterizing the phase measurement

To characterize the recalibration error, σ, of the local sampling phase measurement and the
stochastic approach we study the residual phase, δφ. The residual phase is obtained after running
each method twice, where the result from the first run is used to compensate for the wavefront in
the second run, producing a flat phase with a residual error (Fig. 6). To determine the agreement
between the phases measured using the local sampling method, φLS, and using the stochastic
approach, φSGD, we calculate the RMS error, ϵ , from their difference, ∆φ (Fig. 7 and Fig. 2(e)).

3.4. Pixel crosstalk models

The pixel crosstalk is modelled on a sub-pixel scale by upscaling the SLM phase pattern, θ,
using nearest-neighbor interpolation and convolving it with a parameterized crosstalk kernel
[19,28–30,32],

Θ(x, y) = θ(x, y)⊛ K(x, y) , (8)

where Θ is the phase after applying the pixel crosstalk model.
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Fig. 6. Residual phase, δφ, obtained from (a) the local sampling method and (b) the
stochastic approach with NF = 20.

Fig. 7. Phase difference, ∆φ, between the phase measured obtained from the local sampling
method and from the stochastic approach using (a) NF = 1, (b) NF = 3, and (c) NF = 20
SLM phase patterns. The RMS error, ϵ , is calculated within the 1/e2 region, B (black line).

Model I: The crosstalk kernel is often calculated using a symmetric super-Gaussian
[25,26,29,32],

KI(x, y) = F −1

{︄
exp

[︄
−

(︄
|κx |

q +
|︁|︁κy|︁|︁q

σq

)︄]︄}︄
, (9)

with width, σ, order, q, and spatial frequencies, κx and κy.
Model II: To capture possible asymmetries, we introduce a piecewise crosstalk kernel KII [26],

KII(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F −1
{︂
exp

[︂
−

(︂
|κx |
σxn

)︂qxn
−

(︂
|κy |

σyn

)︂qyn ]︂}︂
x ≤ 0, y ≤ 0

F −1
{︂
exp

[︂
−

(︂
|κx |
σxn

)︂qxn
−

(︂
|κy |

σyp

)︂qyp ]︂}︂
x ≤ 0, y>0

F −1
{︂
exp

[︂
−

(︂
|κx |
σxp

)︂qxp
−

(︂
|κy |

σyn

)︂qyn ]︂}︂
x>0, y ≤ 0

F −1
{︂
exp

[︂
−

(︂
|κx |
σxp

)︂qxp
−

(︂
|κy |

σyp

)︂qyp ]︂}︂
x>0, y>0

(10)

with different orders, qi, and widths, σi, along the x and y directions for each quadrant of the
crosstalk kernel.

Model III: This convolutional model uses an entirely unconstrained kernel, KIII, where each
pixel value is a learnable parameter. The convolution kernels KI-KIII are 3 × 3 SLM pixels wide
and contain (3P)2 elements each.



Research Article Vol. 32, No. 27 / 30 Dec 2024 / Optics Express 48968

Model IV: This model calculates Θ directly (Fig. 8) [26],

Θm′, n′ = θm, n + T0
s, t

(︁
θm−1, n−1 − θm, n

)︁
+ T1

s, t
(︁
θm−1, n − θm, n

)︁
+ T2

s, t
(︁
θm−1, n+1 − θm, n

)︁
+ T3

s, t
(︁
θm, n−1 − θm, n

)︁
+ T4

s, t
(︁
θm, n+1 − θm, n

)︁
+ T5

s, t
(︁
θm+1, n−1 − θm, n

)︁
+ T6

s, t
(︁
θm+1, n − θm, n

)︁
+ T7

s, t
(︁
θm+1, n+1 − θm, n

)︁
,

(11)

with the indices of the upscaled phase m′, n′ ∈ 0, 1, . . . , PN and the indices of the SLM pixels
m = ⌊m′/P⌋ and n = ⌊n′/P⌋. The matrices T i

s, t with indices s = mod(m′, P) and t = mod(n′, P),
each correspond to the crosstalk caused by the eight neighboring pixels, each containing P × P
pixels, with the upscaling factor, P. Each pixel value in the arrays T i is a learnable parameter.
The difference between our model and the previous implementation [26] is that each pixel T i is a
free parameter. In the original model, the two-dimensional T i were constructed from analytical
one-dimensional transition functions with varying parameters depending on the pixel values
of two neighboring pixels. Figure 9 shows the standard deviation of the measured transition
matrices T i for three upscaling factors P = 3, 5, 7.

