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Abstract
Leveraging surface texturing to realize significant friction reduction at contact interfaces has
emerged as a preferred technique among tribology experts, boosting tribological energy
efficiency and sustainability. This review systematically demonstrates optimization strategies,
advanced manufacturing methods, typical applications, and outlooks of technical challenges
toward surface texturing for friction reduction. Firstly, the lubricated contact models of
microtextures are introduced. Then, we provide a framework of state-of-the-art research on
synergistic friction optimization strategies of microtexture structures, surface treatments, liquid
lubricants, and external energy fields. A comparative analysis evaluates the strengths and
weaknesses of manufacturing techniques commonly employed for microtextured surfaces. The
latest research advancements in microtextures in different application scenarios are highlighted.
Finally, the challenges and directions of future research on surface texturing technology are
briefly addressed. This review aims to elaborate on the worldwide progress in the optimization,
manufacturing, and application of microtexture-enabled friction reduction technologies to
promote their practical utilizations.
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Nomenclature

ρ Local fluid density (kg·m−3)
V Velocity vector
p Local pressure (Pa)
f External force per unit volume on a fluid
η Dynamic viscosity (Pa·s)
h Local film thickness (m)
u Velocities in the x-directions (m·s−1)
v Velocities in the y-directions (m·s−1)
Re Reynolds number
δ Ratio of the oil film thickness to the length of

the contact area
θ Filling ratio of lubricant in the cavitation zone
pcav Cavitation pressure (Pa)
t Time variable (s)

1. Introduction

Friction and wear are widespread concerns across various
domains of human experience, spanning man-made, natural,
and biological systems. They result in reduced reliability and
lifespan of crucial moving components in sliding, rolling, and
rotating contact interfaces, accelerating energy consumption
[1–3]. Historically, the most straightforward approach to min-
imize friction and wear involves smoothing contact surfaces,
along with applying lubricants to diminish solid–solid contact
[4]. However, recent studies have unveiled that the frictional
pairs with high smoothness do not consistently reduce fric-
tional coefficients or material wear [5]. Surprisingly, parallel
rough surfaces can generate hydrodynamic pressure lubricat-
ing films, offering novel perspectives for engineering lubrica-
tion issues [6].

In 1966, Hamilton et al [7] noted that micrometer-scale
irregularities on rotary shaft seals could provide additional
load-bearing capacity, thereby reducing the coefficient of
friction. These ‘micrometer-scale irregularities’ represent the
earliest form of surface texturing. It was confirmed that micro-
asperities are an effective method for lubricating mechanical
face seals and parallel rotating thrust bearings some years later
[8, 9]. Based on this theory, microtextured engine cylinder
liners emerged as the first successful commercial application
of microtexture [10]. The term ‘surface texturing’ refers to
the process of creating patterned arrays with specific dimen-
sions and distributions on frictional surfaces, typically deeper
compared with roughness. Moreover, the lateral microtexture
dimensions are at least one order of magnitude larger than the
roughness features [11, 12]. Surface texturing improves tri-
bological performance by debris storage, lubricant reservoir,
and micro hydrodynamic pressure effects [13]. In starved lub-
rication, microtextures supply lubricant to the contact area,
forming a boundary lubricating film approximately 0.005–
0.010 µm thick [14]. In mixed and hydrodynamic lubrication,
microtextures generate additional hydrodynamic lift, which
can increase the load-bearing capacity of the contact surface
and form a viscous liquid film with a thickness of 1–100 µm
[15]. Moreover, the presence of microtextures reduces the

overall contact area, leading to fewer asperity contacts and less
adhesion/abrasion [16].

The friction reduction performance of surface texturing is
greatly influenced by structural characteristics, such as shape
[17, 18], density [19], depth [20, 21], aspect ratio [22], etc.
Most fundamental research has concentrated on these para-
meters to determine if there are optimal values for achieving
the best friction reduction across different lubrication regimes,
and if there exists a qualitative relationship between microtex-
ture parameters, operating conditions, and frictional perform-
ance. It is worth noting that the function of microtextures and
optimal microtexture parameters are closely related to the con-
tact type between the tribological pairs (parallel, converging,
line, or point contacts) and operating conditions (load, speed
[23, 24]). There is no universal selection of the microtexture
parameters that could generate beneficial effects for differ-
ent working conditions [25]. For certain contacts or working
conditions (i.e. low-speed, high-pressure, non-conformal con-
tacts), the propensity for microtextures to collapse makes it
difficult to form a stable lubrication film, which may lead to
detrimental effects. Accordingly, the design of surface textur-
ing needs to be closely aligned with the functional require-
ments of specific applications [26]. Additionally, a potential
strategy for improving the tribological performance of micro-
textured surfaces under severe conditions is to combine micro-
textures with modified lubricants [27, 28], surface coatings
[29, 30], external energy fields [31], or surface hardening
techniques [32–34] (figure 1(a)). The research focused on
synergistic effects is extremely valuable for future industrial
design and development, and it is likely to become a key trend
in optimizing friction and wear performance.

According to the microtexture morphology of the surface,
the processing methods can be divided into additive manufac-
turing, subtractive manufacturing, and formative manufactur-
ing (figure 1(b)) [35]. The common microtexture manufactur-
ing techniques mainly include laser processing [36–39], etch-
ing technology [40], ultrasonic-assisted machining [41, 42],
electrical discharge machining [43, 44], 3D printing [45, 46],
and traditional machining methods, such as turning, drilling
and milling, etc [47]. Each technique presents its own advant-
ages and disadvantages in terms of flexibility, accuracy, cost
of microtexture fabrication, and processing speed [26]. Laser
processing can rapidly create microtextures on material sur-
faces while precisely controlling accuracy, making it one of
the most successful methods for forming controlled microtex-
tures. At present, friction reduction technologies for surface
texturing have been used in the aerospace field, transportation
field, machine tool field, biomedical field, wind energy fields,
and other new fields [48, 49], especially in bearings [50], gears
[51], piston rings [52], tools [53], artificial joints [54], and
mechanical seals [55] (figure 1(c)). Despite the considerable
progress that has been made, microtextured surfaces can have
adverse effects in certain circumstances. This largely depends
on contact types, operational conditions, material properties,
environmental factors, etc [56]. Moreover, the absence of
standardized theoretical models poses challenges in designing
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Figure 1. Development of friction reduction technologies for surface texturing. (a) Designing and optimizing friction reduction
performance on microtextured surfaces involves theoretical models, geometric morphology, surface modification, and external multi-energy
field-assisted. Reprinted from [58], © 2017 Elsevier Ltd All rights reserved. (b) Microtextured surface manufacturing techniques include
additive manufacturing, subtractive manufacturing, and formative manufacturing. . Reprinted with permission from [59]. Copyright (2022)
American Chemical Society. Reprinted from [60], © 2023 Elsevier B.V. All rights reserved. Reprinted from [61], © 2017 Elsevier Ltd and
Techna Group S.r.l. All rights reserved. (c) Microtextured surfaces are primarily applied to mechanical seals, piston rings, bearings, cutting
tools, gears, and artificial joints.

universally applicable microtextured surfaces. Therefore, it is
essential to guide researchers to design optimal microtextures
and develop efficient and greenmethods for scalable and large-
area fabrication [57].

Various review articles from Gropper et al [62] (design
and modeling), Gachot et al [63] (effects on different lub-
rication regimes), Marian et al [11] (modeling and optimiz-
ation approaches), Wu et al [64] (manufacturing), Rosenkranz
et al [65, 66] (application, synergistic effects with solid lub-
ricants), Wang et al [67] (shape and arrangement), as well as
Grützmacher et al [68, 69] (multi-scale microtextures, ther-
mocapillary lubricant migration), highlight the key findings
on surface texturing in various tribological contacts/systems.
This review aims to provide a comprehensive overview of the
synergistic effects between surface texturing technology and
other friction reduction optimization strategies, the advant-
ages and disadvantages of different manufacturing technolo-
gies, typical applications, and technical challenges. Chapter
2 provides an introduction to lubricated contact models of
unit microtextures. Chapter 3 summarizes structural optim-
ization strategies and synergistic effects with modified lub-
ricants, surface coatings, external energy fields, or surface
enhancement techniques of surface texturing. Chapter 4 and
Chapter 5 review the latest research advancements in the man-
ufacturing techniques and applications of surface texturing,
respectively. Chapter 6 summarizes the challenges of sur-
face texturing technology, including limited operational range,
instability in friction reduction, and inadequate load-bearing
capacity of microtextures, as well as the emerging trends
in developing intelligent, environment-adaptive microtexture
systems.

2. Lubricated contact model of microtextured
surfaces

The hydrodynamic effect generated by surface texturing is the
only one captured by theoretical models, which boosts the
dynamic fluid pressure, thus increasing the overall load car-
rying capacity of the contact in cases of mixed and hydro-
dynamic lubrication. The key to developing a lubrication
model for surface texturing lies in the construction of the geo-
metric model. Due to the periodic distribution of microtex-
tures, a single microtexture unit is often selected for analysis
and is characterized by its three-dimensional geometry (sur-
face and cross-sectional shapes) and size (base dimensions
(rp), depth (htexture)) (figure 2(a)) [11, 14, 62]. Other critical
parameters include the aspect ratio (λ= htexture/rp) and density
(ρtexture = Atexture/Acell). Currently, two main models are com-
monly used to analyze the lubrication performance of surface
texturing (figure 2(b)).

The first model is based on the Navier–Stokes(N–S)
equations for incompressible flow [70]:

ρ
DV
Dt

=−∇p+ ρ f +µ∇2V. (1)

Where ρDVDt represents the inertia term, describing the
change in velocity of liquid microelements over time and pos-
ition, and reflecting the inertia of liquid flow. ρ is the dens-
ity of the lubricant, kg·m−3. V is the velocity vector. −∇p
represents the scalar form of pressure gradient, where p is
the pressure, Pa. ρf represents volume forces, where f is the
external force per unit volume acting on the liquid. µ∇2V rep-
resents the viscous term, where η is the dynamic viscosity,
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Figure 2. The lubricated contact model of microtextured surfaces. (a) Unit microtexture parameters. (b) Typical pressure distribution over a
single microtexture with cavitation. (i) With mass-conserving algorithm. (ii) With inertia effects. Reproduced from [62]. CC BY 4.0. (c)
Contact model of mixed lubrication for a single microtexture. Reproduced from [14]. © The Author(s). Published by IOP Publishing Ltd
CC BY 4.0. (d) Contact model of elastic hydrodynamic lubrication and typical pressure distribution for a single microtexture.

Pa•s. Currently, the flow behavior of lubricants on microtex-
tured surfaces is predominantly simulated using commercial
computational fluid dynamics (CFD) software or purpose-built
solvers. However, this approach still demands relatively high
and time-consuming computational resources, particularly for
microtextured contacts, due to the necessity of fine meshing,
potential time-dependent effects, and the risk of numerical
instability.

The second foundational model is the Reynolds equation
based on the mass conservation method [71]:

∂

∂x

(
ρh3

η

∂p
∂x

)
+

∂

∂y

(
ρh3

η

∂p
∂y

)
= 6

∂ (uph)
∂x

+ 6
∂ (vph)
∂y

+ 12
∂ (ρh)
∂t

. (2)

Expanding the equation on the right-hand side: uρ(∂h/∂x),
vρ(∂h/∂y) represent the dynamic pressure effect, hρ(∂u/∂x),
hρ(∂v/∂y) represent the stretching effect, uh(∂ρ/∂x),
vh(∂ρ/∂y) represent the variable density effect, and ρ(∂h/∂t)
represent the compression effect. Where h is the lubric-
ant film thickness, m. u and v represent the velocities
in the x-directions and y-directions of tribo-pair, m·s−1,
respectively.

In equation (2), the effect of surface texturing is incorpor-
ated through the film thickness equation h(x, y). Within the
microtextured region, the film thickness is influenced by the
shape and dimensions of the microtexture, whereas outside the

microtextured region, the film thickness is generally assumed
to remain constant. The present study focuses on the fluid-
lubricated region and assumes that the surface outside the
microtextured region is perfectly smooth. However, if the sur-
face roughness dimensions are comparable to the microstruc-
ture and oil film thickness, the asperities on the tribo-pair may
come into contact and partial load-bearing, i.e., mixed lubric-
ation (figure 2(c)) [72–74]. Moreover, high contact pressure
induces elastic deformation of the tribo-pair, which increases
the density and viscosity of the lubricating oil, thereby leading
to changes in oil film thickness and stability, i.e. elastic hydro-
dynamic lubrication (figure 2(d)) [75–79]. That is to say, it is
essential to account for the actual machined surface shape and
the elastic deformation of the contacting surfaces and to incor-
porate these factors into the modified Reynolds equations for
more accurate simulation results.

The discretization and integration methods are used to
solve the governing two-dimensional Reynolds equation mul-
tiple times, which can yield performance characteristics
such as load capacity, friction coefficient, and minimum
film thickness [80]. Discretization methods applied to the
field of surface microtextures include the finite difference
method (FDM), finite volume method (FVM), finite element
method (FEM), finite cell method (FCM), and spectral ele-
ment method (SEM) (table 1). Also, the performance charac-
teristics must be calculated using numerical integration meth-
ods. e.g. Newton–Cotes (NC) formulas and Gauss quadratures
[80, 81].
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Table 1. Discretization methods.

Approach Characteristics References

FDM Discretizing the computational domain into grid points and
employing approximate solutions at these points to approximate
continuous functions

[82, 83]

FVM Discretizing the computational domain into control volumes,
discretizing conservation equations within these volumes, and
solving for numerical solutions

[84]

FEM Discretizing the computational domain into shape elements and
generating numerical solutions by appropriately addressing
continuity between elements and applying boundary conditions

[85, 86]

FCM Discretizing the computational domain into Cartesian cells, enabling
the inclusion of complex geometries without meshing, and
employing high-order approximations for accurate numerical
solutions.

