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Abstract
As one of the fundamental tasks in computer graphics and image processing, image stitching aims to combine multiple images
with overlapping regions to generate a high-quality naturalness panorama. Most deep learning based image stitching methods
suffer from unsatisfactory performance, because they neglect the cooperation relationship and complementary information
between reference image and target image. To address these issues, we propose a progressive alignment and interwoven
composition network (PAIC-Net) to produce satisfactory panorama images, which learns the cooperation relationship by
a progressive homography alignment module and captures the complementary information by an interwoven image com-
position module. Specifically, a progressive homography alignment module is presented to align the input images, which
progressively warps the reference and target images by focusing more on the combination of self-features and cooperation
features. Then, an interwoven image composition module is presented to seamlessly fuse aligned image pairs, where the
complementary information of one-view is captured to guide another-view in an interweaved way. Finally, an alignment
loss and a composition loss are introduced to reduce alignment distortions and enhance seam consistency of the final image
stitching results. Experimental results on benchmark datasets demonstrate that PAIC-Net outperforms state-of-the-art image
stitching methods both quantitatively and qualitatively.

Keywords Image stitching · Deep learning · Progressive homography Alignment · Interwoven image composition

Introduction

Image stitching is an extremely hot topic in the field of mul-
timedia display technology and computer graphics, which
aims to generate a high-quality wide field panorama images
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from multiple images. This technology has played an essen-
tial role in various applications nowadays, such as immersive
communication [1, 2], remote sensing [3], virtual reality and
augmented reality [4]. However, the inconsistencies of the
overlapping regions between reference and target images
may cause obvious alignment distortions and seam artifacts.
Therefore, how to achieve natural panorama image fromwide
field is a challenging task.

At present, traditional image stitching methods include
global homography methods and local warping methods [5].
Global homographymethods tend tomatch complicated geo-
metric features and estimate global homography relationship,
such as Autostitch [6] and dual-homography [7]. However,
when the image scene is not coplanar or contains more than
one depth, these global homography methods may intro-
duce serious structural distortions in the overlapping regions.
To improve stitching performance for the cases with par-
allax, local warping methods divide the image pairs into
uniform cells and construct local parametric warping con-
straints, including as-projective-as-possible (APAP) warps
[8] and robust elastic warping [9]. These methods focus on
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reducing the incorrect alignment in the overlapping regions.
Unfortunately, they are likely to cause the local inconsistent,
such as stretched curves and non-uniformly planes.

Due to the strong representation ability and flexible struc-
ture of convolution neural network (CNN), some deep CNN-
based image stitching methods [10–14] have achieved SOTA
performance recently. In general, deep CNN-based image
stitching methods utilize a deep homography to align images
and then compose aligned images to produce panorama
[15–17]. For instances, some CNN-based deep homography
estimation networks [18, 19] were applied to warp reference
and target images for image stitching, while in [20, 21], some
CNN-based image composition networks were designed to
fuse aligned image pairs to generate panorama by learning
the edge information. These methods can effectively process
the low-texture scenes and unnatural cases. Nevertheless, the
shortcomings of existing deep CNN-based image stitching
methods are two folds: (1) For image alignment stage, some
methods only utilize the information in reference image or
target image itself and do not consider the cooperation rela-
tionship between reference image and target image, which
introduces alignment distortions when handling the scenes
with different parallax; (2) For image composition stage,
existing methods usually adopt a simple deep CNN compo-
sition strategy to fuse aligned image pairs, which ignores the
complementary information between aligned image pairs,
resulting in unsatisfying panorama image with obvious seam
artifacts.

To overcome the above-mentioned drawbacks, we present
a progressive alignment and interwoven composition net-
work (PAIC-Net) for image stitching, which can reduce
alignment distortions and eliminate seamartifacts effectively.
The major contributions of the proposed PAIC-Net are sum-
marized as follows.

1. To align the input images and prevent alignment inconsis-
tency, a progressive homography alignment sub-network
is presented to progressively warp the reference and target
images by leveraging the self-features of image itself and
cooperation features between image pairs.

2. In order to fuse aligned image pairs and reduce seam
artifacts, an interwoven image composition sub-network
is proposed to integrate the complementary information
between two aligned image pairs. The interwoven image
composition sub-network is composed of four interwoven
swin transformer modules in an interweaved way.

3. The proposed PAIC-Net significantly exceeds SOTA
methods in two image stitching quality metrics on vari-
ous datasets, which verifies the effectiveness of proposed
PAIC-Net.

The organizational architecture of the paper is as fol-
lows. “Related work” section summarizes the related work

of traditional image stitching methods, deep learning-based
image stitching methods, and vision transformer. “Proposed
method” section introduces a detailed discussion of the
PAIC-Net. In “Experiments” section, qualitative and quanti-
tative comparisons are presented, and the ablation studies
are performed in details. The limitation and future work
is introduced in “Limitations and future work” section and
“Conclusion” section remarks the conclusions of the paper.

