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The paper shares the author’s perspectives on the role of explainable-AI in the evolving landscape of
AI-driven smart manufacturing decisions. First, critical perspectives on the reasons for the slow
adoption of explainable-AI in manufacturing are shared, leading to a discussion on its role and
relevance in inspiring scientific understanding and discoveries towards achieving complete
autonomy. Finally, to standardize explainability quantification, a new
Transparency–Cohesion–Comprehensibility (TCC) evaluation framework is proposed and
demonstrated.

Manufacturing processes are becoming increasingly reliant on AI for
enhanced quality, productivity, and overall performance. For the past
couple of decades, black-box AI models with near-zero feedback on their
decision-making rationale have been driving themajority ofmanufacturing
systems1. This is due to their superior capability tomodel intricate, complex,
non-linear input–output relationships. While there are no doubts about
their capabilities, the mistrust and suspicion surrounding inexplicable sys-
tems have significantly hindered or, at the very least, delayed thewidespread
adoption of AI in several manufacturing domains2.

Many existingAI-drivenmanufacturing processes and systems rely on
deep learning models due to their superior prediction accuracy3. However,
equally vital for high-stake decisions, especially for high-value products, is
the interpretability of AI-driven decision-making. The lack of transparency
and scientific understanding in these systems can lead to regulatory ethical
concerns, particularly in applications related to biomedical, nuclear, and
aerospace. Blindly trusting a black-box model jeopardizes the autonomy
and informed decision-making of experts, seriously limiting troubleshoot-
ing and improvement opportunities4. As a result, despite the current state of
AI’s technological maturity, manufacturers are still hesitant to entirely rely
on machines, preferring to retain human judgement.

The concept of Explainable AI (XAI) is becoming relevant in this
context. XAI refers to a set of techniques and approaches within the field of
AI that aim to make the decision-making processes and outcomes of AI
systems understandable and interpretable by both experts and non-experts.
The primary goal of XAI is to provide insights into why and howAImodels
arrive at specific decisions or predictions5.

As the manufacturing industry continues to evolve, embracing XAI
will be crucial to advanced innovation and ensuring the responsible and
effective adoption of AI technologies. This transition from Industry 4.0,
which had a technological focus, to Industry 5.0, emphasizing societal
impact, is driven by this high demand for transparency and trust6. Industry
5.0 represents a paradigm shift from the purely technology-driven
advancements of Industry 4.0 to a more human-centric approach, where

the focus is on the collaboration between humans and machines. This new
era emphasizes not only efficiency and productivity but also the societal and
ethical implications of technological integration. Transparency and trust are
essential in Industry 5.0 because they ensure that AI systems are not only
effective but also align with human values and ethical standards. Bymaking
AI decisions understandable and accountable, we can create a collaborative
environment where human expertise and AI capabilities complement each
other, leading to innovations that are both technically sound and socially
responsible. Following this global trend, regulatory bodies have now
prioritized extensive actionplans to address the explainability concerns. The
principles of openness, fairness and explainability of AI have been under-
pinned by the US Federal Trade Commission, the General Data Protection
Regulation of the European Union, and the UK AI Regulations 20237.

As we move towards a more interconnected world, where AI and
humans collaborate closely, the ability to comprehend and explain the
actions of AI models becomes essential. While efforts to create explainable
manufacturing systems are underway, numerous challenges, both explicit
and implicit, hinder their widespread adoption. Amongst those, one of the
most significant challenges is the standardized evaluation of explainability
within manufacturing systems. Current methodologies lack a unified
approach to evaluate the explainability of AImodels in terms of its key sub-
aspects like transparency, cohesion, and comprehensibility, leading to
inconsistent and fragmented adoption across the industry. Such incon-
sistencies not only limits the full integration of AI into existing manu-
facturing systems, but also increases the lack of trust, where stakeholders are
reluctant to embrace AI solutions due to perceived risks and uncertainties.