[87]

FEM Discretizing only the boundaries of the computational domain into
elements, reducing the dimensionality of the problem, and solving
for numerical solutions using boundary integral equations

[88]

The debate regarding the feasibility of using the Reynolds
equation in surface texturing modeling, as opposed to the N–
S equations, stems from its neglect of fluid inertia effects.
However, inertia effects can often provide additional load
carrying capacity only in flows with high Reynolds numbers
or when the critical depth of microtexture is reached [89, 90].
Generally, when the ratio of the inertial term to the viscous
term, i.e. o(Reδ2) « 1 [91], the influence of the inertial term
can be neglected. In microtextured friction pairs, the Reynolds
number Re generally ranges from 1 to 102–103. The depth-
to-diameter ratio of the microtexture generally ranges from
10–2–10–1, and the ratio of the microtexture spacing to the
diameter/width is typically on the order of 10◦. The ratio of
microtexture depth to the clearance of the friction pair surface
can reach the order of 101, resulting in the clearance ratio δ
(the ratio of the surface clearance to the length of the contact
area in friction pairs) being in the range of 10–3–10–1. In this
case, o(Reδ2) ranges from 10–6–101, allowing the use of the
Reynolds equation instead of the N–S equation [92–94].

Modeling plays a critical role in advancing the adoption of
surface texturing technology, while the majority of model val-
idations are performed through comparisons with other mod-
eling work rather than through experimental tests. Moreover,
the performance of different models mostly depends on the
respective working conditions, which significantly hinders
their applicability in industrial applications. Therefore, the
design of microtextures must be based on the underlying kin-
ematics, dynamics, and contact types of the tribo-pair. It is
essential to develop effective optimization methods to enable
the evaluation of microtexture design using robust numer-
ical models before manufacturing, thereby avoiding time-
consuming trial-and-error experiments.

3. Optimizing friction reduction performance on
microtextured surfaces

The discrete (discontinuous dimples) and continuous
microtextures (parallel or cross-continuous grooves) with

regular geometric shapes attract great research interest,
primarily investigating their effects on tribological perform-
ance from the perspectives of surface shape or bottom shape
(figures 3(a) and (b)) [95]. The design of microtexture shapes
mostly depends on the sliding direction of the friction pair.
Under unidirectional sliding, increasing the high-pressure
contact area of the microtextured surface perpendicular to the
sliding direction can generate higher net thrust and reduce
friction and wear. It is important to note that the comparison
of tribological performance between different microtexture
shapes is only meaningful at optimal geometric parameters
[96]. With advancements in biomimicry, microtextures are
transitioning from traditional regular geometric shapes to bio-
inspired structures that enhance friction reduction and wear
resistance (figure 3(c)). The complex and orderly micro–nano
structure arrays found on surfaces of living organisms have
significant exploratory value for frictional contact interfaces
[97]. However, constrained by manufacturing techniques, bio-
mimetic microtextures often undergo a degree of simplifica-
tion. Presently, strategies to reduce friction on microtextured
surfaces are predominantly centered on structures, lubricant
characteristics, and energy field-assisted lubrication.

3.1. Microtexture

3.1.1. Structural optimization. In the field of friction reduc-
tion of microtextures, classification methods for microtextures
vary widely, encompassing criteria such as symmetry (sym-
metric vs. asymmetric microtextures), composition (single
vs. composite microtextures), and shape (regular vs. irregu-
lar shapes). This article categorizes microtextures based on
whether their distribution has been optimized, dividing them
into uniform distributions (where single structures like inver-
ted pyramids and droplets are considered uniform) and non-
uniform distributions. It describes five types of optimized non-
uniform distributions: fractal structures, multi-shape compos-
ite structures, gradient structures, localized structures, and
micro–nano structures (figure 4). These five configurations
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Figure 3. Microgeometry characteristics of microtextured surface. (a) Surface shapes. Circle, triangular, chevron-like, and groove. (b)
Bottom shapes. (i) Spherical. (ii) Rectangular. (iii) Beveled rectangular. (iv) Triangular symmetrical. (v) Rectangle with a rounded bottom.
Reproduced from [11]. CC BY 4.0. (c) Bionic microtextures, including (i) the peristome surface of nepenthes alata, (ii) shark skin, (iii)
snake scale, and (iv) earthworm skin. Reproduced from [98], with permission from Springer Nature. Reprinted from [99], Copyright © 2012
Elsevier Inc. All rights reserved. Reproduced from [100]. CC BY 4.0. Reprinted with permission from [101]. Copyright (2021) American
Chemical Society.

Figure 4. Composite surface texturing. (a) Fractal microtextures. Reprinted from [102], © 2016 Elsevier B.V. All rights reserved. (b)
Multi-shaped microtextures. Reprinted from [103], Copyright © 2015 Elsevier Ltd All rights reserved. (c) Gradient microtextures.
Reproduced from [104]. CC BY 4.0. (d) Partial microtextures. Reprinted from [105], Copyright © 2010 Elsevier Ltd All rights reserved. (e)
Micro–nanotexture (white: microtexture, green: nanotexture). Reprinted from [106], © 2017 Elsevier B.V. All rights reserved.
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enhance hydrodynamic effects, thereby improving the stability
and uniformity of the lubrication layer by optimizing micro-
texture features at both micro and macro scales.

Fractal microtextures (figure 4(a)) significantly reduce
the coefficient of friction and enhance wear resistance due
to their self-similarity across different scales and irregular
arrangements [102]. These structures improve frictional per-
formance by influencing the critical load and exhibit super-
ior friction reduction compared to traditional microtextures
under various lubrication states. However, the friction reduc-
tion mechanism of fractal microtexture is not very clear.
The micro-hydrodynamic effect and lubricating film reten-
tion effect provided by different shapes of microtextures are
different. The single shape of microtexture often has favor-
able effects only in limited operational conditions [107].
Consequently, it is an effective method to maintain excellent
friction performance by combining different shapes of micro-
textures to adapt to complex operational conditions. Multi-
shaped microtextured surfaces formed by the combination of
circular and elliptical pits (figure 4(b)) exhibit lower and more
stable friction coefficients compared to non-textured surfaces.
Moreover, as the dimple depth and sliding speed increase,
the advantages of multi-shaped microtextures become more
pronounced [108]. The gradient microtextures oriented in spe-
cific directions (figure 4(c)) can guide fluid flow to form a
directional lubrication layer and better accommodate the lub-
ricant, while also adjusting local surface pressure distribution
to avoid stress concentration. Experiments have shown that
gradient microtextures achieve the lowest friction coefficients
and wear rates at specific angles, such as 7 degrees [109]. In
applications such as thrust bearings, gradient-grooved textures
significantly improve oil expulsion and reduce friction, fur-
ther enhancing the lubrication state [104]. Recent studies have
shown that partially microtextured surfaces have better fric-
tion reduction properties than fully microtextured surfaces. In
parallel slider contact, the partial microtexture (figure 4(d))
at the entrance can increase the flow, resulting in a hydro-
dynamic lift and full film lubrication [105]. In the applica-
tion of thrust bearings, a partially textured design can reduce
friction power losses by up to 20%, demonstrating significant
friction reduction advantages [110]. The surface with tunable
multiscale structures plays a key role in promoting localized
liquid flow [111]. The micro–nanotexture synergizes micro-
and nano-structures (figure 4(e)) to optimize fluid flow and
enhance hydrodynamic pressure, thereby achieving friction
reduction. The lotus-leaf-like hierarchical micro–nano struc-
ture, fabricated through chemical deposition, further reduces
friction due to its superhydrophobic properties. Experimental
and simulation results show that the optimized distribution
and geometry of the microtexture effectively lower the fric-
tion coefficient and improve surface lubrication performance
[106].

While various geometric designs like fractal, multi-shape,
gradient, and partially microtextured surfaces offer effective
friction reduction under specific conditions, their perform-
ance limitations across diverse operating environments reveal

the need for further optimization. The introduction of micro–
nanotextures marks a significant breakthrough, merging the
benefits of both micro and nano-scale features to enhance lub-
rication and friction control. Nevertheless, there are still unre-
solved challenges in fully understanding the underlying fric-
tion mechanisms, especially in complex and dynamic lubrica-
tion scenarios, which require further investigation.

3.1.1.1. Numerical optimization. Numerical optimization
algorithms provide a new research path for the optimization
of surface texturing. An optimization model for microtex-
tures is constructed by investigating the relationship between
design parameters and tribological performance characterist-
ics, which can significantly improve load-bearing capacity and
reduce frictional wear. Moreover, this approach minimizes
the traditional trial-and-error process in microtexture optim-
ization. Over the past few decades, numerous strategies for
optimizing microtexture have been proposed. These works
can be categorized into two primary groups: sensitivity-based
optimization techniques [112] and metaheuristic optimization
techniques [113].

Sensitivity-based optimization techniques, such as sequen-
tial quadratic programming (SQP) [114, 115], level set method
[116], method of moving asymptotes [117–119], adjoint
method [120], response surface method (RSM) [121], etc,
guide the optimization process by identifying the direct rela-
tionship between variations in geometric microtexture para-
meters and corresponding changes in the objective function
(i.e. sensitivity analysis). SQP is the most commonly used
method for optimizing the shape of microtextures with a fixed
depth, treating the design parameters of the microtexture as
continuous optimization variables. Based on arbitrary shapes,
the chevron-type shape and trapezoid-like shapemicrotextures
exhibit the highest load-carrying capacity for parallel flat sur-
faces under unidirectional and bidirectional sliding, respect-
ively (figure 5(a)) [114, 115]. However, microtexture depth, as
an essential structural parameter, plays a substantial role in the
hydrodynamic effects of microtexture. Generally, as the depth
of the microtexture increases, the hydrodynamic lubrication
effect increases and then diminishes, which results in the fric-
tion coefficient reducing first and then increasing. Level set
method and adjoint method could change topology and con-
cisely describe the optimal distribution and shape of micro-
textures, and confirm the linear relationship between the oil
film gap and the microtexture depth, thereby maximizing the
LCC (figures 5(b) and (c)) [116, 120]. The primary advant-
age of these methods is that they enable the optimization of
the entire gap height distribution h(x, y) without any prede-
termined geometric shapes [122]. Additionally, the optimiz-
ation of structural parameters for biomimetic microtextures
based on RSM has led to a 20.82% reduction in the coeffi-
cient of friction and a 65.65% decrease in wear depth, signi-
ficantly enhancing the tribological performance of the mater-
ial surface (figure 5(d)) [121]. Nevertheless, a major limitation
of sensitivity-based optimization techniques is their strong
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Figure 5. Sensitivity-based optimization techniques for microtextured surfaces. (a) Sequential quadratic programming method. Shape
optimization of a single microtexture for reciprocating sliding. Reprinted from [115], Copyright © 2014 Elsevier Ltd All rights reserved. (b)
Level set method. Shape optimization of microtexture arrays. Reprinted from [116], © 2021 Elsevier Ltd All rights reserved. (c) Adjoint
method. Comparison between different optimization techniques for microtexture. Reproduced with permission from [122].
CC BY-NC-ND 4.0. (d) Response surface method. High-power micrograph (SEM) of a tree frog’s pad and schematic diagram illustrating
bionic microtexture analysis of surface tribological performance. Reprinted from [121], © 2021 Elsevier Ltd All rights reserved.

dependence on the initial configuration. Moreover, the numer-
ical calculation of sensitivities requires significant computa-
tional resources.

Metaheuristic optimization techniques, such as genetic
algorithms (GA) [123], particle swarm optimization [124],
Monte Carlo search [125], etc, treat the design parameters
of microtextures as continuous or discrete optimization vari-
ables. GA is the most commonly used method. Zhang et al
[58, 123] effectively combined the Reynolds equation with
GAs to obtain optimal microtexture shapes with low fric-
tion coefficients and high load-carrying capacity under mixed
lubrication conditions. For reciprocating sliding, the optimal
microtextures resemble elliptical and fusiform shapes, while
for unidirectional sliding, they take on bullet or fish shapes
(figure 6(a)). The study differs from [115], mainly in con-
sidering the interaction between adjacent microtextures in the
y-direction and the detrimental effect of microtexture edges.
GA serves as a global search technique, providing the global
optimum to SQP for local refinement, thereby accelerating the
optimization process and improving convergence rates. Wang
et al [126] presented a hybrid approach that utilizes a GA solu-
tion as the initial configuration required by the SQP method to
maximize the LCC of the oil film. The optimized profiles for
various rotational speeds all exhibit chevron-shaped grooves.

In certain conditions, an optimized groove texture can achieve
a consistently low COF (<0.01) and also reduce temperat-
ure elevation (figure 6(b)). In general, metaheuristic optimiz-
ation approaches can efficiently identify near-global-optimal
surface microtextures without reliance on the initial configur-
ation or the need for additional sensitivity analysis. However,
these approaches can be associated with considerable compu-
tational time and expenses, especially given the multitude of
geometric features involved. To address this, parametric meth-
ods are often employed. However, the selection of parameters
is constrained by human expertise.