Related work

Traditional image stitchingmethods

Image stitching has been extremely popular in the past
decades, with approaches that are divided into global homog-
raphy methods and local warping methods. As a representa-
tive work, Autostitch technology [6] used feature matching,
homography estimation, and multi-band blending to stitch
multiple images,which enabledusers to synthesize panorama
images without any stitching foundation. In addition, Gao
et al. [7] introduced a dual-homography estimation module
to construct seamless image panoramas. However, global
homography methods usually perform global geometric
deformation on images, which may cause misalignment arti-
facts or local ghosting. To address these issues, some local
warping methods have been designed to promote the image
stitching performance. For instance, a smoothly varying
affine stitching method [22] was presented to handle large
parallax. Zaragoza et al. [8] designed a moving direct lin-
ear transformation framework to tweak the APAP warps.
Inspired by the APAP method, Lin et al. [23] combined the
local homography and global similarity transformations for
warping and fusing image pairs.

In order to obtain good alignment and minimal local
distortions simultaneously, Chen et al. [24] used a global
similarity prior to constrain the similarity transformation.
In [9], a robust elastic warping method was presented to
generate natural-looking panoramas,where a global transfor-
mation was combined with global similarity transformation
to mitigate projective distortions. Meanwhile, a manifold
optimization energy function [25] was proposed to estimate
spatially varying homographies between image pairs to real-
ize image alignment. Additionally, Liao et al. [26] introduced
a parametric warp module and a mesh warp module for natu-
ral image stitching. Similarly, Zhang et al. [27] constructed a
layered warping constraint to stitch natural images with large
parallax. To mitigate ghosting and preserve structure, Xue et
al. [28] designed a linear structures to align images and a
seam measurement to compose image. In addition, Zhang
et al. [29] combined the rectangular boundaries to produce
panorama images without content artifacts.
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Deep image stitchingmethods

Recently, it has already been demonstrated that deep image
stitching methods show great advantages compared with
traditional methods. As the CNN has a good performance
in feature extraction and matching, some deep homogra-
phy estimation methods have been explored to align image
pairs. These methods are applied to find the global perspec-
tive transformation between reference and target images. For
example, Yan et al. [30] summarized multi-viewpoint image
stitching methods based on deep learning, and introduced
some evaluation metrics and experimental results to demon-
strate the performance of different image stitching methods.
In addition, Zhang et al. [31] introduced an unsupervised
trainingway to estimate a deep homography, which extracted
an outlier mask to choose reliable regions and constructed
a triplet loss for estimating homography. These methods are
applied to find the global perspective transformation between
reference and target images.

Following the success of deep homography alignment,
some deep image stitchingmethods are presented to generate
wide field-of-view panorama image. In [18], Nie et al. pre-
sented a multi-grid homography estimation method, where
a contextual correlation layer (CCL) was designed to utilize
the feature correlation between reference and target images.
In [20, 21], an edge-preserved deformation module and an
edge-guided composition module were proposed to produce
artifact-free stitching images, respectively. Considering the
case of small parallax, a homography estimation networkwas
designed to warp images and an image content loss func-
tion was designed to reduce shape distortions [32]. Inspired
the idea of image semantic information under perspective
geometry, Li et al. [10] designed some local transforma-
tion models to constrain matched regions, which promoted
accurate image alignment. Different from supervised net-
works, an unsupervised deep image stitching method [11]
was first introduced to combine images with few features or
low resolution. Similarity, a parallax-tolerant unsupervised
deep image stitching method [33] was designed to handle
large-parallax cases,which performed a robustwarp tomodel
the image registration. In order to realize free-view image
stitching, Xie et al. [34] designed a fast lightweight image
reconstruction method, where a ShuffleNet was applied to
extract feature maps and an optimized loss was utilized to
reduce content distortions. In [35], a panoramic image stitch-
ing method based on deep CNN was presented and a novel
panoramic image generation dataset was introduced to eval-
uate the image stitching performance.

Vision transformer

Recent years, transformer has been applied in the field of
computer vision community successfully, because of the

strong ability of learning the correlation between two pix-
els that are far apart. Numerous of vision transformer-based
models have achieved competitive performance in numerous
vision tasks, such as object detection, image segmentation,
pose estimation, visual recognition, and classification [36,
37].

One of the early attempts of exploring transformer in the
vision task is the object detection [38]. Similarity, Zheng et al.
[39] designed an image semantic segmentation transformer
module by treating the image segmentation as a prediction
task. In addition, Gao et al. [40] designed a facial struc-
ture attention and a super-resolution transformer module to
improve the structure restoration of face image. In [41],
a contextual vision transformer network was presented for
visual recognition. Furthermore, Patrick et al. [42] introduced
a high-resolution image synthesis method based on vision
transformer, where the transformers were used to model the
context vocabulary in high-resolution image. Li et al. [43]
designed a convolution based vision transformer method for
infrared and visible image fusion.