This perspective paper explores these issues, shedding light on often
overlookedobstacles in implementingXAI and exploring the road ahead for
its role and applicability in advancing next-generation manufacturing sys-
tems. The paper also shares the authors’ perspectives on the role of AI in
generating scientificunderstandingwithin themanufacturingdomain, from
aiding experts to autonomous discovery, and discusses the implications of
moving from weak AI to ultra-strong AI models. To this end, we also
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present an explainability evaluation framework, formalizing and adapting a
theory and governing rules, to determine the level of scientific under-
standing that an explainable smart manufacturing system can provide.

The key contributions of this paper are:
• Critical analysis of slow XAI adoption: provides insights into the rea-

sons for the slow adoption of XAI in manufacturing.
• Perspectives on XAI’s role in scientific understanding: discusses the

role and relevance of XAI in inspiring scientific understanding and
discoveries towards achieving complete autonomy in manufacturing
systems.

• A novel framework to evaluate explainability: identifies the challenges
and key aspects for the standardized evaluation of explainability in AI-
drivenmanufacturing systems and introduces a framework to address
these limitations.

Impact of technological maturity of AI in smart
manufacturing
The comprehensibility of AI-driven manufacturing is closely tied to the
technical maturity of AI technologies, classified into weak, strong, and
ultra-strong ML based on their comprehensibility and contribution to
scientific understanding8. Here the ‘strength’ of the algorithm is not
based on the prediction accuracy but on the comprehensibility and
contribution towards scientific understanding. Despite AI’s rapid pro-
gress, the adoption of advanced AI in smart manufacturing has been
relatively slow. Weak AI models are the traditional black-box models,
which may be accurate but are not explainable. Current state-of-the-art
XAI models, falling under strong AI, symbolically represent hypotheses
as mathematical expressions, allowing deeper AI decision under-
standing and integration with physics-based models. Ultra-strong AI is
an envisioned future technology where advancements in AI enable
autonomous domain exploration and knowledge acquisition without
human involvement.

Though every type of AI model can be expressed mathematically, the
nature of these expressions and their interpretability vary significantly,
especially with respect to the final form of the trained model. Weak AI
models like deep neural networks, while mathematically expressible, pro-
duce highly complex,multi-layered structures that encode relationships in a
manner that is not easily understandable byhumans.Theweights andbiases
in neural networks do not offer straightforward insights into the model’s
decision-making process. In contrast, strong AI models, like symbolic
regression for instance, generate explicit, human-readable mathematical
formulas that directly describe the relationships between variables as the
final trained models. These formulas are inherently interpretable because
they are composed of familiar mathematical operations and functions that
experts can readily understand and analyze.

Currently,most smartmanufacturing systems rely onweak ‘black-box’
algorithms3. While effective in various applications, their lack of transpar-
ency limits their use in critical domains. The integration of strong AI in
smart manufacturing can lead to the discovery of credible physical models
that help advance scientific understanding and improve decision-making.
However, strong ML has rarely been implemented in the manufacturing
domain, barring a few exceptions9–11.

We believe that the class of ultra-strong ML represents the vision of
future autonomous manufacturing systems, where the machine gains
understanding by itself without requiring human intervention or oversight.
This holds the promise of even greater advancements in manufacturing
processes, where the AI system may uncover hidden patterns and rela-
tionships in thedata thatwere not evident through traditional physics-based
approaches, leading to new insights and manufacturing approaches.

Quickly embracing XAI models and effectively integrating them with
physics-basedmodelswill be key to unlocking the full potential ofAI-driven
manufacturing in a new era of innovation and efficiency. However, the
adoption of XAI in the manufacturing domain has been slow, significantly
hindering the widespread acceptance of AI decisions in manufacturing
applications, particularly in the real-world industrial production of high-

value products. This represents a missed opportunity12,13. Technological
advancements in AI, coupled with its rapid adaptation will shape the future
of smart manufacturing.

XAI in manufacturing
State-of-the-art XAI techniques
Given below are the definitions of the often interchangeably used XAI-
related terminologies:
• Understandability: it refers to the ease with which a person can grasp

the overall functioning of a model without needing to investigate its
internal mechanisms or the specific algorithms it employs14.