3.1.1.2. Intelligent optimization. Machine learning (ML)
[127], such as artificial neural networks (ANN) [128, 129],
transfer learning methods [130], and support vector machines
[131], can predict the output of complex nonlinear fric-
tion systems without relying on human expertise, generat-
ing potential optimal microtexture patterns [132]. The train-
ing of these models typically requires a large dataset to cap-
ture representative features and patterns, thereby improving
generalization capabilities [133]. The data is primarily derived
from experimental datasets, simulation results, or information
extracted from the literature [134]. The ANN can predict the
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Figure 6. Genetic algorithm-based optimization techniques for microtextured surfaces. (a) Shape optimization of dimple under
unidirectional. Reprinted from [58], © 2017 Elsevier Ltd All rights reserved. (b) Shape optimization of groove. Reproduced from [126].
CC BY 4.0.

relationship between microtextured geometric parameters and
both frictional force and LCC with accuracies of 99.7% and
97.5%, respectively (figure 7(a)). It is also combined with GA
to retrieve the optimal microtexture parameters [128, 129].
Moreover, the combination of ANN and transfer learning can
examine the cross-relationships between performance para-
meters of surface texturing shapes from different categories.
This enables the prediction and optimization of tribological
performance in different microtexture profiles by training on
data from one certain microtexture profile (figure 7(b)) [130].
Some machine-generated designs provide valuable insights
into how surface texturing influences the tribological perform-
ance of sliding interfaces, providing microtextures with on-
demand tribological properties that can be applied in various
design fields. Zhu et al [132] proposed a machine learning-
based universal generative design framework for surface tex-
turing designing by combining specific convolutional neural
networks with improved Monte Carlo search. Compared with
the reported optimal microtexture, machine-generated micro-
textures reduce the COF by 27.3%–49.7% and increase the
LCC by 126.1%–144.4%, significantly improving tribological
performance (figure 7(c)). In the future, machine learning
will play a pivotal role in the optimization and design of

microtextures, driving the widespread application ofmicrotex-
ture technology across various fields.

3.1.2. Surface treatment. The combination of surface tex-
turing and surface treatment technology can obtain better tri-
bological properties of materials. This synergistic effect not
only effectively solves or mitigates the challenges related
to balancing material lubrication performance and mechan-
ical strength, but also enhances the overall performance of
the workpiece, such as fatigue resistance ability and wear-
resistance performance, etc.

3.1.2.1. Advanced coating. The composite technology of
surface texturing and surface coating is a potential strategy
to enhance the tribological performance of the matrix.
Microtextured coating surface, i.e. first coated and then micro-
textured so that the sliding surfaces were coated, but themicro-
textures were not. This design minimizes the real contact area
and traps wear debris, extending the service life of the coat-
ing. Coated surface texturing, i.e. first microtextured and then
coated so that the coating covers both the inner and outer sur-
faces of the microtextures. This design enhances the binding
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Figure 7. Machine learning-based optimization techniques for surface texturing. (a) Artificial neural network method. Reprinted from
[128], © 2020 Elsevier Ltd All rights reserved. (b) Artificial neural network with transfer learning method. Reproduced from [130]. © The
Author(s). Published by IOP Publishing Ltd CC BY 4.0. (c) Convolutional neural network with Monte Carlo search method. Reprinted from
[132], © 2022 Elsevier Ltd All rights reserved.
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Figure 8. Synergistic effects of surface texturing and advanced coatings. (a) Schematic diagram of friction tests. (b) Polymer brush.
Reproduced from [138]. CC BY 4.0. (c) Polytetrafluoroethylene (PTFE). Reprinted from [139], © 2023 Elsevier Ltd All rights reserved. (d)
Diamond-like carbon (DLC) films. (i) Formation of lubrication film and secondary lubrication. (ii) Debris capture. (iii) Mechanical
interlocking effect. (iv) Reduced contact area. Reprinted from [140], © 2021 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

force between the coating and the matrix. The synergy is
attributed to the capacity of the microtextures to store and re-
supply the solid lubricantmaterial to the contact area [95, 135].
In recent years, the synergistic reduction of friction and/or
wear through the combination of surface texturing with poly-
mer brushes [136, 137], polytetrafluoroethylene (PTFE), or
diamond-like carbon (DLC) has garnered significant attention
(figure 8(a)).

Polymer brushes exhibit distinctive tribological proper-
ties in different solvent environments. When two surfaces
coated with polymer brushes come into contact with a good
solvent, the steric hindrance effect of polymer chain seg-
ments inhibits mutual penetration of the compressed brushes.
Thereby preventing contact between the frictional pairs and
effectively establishing lubrication [141]. Additionally, poly-
mer brushes can change the lubrication mode and promote
the formation of a liquid lubrication film [142]. Klein [143,
144] conducted the first study on the frictional properties
of polymer brushes, demonstrating that the mica surface
with poly(styrene) brushes exhibits ultra-low friction when
sliding against each other. Subsequently, extensive research
has been conducted on the frictional properties of polymer
brushes using various macroscopic friction test machines
[145–148]. However, polymer brushes are easily susceptible

to mechanical damage or removal, which limits their indus-
trial applications in mechanical equipment. In a recent series
of studies, the combination of CPB with laser surface tex-
turing (LST) methods can result in an average reduction of
over 99% in friction at low sliding speeds. Additionally, the
microtextured surfaces can enhance the durability of the CPB
layer by up to 34%, while also lowering the friction coeffi-
cient during long-term sliding tests [138] (figure 8(b)). The
improvement in CPB durability stems from the lateral support
mechanism of the microtexture, which effectively prevents
excessive compression and wear of the flexible brush struc-
ture. Simultaneously, the geometric structure of the microtex-
ture disperses contact stresses, reducing stress concentration
at individual friction points. The flexibility of polymer brushes
further releases localized high-pressure areas, providing addi-
tional relief from concentrated stresses. When the frictional
interface bears a load, the polymer brushes undergo flexible
deformation, penetrating into themicrotextures to create local-
ized lubrication zones. This effectively reduces the solid–solid
contact area and shear forces, thereby sustaining a long-term
low-friction state.

Moreover, the PTFE coating lowers deformation resistance
with its low intermolecular shear strength and achieves a sig-
nificantly lower COF (as low as approximately 0.05) [149].
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Furthermore, PTFE can establish a durable transfer film on
the counter surface at low pressures, typically in the range of
a few thousand pascals. This transformation changes the ori-
ginal frictional contact interface to PTFE–PTFE contact, con-
sequently reducing friction [66]. Nanoscale wear debris stored
within the microtextures can enhance the formation of a trans-
fer film. Meanwhile, the stability of the transfer film is influ-
enced by the geometric parameters and density of microtex-
tures, as well as the sliding direction [139, 150] (figure 8(c)).
Under starved oil lubrication conditions, low aspect ratio and
low areal density of microtexture promote the formation of a
uniform and stable transfer film, reducing the negative edge
effects of the microtexture, and consequently lowering friction
and wear [151]. However, the PTFE molecular structure con-
tains highly electronegative fluorine atoms, and the weak van
der Waals forces between molecules prevent the PTFE surface
from forming strong chemical attractions, making it difficult
to bond with other substances. In an innovative study, Zhao
et al [152] impregnatedmicrotexture surfaces filled with PFPE
into a dopamine solution. Polydopamine can engage in both
covalent and non-covalent interactions with PTFE and sub-
strate, enhancing the bonding strength between PTFE and the
microtexture. This effectively reduces the rate of PTFE detach-
ment, further enhancing the friction performance. The com-
bination of PTFEwith materials likeMoS2, graphene, polyim-
ides, and more has garnered considerable attention. However,
the underlying friction andwearmechanisms in thesemixtures
remain unclear, representing an important avenue for future
research.

Combining surface texturing with DLC coating that has
low elastic modulus-to-hardness ratios effectively decreases
the deformation component of friction by reducing plasticity
[153]. The higher contact stresses on the microtextured DLC
surface resulted in additional tribochemically induced graph-
itization. Microtextures can serve as reservoirs for wear
particles and lubricating oil. Graphitized wear particles are
stored within the microtextures and gradually compacted into
a dense graphitized layer during sliding. Thus, the graphit-
ized layer combined with the liquid lubricating film produces
a hybrid solid–liquid lubrication effect, resulting in further
improvement in friction and wear performance [140, 154].
Furthermore, the pit-and-mountain structure between the DLC
coating and the substrate creates a strong mechanical inter-
locking effect, improving the bonding strength of the coat-
ing and substrate then improving the wear resistance while
simultaneously enhancing the friction reduction performance
of the microtextured surface [155] (figure 8(d)). However,
DLC coatings are highly sensitive to the presence of oxid-
izing agents such as oxygen and water during friction, and
the major drawback is low thermal stability at higher work-
ing temperatures [156]. The mechanical and frictional proper-
ties of DLC coatings can be significantly enhanced by doping
with various metals such as Cr, Si, Ti, W, etc. Amanov et al
[157] examined the frictional properties of microtextured Si-
DLC coatings within a temperature range of room temperature
to 200 ◦C. In comparison to non-textured Si-DLC coatings,
improvements were observed in both the friction coefficient
and wear.

3.1.2.2. Surface hardening. Another strategy for improv-
ing the tribological performance of microtextured surfaces
involves combining surface texturing with surface hardening
technologies such as plasma treatment, ion implantation, and
shot peening (figures 9(a)–(c)). Microgrooves treated through
plasma-enhanced nitriding exhibit superior friction reduction
and wear resistance, achieving a synergistic effect that exceeds
the sum of its parts (figure 9(d)). Its excellent tribological
performance was attributed to the high hardness of the sur-
face nitriding layer, and the microtextures for debris stor-
age, oil storage, and secondary lubrication [158]. Additionally,
ion implantation introduces small-radius ions into the inter-
stices of the material lattice, forming Frenkel defects that act
to inhibit plastic deformation, thereby significantly enhancing
surface hardness and wear resistance [159, 160]. The wear res-
istance of surfaces treated with nitrogen ions is significantly
improved, and the introduction of nitrogen ions reduces the
interaction between the surface and the mating face, further
lowering the friction coefficient (figure 9(e)) [161, 162]. Shot
blasting is spraying high-speed projectile flow onto the surface
of parts, causing plastic deformation on the surface, and thus
forming a strengthened layer. There is a high residual stress in
the strengthened layer, which can offset part of the stress when
the part bears the load, thus improving the fatigue strength of
the part. Although this process increases surface roughness,
it also creates numerous micro-pits [163, 164], which serve
as effective secondary lubrication points and can reduce the
friction coefficient. Resendiz et al [32] prepared multi-scale
microtextures on aluminum alloy surfaces by shot blasting and
end milling technology. The experimental results show that
the friction coefficient of the microtextured surfaces after shot
blasting is further reduced.

However, despite the promising results in reducing fric-
tion and enhancing wear resistance offered by these techno-
logies, their practical application faces challenges in terms
of cost-effectiveness, complexity of treatment, and durability
verification. Moreover, the implementation of these techno-
logies requires precise control over processing parameters to
avoid degradation of material properties and must consider the
potential increase in environmental impact.

3.2. Liquid lubricants

Conventional liquid lubricants are primarily composed of
organic hydrocarbon compounds. They suffer from inadequate
thermal stability, are prone to decomposition in harsh condi-
tions, and often experience oil film rupture at friction inter-
faces. These factors contribute to lubrication failure and an
increase in frictional resistance. Presently, enhancing lubric-
ation performance and reducing friction and wear are effect-
ively achieved through the inclusion of additives such as nano-
particles (NPs) and ionic liquids (ILs) in the base oil, as well as
the utilization of innovative lubricants like liquid metal (LM).

3.2.1. Nanoparticle lubricants. Nanoparticles (NPs, 1–
100 nm) are playing an increasingly significant role as
innovative lubricant additives, contributing significantly to
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Figure 9. Surface hardening optimization methods for the microtextured surface. (a) Plasma treatment. (b) Ion implantation treatment. (c)
Shot blasting treatment. (d) The COF for microtextured surfaces of different materials before and after plasma nitriding treatment. (i)
GCr15. (ii) Si3N4. Reproduced from [158]. CC BY 4.0. (e) The COF of microtextured surfaces under various implantation energy and
implantation doses. Reprinted from [162], Copyright © 2015 Elsevier B.V. All rights reserved.

the enhancement of tribological performance and emissions
reduction [165]. Frequently employed nanomaterials as addit-
ives in lubricants including, metals (such as aluminum, silver,
and copper) [166], oxides (such as ZrO2, TiO2, ZnO, CuO)
[167], sulfides (such as MoS2, WS2, CuS) [168], and carbon
nanomaterials (graphene, carbon quantum dots, carbon nan-
otubes) [169, 170]. Metal NPs exhibit exceptionally high sur-
face energy, enabling them to adsorb effectively onto fric-
tion surfaces. A friction film with excellent friction reduction
and wear resistance is formed through tribochemical reactions
or by serving as a source of metal cations [171]. However,
metal NPs tend to agglomerate, and difficult to maintain long-
term dispersion stability in practical applications, which lim-
its their applicability as lubricant additives. Surface modific-
ation is the most effective method for addressing the afore-
mentioned issues [172]. Oxide NPs exhibit better chemical
stability. However, the efficient and facile preparation of oxide
NPs with homogeneous particle size and controllable morpho-
logy remains a challenge [173]. The sulfur in sulfides can pro-
mote the reaction of NPs with the friction interface, forming
high-performance tribofilm that contributes to friction reduc-
tion and wear resistance [174]. However, sulfide additives
may release harmful compounds, leading to environmental
pollution. Carbon nanomaterials exhibit excellent oxidation
resistance, chemical inertness, self-lubricating properties, and
superior mechanical strength. However, the preparation of car-
bon nanomaterials is complex and costly, and their interfacial
interactions within lubrication systems remain unclear [175,

176]. Overall, NPs exhibit friction reduction and wear res-
istance due to their unique structure and properties, offering
promising prospects for the development of nanoscale lubric-
ant additives.