Proposedmethod

Overview

Existing image stitching methods usually only explore the
information of image pairs themselves for aligning and
composing image pairs, which ignores the cooperation rela-
tionship and complementary information between image
pairs, resulting in unsatisfying image stitching results. There-
fore, instead of building an independent image stitching
network for reference image and target image respectively,
it is necessary to leverage the cooperation features and com-
plementary features between image pairs to improve image
stitching performance. Inspired by this, we present a Pro-
gressive Alignment and Interwoven Composition network
(PAIC-Net) for image stitching, which includes progressive
homography alignment, interwoven image composition, an
alignment loss and a composition loss. Figure 1 shows the
overview architecture of the PAIC-Net.

Given a reference image and a target image with overlap-
ping regions, the proposed PAIC-Net can output a stitched
panorama image with a wide-angle view. Firstly, a pro-
gressive homography alignment sub-network is presented to
warp the overlapping regions between input image pairs and
prevent alignment inconsistency, where a cross feature coop-
eration module (CFCM) is designed to obtain the refined
cross features for estimating deep homography. Then, an
interwoven image composition sub-network is designed to
combine aligned images, which merges the complementary
information between two aligned views by interwoven swin
transformer module (ISTM). Finally, an alignment loss is
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Fig. 1 Overview of the proposed PAIC-Net

employed to reduce the geometric distortions and a compo-
sition loss is applied to reduce seam artifacts. Next, we will
provide a detailed analysis of the proposed PAIC-Net.

Progressive homography alignment

At present, how to align the overlapping regions between
input images accurately by estimating a deep homography is
one of the challenges for image stitching. Existing image
stitching methods [12, 32] usually only use the informa-
tion of image pairs themselves to obtain the deep features
for estimating homography, which may lead to image mis-
alignment. To filter out the misleading information when
extracting multi-level cross features of reference and target
images, we propose the progressive homography alignment
sub-network to align image pairs progressively by consider-
ing that the cooperation relationship between reference and
target images. As shown in Fig. 1, the progressive homog-
raphy alignment sub-network includes the reference and
target streams, each stream contains three stages, and each
stage mainly consists of a convolutional layers, a CFCM, a
contextual correlation layer (CCL) [18], and a spatial trans-
former module (Warp) [44]. For each stage in the progressive
homography alignment sub-network, the CCL employs the
refined cross features in the previous CFCM as a guidance
to learn the multi-level cross information of reference and
target images fed into the current stage.

As the key component of the proposedprogressive homog-
raphy alignment sub-network, the CFCM will be introduced
in this section. Since the deep spatial and channel features of
one view are usually somewhat essential for another view to
learn useful information in estimating homography, a CFCM
is designed to obtain refined cross features of reference and
target images for homography estimation progressively. In

each CFCM, the channel-wise attention of self-features and
spatial-wise attention of cooperation features are utilized
simultaneously to generate refined cross features, where the
cooperation features are viewed as a guidance to recalibrate
the image self-features.

The details of the CFCM are shown in the bottom-left
of Fig. 1. Specifically, a residual dense block (RDB) [45] is
first applied to extract the hierarchical features of reference
and target images. Then, to preserve the image pairs them-
selves information, the channel-wise attention of image itself
is element-wise multiplied with the hierarchical features
to obtain the self-features of reference and target images,
respectively. In addition, to capture the cooperation relation-
ship between reference and target images, the concatenated
features are element-wise multiplied with the spatial-wise
attention of concatenated features to obtain the cooperation
features. Finally, the cooperation features of two views are
element-wise summed with the self-features of respective
view to obtain the refined cross features of reference and
target images, respectively. The channel-wise attention is
obtained by a global average pooling layer followed by two
convolution layers and a sigmoid function, and the spatial-
wise attention is obtained by two convolution layers and a
sigmoid function. The refined cross features FR

out and FT
out

of reference and target images are expressed as follows.

FR
out = FCR ⊕ FS

FT
out = FCT ⊕ FS

(1)

with

⎧
⎪⎨

⎪⎩

FCR = RDB(FR
in) ⊗ MR

FCT = RDB(FT
in) ⊗ MT

FS = FO ⊗ MO

(2)

123



Complex & Intelligent Systems            (2025) 11:90 Page 5 of 14    90 

where FCR and FCT denote reference image self-feature and
target image self-feature, FS denotes the cooperation fea-
tures, FR

in and FT
in denote input reference image feature and

input target image feature. FO is the concatenated features,
MR and MT denote reference image channel-wise attention
and target image channel-wise attention, MO is the spatial-
wise attention of concatenated features, RDB(·) represents
the residual dense block, ⊕ denotes element-wise summa-
tion, and ⊗ denotes element-wise multiplication. After that,
the refined cross features obtained by each CFCM are pro-
gressively fed into a CCL to generate the corresponding
progressive deep homography, which is further applied to
warp the input images into aligned images by a spatial trans-
former module.