• Comprehensibility: in the context ofAI, comprehensibility is the extent
to which a learningmodel can express its acquired knowledge in a way
that is easily understood by humans. This involves creating descrip-
tions that resemble those a human expert would generate, integrating
both quantitative and qualitative aspects in a coherent and inter-
pretable manner15.

• Interpretability: interpretability is the quality of amodel that allows it to
be explained or its meaning to be conveyed in terms that are clear and
understandable to a human observer16. Interpretability is about the
inherent property of the model itself, where they are designed to be
understood directly.

• Explainability: this concept involves providing explanations that serve
as a bridge between humans and a decision-making system. These
explanations should accurately reflect thedecision-makingprocess and
be human comprehensible15. Unlike interpretability, explainability is
not a model’s inherent property, rather it often involves additional
methods to explain how and why a model behaves in a certain way.

• Transparency: a model is deemed transparent if its workings are clear
and understandable on their own. Transparentmodels are categorized
into three types: those that are easily replicated, those that can be
broken down into understandable components, and those whose
algorithms are inherently clear and straightforward17.

• Clarity: clarity refers to the quality of being easily understood, and free
from ambiguity. In the context of AI, clarity ensures that the infor-
mation, explanations, and insights provided by the AI models are
straightforward, precise, and easy to comprehend by users, including
non-experts.

These terms are distinct but related, and they collectively contribute to
making AI models more accessible and trustworthy to users in smart
manufacturing contexts.

The XAI approaches are classified according to their scope, stage,
input, andoutput as depicted inFig. 1. The three perspectiveswith respect to
the stage of application are ante-hoc (intrinsic), post-hoc, and real-time
approaches. The ante-hoc or intrinsic interpretability approach integrates
explanations into the model training phase, ensuring accountability in
decision-making18. Such explanations offer greater understandability,
facilitating comprehension of themodel’smathematical underpinnings and
decision mechanisms. Here the explainability relies on transparent models,
which inherently possess interpretability to some extent. Transparent
models, as defined earlier, are ‘by-design’ interpretable models, whose
computational structure and functioning are easily understandable by
humans, allowing them to see and comprehend how decisions are made,
without the need for additional explanation tools16. Examples include
decision trees, rule-based systems, and logistic and linear regression.

Intrinsic XAI models can be categorized based on their domain of
interpretability, namely algorithmic transparency, decomposability, and
simulatability. Algorithmic transparency pertains to the user’s ability to
understand the process followed by the model to produce outputs from
input data. Decomposability involves explaining each part of a model, such
as input, parameters, and calculations, enhancing intelligibility and inter-
pretability. Simulatability refers to a model’s ability to be simulated or
comprehended strictly by ahuman. For instance, though rule-based systems
are generally conceived as comprehensible, once they becomevery extensive
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with numerous rules, theymay lose their simulatability and become difficult
for humans to fully understand and manage.

The explainability aspects of intrinsic XAI models like linear/logistic
regression, decision trees, k-nearest neighbours (KNN), rule-based learning,
general additivemodels, and Bayesianmodels have been studied in the past.
In this regard, researchers have investigated the soundness of logistic/linear
regression models19,20 and also reported some critical concerns about its
interpretability as well21. Although decision trees offer algorithmic
transparency22, they are comprehensible by humans only if their size and
features are small. Another challenge for decision trees is their limited
generalization capabilities. Through its perception of distance and similarity
between the cases, KNN resembles human experts’ decision-making
rationale and thus was widely adopted in situations demanding
interpretability23,24. The model’s interpretability will be impeded when the
number of neighbours increases or when complex features and distance
functions are used.

Rule-based learning involves generating rules to characterize data,
ranging from simple conditional if-then rules to more complex combina-
tions like fuzzy rule-based systems which allow verbally formulated rules,
improving model interpretability and performance in uncertain contexts25.
While rule-based learners indeed offer transparency26, challenges arise in
balancing rule coverage and specificity, which impact interpretability.
Though often not categorized under transparent models, Bayesian27 and
general additivemodels28 are sometimes accepted as interpretablemodelling
choices due to their capacity to offer insights and explanations.