The synergistic effects of surface texturing and NPs lub-
ricant additives significantly enhance friction reduction and
wear resistance in tribo-pair, which outperforms the simple
additive effect of the two components (figure 10(a)). Firstly,
microtextures serve as NPs reservoirs to enhance the hydro-
dynamic effect. During the friction process, the interaction
and compression between the contact surfaces result in some
of the lubricant and wear debris entering the microtextures.
Simultaneously, part of the lubricant and NPs previously
retained in the microtextures is partially transferred to the fric-
tion contact area as the friction pair moves. This not only
enhances the hydrodynamic lubrication effect but also sup-
plies secondary lubrication to oil-deficient regions near the
motion extremes. Additionally, it promotes the accelerated
deposition of NPs on the friction surface, forming a lubric-
ating film layer with friction reduction and wear resistance
properties. Secondly, NPs can effectively utilize the structural
features of the microtextures to maximize their film-forming
and surface-repairing capabilities. Due to the frictional shear
forces, a portion of the NPs is deposited on the worn microtex-
tured surface, acting as a repair agent by filling the wear scars
and defect areas [177, 178]. The remaining NPs form a lub-
ricating film on the friction surface under electrochemical or
metallurgical effects, thereby reducing adhesion through the
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Figure 10. Synergistic principles of microtextures and lubricants. (a) Nanoparticle lubricants. (b) Ionic liquid lubricants. (c) Liquid metal
lubricants.

third-body effect of the fine particles [179]. Thirdly, NPs act
as rolling bearings at the friction interface. Under boundary
lubrication, the NPs partially bear the load and form a protect-
ive film between the surfaces, preventing adhesion and thus
improving tribological performance [180].

3.2.2. Ionic liquids lubricants. Ionic liquids refer to liquid
substances composed of both anions and cations at or near
room temperature [181]. Compared to traditional lubricating
oils, the customizable nature of anions and cations in ILs gives
rise to distinctive physical and chemical properties. These
characteristics include high thermal stability, low flammabil-
ity, and reduced sensitivity of rheological behavior to envir-
onmental changes [182]. Numerous studies have validated the
efficacy of IL as a standalone lubricant. Nevertheless, eco-
nomic constraints exist, and most IL lubricants have relatively
low solubility in common lubricating oils (less than 1%). Until
2012, Qu et al [183] managed to enhance the solubility of IL
in lubricating oils by reducing the ionic charge density. Since
then, the use of IL as an oil lubricant additive has emerged
as a central theme in the realm of IL lubrication [184, 185].
The synergistic effects of ILs and surface texturing are primar-
ily reflected in two aspects (figure 10(b)). Firstly, anions in
the IL are adsorbed onto the contact surfaces through elec-
trostatic attraction, forming an effective boundary lubrication
film. Meanwhile, cations interact with anions to form a chem-
ically reactive film. The formation of these films significantly
reduces friction and wear. Secondly, the high viscosity of IL
enhances the hydrodynamic effect generated by the microtex-
tures, forming a thicker lubrication film. This effectively pre-
vents direct contact between the sliding surfaces and the sub-
strate during the friction process, thereby contributing to fric-
tion reduction and anti-wear [186]. Currently, research on the
composite systems of surface texturing and IL lubricants is rel-
atively limited, with most studies focusing on the interactions
between different IL lubricants andmicrotextures. Thakre et al

[187] examined the micro-scale lubrication behavior of seven
different IL lubricants on surfaces with varying roughness.
They discovered that the combination of microtexture, friction
pair materials, and IL lubricants has a substantial impact on the
surface contact behavior of friction pairs. Samanta et al [188]
conducted a study on the interaction between nanoscale micro-
textured steel surfaces and various IL lubricants. The results of
friction experiments indicated that ammonium-based IL lub-
ricants can significantly reduce the friction coefficient, while
lithium-based IL lubricants offer the lowest wear rate.

3.2.3. Liquid metal lubricants. LM lubricants are a new
type of liquid lubricant used in aviation and nuclear industries
[189–191]. LMs can maintain remarkably low vapor pres-
sure under high-temperature or vacuum conditions, meet-
ing the lubrication needs of a broad temperature range and
vacuum environments [192]. Furthermore, they retain the
highly thermal and electrical conductivity of metals, allow-
ing for the rapid dissipation of frictional heat, reducing
adhesion within the friction pair, and showcasing outstand-
ing extreme pressure performance [193]. As early as 1963,
Hughes described the application of LMs as high-temperature
conductive lubricants in bearings [194]. Subsequently, extens-
ive research has been conducted on the lubrication perform-
ance of LM lubricants in HL, boundary lubrication, and mixed
lubrication states. Under low load and high-speed friction con-
ditions, they can provide low friction coefficients of 0.01 [195,
196]. Under boundary and mixed lubrication conditions, fric-
tion coefficients range from 0.1 to 0.6 [197, 198]. LM can
be stored within the microtextured surface and subsequently
migrated to the friction interface under compressive forces,
forming a low-shear strength boundary layer. Simultaneously,
LM generates an oxide film in aerobic and an adhesive film in
anaerobic conditions. During the transition of LM to a paste, it
might adhere to the contact area, thereby reducing friction and
wear (figure 10(c)) [199]. LM lubricants are highly sensitive to
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load and sliding speed, with higher speeds being more condu-
cive to their lubrication capabilities [200]. Moreover, LM can
replace solid lubricants and work synergistically with micro-
textures in vacuum environments to achieve low friction and
enhanced durability. Currently, the lubrication behavior and
mechanisms of LM lubricants combined with surface textures,
and the tribological behavior under varying environmental
conditions remains insufficiently explored.

3.3. Energy field-assisted

3.3.1. Magnetic field(MF)-assisted. MF is a colloidal sys-
tem composed of dispersed single-domain magnetic NPs (10–
20 nm) in a carrier liquid [201]. A homogeneous fluid can be
magnetized by applying an external magnetic field. By con-
trolling the intensity and direction of the magnetic field, the
magnetic fluid can be manipulated arbitrarily [202]. This led
MF to get significant applications in sealing, lubrication, and
grinding engineering [203]. Magnetic fluid lubricants can be
retained at frictional interfaces through the action of specially
designed magnetic fields, thereby enhancing lubrication, pre-
venting lubricant leakage, and reducing the overall amount of
lubricant required [204]. The NPs in the magnetic fluid do
not deteriorate but rather improve the lubricating performance
[205]. Furthermore, by adjusting the applied magnetic field
intensity, it is possible to change the viscosity of the magnetic
lubricant, thereby controlling the load-bearing capacity of the
lubricant [206]. Therefore, utilizing magnetic fluid lubricants
with the assistance of a magnetic field for microtexture modu-
lation holds great potential as a research approach for reducing
friction.

Magnetic field-assisted techniques are commonly assessed
using a pin-on-disk test rig [207]. This approach primar-
ily involves depositing permanent magnetic materials within
the microtexture and employing an external magnetic field
to control the magnetic fluid (figure 11(a)). A frequently
used experimental combination includes CoNiMnP permanent
magnet material and 316 stainless steel (figure 11(b)) [208].
The magnetic-field-assisted microtextured surface facilitates
the formation of effective lubrication, leading to a signific-
ant reduction in the coefficient of friction. Furthermore, the
integration of magnetic nanofluids with microtextured tools
is another essential application of this technology. In this
scenario, conventional cutting fluids are replaced by mag-
netic nanofluid lubricants, which, under the influence of a
magnetic field, penetrate more efficiently into the microtex-
ture at the tool-workpiece interface (figure 11(c)), thereby
ensuring continuous lubrication [209]. Compared to tradi-
tional tools and cutting fluids, the combination of microtex-
tured tools and magnetic nanofluid lubricants reduces cut-
ting forces by 48.6% and decreases the surface friction coef-
ficient by 49.1% (figure 11(d)) [210]. Additionally, modify-
ing the properties of magnetic nanofluid lubricants can lead
to further improvements in anti-friction performance. For
example, co-depositing conventional Fe3O4 nanofluid (F-0.5)
with Fe3O4@CNTs lubricant results in a composite nanofluid

(FC-0.5) [211]. Cutting experiments indicate that the cutting
forces and tool wear in the microtextured tool + FC-0.5 con-
figuration decrease under the influence of a magnetic field
(figure 11(e)). At the maximum magnetic field strength (1
200 G), the cutting force for the microtextured tool + FC-0.5
is reduced by 36.9% compared to the traditional tool + F-0.5,
and the surface friction coefficient is reduced by 28.15% com-
pared to the TC + F-0.5 configuration.

However, many designs for magnetic field-assisted micro-
textures are still in the conceptual stage, with only a
limited number successfully applied in industrial settings.
Current research on composite machining technology primar-
ily focuses on improving the cutting performance of tools
through the application of magnetic fields. However, in other
industrial sectors, the use of magnetic field-assisted micro-
texture friction reduction is uncommon. Moreover, further
research is needed to explore the effects of magnetic fields
on the capillary action and wettability of magnetic nanofluids
at the microtextured blade interface. Additionally, the lubric-
ation and cooling effectiveness of NPs is limited due to NP
agglomeration.

3.3.2. Acoustic field-assisted. Friction and vibration are
widely present in mechanical systems, and they interact and
influence each other. Friction in the components of a mech-
anical system during operation can lead to the generation of
vibrations, affecting the precision of the mechanical work.
Sometimes, introducing vibrations into the mechanical system
in a controlled manner (with appropriate frequency and amp-
litude) can significantly reduce friction during the operation
of the mechanical system [212–214]. In the field of machining
processes, longitudinal and transverse ultrasonic vibrations are
effective means to improve processing precision and quality
[215]. For instance, the most common method of using vibra-
tion to reduce friction is ultrasonic vibration cutting. It has
significant applications in enhancing machining accuracy and
quality, in turning [216] and cutting [217]. Ultrasonic-assisted
machining can reduce cutting forces, improve surface quality,
prolong tool life, and provide positive assistance in reducing
friction for microtextured surfaces.

Controlled vibration could enhance the average load-
bearing capacity of the microtextured surface, expel the lub-
ricant from the dimples, increase the thickness of the lubricant
film, and further improve the friction reduction effect [215].
By applying multiple vibrations in different directions to the
microtexture surface (figure 12(a)), it has been found that
when the amplitude of vibration velocity surpasses that of slid-
ing velocity, a more significant anti-friction effect is observed.
Additionally, the friction coefficient of the microtextured sur-
face increases with rising vibration frequency but decreases
as the amplitude of vibration velocity grows. Research on
the application of microtextured tools in ultrasonic elliptical
vibration cutting (UEVC) is still limited, primarily examin-
ing the replacement of conventional tools with microtex-
tured variants (figure 12(b)). Experimental results show that,
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Figure 11. Magnetic field-assisted friction reduction technology for the microtextured surface. (a) Magnetically microtextured surfaces.
Reprinted from [207], Copyright © 2009 Elsevier B.V. All rights reserved. (b) Schematic representation of CoNiMnP film within dimples
covered with Ferrofluid (FF). (c) Schematic diagram of the 2D cutting model. (i) The correlation between sliding conditions and the location
of microtextures. (ii) The infiltration of MNF to the blade interface under the influence of a magnetic field. Reprinted from [209], © 2021
Elsevier B.V. All rights reserved. (d) Schematic diagram of cutting model under the magnetic field. (i) Dispersed magnetic particles on the
tool–chip interface. (ii) Gathered magnetic particles on the tool–chip interface. Reprinted from [210], © 2020 Elsevier B.V. All rights
reserved. (e) Nanofluid distribution at the micro-contact zone of the tool–chip interface under varied cutting conditions. (i) TC + F-0.5
without magnetic field. (ii) TTC+ F-0.5 without magnetic field. (iii) TTC+ F-0.5 under magnetic field. (iv) TTC+ FC-0.5 under magnetic
field. Reprinted from [211], © 2022 The Society of Manufacturing Engineers. Published by Elsevier Ltd All rights reserved.

compared to conventional cutting conditions, microtextured
tools exhibit superior performance in cutting force, surface
morphology, chip formation, and wear characteristics, res-
ulting in a substantial improvement in overall performance
[218].

Currently, there are relatively few studies on the effects of
acoustic field-assisted independent friction reduction micro-
textures or on the role of microtextured tools in UEVC pro-
cesses. This has led to a scarcity of research samples, and
the auxiliary effects of sound fields remain unclear. However,
this also highlights that sound field-assisted microtexture fric-
tion reduction is a significant and promising area for future
research.

3.3.3. Thermal field-assisted. In the field of mechan-
ical engineering, elevated thermal surfaces are a commonly
observed phenomenon. The working surfaces experience heat-
ing not only from external environmental factors but also gen-
erate heat due to friction. During the operation of mechanical
equipment, high temperatures can decrease the viscosity of
the lubricating oil and weaken the mechanical strength of the
lubricating oil film. Elevated thermals also promote frictional
chemical reactions on the contacting surfaces, which can be
either detrimental to wear behavior (e.g. causing corrosion)
or beneficial (e.g. forming a stable friction film) [219]. The
removal of frictional heat by the lubricating oil, accelerates
the evaporation of the lubricant, forming a vaporized oil film
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Figure 12. Ultrasonic vibration-assisted friction reduction technology for the microtextured surface. (a) Comparison of lubrication
conditions during sliding motion with and without vibration. Reprinted from [215], © 2020 Elsevier Ltd All rights reserved.(b) Schematic
diagram of ultrasonic elliptical vibration cutting.

[220]. Another common use of heat to reduce friction is the
Leidenfrost effect [221, 222]. The Leidenfrost effect is a phe-
nomenon in which a liquid drop impinging on a surface signi-
ficantly hotter than the boiling point of the liquid immediately
forms an insulating vapor layer that reduces friction. Thermal
also has a certain impact on the friction reduction achieved
through microtextures.