Interwoven image composition

After aligning the input image pairs, the aligned image
pairs should be fused into a naturalness panorama image.
On the one hand, since the overlapping regions in aligned
images should be the same, the features in the overlapping
regions need to be fused to show the common salient content.
On the other hand, the non-overlapping regions in aligned
images are different from each other, the features in the
non-overlapping regions need to be preserved to emphasize
their respective content. Existing swin transformer networks
[46] utilize the shifted windows multi-head self-attention to
capture the global important features of image pairs them-
selves, but ignore the complementary information between
reference and target images. Thus, an interwoven swin trans-
former fusion sub-network is proposed to fuse the aligned
image pairs into a panorama image. Specially, instead of
independently integrating the features of aligned image pairs
which ignore the connections of aligned pairs [47], an inter-
action guidance way with an attention interaction between
aligned images can facilitate the complementary integration
of global and local features from overlapping regions and
forcing the retention of the original content and structure
from non-overlapping regions.

As shown in Fig. 1, an interwoven swin transformer fusion
sub-network is devised to effectively integrate the common
global features and respective local features, which con-
sists of two convolutional layers, four successive ISTMs,
a concatenation layer, and a reconstruction layer. Specifi-
cally, four successive ISTMs aim to assist the fusion network
to pay attention to the global features and local comple-
mentary information. More importantly, in each ISTM, an
attention interwoven block (AIB) is designed between classic
swin transformer to further capture the local complementary
information between reference and target images. Since the
network architectures of reference and target branches are
symmetric, the details of AIB in the target image branch will
be introduced as an example in the followings.

Attention Interwoven Block (AIB)

Maxpool Upsample

Avgpool Upsample

Conv

Conv

Conv Conv Conv

Conv

Sigmoid

Concat

AR
inF

AT
inF

MT
outF

Fig. 2 The details of the attention interwoven block (AIB)

As shown in Fig. 2, for the aligned target image branch, the
max-pooling and avg-pooling are first applied to the aligned
reference features, which preserve the global important fea-
tures and local detailed features simultaneously. Afterwards,
the up-sampled features are fed into convolution layers
separately and contacted together. Then, the concatenation
features are sent into a convolution layer and a sigmoid func-
tion to generate the weighting map, which is further applied
to provide complementary information to refine the aligned
target features via the element-wise multiplication. Finally,
the original aligned target features followed by three convo-
lution layers are element-wise summation with the refined
aligned target features. Specially, the formulas are defined as
follows.

HR
m = conv(up(max(F AR

in )))

HR
a = conv(up(avg(F AR

in )))

WR = σ(conv(concat(HR
m , HR

a )))

HT = conv(conv(conv(F AT
in )))

FMT
out = HT ⊕ WR ⊗ conv(F AT

in )

(3)

where FMT
out is the output interwoven features of AIB, F AR

in
and F AT

in are the input aligned reference image feature and
input aligned target image feature, HR

m and HR
a are the

max-pooling features and avg-pooling features of aligned ref-
erence image,WR is the weighting map, HT is the enhanced
feature map of aligned target image, σ is sigmoid function.

Following the ISTMs, in order to preserve original content
and structure of non-overlapping regions between aligned
images, the interwoven features aggregated by each ISTM
of reference and target branches are first added to generate
the final features, respectively. Then, the final features of
reference and target images are concatenated in the channel
dimension to obtain the fused deep features. Finally, a recon-
struction layer [48] is applied to generate the final stitched
image I F , which can be formulated as:

I F = Res(conv(concat(FR
A , FT

A ))) (4)

123



   90 Page 6 of 14 Complex & Intelligent Systems            (2025) 11:90 

with

{
FR
A = ∑K

k−1 F
R
Ik

FT
A = ∑K

k−1 F
T
Ik

(5)

where FR
A and FT

A are the final features of reference and
target images, FR

Ik and FT
Ik denote the interwoven features

of reference and target image, Res(·) is the reconstruction
layer, and K is the number of ISTM.

Loss function

In this work, the proposed PAIC-Net aims to obtain a nat-
uralness panorama by aligning and fusing the input image
pairs. Therefore, an alignment loss and a composition loss
are introduced to reduce alignment distortions and fusion
artifacts.

Alignment loss To realize accurate alignment between ref-
erence and target images, an alignment loss is employed to
improve the performance of image stitching. Specifically, we
leverage the L2-norm to constrain the overlapping regions
between reference and target images to be consistent at pixel
level. The alignment loss LA is defined as:

L A = ‖I R × �(I X , H) − �(I T , H)‖2
+ ‖I T × �(I Y , H−1) − �(I R, H−1)‖2

(6)

where I R and I T are the input reference and target images,
�(·, ·) is the warping operation that is realized by spatial
transformer network, I X and I Y are the all-one matrix with
the same resolution as I R and I T , H denotes the estimated
progressive homography matrix, and ‖ · ‖2 denotes the L2-
norm.