The second classification based on the stage of application is post-hoc
XAI, which involves analyzing trained or tested AI models to uncover their
innerworkings and decision logic. Such analyses are often offered as feature
significance ratings, rule sets, plots, or human-readable explanations29.
Recently, there has been a significant surge inpost-hoc approaches, aimed at
clarifying black-boxmodels30–33.Within post-hoc explainability, there exists
model-agnostic techniques and model-specific techniques. Model-agnostic
techniques offer explanations to any black-box models irrespective of their
types and computing architectures. A few modes of model-agnostic

explanations are explanation by simplification, feature relevance explana-
tion, and visual explanations.

Explanation by simplification involves approximating the complex
decision-making process of a black-box model with a simpler, more inter-
pretable surrogate model. This simplified model aims to capture the
essential relationships between the input features and themodel’s output. It
pertains to the overall model, as it seeks to create a simpler representation of
the model’s behaviour that maintains the input–output relationships. For
instance, the very popular local interpretable model-agnostic explanations
(LIME)34 and its variations35 belong to the explanation by simplification
approach, whereas the other widely used Shapley additive explanations
(SHAP)36 method belongs to the feature relevance explanation approach.

The model-specific post-hoc explanation approaches are tailored for
specific ML models. Researchers in the past have come up with model-
specific explanations for shallow ML models like tree ensembles (in parti-
cular, explanation by simplification37 and feature relevance analysis38),
multi-class classifiers, SVMs (simplification39 and visualization40), and deep
learning models. Within deep learning, specific post-hoc approaches for
multi-layer neural networks41, convolutional neural networks
(input–output relationship comprehension42, network interpretation43 and
visual explanations44), and recurrent neural networks45, have been recently
explored. Stacking with auxiliary features (SWAF)46 and Deep SHAP47 are
widely used model-specific techniques.

In contrast to intrinsic explainability, post-hoc XAI typically uses
supplementary models (like SHAP, LIME, and SWAF) to interpret the
decisions of the original model, which can introduce additional layers of
complexity. These explanations might not always be straightforward, often
needing somebasic knowledge of the underlyingmethods and assumptions.
Consequently, while they provide insights into model behaviour, the
interpretability of these explanations poses challenges for non-experts,
potentially hindering their practical application in decision-making pro-
cesses. In addition, researchers have found a fundamental shortcoming of
the existing feature relevancemethods for neural networks—the violation of
sensitivity and implementation axioms48.

Fig. 1 | Categorization of XAI methods. A comprehensive classification of various
XAI methods is given based on four key aspects: stage, scope, inputs, and outputs.
‘Stage’ illustrates the timing of explanations in the AI process. It includes “Ante-hoc
(Intrinsic)” where explanations are built-in before model deployment, and “Post-
hoc” where explanations are generated after model deployment. ‘Scope’ represents
the breadth of explanations covered by XAI methods. It ranges from “Local Inter-
pretability” focusing on individual predictions, to “Global Interpretability” which

addresses model behaviour on a general level. ‘Input’ enumerates the types of data
that can be processed by XAI systems. It includes diverse data types such as texts,
images, time series data, and others, indicating the versatility of XAI in handling
various forms of information. ‘Output’ section lists the possible forms that an
explanation might take. It includes “Numerical Explanations”, “Rule-based Expla-
nations”, “Textual Explanations”, and others, highlighting the different ways users
can understand AI decisions.
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The third approach, real-time XAI, focuses on providing explanations
simultaneouslywith theAImodel’s decision-makingprocess, allowingusers
tounderstand themodel’s reasoningas it happens inhigh-stakes ordynamic
environments. It is essential in scenarios where decisions need to be
transparent and understandable on thefly, ensuring that users can trust and
verify AI decisions as they occur49. Examples include attentionmechanisms
in neural networks and interactive visualization tools like real-time
saliency maps.