Amechanism for friction reduction in thermal field-assisted
microtexture technology is temperature control, which adjusts
the viscosity of the lubricating oil and influences the microtex-
ture’s friction reduction performance. Friction andwear exper-
iments (figure 13(a)) conducted at different temperatures and
loads [223] show that at normal loads of 10 N, 20 N, and
30 N, various lubricants have minimal and similar effects on
the friction coefficient. However, under high-load conditions,
temperature significantly affects the friction reduction per-
formance of the microtexture, primarily due to temperature-
induced changes in the lubricant’s viscosity and the load-
bearing capacity of the lubricant film. Additionally, the fric-
tion reduction performance of microtextures with different
shapes and sizes (figure 13(b)) is also temperature-dependent
[224]. Experimental results indicate that a trench structure
with a 45-degree angle demonstrates the highest load-bearing
capacity. Traditional temperature-field-assisted friction reduc-
tion methods typically focus on single-liquid lubricants. To
overcome this limitation, Shen et al introduced an innovat-
ive lubrication method (figure 13(c)) [225] that combines both
solid and liquid lubricants. When used alongside thermal-
field-assisted microtexture friction reduction technology, this

approach offers dual benefits: improving the wear resistance
of the microtexture while reducing surface friction on the cyl-
inder liner and piston ring (CLPR). Another important friction
reduction mechanism in temperature-field-assisted systems is
the Leidenfrost phenomenon. Hydrodynamic simulations have
uncovered the coupling effect between the heat-induced gas
film and the surface texturing (figure 13(d)). The vapor layer
generated at high temperatures remains within the microtex-
ture, forming a vapor vortex [226]. This vapor vortex layer sep-
arates the liquid from the solid surface, reducing friction and
simultaneously generating a driving force for fluid movement.

For temperature field assistance, it is essential to pre-
cisely control the temperature of the microtexture region
to achieve optimal friction reduction, as the appropriate
microstructure size varies with temperature [23]. The elev-
ated temperatures can rapidly reduce the viscosity of the
lubricating oil, leading to the rupture of the oil film.
Moreover, the application of the Leidenfrost phenomenon
requires precise temperature regulation to maintain a stable
vapor oil film. However, most existing studies primarily
focus on single droplets, resulting in a limited scope of
research.

4. Microtexture manufacturing techniques

Advanced surface texturing technologies are essential for
ensuring the friction reduction performance of microtextures.
Currently, the manufacturing methods for microtextures can
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Figure 13. Thermal field-assisted friction reduction technology for the microtextured surface. (a) Microtextured discs. Reprinted from
[223], © 2017 Elsevier Ltd All rights reserved. (b) Microtextures with different geometric shapes. Reproduced from [224]. CC BY 4.0. (c)
A comparison between non-textured and double-sided microtextured. (i) Wear performance for non-dimpled CLPR at 150 ◦C, 200 ◦C,
250 ◦C. (ii) Wear performance for double-sided microtextured CLPR at 150 ◦C, 200 ◦C, 250 ◦C. Reprinted from [225], © 2023 Elsevier
B.V. All rights reserved. (d) Leidenfrost phenomenon. [226] John Wiley & Sons. © 2021 John Wiley & Sons, Ltd.

be categorized into three main types: subtractive manufactur-
ing, additive manufacturing, and material transfer processing.
This article outlines seven commonly used in the industry:
laser processing, chemical etching, abrasive waterjet machin-
ing, micro-grinding machining, diamond cutting, 3D printing,
and micro-knurling (figure 14).

4.1. Laser processing

Laser processing technology harnesses high-energy-density
laser beams focused on the surface of materials, inducing
localized heating, melting, or vaporization, thereby achiev-
ing precise control over the microstructure and the mech-
anical and chemical properties of the material [232–235].
This technology is widely used in various fields, such as
bearings, piston rings, gears, artificial joints, and mechan-
ical seals. Nanosecond, picosecond, and femtosecond laser
machining are commonly employed for fabricating microtex-
tures. Nanosecond lasers are more economical and efficient
compared to picosecond and femtosecond lasers, making them
suitable for large-scale industrial production. However, nano-
second lasers can lead to material redeposition at the edges
of microstructures, resulting in raised areas and diminished
surface quality [236]. Femtosecond laser pulses are extremely
short, generating almost no thermal effects, which effectively
ensures surface precision [237]. Nevertheless, the high cost
remains a significant drawback. At present, the thermal dam-
age and protrusions of material surfaces caused by different
laser types can be reduced by adding external media [238].

The key parameters that influence the morphology and
dimensions of microtextures include laser power, scanning

speed, and pulse repetition rate. Higher laser power enhances
the melting or vaporization effect, forming deeper and wider
microtextures. Scanning speed affects the depth of microtex-
tures and the material removal rate. Higher scanning speed
reduces energy deposition on the surface, resulting in smal-
ler microtexture dimensions and impacting the material’s wear
resistance [239]. The pulse repetition rate mainly influences
the material’s thermal effects and melting processes. A higher
repetition rate can lead to thermal accumulation, altering the
formation mechanism of microtextures. By optimizing these
process parameters, precise control over the size and morpho-
logy of microtextures can be achieved [240, 241].

Although this technology has significantly enhanced the
performance of material surfaces, high-energy lasers may
cause unintended material damage in non-target areas. Future
research should focus on more precise control of laser energy
distribution and interaction time to further improve processing
efficiency and quality. Additionally, for cost-intensive femto-
second lasers, the primary objective is to explore more cost-
effective alternatives to enable broader application in indus-
trial production.

4.2. Chemical etching

Chemical etching technology achieves surface patterning
through the directional removal of material using etching solu-
tions, the effectiveness of which depends on the design of
the masking layer and the lattice properties of the substrate
material. Different sizes of microtextures can be fabricated
by controlling parameters such as the proportion of solute
molecules in the etchant solution, environmental temperature,
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Figure 14. Microtexture manufacturing techniques. (a) Laser processing. Reproduced from [227]. CC BY 3.0. (b) Chemical etching.
Reprinted from [228], Copyright © 2010 Elsevier Ltd All rights reserved. (c) Abrasive jet machining. Reprinted from [229], Copyright ©
2011 CIRP. Published by Elsevier Ltd All rights reserved. (d) Micro-grinding machining. Reproduced from [230], with permission from
Springer Nature. (e) Diamond cutting. Reproduced from [231]. CC BY 4.0. (f) 3D printing technology. Reproduced from [46] with
permission from the Royal Society of Chemistry. (g) Micro-knurling process.
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and etching time [242]. High-resolution masking layers can
also be utilized to improve the dimensional accuracy of micro-
textures. Chemical etching is currently primarily used in labor-
atory research, and it is expected that its main applications
will be in the field of microelectromechanical systems in the
future. Research indicates that by varying photolithography
parameters and etching solution solute ratios, diverse micro-
texture morphologies can be formed on carbon steel surfaces
[243]. Additionally, chemical etching technology eliminates
the need for subsequent polishing steps required in laser pro-
cessing, simplifying the workflow. It also enables precise
control over multi-shaped composite microtextures on steel
surfaces, facilitating the production of diverse microtexture
patterns [17, 244].

Chemical etching technology is effective in preserving the
mechanical properties of microtextures while providing sig-
nificant economic benefits and precision [245]. However, the
corrosiveness of the etching solution and its relatively slow
processing speed hinder its widespread application in indus-
trial settings. To address these challenges, future research
should focus on developing safer and more efficient etching
techniques, as well as innovating etching solution formula-
tions to minimize environmental impact, thereby facilitating
broader industrial adoption.

4.3. Abrasive jet machining (AJM)

AJM is an advanced manufacturing technology of surface tex-
turing that utilizes high-pressure water or gas to drive abrasive
particles at high speeds against a substrate surface, enabling
precise material removal and surface patterning. The effect-
iveness of the process is influenced by the shape, size, hard-
ness, and velocity of the abrasive particles. Due to the particle
size constraints (approximately 20–60 µm), AJM struggles
to process microtextures narrower than 100 µm. Moreover,
by selecting appropriate abrasive materials, such as synthetic
diamonds, the efficiency and surface quality of the machin-
ing process can be significantly enhanced [246]. AJM can be
integrated with other processing techniques (such as milling)
to address the limitations of individual methods and enhance
processing accuracy and efficiency, thereby broadening its
potential applications in microtexture manufacturing [247].

Compared to laser processing, AJM avoids the generation
of a heat-affected zone. Unlike chemical etching, AJM does
not involve chemical reactions, thus preserving the intrinsic
surface characteristics of the materials. This unique feature
enables AJM to be used for the fabrication of microtextures on
hard and brittle materials, e.g. alumina ceramics material for
artificial joints. However, the irregularity of abrasive particles
during the jetting process can lead to uneven surface quality,
and the waste material generated during the processes may
pose potential environmental impacts. The cost of AJM flow is
considered moderate, primarily because, although it requires
a certain investment in equipment, the operational and main-
tenance costs are relatively low.

4.4. Micro-grinding machining

Micro-grinding is a high-precision machining technique cap-
able of producing superior surface quality. This technique
involves utilizing fine abrasive particles on the surfaces of
grinding tools or wheels to conduct micron-scale grinding
on workpieces. It is commonly employed to fabricate high-
precision surfaces, create complex surface microtextures, and
precision machine hard materials [248, 249]. The key aspect
of this technique lies in the precise machining of the substrate,
whereby pre-defined machining paths are used to generate
specific patterns and surface microtextures. Typically, micro-
grooved textures are prepared using micro-grinding, with the
structure dimensions controlled by adjusting the wheel thick-
ness. At present, the smallest microtexture dimensions achiev-
able through this technology are in the tens of microns, and
the technique has been successfully extended to the fabric-
ation of both two-dimensional and three-dimensional micro-
grooves [250]. For instance, the introduction of microtextures
on cutting tool surfaces has been shown to significantly reduce
tool wear, thereby extending tool life considerably [251]. The
cost of micro-grinding is moderate because the consumables
and operational costs are relatively low.

Despite the ongoing maturation and widespread applica-
tion of micro-grinding technology, several challenges persist
in the fabrication of surface microtextures. Chief among these
is the limitation imposed by abrasive particle size on the grind-
ing wheel, which constrains the achievable machining pre-
cision. Additionally, the minimum wheel thickness presents
a critical threshold, impeding the generation of finer-scale
microtextures. Meanwhile, the geometric limitations of grind-
ing wheels and the constraints of current manufacturing pro-
cesses make it difficult to fabricate highly complex surface
microtextures. Micro-grinding technology offers a promising
avenue for advancements in friction reduction applications and
provides potential solutions for overcoming these technical
bottlenecks.

4.5. Diamond cutting

Diamond tools are essential for the high-efficiency machining
of surface texturing. They also enable the fabrication of sur-
face micro–nano structures with high machining precision and
feature sizes ranging from the nano- to the submicron scale
[252]. However, machining materials such as stainless steel
and hardened steel remains a challenging task. High temper-
atures at contact points in the cutting process can cause car-
bon atoms to diffuse into the steel workpiece, leading to severe
thermochemical tool wear and consequently reducing machin-
ing accuracy [253]. In recent years, vibration-assisted dia-
mond cutting technology has been used to improve the mach-
inability of difficult-to-machine materials. The cutting process
is intermittent, with periodic vibration trajectories applied to
the cutting tool to expel chips promptly. This approach effect-
ively reduces chip thickness and cutting forces while signi-
ficantly suppressing heat diffusion [254, 255]. Moreover, by
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controlling the combination of cutting speed and vibration
trajectories, a variety of sophisticated micro–nano structures
can be machined on the workpiece surface [256]. It should be
noted that the curvature radius of the vibration trajectory is
kept smaller than the minimum curvature radius of the target
structure to avoid unnecessary over-cutting [257]. The vibra-
tion generator provides periodic vibration trajectories for the
cutting tool and can be classified into resonance and non-
resonance modes based on its operating model [258, 259].
The resonance vibration generators work at the natural fre-
quency of the mechanical structure, with fixed operating fre-
quency and amplitude. Non-resonance vibration generators
have adjustable frequency and amplitude, but they can only
provide a single degree of freedom for the vibration trajectory
of the tool. This limitation restricts the shape diversity of the
machined micro–nano structures and then affects the function-
ality of micro–nano structures.

A major advantage of diamond cutting is its ability to
achieve extremely low surface roughness and excellent surface
integrity. The primary applications include preparing micro-
textures on the surfaces of optical devices and on the sur-
faces of artificial joints (Ti6Al4V). This technology maintains
the microstructure of materials undamaged by avoiding sig-
nificant thermal impact zones, making it particularly suitable
for machining thermally sensitive or stress-sensitive materials.
Although diamond cutting involves high initial investments
and maintenance costs due to the need for high-precision
equipment and expensive diamond tools, its unique ability to
produce high-precision microtextures and enhance the long-
term durability of materials brings significant economic bene-
fits to high-end manufacturing.

4.6. 3D printing technology

3D printing technology (additive manufacturing) enhances
design freedom and manufacturing flexibility by building
complex parts layer-by-layer directly from digital models,
offering broader possibilities for engineering design and
production [260]. In the field of microtexture processing,
3D printing is widely utilized due to its superior adaptab-
ility in creating complex micro and nanostructures [261].
Adjustments in process parameters such as extrusion speed
and temperature can significantly improve the surface quality
and dimensional accuracy of the printed parts. For example,
the printing process for the Ti6Al4V alloy can be optimized to
enable the construction of curved channel structures, thereby
significantly enhancing the tribological properties of the sur-
face microtextures [262]. Furthermore, metal fusion 3D print-
ing has been extensively applied in industrial production, par-
ticularly in the manufacture of molds for automotive parts,
medical devices, and aerospace equipment, demonstrating a
high degree of product customization and material diversity.