Composition loss Most image stitching methods only con-
sider the pixel consistency during image alignment but ignore
the structure and texture consistency during the image com-
position. In order to align image pairs accurately and prevent
the seam distortions of the overlapping regions simultane-
ously, a composition loss is designed to improve the seam
naturalness, which includes a structure loss and a texture
loss. More specifically, to force the stitched image to pre-
serve the structure information, a structure loss is utilized to
the measure the structural similarity between stitched image
and input image pairs. Meanwhile, a seamless stitched image
should have similar texture details to the input image pairs,
so a texture loss is utilized to reduce texture details changes.
The composition loss LC is defined as:

LC = Lstru + Ltext (7)

with

{
Lstru = (1 − ssim(OF , OAR)) + (1 − ssim(OF , OAT ))

Ltext = 1
MN ‖|∇OF | − max(|∇OAR |, |∇OAT |)‖1

(8)

where Lstru and Ltext are the structure loss and the texture
loss, OAR and OAT are image patches extracted at a pixel
local O from aligned reference and target images, OF is the
image patch extracted from the final stitched image at same
location O . M and N represent the horizontal and vertical
directions, ssim(·, ·) denotes structural similarity operation,
|·| and ‖·‖1 are absolute operator and the L1-norm,� denotes
the Sobel gradient operation, andmax(·) is the element-wise
maximum selection.

Finally, we sum the alignment loss L A and composition
loss LC to obtain the final object function, which is derived
as follows.

Ltotal = λ1L A + λ2LC (9)

where λ1 and λ2 are factors for the alignment loss and com-
position loss.

Experiments

In this section, the experimental setup of proposed frame-
work is introduced firstly. Then, we present the comparisons
with SOTAmethods to demonstrate the superior performance
of proposed PAIC-Net. The ablation studies are conducted
finally to estimate the contribution of different components.

Experimental setup

DatasetsWeevaluate the performance of the proposed PAIC-
Net on two datasets. Two public image stitching datasets, i.e.
UDIS-D dataset [11] and PTIS dataset [5], are utilized to
conduct the quantitative and qualitative experiments. The
UDIS-D dataset contains 10,440 image pairs for training
and 1106 image pairs for testing with different overlapping
rates. It includes variable scenarios, mainly originating from
moving videos. The PTIS dataset contains 35 challenging
image pairs with large parallax for testing. Most of PTIS
dataset were captured from real-world outdoor scenarios in
different resolution. In addition, some classic image stitching
instances from [8] are also compared to illustrate the robust
of the proposed PAIC-Net.

Implementation details To obtain a panorama image with
good visual effect, we train the proposed PAIC-Net in two
stages. In the first stage, we train the progressive homog-
raphy alignment module by the ADAM optimizer method
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[49] for up to 100 epochs, where an initial value of 0.0002
is applied to train the deep homography module. In the sec-
ond stage, we train the deep image stitching module with the
parameters of the progressive homography alignment mod-
ule being fixed. The training strategy is the same as that of
the progressive homography alignment module. The batch
size and momentum are set to 4 and 0.9, respectively. In
addition, some data preprocessing methods is applied on the
deep image stitching network, e.g., image denoising is used
to reduce the impact of noise on the image stitching results.
Meanwhile, some data augmentation methods are utilized to
enhance the illumination robustness of deep image stitching
network, such as adding random brightness transformation
into the training dataset. In our experiments, the size of image
patch OAR , OAT and OF in the composition loss is set as
13 × 13, the size of sliding window of SSIM is set as 8 × 8,
and the step size is set as 1. Specifically, when calculating
SSIM, image patches are first divided intomultiple blocks by
the sliding window to compare the SSIM of each two blocks.
After traversing the entire image patch, the average values of
all blocks are taken as the SSIM of image patches OAR and
OF , and the SSIM of image patches OAR and OF . The λ1
andλ2 are set to 0.3 and 0.3 after parameter adjustment. After
many simulations and experiments, these were the optimum
parameters. The implementation of the deep image stitch-
ing model is based on Pytorch and the deep model training
is conducted on a single GPU with NVIDIA GeForce RTX
2080Ti.

Evaluation metrics For quantitative evaluations of the deep
image stitching, two commonly-usedmetrics, i.e. SSIMmet-
ric [50] and PSNR metric [51], are adopted in this section.
Specifically, the SSIM metric of the overlapping regions is
applied to measure the similarity between two image pairs.
The higher the SSIM metric is, the better the visual quality
achieves. Meanwhile, the PSNR metric of the overlapping
regions is also applied to evaluate the degree of image dis-
tortions during the stitching process. A higher PSNR metric
means a higher-quality panorama imagewith less distortions.
These evaluationmetrics are complementary and can provide
a comprehensive evaluation.

Compared with SOTAmethods

In this section,we compare the proposeddeep image stitching
networkwith other eight other SOTAmethods, i.e.,APAP [8],
adaptive as-natural-as-possible warp (AANAP) [23], natural
image stitching (NIS) [24], robust elastic warping (REW)
[9], deep homography estimation (DHE) [32], unsupervised
deep image stitching (UDIS) [11], and edge-preserved image
stitching (EPIS) [20], image stitching with manifold opti-
mization (ISMO) [25]. APAP [8], AANAP [23], NIS [24],
REW [9] and ISMO [25] are traditional methods, while DHE

[32], UDIS [11] and EPIS [20] are deep learning methods.
To obtain the results for fair comparison, we use the code
provided by the authors under the default parameters or the
figures published in the papers.