XAI approaches not only vary according to their stage of operation but
also differ based on the forms of explanations, including deep explanations,
interpretable models, model induction, explainable human–computer
interaction, and psychological grounding. Deep explanations leverage deep
learning techniques to render internal model operations more
interpretable50. Prioritizing clarity and simplicity for interpretable models,
such as those based on decision trees or logistic regression, will make them
accessible to a wider audience. Model induction techniques aim to derive
explainablemodels fromblack-box ones51,52. Explainable human–computer
interaction strategies transform explanations into tangible interfaces for
user engagement53,54. Explainable human–machine interactions (HMI)
describe the act of understandable communication from the machine to
humans, particularly in the form of explanations for AI-based decisions.
This is a crucial aspect ofXAI, since such interactionsoffernatural language-
based, dialogue-based, and virtual reality (VR)-based explanations of AI
models to users, enhancing their understanding of the model predictions
and guiding them towards better decision-making. Examples include the
Bot-X virtual assistant55 for intelligent manufacturing and a VR-based
chatbot56 for manufacturing services.

Moreover, XAI grounded in psychological theories, known as expla-
natory ML, enhances interpretability through insights into human
cognition57. From a scientific point of view, human cognition involves
constructing internal models based on perceptual information, which
informs decision-making. While the XAI models may be inherently
incomplete and imperfect, suchmethods offer complementary insights into
data analysis and decision processes. The principles underlying XAI
development include considerations such as stage, scope, input, and output
formats, which are summarized in Fig. 1.

XAI approaches in manufacturing
Despite the existence of numerous XAI methodologies as discussed in the
previous section, they fall short of delivering comprehensible explanations
to humans in smart manufacturing. The documented challenges include
data and system complexities, over-reliance on black-box models, and dif-
ficulties in offering contextual understanding in themanufacturing domain.
Existing research on the integration of XAI in manufacturing aims to
address someof these challenges, but the quantity of such study is so far very
limited, and someof our perspectives on thenotable reasonsbehind the slow
adoption of XAI are shared in the next section. The common application
areas of XAI in manufacturing are surface quality prediction, defect
detection, condition monitoring, and process control58.

Goldman et al.59 employ saliency maps and histograms to explain the
functioning of black-box classifiers for ultrasonic weld quality prediction.
While visual presentations effectively highlight specific patterns, they often
lack the depth required to convey the intricate operations of predictive
models. Lee et al.60 developed an algorithm which converts decision tree-
based defect detection logic into human-comprehensible text. Similarly,
McLaughlin et al.61 worked on an XAI approach towards defect detection in
lithography coatings defects. A linear graph-based visualization technique
was developed by Glock62 to explain the random forest-based defect
detection model.

Another notable area of XAI application in smart manufacturing is in
predictivemaintenance,monitoring, andprognosis domains. In this regard,
Alvanpour et al.63 worked on developing explanations for black-box pre-
dictions of robot grasp failures. They claimed that when the historic data-
based prediction was combined with their proposed explanations, it helped
in better adaptive control. An explainable interface to score DT-biased

machine condition monitoring was developed by Matzka64, Torcianti and
Matzka65. Hermansa et al.66 proposed a feature extraction-based XAI
approach for predictive maintenance using time series vibration and tem-
perature data. Wang et al.67 and Gribbestad et al.68 worked on XAI-based
anomaly detection based on sensor data. An explainable surface quality
monitoring system for the grinding process using vibration signals was
proposed by Hanchate et al.10.

XAIhas alsobeenused tounderstandML-basedpredictions inadditive
manufacturing. Guo et al.9 used a SHAP-based XAI to better comprehend
the process physics behind layer-wise emissions during laser powder bed
fusion (L-PBF) metal additive manufacturing. Wang and Chen11 proposed
the usage of XAI tools towards 3D printing facility selection. An explainable
3D printer fault diagnosis system, called XAI-3DP, was proposed by
Chowdhury et al.69.

A few studies have also focused on building generic XAI models or
frameworks to suit manufacturing applications. In this regard, recently,
Kusiak70 proposed the federated explainable artificial intelligence approach
from a digital manufacturing perspective. A human-centric framework
named STARdom to implementXAI inmanufacturing systems is proposed
by Rožanec et al.71, consisting of an active learning module and a feedback
module. Senoner et al.72 developed a decision-making paradigm, aided by
visual explanations, specifically to handle and interpret complex manu-
facturing data-driven decisions.