3D printing technology offers high design flexibility and
complexity, but the equipment and material costs are relatively
high. However, in the field of metal 3D printing, the range of

metals suitable for this technology remains limited due to chal-
lenges such as columnar grain formation and periodic crack-
ing during the melting and solidification processes. As a res-
ult, the focus primarily remains on a select few alloys, includ-
ing AlSi10Mg, TiAl6V4, CoCr, and Inconel 718. Despite the
challenges in material selection and microstructure control,
the substantial potential of 3D printing in fabricating complex
structures and its application in special materials provides an
innovative research direction for the field of microtexture fric-
tion reduction.

4.7. Micro-knurling process

The micro-knurling technique employs specialized knurling
tools to apply pressure on the workpiece surface, causing
plastic deformation and precisely transferring the tool pattern
to the substrate. This method boasts high design flexibility,
excellent machining precision, rapid processing speed, and
high-quality outcomes, making it suitable for forming peri-
odic microtextures on the surfaces of cylindrical rods [263,
264]. Pettersson and Jacobson [265] employedmicro-knurling
technology to produce steel balls for ball bearings with sur-
face microtextures and microtextured rollers. Characterization
studies revealed that micro-knurling processing can achieve
high-precision pattern and dimension transfer, resulting in the
generation of high-resolution microtexture morphology. This
method not only ensures the geometric shape and dimensional
accuracy of textures but also offers excellent repeatability,
providing a reliable technique for the design and manufactur-
ing of complex surface structures.

Micro-knurling technology has certain limitations due to
the intrinsic nature of the knurling process. It is very diffi-
cult to fabricate microtextures with overly complex shapes.
Additionally, there are limitations in the choice of workpiece
materials, especially when processing high-hardness materi-
als, which require harder knurling tools, increasing the com-
plexity and difficulty of the process. Despite these challenges,
micro-knurling, with its efficient mechanical processing char-
acteristics, continues to receive widespread attention in indus-
trial production and remains an important method in the field
of microtexture friction reduction.

Laser processing, chemical etching, abrasive waterjet
machining, micro-grinding machining, diamond cutting, 3D
printing, and micro-knurling each possess unique advantages
and face distinct challenges. The selection of the appropriate
manufacturing technologies primarily depends on the required
microtexture characteristics, material compatibility, and cost-
effectiveness. For more detailed information, refer to table 2.

5. Applications

5.1. Bearing

Bearings, as one of the most commonly used components
in mechanical systems, have long been plagued by the issue
of wear, which can result in reduced bearing performance
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Table 2. Comparative analysis of manufacturing technologies for microtextures.

Manufacturing techniques Advantages Disadvantages Cost efficiency References

Laser processing Non-physical contact Heat affected zone High [266, 267]
Wide material compatibility Post-processing required

Chemical etching Large area processing Limited precision Low [268]
Limited material

Micro-grinding High precision limited resolution Medium [269]
High surface quality Restricted processing structure

Abrasive jet machining No thermal effect Slow processing speed Medium [270]
Post-processing required

Diamond cutting Ultra-precision Slow processing speed High [271]
High surface quality

3D printing Flexible design High surface roughness High [272, 273]
Material restrictions
Post-processing required

Micro-knurling High productivity Limited resolution Low [265, 274]

Figure 15. Bearing. (a) Tilting pad thrust bearing. (i) Pad details with the coordinate system. (ii) Tilting pad thrust bearing geometry. (iii)
Exemplary microtexture pattern. Reproduced from [50]. CC BY 4.0. (b) Microtextured bearing. Reproduced from [277], with permission
from Springer Nature.(c) Microtextured hydrostatic bearing.

and a shortened operational lifespan [275]. Surface micro-
texture technology for friction reduction, as an emerging
strategy, was early applied to the surfaces of bearings to
reduce frictional resistance and enhance lubrication perform-
ance. The introduction of microtextures on the bearing sur-
face facilitates even distribution of lubricating oil, thereby
minimizing direct metal-to-metal contact between the bear-
ing and the workpiece. Consequently, this effectively reduces
wear in the bearing system. The application of surface
microtexture technology for friction reduction holds prom-
ise in improving the wear resistance and longevity of bear-
ings while simultaneously decreasing energy consumption,
providing robust support for the reliability and efficiency of
mechanical.

In bearing applications, current research predominantly
emphasizes the planar processing of microtextures in bearings,
particularly thrust bearings, to improve the load-carrying capa-
city of the oil film. However, the specific research objectives
differ across studies. For example, Henry et al [276] focused
on observing the film/pad interface by integrating multiple

thermocouples and pressure sensors. Their localized measure-
ments of microtextured bearings showed that friction could
be reduced by 30% under low loads. Other researchers have
concentrated on enhancing bearing performance by optim-
izing microtexture parameters. Gropper et al [50] studied
the effects of microtexture depth, circumferential extent, and
radial extent on a tilting pad thrust bearing with offset line
pivots (figure 15(a)), concluding that optimal microtexture
parameters could increase the minimum film thickness by
12%. Similarly, Wang et al [277] examined how micro-
texture depth and coverage impact the lubrication perform-
ance of friction pairs (figure 15(b)). Aggarwal and Pandey
[278] developed a novel microtexture design that combined
various shapes of micro-pockets (with circular, rectangular,
trapezoidal, and triangular cross-sections) and dimples (cyl-
indrical, hemispherical, and ellipsoidal), resulting in a gas-
ket that improved bearing capacity by 75% and reduced the
friction coefficient by 42% compared to conventional fan-
shaped gaskets. Atwal and Pandey [279] introduced a non-
conventional microtextured fluid film thrust bearing, which

22

https://creativecommons.org/licenses/by/4.0/


Int. J. Extrem. Manuf. 7 (2025) 022014 Topical Review

Figure 16. Piston ring-cylinder liner system. (a) Finite element analysis of microtextures pattern. (i) Transverse grooves. (ii) Axial grooves.
(iii) Mircodimples. Reprinted from [281], © 2016 Elsevier Ltd All rights reserved. (b) Images of pocketed specimens and the test rig. (i)
Trapezoidal pocket. (ii) Semielliptical pocket. (iii) Square pocket. Reprinted from [52], © 2016 Elsevier Ltd All rights reserved. (c) Image of
pocketed compression ring and test rig. Reproduced from [282], with permission from Springer Nature. (d) Laser microtextured piston ring
specimens and experimental setup with load. Reprinted from [283], © 2021 Elsevier Ltd All rights reserved. (e) Schematic of the synergistic
mechanism between CNP additives and microtexture. Reprinted from [284], © 2022 Elsevier Ltd All rights reserved. Selection and
peer-review under responsibility of the scientific committee of the International Conference on Materials, Processing & Characterization.

achieved a 48% increase in minimum film thickness and a
24% reduction in the coefficient of friction compared to con-
ventional flat bearings. Although most research focuses on
flat bearings, interest in cylindrical bearings, such as hydro-
static bearings, remains significant. Chen et al [280] designed
microtextures with various distributions and arrangements on
the surface of hydrostatic bearings to assess their effect on per-
formance (figure 15(c)). The study demonstrated that distribut-
ing obtuse microtextures in regions of maximum pressure sig-
nificantly enhances bearing capacity while concurrently redu-
cing friction.

Bearings are widely studied by researchers investigat-
ing friction reduction technology of microtextured surfaces,
owing to their wide range of industrial applications, making
them a central focus of investigation. While microtextured
bearings offer superior load-carrying capacity and operational
performance compared to conventional bearings, several chal-
lenges persist. For example, optimal microtexture parameters
often change with varying operating conditions, underscoring
the need to improve the adaptability of these surfaces across a
broader range of conditions. Furthermore, laser processing, the
primary method for fabricating microtextures, is costly, which
can limit its feasibility for standard industrial use. However,

in high-end applications such as large-scale industrial equip-
ment and aerospace engineering, the enhanced performance of
microtextured bearings becomes a critical factor for design-
ers. In such fields, the potential benefits may justify the higher
manufacturing costs.

5.2. Piston ring

The CLPR is one of the most crucial friction pairs in diesel
engine energy conversion. Reducing surface friction within
this system is an efficient strategy to enhance piston efficiency.
The implementation of a well-designed microtextured surface
at the contact interface between the piston ring and cylin-
der liner shows considerable potential in minimizing frictional
energy losses in the system.

A substantial body of research now exists on friction reduc-
tion technology of microtextured surfaces for piston rings,
rendering simple, basic friction tests on microtextures largely
unnecessary. The focus has shifted to optimizing the shape
and size of microtextures under real-world operating con-
ditions and varying friction environments, such as differ-
ent lubrication fluids. For example, Usman and Park [281]
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Figure 17. Gear transmission. (a) Surface topography of the specimen gear. (b) Cylindrical roller model with groove texture and groove
texture unit. Reprinted from [286], © 2022 Elsevier Ltd All rights reserved.

combined a mixed lubrication model with oil flow dynamics
to simulate and numerically optimize surface texturing pat-
terns of various shapes and orientations under actual engine
conditions (figure 16(a)), determining the optimal microtex-
ture size for those conditions. Shen [52] introduced micro-
textures of various shapes at the inlet and outlet of the pis-
ton ring (figure 16(b)), exploring the influence of cavity area
ratio (AR) and depth on piston ring friction performance,
and identified the optimal geometric parameters (AR = 25%,
depth = 5 µm). Shen et al [282] also applied this optimal
microtexture to a novel friction and compression pressure test-
ing device. Their experiments (figure 16(c)) demonstrated that
the concave microtexture reduced overall friction between the
cylinder liner and piston by approximately 15% across a wider
range of operating speeds. To further investigate the effect
of microtexture size on friction reduction performance, Patil
and Shirsat [283] designed microtextures with three diamet-
ers (150 µm, 300 µm, and 500 µm) and two shapes (round
and square) (figure 16(d)). They found that the size and shape
of the microtexture had a synergistic effect on friction speed
and piston ring load. Adopting a different approach, Yin et al
[284] incorporatedmodified copper NPs (CNP) into the lubric-
ant (figure 16(e)). Their findings indicated their results showed
that the combination of surface texturing and CNP lubricant
additive significantly minimized friction and wear in CLPR
friction pairs.

Friction reduction technology of microtextured surfaces
used in piston rings, similar to its application in bearings,
has attracted considerable research interest. Numerous stud-
ies have shown that microtextures reduce the friction coeffi-
cient between the CLPRs interfaces, significantly increasing
the service life of the piston ring. However, this technology
faces certain limitations in CLPR applications. Many studies
fail to fully consider real-world operating conditions, mak-
ing it challenging to apply certain research findings directly
to industrial applications. Additionally, since piston rings are
primarily used in diesel engines, any damage can result in seri-
ous consequences, and their replacement can be complex. The
reduced fuel consumption and extended service life provided
bymicrotextured piston rings offer justification for their higher
manufacturing costs, enhancing their viability for industrial
deployment.

5.3. Gears

In response to the escalating need for mechanical systems
characterized by elevated gear transmission density (a high
torque-to-volume ratio), durability, and efficient operation of
gear pairs, there is an imperative to augment the tribological
performance at the gear-tooth interface. Such improvements
are essential for preventing surface failures and minimizing
vibrations. Given the pronounced variability in operating
conditions, the likelihood of mixed or boundary lubrication
between contacting surfaces in gear pairs increases, result-
ing in elevated frictional forces at the tooth contact points.
Consequently, the reduction of inter-tooth friction emerges as
a pivotal objective, with the application of microtextures on
gear surfaces emerging as a highly effective method to achieve
this goal.

Given the position and dimensions of the contact area on
the tooth surface significantly affect transmission efficiency
during the meshing process, it is essential to assess the real-
time influence of surface topography on the gear’s dynamic
performance. Particular attention must be paid to the role of
microtextures in minimizing drag on the tooth surface. Li
et al [51] utilized a double-disk tester to examine the fric-
tion characteristics of laser-textured surfaces (figure 17(a)).
They incorporated the time-varying friction characteristics of
the tooth surface into the gear dynamics model, providing
deeper insights into the relationship between surface topo-
graphy and the dynamic behavior of gears. Their research
demonstrated that the friction force during gear meshing is
significantly influenced by the surface texturing. Furthermore,
an important area of research in friction reduction techno-
logy of microtextured gear tooth surfaces involves exploring
the influence of microtextures on the formation and behavior
of the lubricating oil film during meshing. Zhao et al [285]
utilized a precise three-dimensional elastohydrodynamic lub-
rication model to obtain deterministic solutions for predict-
ing oil film pressure, oil film thickness, and friction coeffi-
cients for various microtextured tooth surfaces. Additionally,
friction and wear tests showed that the microtexture of the
tooth surface can increase local film thickness, thereby enhan-
cing lubrication performance. By integrating CFD simulations
with friction and wear experiments, Chang et al [286] indicate
that the maximum and minimum damage ARs of gears with
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groove patterns (figure 17(b)) are 84.8% and 84.9% lower,
respectively, than those of gears without groove patterns.
The anti-adhesion capability of gears with groove patterns is
also significantly improved. Furthermore, the average friction
coefficient of gears with groove patterns is notably reduced,
effectively lowering dynamic pressure during transmission, as
well as reducing lubrication-related friction within the gear
system.