Qualitative comparison evaluation

To evaluate the performance of the proposed network, several
qualitative comparison results obtained by different image
stitching methods for visual comparison are presented in
Fig. 3. The top four images are selected from the UDIS-
D dataset while the middle four images are selected from
the PTIS dataset, and the last two image pairs from the clas-
sic image stitching dataset. These images are representative
and challenging test cases because the scenes contain a large
number objects and structures, which makes them complex.
Some of these scenes are captured at different shooting posi-
tionswith large parallax between reference and target images,
which can be utilized to evaluate the performance of image
alignment. In addition, some test images with differences
in brightness and color are chosen to estimate the perfor-
mance of image composition. For space limitations, only the
image stitching results of some representative scenes and the
challenges scenes are presented in this section. In addition,
similar to the training data, we also perform image denoising
preprocessing on the test image to eliminate the impact of
image noise on the image stitching results.

From Fig. 3, we can see that some classic image stitch-
ing methods, i.e. APAP [8] and AANAP [23] generate some
misalignment in the overlapping regions in most instances,
because these two methods only utilize local parametric
warps and ignore the global homography estimation. For
example, the pillar in the third row has obviousmisalignment
and the steel frame in the ninth row has ghosting in Fig. 3b,
c. In addition, NIS [24] and REW [9] obtain more natural
images by both considering the global and local deformation
warps, but they are incapable of aligning images with severe
occlusions. As one of the latest traditional image stitching
methods, ISMO [25] obtain a visually good image with less
shape distortions by introducing spatially varying manifold
homographies. However, it does not consider the appearance
difference which may be inconsistent in the overall intensity.

Compared with traditional methods, these two deep learn-
ing methods, i.e. DHE [32] and EPIS [20], show better
panorama with a few slight artifacts, but some edges dis-
continuities are appeared in the overlapping joints. For
instance, the leaves in the fourth row have some distorted
edges in Fig. 3f, h. Furthermore, the UDIS [11] shows bet-
ter stitched images with fewer parallax artifacts, but when
the parallax increases, the alignment performance would
be decreased. On the contrary, we can observe that the
proposed PAIC-Net provides naturalness images stitching
results without ghosting effects, especially for some scenes
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Fig. 3 Visual comparison of the image stitching quality between different image stitching methods. From left to right: a the input images, b APAP
[8], c AANAP [23], d NIS [24], e REW [9], f DHE [32], g UDIS [11], h EPIS [20], i ISMO [25], j the proposed method

with large parallax. This actually verifies the effectiveness
of the proposed progressive homography alignment which
progressively integrate self-features and cooperation features
and the proposed interwoven swin transformer fusion which
effectively fuses the local complementary information.Bene-
fiting from the combination of these two stages, the proposed
method obtains promising performance of stitching images.

Quantitative comparison evaluation

To further demonstrate the performance of proposed PAIC-
Net comprehensively, we also conduct quantitative evalu-
ation of different methods. Table 1 illustrates comparison
results in terms of SSIM and PSNR. As shown in Table 1,
it shows that the PAIC-Net outperforms the other image
stitching methods in the vast majority of cases. More specif-
ically, all traditional image stitching methods obtain lower
SSIM and PSNR results than the proposed method. It is
because these methods rely on the feature points extraction
and matching, where the error extraction and mismatch of
feature points affect homography estimation accuracy. For
instances, for the UDIS-D dataset, SSIM of PAIC-Net is
0.3175 higher than APAP [8], and its PSNR is 5.3504 higher
than APAP [8]. Similarly, for the PTIS dataset, SSIM of
PAIC-Net is 0.0132 higher than ISMO [25], and its PSNR is
0.9301 higher than ISMO [25].

Table 1 Quantitative comparison on the UDIS-D dataset and PTIS
dataset

Methods UDIS-D PTIS

SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑
APAP 0.5545 18.5968 0.4533 16.5894

AANAP 0.5032 20.4958 0.6752 18.4946

NIS 0.6883 18.0592 0.6101 21.1298

REW 0.7854 20.4938 0.765 22.489

DHE 0.7658 18.5839 0.6492 20.2277

UDIS 0.8653 23.6849 0.7659 21.7269

EPIS 0.7896 22.4872 0.711 20.5202

ISMO 0.7996 23.5081 0.7734 21.2809

PAIC-Net 0.872 23.9472 0.7866 22.211

Bold indicates the best performance

By comparison, two supervised image stitching methods
(i.e., DHE [32] and EPIS [20]) are obviously improved on
most test images in terms of SSIM and PSNR. However,
these two methods cannot achieve favorable and stable per-
formance due to the simple mapping relationship estimation.
For example, for the UDIS-D dataset, SSIM of PAIC-Net is
promoted by 0.1062 comparing with DHE [32] and 0.0824
comparing with EPIS [20]. Furthermore, UDIS [11] deliver
a slightly inferior performance to the proposed network. It
suffers from performance degradation, because the scenes
with large parallax to be reconstructed. For instances, for
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Table 2 Ablation studies on the influence of the CFCM in the progres-
sive homography alignment

Cases UDIS-D PTIS

SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑
w CFCM-V0 0.7085 17.6958 0.4321 15.889

w CFCM-V1 0.7849 18.795 0.6452 17.794

w CFCM-V3 0.872 23.9472 0.7866 22.211

w CFCM-V5 0.7232 21.596 0.5643 20.657

Bold indicates the best performance

the PTIS dataset, SSIM of PAIC-Net is 0.0207 higher than
UDIS [11], and its PSNR is 0.4841 higher than UDIS [11].
Benefiting from the proposed alignment and fusion modules,
the PAIC-Net can well handle these challenging images in
reducing artifacts and discontinuity.