While the existing XAImethodologies demonstrate promise, they also
exhibit several technical limitations that hinder their broader adoption in
manufacturing. One significant limitation is the lack of standardized eva-
luation criteria for explainable results. This absence makes it challenging to
measure the effectiveness and reliability of XAI methods across different
applications. Furthermore, many current approaches are highly context-
specific, limiting their generalizability toothermanufacturing scenarios. For
instance, existing XAI approaches are often purely data-driven and work
only under specific conditions such as a particular machine, material, and
environment, as well as within specific data ranges. A trained XAI-based
predictive maintenance model, for example, may fail if the type of
machinery or operating environment changes. To address this limitation,
XAI needs to incorporate and understand process physics more compre-
hensively. This wouldmake it more generalizable and usable across various
scales, conditions, and contexts. There is also a tendency to oversimplify
explanations,which can lead to the omissionof critical insights necessary for
comprehensive understanding. Additionally, the computational complexity
of generating explanations for black-box models often results in increased
processing times, which is impractical for real-time applications. Lastly,
there is a need for more robust validation frameworks to ensure that the
explanations provided are not only accurate but also meaningful and
actionable for end users in the manufacturing domain. Addressing these
technical limitations is crucial for advancing the integration of XAI in smart
manufacturing.

Overall, the extent of XAI integration is very limited in the manu-
facturing domain and we see it as a lost potential. It is critical to address the
reasons for its implementation latency. In this regard, let’s explore some
implicit, and often overlooked challenges in XAI implementation, both in a
general context and specifically within smart manufacturing, which,
according to us, have contributed to its slow adaptation.

Key challenges in XAI implementation
Not everyone is concerned
Many people still favour accepting results from black-box models without
concern for explainability, as described in refs. 73,74. The following reasons
illustrate why not everyone prioritizes explainability. First, many stake-
holders currently prioritize immediate results over the potential long-term
benefits of deploying interpretablemodels, particularly if there’s a perceived
trade-off between transparency and predictive accuracy. Furthermore, in
scenarios where the implications of wrong decisions are relatively low, the
priority naturally leans towardsmaximizing predictive accuracy rather than
understanding the decision-making rationale. According to Nigam Shah of
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the Stanford Institute for Human-Centered Artificial Intelligence, if an AI
model provides accurate predictions, it’s considered useful regardless of our
understanding of its workings75. This viewpoint is also supported by Mar-
zyeh Ghassemi at the University of Toronto76. Manufacturers often prior-
itize case-specific performance, which black-box models excel at, over
repeatability, scalability, and robustness.

In manufacturing, high-stakes decisions often involve safety-critical
systems, regulatory compliance, financial implications, and ethical con-
siderations. Examples include decisions related to the production ofmedical
devices, aerospace components, or critical infrastructure, where errors or
failures can lead to severe repercussions.In this context, ‘stakes’ refer to
the level of importance, risk, or potential consequences associated with the
outcomes of a decision or action. ‘High stakes’ refers to scenarios where the
consequences of a decision or action are significant and can have substantial
impacts.

Though presently not many manufacturers are concerned about
explainability, we argue that relying on black-boxmodels is problematic for
several reasons. They’re valuable only when they provide accurate results,
especially where the cost and consequences of incorrect predictions are
low73. Rudin has summarized why black-box ML should not be used for
high-stakes decisions4.We argue that it’s essential to embrace explainability
indecision-making formanufacturinghigh-stakes components likemedical
devices, aerospace parts, and critical infrastructure. Relying on opaque
models for bioimplant manufacturing decisions, for example, contradicts
medical ethics principles77,78. In such cases, decisions should be based on
evidence, reasoning, and a deep understanding of causality—qualities only
interpretable models can provide.

The Trust Paradox
While explanations can be valuable, they are not always necessary, and
interestingly, there’s a downside. There are instances where explanations
can inadvertently lead individuals to trust a model even when it’s making
clear errors. Microsoft Research has successfully demonstrated that people
tend to accept obvious mistakes when they receive explanations from an
interpretable model, creating a false sense of trust75. Consider a smart
manufacturing systemusingAI for quality control in anautoparts factory. If
theAImakes an incorrect decision, say, passing a batch of parts with hidden
defects as high-quality, human inspectors might naturally question the
decision if there are no AI explanations. This might lead to more rigorous
inspections. However, if the AI provides explanations that seem reasonable,
inspectors might trust the AI’s judgement and skip further scrutiny.