Fig. 8. Pixel crosstalk Model IV. (a) The pixel crosstalk on each SLM pixel (red square)
is calculated from its 3 × 3 neighborhood, upscaling it by a factor P. (b) The upscaled
displayed phase, Θ, of the central SLM pixel (red square) within each 3 × 3 neighborhood
is constructed by a weighted sum of eight transition matrices, T i, that model the crosstalk
between the central pixel and its eight neighboring pixels.

Fig. 9. Standard deviation of matrices T i in Model IV for (a) P = 3, (b) P = 5 and (c) P = 7,
after performing the optimization three times for each value of P using different sets of phase
patterns and camera images. The matrices T i are shown in Fig. 3.
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3.5. Target light potential

To characterize the quality of the potentials, we define the measured RMS error as follows:

εM =

⌜⃓⃓⃓⎷
1

NU

∑︂
u,v∈MU

(︂
T̂uv − Îuv

)︂2

T̂2
uv

, (12)

which evaluates the camera image, Îuv, in a measure region, MU , which is defined as the region
in the image plane where the target intensity, T̂uv, is greater than 50 % of the maximum target
intensity [12,25], containing NU pixels with row and column indices on the camera u, v. The
high-intensity regions of the light are the most relevant, in particular for cold-atoms experiments.
We define the experimental efficiency of the light potential, ηM, as the ratio of the optical power,
PS, in the transformed signal region, SU , to the measured power of the beam, Pin [25]:

ηM =
PS

Pin
. (13)

To evaluate the performance of different pixel crosstalk models, we employ a large top-hat
target light potential that requires SLM diffraction angles to approach the maximum steering
angle of the SLM. We define our target light potential in the image plane in units of the Fourier
pixel pitch, pF , in the computational image plane assuming twofold zero-padding of the electric
field at the SLM, given by

pF =
λf

2NpSLM
≈ 6.54 µm (14)

after performing the FFT, where the zero-padded SLM plane contains 2N × 2N pixels with
pixel pitch, pSLM. The maximum steering angle of the SLM corresponds to ±1024 pF in the
computational image plane. The target light potential is a square with 600 pF side length with a
dark border of 100 pF width, offset from the optical axis by 420 pF along the x- and y-direction
(Fig. 4(a)). The target pattern is convolved with a Gaussian kernel of 2 pF width to remove
sub-diffraction-limited edges in the target light potential. As an initial phase guess for the CG
algorithm, we use a linear phase to offset the potential from the optical axis by 480 pF in the x-
and y-direction and a quadratic phase term with curvature R = 1.6 mrad/ pSLM

2 [25].

4. Conclusion

In conclusion, we used adaptive moment estimation to measure the laser intensity profile and
the phase at the SLM in a few minutes using 1-10 camera images while maintaining a low
recalibration error of ∼ λ/170 which is on par with methods that use thousands of images. In
a second step, the crosstalk between neighboring pixels on the SLM was characterized using
a computationally efficient model (Model IV) and compared to models that use a convolution
(Models I-III). We then benchmarked the accuracy of these models by using them to generate a
large, top-hat-shaped potential. The computationally efficient Model IV and the model using a
convolution kernel without any analytical constraints (Model III) converged rapidly to an error
of εM ∼ 2%. Due to the low number of camera images needed, this calibration technique paves
the way towards in situ optimization of light potentials in cold atom experiments using optical
lattices or tweezer arrays. Extending our approach to high-NA optics using more rigorous light
propagation, such as the angular spectrum method [50], remains the subject of future work. Our
method for calibrating a computationally efficient pixel crosstalk model will benefit applications
in holographic displays by reducing inhomogeneities in the generated images, particularly for
displays with a large field of view that require large diffraction angles to be displayed on the SLM.
Funding. Engineering and Physical Sciences Research Council (EP/T001062/1, EP/T517811/1, EP/P009565/1,
EP/T027789/1).
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