Ablation studies

In this section,weperform the ablation studies on the network
components and loss function. Specifically, the effectiveness
of deep alignment stage and the deep composition stage are
tested firstly. Then, the alignment loss and composition loss
are validated in details.

Ablation study on the CFCM in the progressive homography
alignment

To verify the contribution of CFCM in the progressive
homography alignment network, the ablation studies are con-
ducted in this section. Specifically, we increase the numbers
of CFCMs and denote the deep network with M CFCMs as
CFCM-VM, where M ∈ {0, 1, 3, 5}. The evaluation exper-
iment results are shown in Table 2. From the Table 2, we
can see that the PAIC-Net outperforms the case without all
CFCMs (w CFCM-V0) in the quantitative comparison, i.e.
for the UDIS-D dataset, the SSIM of the proposed PAIC-
Net is 0.1635 higher than the case without CFCM, and its
PSNR is 6.2514 higher than the case without CFCM. This
implies the necessity of CFCM in the progressive homogra-
phy alignment. Meanwhile, it can be seen that the stitching
performance of PAIC-Net is improved with the increase of
CFCM, but when CFCM exceeds 3, the SSIM and PSNR of
PAIC-Net decrease. Therefore, we set M = 3 to achieve a
good model performance.

To facilitate comparison, Fig. 4 presents several panorama
images produced by the case without all CFCMs (w CFCM-
V0) and the proposed PAIC-Net (wCFCM-V3), respectively.
As shown in the Fig. 4c, the proposed image stitching
network can better align the foreground objects and the back-
ground reliably due to the accurate feature extraction ability
of CFCM.

Ablation study on the ISTM in the interwoven image
composition

The ablation studies of ISTM in the interwoven image com-
position are performed. To be specific, the numbers of ISTMs
are gradually increased and denote the deep model with K
ISTMs as ISTM-VK, where K ∈ {0, 2, 4, 6}. The evaluation
experiment results are shown in Table 3, we can observe that
the deep PAIC-Net achieves theworst resultswhen all ISTMs
are removed (w ISTM-V0). In addition, it can be seen that
the performance of PAIC-Net is improved with the increase
of ISTM, but we also notice that when ISTM exceeds 4, the
performance of PAIC-Net decreases. Therefore, we set K =
4 to obtain a good SSIM and PSNR metrics.

Moreover, we also conduct the comparative experiments
between AIB in the ISTM and commonly used spatial-
wise attention (w SA) [52] / channel-wise attention modules
[53] (w CA) in the ablation study. We use the classic swin
transformer [46] as a substitute for the interwoven swin trans-
former (w/oAIB). FromTable 4, we can observe that the case
without AIB gives the worst SSIM and PSNR metrics. This
indicates that the necessity of using AIB for image composi-
tion. Meanwhile, the case with spatial-wise attention and the
case with channel-wise attention can not effectively improv-
ing image stitching performance in terms of SSIM and PSNR
metrics.

Furthermore, we also provide some visual comparisons
in Fig. 5 to intuitively exhibit the advantages of the pro-
posed method in deep image composition. As one can see,
our fusion module (ISTM-V4) creates more natural-looking
stitching results. For instance, there is obvious color incon-
sistency and misalignment in the red and yellow boxes in
Fig. 5b, but the PAIC-Net provides high-quality stitched
image results without seam artifacts.

Ablation study on loss function

To understand the effectiveness of each loss in the total loss
function, we also conduct the ablation studies in this sec-
tion. The total loss function includes the alignment loss and
the composition loss. In the experiments, we remove one
loss function and evaluate the performances by keeping the
other loss function unchanged. The SSIM and PSNRmetrics
and qualitative comparisons are represented in Table 5 and
in Fig. 6. From Table 5, compared with the complete total
loss function, any of these loss functions removed would
lead to the performance degradation problem. In addition,
from the visual comparisons in Fig. 6, we observe that the
proposed method can reduce deformation distortions and
avoid seam artifacts in the panorama image in different image
dataset.
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Fig. 4 Qualitative comparison
results of the PAIC-Net
with/without CFCM. From first
to second: instances from the
UDIS-D dataset. From third to
fourth: instances from PTIS
dataset. a The input images, b
results without CFCM, c the
proposed method

Table 3 Ablation studies on the influence of the ISTMin the interwoven
image composition

Cases UDIS-D PTIS

SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑
w ISTM-V0 0.6743 20.471 0.6578 18.794

w ISTM-V2 0.7785 22.642 0.7256 20.684

w ISTM-V4 0.872 23.9472 0.7866 22.211

w ISTM-V6 0.7835 21.064 0.7559 20.456

Bold indicates the best performance

Table 4 Ablation studies on the influence of the AIB in the interwoven
swin transformer fusion