Microtextured gear tooth surfaces have demonstrated sig-
nificant potential for reducing friction during transmission.
However, the high contact pressure between the tooth surfaces,
due to their strong load-bearing characteristics, can lead to
increased contact pressure as the contact area is reduced. This
can accelerate surface wear and heighten the risk of microtex-
ture degradation. Therefore, optimizingmicrotexture paramet-
ers is crucial to minimize the friction coefficient while improv-
ing the wear resistance of the tooth surface. Additionally, cur-
rent methods for processing microtextures on gear tooth sur-
faces are challenging and involve high production costs that
outweigh the benefits of microtexture friction reduction tech-
nology. This imbalance has impeded the industrial production
of microtextured gears in a conventional application environ-
ment. Nonetheless, the use of microtextures in high-precision
gears may represent a promising application area. To enable
broader adoption, it is essential to develop cost-effective sur-
face texturing techniques that support the mass production of
affordable components.

5.4. Cutting tool

Severe friction at the tool–chip interface can significantly
enhance surface wear on the cutting tool and shorten its
lifespan. To mitigate frictional losses effectively, a common
approach involves the application of cutting fluid between the
tool and the chip, as this facilitates a reduction in friction.
The lubrication effect of the cutting fluid often depends on
its penetrability. One of the most straightforward strategies
to optimize the penetrability of the cutting fluid at the
tool–chip interface is through the enhancement of the tool’s
microtexture.

During the turning process, significant cutting forces are
often generated, impacting the tool’s life. Improving the lub-
rication of the cutting fluid during the cutting process can be
achieved by incorporating microtextures on the rake face of
the cutting tool, thereby reducing cutting forces and enhancing
tool life (figure 18(a)). Arulkirubakaran et al [287] developed
microgroove textures on the rake face of tungsten carbide cut-
ting tools. They performed turning tests on Ti6Al4V alloy
and conducted numerical simulations to analyze temperat-
ure distribution, cutting forces, tool wear, and chip morpho-
logy using the Johnson–Cook model. Both experimental and
simulation results showed that microtextures oriented per-
pendicular to the chip flow direction significantly reduced
cutting forces and temperature, while also prolonging tool
life. Ge et al [53] investigated the influence of microtexture
dimensions on the lubrication efficiency of cutting fluids,

using microtextured YS8 tools with varying groove widths
in cutting experiments on H13 steel. Their results confirmed
that microtexture enhances the permeability of cutting fluid,
improves lubrication at the cutting interface, and significantly
reduces both cutting forces and tool wear. Notably, 50 µm
microgrooves provided optimal cutting performance in their
experiments. Minimum quantity lubrication (MQL) is an eco-
nomical and efficient lubrication method, widely used with
conventional cutting tools. Research into MQL’s application
to microtextured tools is ongoing. Singh et al [288] employed
a mixture of mustard oil and graphene as a MQL condition
to investigate the wear behavior of microtextured tools dur-
ing the turning of Ti6Al4V. The performance of microtextured
tools was evaluated by characterizing tool wear and surface
roughness. The results showed that MQL (graphene mixed in
mustard oil) exhibited superior outcomes, followed by MQL
(mustard oil only), and then dry conditions. The increase in
the shear angle (11%–30%) and the reduction in friction coef-
ficient (16%–39%) in the presence of graphene contributed
to the enhanced cutting performance of microtextured tools.
Musavi et al [289] studied the effect of microtexture orienta-
tion on tool wear and surface roughness under both MQL and
dry conditions. Their findings further demonstrated thatmicro-
textured tools significantly improve surface quality and reduce
tool wear.

In metal drilling processes, reducing sliding friction during
drilling can enhance machining performance by decreasing
cutting forces, improving edge stability, and enhancing surface
integrity [3]. Introducing microtextures on the drill surface
effectively improves friction conditions during the drilling
process. The design of the microtextures facilitates the unob-
structed flow of cutting fluid to the machining area, allowing it
to bypass the upward movement of chips along the groove sur-
face (figure 18(b)). Niketh and Samuel [292] designed micro-
textures on both sides of drill grooves and cutting edges,
demonstrating that microtextured drills reduced net thrust by
10%–12% under dry conditions, 15%–20% under wet con-
ditions, and 15%–19% with MQL. Additionally, Selvakumar
et al [290] explored the influence of various microtexture geo-
metries on drill performance by fabricating four distinct types
of microtextured drills. A comparative analysis between these
microtextured drills and non-textured counterparts revealed
that the microtextured designs exhibited superior perform-
ance. This improvement can be attributed to the enhanced lub-
rication effect provided by the microtexture, particularly in the
microdimple regions.

Broaching is extensively employed in the aerospace field
because of its high efficiency and capacity for handling sub-
stantial loads. However, heavy-duty cutting creates strong
extrusion and friction in the tool–chip contact area, resulting in
insufficient lubrication. To address this issue, Some research-
ers have also constructed microtextures on the broaching
tool surface to improve lubrication conditions (figure 18(c)).
Therefore, Ni et al [293] utilized laser processing tech-
niques to create three types of microtextures (including
dimple, stripe, and mesh) on the rake face of a turning tool
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Figure 18. Cutting tool. (a) Microtextures turning tool cutting mechanism and topography. (b) Microtextures drilling tool cutting
mechanism and topography. (c) Microtextures broaching tool cutting mechanism and topography. (d) SEM image of microtexture tool. (i)
and (ii) Microtextured drill. Reprinted from [290], © 2023 The Society of Manufacturing Engineers. Published by Elsevier Ltd All rights
reserved. (iii) and (iv) Microtextured turning tool. Reprinted from [291], Copyright © 2014 Elsevier B.V. All rights reserved.

to enhance cutting performance. Subsequently, copper was
deposited onto the microtextures using reciprocating rotary
friction to enhance the wettability and heat dissipation cap-
ability of the turning tool. Experimental results demonstrated
that, compared to non-textured cutting teeth, the copper-
covered striped textures reduced cutting forces by 14.6%,
and the cutting temperature decreased from 90.13 ◦C to
76.9 ◦C.

While some studies have demonstrated the excellent per-
formance of microtextured broaching tools, the majority of
research on microtextured tools has thus far concentrated on
microtextured drills and microtextured turning tools. Scholars
have also fabricated various samples of these two tools
(figure 18(d)). The proliferation of microtextured tools has
also diversified machining methods. Compared to other indus-
trial components, the complex geometry of tools increases
the difficulty of microtexture processing and requires high-
precision techniques to create microtextures with specific
shapes and minimal defects. These requirements result in
higher processing costs, which also limit the wider applic-
ation of microtextured tools. Under severe cutting condi-
tions, the microtextures on the tool surface may contribute
to derivative cutting, leading to chip accumulation within the

textures and thereby reducing their friction reduction per-
formance. Furthermore, when machining difficult-to-process
materials such as titanium alloys, effective heat dissipa-
tion becomes problematic, resulting in high temperatures at
the tooltip. This elevated temperature can cause the lubric-
ating oil film on the microtextured surface to deteriorate,
further diminishing the friction reduction effectiveness of
the microtextures and potentially leading to their wear and
blockage.

5.5. Artificial joints

With the continuous advancement of medical technology,
there is a significant increase in the demand for artificial
joints. However, artificial joints still face many challenges,
and their wear resistance is a key factor affecting the stabil-
ity of implanted joints [294], it determines whether artificial
joint transplantation can be successful [295]. Improving the
wear resistance of artificial joints has become one of the press-
ing challenges in the medical field. In recent years, various
materials have been employed in the fabrication of artificial
joints, such as CoCrMo alloy, Ti6Al4V [296], and ceramic

26



Int. J. Extrem. Manuf. 7 (2025) 022014 Topical Review

[297]materials with goodmechanical properties. Thesemater-
ials exhibit superior biocompatibility and mechanical proper-
ties compared to others, including corrosion resistance, wear
resistance, and low friction coefficients [298]. Experimental
results demonstrate that incorporating microtextures can fur-
ther enhance lubrication performance and reduce joint wear
[299].

In comparison to metal-on-polyethylene and ceramic-on-
polyethylene materials, ceramic-on-ceramic (CoC) compos-
ites demonstrate superior mechanical properties and are pro-
gressively being considered as a preferred base material for
artificial joint application. Roy et al [300] created circular
microtextures (figure 19(a)) on ceramic substrates to study
the frictional behavior of CoC hip prostheses through fric-
tion testing. The results indicated that both the diameter and
density of the joint socket significantly influenced the fric-
tional properties of the joint. Microtextures with diameters
of ϕ400 µm and density of 15% demonstrated a significant
enhancement in frictional performance, with a reduction in
friction by approximately 22% and a decrease in wear by
about 53%. In contrast to the ceramic materials utilized by
Roy and his colleagues, Ti6Al4V is extensively utilized in
biomedical implants due to its outstanding properties, includ-
ing corrosion resistance, high strength, and excellent chem-
ical stability. Pratap and Patra [301] created circular micro-
textures with different sectional shapes (micro flat-end tex-
tured surface, micro ball-end textured surface, micro-drill tex-
tured surface) on the surface of Ti-6Al-4 V. Among various
microdimple surfaces, the semi-spherical-ended microdimple
surface proved to be more suitable for hip joint prosthetics due
to its superior surface wettability and lower COF. Building on
this research, Pratap et al [302] subsequently developed three
additional microtexture (figure 19(b)) designs (parallel (PD),
staggered (SD), and microgrid (MG)) to examine the impact
of different microtexture geometries on the COF and surface
wear. The research results indicate that the MG with interme-
diate spacing and the highest depth exhibits the lowest COF.
The decrease in COF was verified as a result of the combined
effects of wettability and microhardness. In addition to the
study of basic microtexture geometries on Ti6Al4V, Cui et al
[303] simulated the graded texture of articular cartilage and its
unique lubrication mechanism (figure 19(c)). They prepared a
biomimetic bilayer coating on laser microtextured Ti6Al4V
alloy using LST, thermal oxidation, and ultraviolet radiation
techniques. The coating consisted of a TiO2 layer and a hydro-
gel layer (addition of zwitterionic polymer). When lubricated
in deionized water, the Ti6Al4V hydrogel-bearing interface
exhibits a lower COF (0.06) and improved wear resistance,
with the lowest measured COF (0.039) observed in phosphate-
buffered saline solution. CoCrMo alloy, another widely stud-
ied material for artificial joint substrates, has attracted signi-
ficant research interest. Han et al [304] overcame the limit-
ations associated with simple concave microtextures in Co–
Cr–Mo materials by utilizing LST to create various patterned
microtextures on the alloy’s surface (figure 19(d)). The pat-
terns included groove arrays, hexagonal arrays, and concentric
arrays. Friction experiments demonstrated that the concentric

circle structure exhibited the most advantageous tribological
properties. Under a 10 N loading condition, the COF and
weight loss of PEEK spheres with a 20% density in the
concentric circular microtexture sample (C-20) decreased by
49.22% and 52.3%, respectively, compared to non-textured
samples. Liu et al [54] explored the friction-reducing per-
formance of CoCrMo alloy artificial joints with specially
designed microtextures (figure 19(e)). The experimental res-
ults indicate a significant improvement in the frictional per-
formance of CoCrMo artificial knee joints with microtex-
tures. Among them, the lamellar-textured structure (STT-
3) exhibits the best frictional performance, with the lowest
COF.

Artificial joints incorporating microtextures exhibit
enhanced performance. However, their fabrication contin-
ues to face several challenges. Mainstream laser processing
technologies can produce burrs at the edges of microtextures.
Additionally, the laser processing method may lead to a trans-
ition in surface wettability from hydrophilic to hydrophobic
over time, which negatively impacts the friction reduction
performance of the microtextures. In contrast, micromachin-
ing technology is limited by the size and shape of the tool,
restricting its capacity to create highly complex or minuscule
microtextures. Moreover, the friction reduction efficacy of
artificial joints is influenced by various factors, such as the
rolling direction of the workpiece and the performance of the
lubricant. Therefore, it is crucial to customize the microtexture
of artificial joints and select suitable lubricants according to
specific operational requirements. Unlike other applications
of microtextures, the manufacturing cost of microtextures on
artificial joints is no longer a primary concern due to their high
market value and long service life. The focus has instead shif-
ted towards optimizing their functional performance, which
enhances the potential for widespread application of micro-
textured artificial joints.

5.6. Mechanical seals

Mechanical seals are dynamic sealing devices comprising a
pair of mating rings (rotor and stator), widely used in pumps
and compressors [305]. The sealing function primarily relies
on the liquid film generated between the mating rings through
high-speed rotation. However, the sharp increase in friction
and leakage under extreme conditions (high load, high tem-
perature, and high speed) can easily result in seal failure.
Using microtextures on mechanical seals can enhance load-
carrying capacity, fluid film stiffness, anti-seizer ability, and
wetting behavior. Additionally, microtextures can also reduce
wear, friction, leakage, and interface temperature [306]. In this
section, the use of microtexture in liquid-lubricated seals is
going to be discussed.

The application of microtexture technology in mechanical
seals has been the subject of extensive research over an exten-
ded period. Early studies primarily focused on the frictional
characteristics of microtextured mechanical seals. Yu et al
[55] demonstrated that the porous surface of a microtextured
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Figure 19. Artificial joints. (a) Hip joint friction mechanism and SEM images of the dimpled surface after tribology testing. (i) Image of
wear on the dimpled surface. (ii) Image of wear near the dimple after tribology test. Reprinted from [300], Copyright © 2014 Elsevier Ltd
and Techna Group S.r.l. All rights reserved. (b) Hip joint friction mechanism and optical microscopic image of wear pattern of different
microtextured artificial hip joints. (i) Image of SD. (ii) Image of MG. Reprinted from [302], © 2020 Elsevier Ltd All rights reserved. (c)
Schematic diagram of lubrication mechanisms of the unique lubrication mechanisms of articular cartilage. Reprinted from [303], © 2022
Elsevier Ltd and Techna Group S.r.l. All rights reserved. (d) Images and surface profiles of laser microtextured surface. (i) The overall
image of concentric circles microtextures. (ii) The local image of concentric circles microtextures. Reprinted from [304], © 2020 Elsevier
Ltd All rights reserved. (e) Schematic diagram of the microtexture effect on friction behaviors between CoCrMo artificial knee joint. (i)
Image of shark-skin microtextures. (ii) Image of stripy microtextures. (iii) Image of scaly microtextures. Reprinted from [54], © 2022
Elsevier Ltd All rights reserved.

mechanical seal (figure 20(a)) resulted in a lower temper-
ature rise, reduced frictional torque, and a decreased COF.
Additionally, the incorporation of microtextures significantly
enhanced the hydrodynamic pressure effect, thereby improv-
ing tribological performance between sealing surfaces and
extending the seal’s operational lifespan. As research on the
frictional properties of microtextured mechanical seals pro-
gressed, there has been a growing interest in utilizing numer-
ical simulations to predict frictional behavior and conduct-
ing theoretical investigations into sealing efficiency. Siripuram
and Stephens [307] employed numerical simulations to ana-
lyze the influence of fluid films generated by microtextures
of varying shapes on seal surface lubrication (figure 20(b)).
Their results indicated that the COF of the sealing sur-
face is affected by sectional dimensions, with both sec-
tional shape and size impacting the leakage rate. Furthermore,
they identified the optimal microtexture shape and size
parameters to minimize leakage. In contrast to Siripuram’s
approach, Brunetière and Tournerie [308] focused on veri-
fying the hydrodynamic lift enhancement mechanism intro-
duced by microtextures (figure 20(c)). Using the Reynolds
equation in conjunction with a mass-conservative cavitation
algorithm and a realistic rough contact model, they found that
microtextured seal surfaces generate higher loads, improv-
ing the tribological performance between sealing surfaces.
Adjemout et al [309] considered the effects of manufactur-
ing defects in microtextures when developing a hydrodynamic
lubrication model (figure 20(d)). Their numerical simulations

revealed a critical threshold for surface defects, beyond which
imperfections counteracted the beneficial effects of micro-
textures. They concluded that cavity shape control is essen-
tial for achieving effective friction reduction in microtex-
tured surfaces. Unlike other applications of microtextures,
the design of microtextured surfaces for mechanical seals
necessitates careful consideration of both frictional perform-
ance and leakage rate. Siripuram and Stephens [307] demon-
strated that microtexture significantly influences leakage rate.
Shi et al [310] further investigated the combined effects of
microgrooves and microcavities on the COF and leakage rate
(figure 20(e)). They identified optimal microtexture paramet-
ers, concluding that an inner groove radius at an angle of
α = 45◦ through the rotor ring reduces both COF and leakage
rate.

The application of microtextures in mechanical seals is
primarily intended to reduce friction and wear between metal
components, as excessive friction can lead to seal failure.
However, excessively large microtextures can also cause seal
leakage. Therefore, it is essential to determine the optimal size
for microtextures used in mechanical seals to achieve a bal-
ance between friction reduction and the risk of leakage. The
integration ofmicrotextures intomechanical seals often results
in rising manufacturing costs, which severely limits industrial
applications. Nevertheless, for large-scale industrial equip-
ment with demanding sealing requirements, microtexture fric-
tion reduction technology remains a viable and advantageous
option. Moreover, existing theoretical models that incorporate
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Figure 20. Mechanical seals. (a) Images of pocketed specimens and the test rig. Reprinted from [55], Copyright © 2002 Elsevier Science
B.V. All rights reserved. (b) Schematic diagram of microtexture on the sealing ring and sliding mechanism. (c) Sealing ring leakage
mechanism and microtexture schematic diagram. Reprinted from [308], Copyright © 2012 Elsevier Ltd All rights reserved. (d) Geometric
scheme of the model and configurations used to study the effects of boundary deformations. Reprinted from [309], © 2017 Elsevier Ltd All
rights reserved. (e) The physical picture of the microtexture sealing ring. (i) Rotor specimen. (ii) Rotor model. (iii) Image and profile of
surface texturing patterns. Reproduced from [310], with permission from Springer Nature.

microtexture friction reduction technology are often overly
idealized and frequently overlook the effects of machining
processes. As a result, some proposed microtexture designs
remain theoretical and have yet to be fully implemented in
practical applications.

6. Concluding remarks

6.1. Concluding remarks

Friction reduction technologies of surface texturing have been
demonstrated as an effective measure for reducing friction
and wear at contact interfaces. This review comprehensively
summarizes the latest advancements in the optimization, man-
ufacturing, and applications of microtextures. The primary
research focuses can be summarized as follows:

(1) The Reynolds equation is the most favored theoret-
ical model in numerical computations for lubrication on
microtextured surfaces. Integrating numerical optimiz-
ation methods with intelligent optimization algorithms
effectively avoids the time-consuming process of trial and

error in experiments. It is noteworthy that the validity of
the Reynolds equation should be assessed based on the
application environment and operating conditions before
utilization.

(2) The optimization of microtexture shapes is gradually
shifting from predefined geometries to intelligent self-
generated patterns, enabling the achievement of optimal
microtexture morphologies without relying on human
expertise. Generally, the optimal microtexture shape fea-
tures a larger convergence area and a smaller dispersion
area. The distribution of microtextures in the contact zone
shifts from fully microtextured to partially microtextured.
The optimized microtextured surface reduces the coef-
ficient of friction by more than 20%. However, achiev-
ing this performance may require careful consideration of
cost-effectiveness in practical applications.

(3) The synergistic interaction between microtextured
surfaces and advanced coatings regulates interfacial
micromechanical properties, promoting lubrication film
formation and enhancing coating durability. This combin-
ation further improves the friction-reducing performance
of the microtextures. Ion implantation, plasma processing,
and shot blasting effectively enhance the wear resistance
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and structural load-bearing capacity of microtextures,
and the frictional performance is moderately improved.
Additionally, the integration of microtexture with novel
liquid lubricants is an effective strategy for optimizing
tribological performance. This synergistic effect is not
only manifested in the storage and secondary lubrication
role of microtexture but also in the formation of lubricant
films, micro-bearing action, and self-repairing effects on
the microtextured surface.

(4) Under an applied magnetic field, magnetic nanofluids are
retained within the microtexture, enhancing lubrication
at the friction interface. However, the theoretical under-
standing of magnetic field-assisted technology remains
limited, particularly in terms of the infiltration behavior
of magnetic nanofluids in microtextured surfaces, which
requires further investigation. Ultrasonic vibrations can
enhance the average load-bearing capacity of microtex-
tured surfaces by expelling trapped lubricants and increas-
ing lubricating film thickness. Despite this, rare theoret-
ical research and experimental data, have hindered pro-
gress in this area, highlighting an urgent need for fur-
ther development. Within a specific temperature range,
increasing the temperature in the microtextured zone can
reduce lubricant viscosity, which in turn lowers shear
stress within the lubrication film, thereby reducing fric-
tion. Precise temperature control in the microtextured
region is crucial for maintaining optimal friction reduction
performance.

(5) We have extensively discussed various microtexture sur-
face technologies, including laser processing, chemical
etching, abrasive jet machining, micro-grinding machin-
ing, diamond cutting, 3D printing, and micro-knurling.
Each technology has its unique advantages and faces spe-
cific challenges. When selecting the appropriate micro-
texture method, multiple factors must be considered,
including the desired microtexture characteristics, mater-
ial compatibility, and cost-effectiveness of the process.
Additionally, we have evaluated the potential of each tech-
nology to meet specific industrial needs based on the
material properties and operational environments of dif-
ferent industries, ensuring the most suitable technological
approach is chosen.

(6) Microtextured surfaces have shown considerable success
in reducing friction and wear across various applications.
However, due to the high cost of manufacturing technolo-
gies and the distinct requirements of different operational
environments, large-scale industrial production of cer-
tain microtextured applications remains challenging. The
effect of surface microtextures on tribological properties is
heavily influenced by contact conditions and lubrication
states. To minimize friction, different types of microtex-
tures must be applied to specific regions of a component,
based on factors such as speed, normal load, temperature,
and lubricant supply conditions.

6.2. Challenges and perspectives

Despite the vast research progress made for microtextured
surface-mediated friction reduction technology over the past
few decades, many challenges remain that need to be
addressed, such as limited operational range, instability in fric-
tion reduction, and inadequate load-bearing capacity (figure
21(c)). To transition microtexture from laboratory exploration
to practical application, further investigation into the follow-
ing research directions is necessary.

(1) Limited operational range. In specific operational condi-
tions, fixed-shape microtexture exhibits favorable tribolo-
gical performance. However, in friction motion, both the
load and velocity are often subject to continuous vari-
ations. For instance, load and velocity can experience
rapid fluctuations when traversing bumps or negotiat-
ing turns in automotive suspension systems, as well as
during the start-up and acceleration processes of turbine
engines. The microtexture is limited by its structure, so it
is difficult to adapt to the changing operating conditions,
once beyond the applicable range of operating conditions,
adverse effects may be introduced. ML techniques can be
employed to establish a mapping relationship between the
geometric characteristics of microtextures and the applic-
able operating condition range (figure 21(a)). Thereby
enabling the automated generation of microtexture shapes
with broad applicability.

(2) Instability in friction reduction. The microtextured sur-
faces experiencewear during prolonged friction processes,
resulting in changes to structural parameters (such as depth
and width). This subsequently increases fluctuations in the
friction coefficient, negatively impacting the stable oper-
ation of mechanical systems. The integration of smart
materials (such as shape memory alloys) with real-time
monitoring and feedback control technologies enables
the dynamic adjustment of microtexture morphology dur-
ing the wear process. This approach maintains optimal
structural parameters and effectively stabilizes friction-
reduction performance.

(3) Inadequate load-bearing capacity. Components of large-
scale machinery, such as aircraft and heavy ships, are
subjected to exceptionally high loads. However, under
high-speed, high-load, or extreme operating conditions,
it becomes difficult to form and maintain a stable oil
film on the microtextured surface over extended peri-
ods. Additionally, suboptimal microstructure design may
lead to oil film rupture and reduced load-bearing capa-
city. The intelligent response system, assisted by energy
fields (figure 21(b)), can adjust liquid flow behavior at the
lubrication interface, thereby increasing oil film thickness
and improving load-bearing capacity. This system enables
adaptive friction reduction of microtextures under com-
plex and variable conditions.
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Figure 21. Advanced design strategies for microtextured surfaces based on the joint effort of artificial intelligence and external multi-energy
fields, addressing the most challenges in operation range, friction stability, and load-bearing capacity. (a) Extraction of microtexture features
and operating condition parameters. (b) Artificial intelligence optimizes feature parameters to drive external energy field modulation of
microtexture structure and lubricant properties. (c) The range of operating conditions, friction stability, and load-bearing capacity of the
microtextured surface.
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[250] Stȩpień P 2011 Deterministic and stochastic components of
regular surface texture generated by a special grinding
process Wear 271 514–8

[251] Xie J, Luo M J, He J L, Liu X R and Tan T W 2012
Micro-grinding of micro-groove array on tool rake surface
for dry cutting of titanium alloy Int. J. Precis. Eng. Manuf.
13 1845–52

[252] Liu H Z, Yan Y D, Cui J W, Geng Y Q, Sun T, Luo X C and
Zong W J 2024 Recent advances in design and preparation
of micro diamond cutting tools Int. J. Extrem. Manuf.
6 062008

[253] Yan J W, Oowada T, Zhou T F and Kuriyagawa T 2009
Precision machining of microstructures on

electroless-plated NiP surface for molding glass
components J. Mater. Process. Technol. 209 4802–8

[254] Zou L, Huang Y, Zhou M and Duan L 2017 Investigation on
diamond tool wear in ultrasonic vibration-assisted turning
die steels Mater. Manuf. Process. 32 1505–11

[255] Yin X M, Li X, Liu Y H, Geng D X and Zhang D Y 2023
Surface integrity and fatigue life of Inconel 718 by
ultrasonic peening milling J. Mater. Res. Technol.
22 1392–409

[256] Li Z W, Zhang J F, Zheng Z P, Feng P F, Yu D W and
Wang J J 2024 Elliptical vibration chiseling: a novel
process for texturing ultra-high-aspect-ratio
microstructures on the metallic surface Int. J. Extrem.
Manuf. 6 025102

[257] Zhang J J, Zhang J G, Rosenkranz A, Zhao X L and
Song Y L 2018 Surface textures fabricated by laser surface
texturing and diamond cutting–influence of texture
depth on friction and wear Adv. Eng. Mater.
20 1700995

[258] Du H H, Jiang M N, Wang Z K, Zhu Z W and To S 2023
Generating micro/nanostructures on magnesium alloy
surface using ultraprecision diamond surface texturing
process J. Magnesium Alloys 11 1472–83

[259] Wang J J, Liao W H and Guo P 2020 Modulated ultrasonic
elliptical vibration cutting for ductile-regime texturing of
brittle materials with 2-D combined resonant and
non-resonant vibrations Int. J. Mech. Sci. 170 105347

[260] Zhai W Z, Zhao Y J, Zhou R H, Lu W L, Zhai W C, Liu X J,
Zhou L P and Chang S P 2022 Additively manufactured
(Fe, Ni)Al-reinforced nickel aluminum bronze with
nearly-isotropic mechanical properties in build and
transverse directions Mater. Charact. 184 111706

[261] Chivate A and Zhou C 2024 Additive manufacturing of
micropatterned functional surfaces: a review Int. J.
Extrem. Manuf. 6 042004

[262] Yang K, Ma H R, Wang L F, Cao Z Z and Zhang C L 2021
Analysis of self-regulating tribological functions of the
MgAl microchannels prepared in the Ti alloys Tribol. Int.
154 106717
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