Cases UDIS-D PTIS

SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑
w/o AIB 0.7257 19.9842 0.6391 17.009

w SA 0.7491 21.345 0.7286 18.074

w CA 0.7932 21.653 0.7053 20.546

PAIC-Net 0.872 23.9472 0.7866 22.211

Bold indicates the best performance

Ablation study on different loss weights

Finally, we conduct the ablation experiments to evaluate the
stitching performance with different loss factors λ1 and λ2
in the Eq. (9). Figure 7 shows the SSIM metric of final loss
function with different factors. To be specific, λ1 is first set
as 0 to obtain the best λ2. From the Fig. 7a, the optimal SSIM
is obtained when λ2 is set to 0.3. Finally, λ2 is fixed as 0.3
to search for the best λ1. As illustrated in Fig. 7b, the best
SSIM metric is obtained when λ1 set to 0.3.

Computational complexity and discussions

To analyze the complexity of the PAIC-Net, the computa-
tional complexity of different image stitching methods is
compared and discussed. The processing environment has
a single GPU with NVIDIA GeForce RTX 2080Ti. Table 6
shows the computational complexity comparisons between
different image stitching methods on UDIS-D dataset and
PTIS dataset. Specifically, the running time of nine image
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Fig. 5 Qualitative comparison
results of the proposed method
with/without ISTM. From first
to second: instances from the
UDIS-D dataset. From third to
fourth: instances from PTIS
dataset. a The input images, b
results without ISTM, c the
proposed method

Table 5 Ablation study on the loss function

Cases UDIS-D PTIS

SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑
w/o alignment loss 0.5914 17.5829 0.5914 17.5829

w/o composition loss 0.7381 19.583 0.7381 19.583

PAIC-Net 0.872 23.9472 0.7866 22.211

Bold indicates the best performance

stitching methods are calculated, and the number of floating-
point operations (FLOPs) of four deep learning-based image
stitching methods is also compared. Compared with the tra-
ditional image stitching methods, the deep learning-based
methods have a significant improvement due to the GPU

acceleration strategy. However, compared with other deep
learning methods, the proposed method costs a little more
running time and FLOPs, because it requires to use the inter-
woven swin transformer based on self-attention to learn the
correspondence relationship between reference image and
target image. Despite this, the proposed method provides
higher-quality image stitching results both quantitatively and
qualitatively.

Limitations and future work

The proposed PAIC-Net obtains superior performance by
combining a progressive homography alignment module and
an interwoven swin transformer fusion module. However,
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Fig. 6 Qualitative comparison
results of the proposed method
with/without different loss. The
first instance from the UDIS-D
dataset, the second instance
from PTIS dataset, the third
instance from [8]. a The input
images, b results without
alignment loss, c results without
composition loss, d the
proposed method

Table 6 Computational
complexity between different
image stitching methods on the
UDIS-D dataset and PTIS
dataset

Methods UDIS-D PTIS Average time (s) Platform

Time (s) FLOPs (G) Time (s) FLOPs (G)

APAP 2.907 – 4.861 – 3.884 Matlab

AANAP 6.368 – 5.494 – 5.931 Matlab

NIS 12.863 – 18.321 – 15.592 Matlab

REW 9.63 – 12.348 – 10.989 Matlab

DHE 0.327 51.674 0.109 29.786 0.218 Pytorch

UDIS 0.657 152.897 0.233 127.435 0.445 TensorFlow

EPIS 0.456 135.456 0.162 103.652 0.309 TensorFlow

ISMO 10.796 – 6.854 – 8.825 Matlab

PAIC-Net 0.687 175.678 0.469 155.531 0.578 Pytorch

we also observe some limitations of the proposed method
in practical applications. Firstly, the proposed method uti-
lizes the interwoven swin transformer based on self-attention
to learn the correspondence relationship between reference
image and target image, which may introduce more run-
ning time to generate real panorama images. Secondly, the
proposed method assumes that the transformation between
reference image and target image is a global deep homog-
raphy, which may not suitable for casually captured image
pairs in actual scenes. For future work, we plan to inves-
tigate a lightweight image stitching network based on
knowledge distillation that can achieve a better balance
between running time and model size, and model perfor-
mance. In addition, we would like to estimate the local
deep homography to transform reference image and target
image.

Conclusion

This paper proposes a novel progressive alignment and
interwoven fusion network for image stitching. Firstly, a pro-
gressive homography alignment module is presented to align
images, which progressively warp the reference and target
images by leveraging the channel-wise attention of self-
features and spatial-wise attention of cooperation features.
Secondly, an interwoven swin transformer fusion module
is exploited to effectively fuse aligned image pairs, where
the complementary information is learned in an interweaved
way. Finally, an alignment loss and a composition loss are
applied to eliminate image alignment distortions and enhance
seam consistency. Experiment results demonstrate the supe-
riority of the proposed image stitching method outperforms
SOTA solutions.
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Fig. 7 SSIMmetric for the proposed method with different loss factors
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