The right selection of explainability
While XAI is intended to bring clarity to the use of AI systems, it has, in
somecases, introduced additional ambiguity. This ambiguity arises from the
need to choose among various types and levels of explainability, in addition
to selecting the appropriate AImodels from a wide array, which is already a
significant challenge.

In general, there exist three distinct types of explainability with respect
to a stakeholder’s viewpoint, as shown in Fig. 2. First, an engineer’s
explainability pertains to understanding how an AI model arrives at its
decisions. The second type, causal explainability, focuses on understanding
howa specific input leads to a particular output. This type of explainability is
closely linked to scientific understanding. The third type is local explain-
ability, which is more of a justification for a local prediction. Engineers seek
to comprehend how their model functions to facilitate debugging, while
stakeholders and end users require causal explanations to trust the model
and use it confidently. Presenting an explanation from the wrong category
can lead to unexpected consequences, including a loss of trust in an
otherwise accurate and beneficial model.

Moreover, the level of explainability required is also contextual. As
argued earlier by Arbelaez Ossa79, low-stakes decisions can accept less XAI,
whereas, for high-stakes manufacturing systems, complete transparency is
mandatory. Such variable explainability requirements contribute to the
existing lack of clarity surrounding interpretability.

Consequently, there emerges a need for proper evaluationmetrics and
a consensus on the types and levels of interpretability. This brings us to the
next challenge: the lack of a robust evaluation matrix.

Lack of a robust evaluation matrix
Implementing XAI in smart manufacturing presents multifaceted chal-
lenges, with a significant obstacle being the lack of a robust evaluation
framework. While the benefits of XAI in enhancing transparency and
understanding are clear, determining the required level of explainability is
context-dependent. Manufacturing processes vary greatly, demanding
distinct degrees ofAI interpretability. Therefore, establishing a standardized
evaluation framework adaptable to diverse manufacturing contexts is
essential. It should consider AI explainability, process complexity, safety,
regulations, and human–AI collaboration dynamics. Overcoming this
challenge requires collaboration between AI researchers, manufacturing
experts, and policymakers to develop criteria that align with smart manu-
facturing needs.

In summary, the aforementioned challenges underscore the critical
need for a strategic vision in the road ahead for explainable manufacturing
systems, which is pivotal to the future of smart manufacturing. To address
these challenges, this work critically discusses and argues for the necessity of
explainability in smart manufacturing decisions, emphasizing why more
stakeholders should be prepared to transition and embrace this technology.
Additionally, we share our vision for the future role and impact of XAI in
smartmanufacturing, advocating theurgent need forwider adoptionofXAI
technologies. Finally, this work proposes the development of a standardized
evaluation matrix, enabling manufacturers to evaluate, compare, and
implement more explainable systems effectively.

Perspectives on the road ahead
We firmly believe that the explainability revolution will cause a paradigm
shift in future AI applications in manufacturing systems from predictive
modelling towards AI-inspired causal understanding, autonomous
explorations of unseen trends, and scientific discoveries. The concept and
various methods of using AI towards scientific discovery are reviewed by
Wang et al.80. Now, we share our perspectives on the various ways in which
explainability can potentially affect the future of smart manufacturing.

XAI-driven scientific understanding
Developing interpretable models to capture manufacturing processes or
system behaviours can inspire innovative ideas and concepts. One way of
interpretable expression is mathematical equations, which is already
implemented in material science as a mode for learning from the data8,81.
Modelling techniques such as symbolic regression hold the potential to act
as the ‘resource of inspiration’ to identify new physics signatures in man-
ufacturing systems, which can then be conceptualized and understood by
human experts82–84. For instance, in precision machining, accurately com-
puting and accounting for tool centre position (TCP) positioning deviations

Fig. 2 | Types of interpretability. The three distinct types of explainability in AI
systems from the perspective of different stakeholders are illustrated. Engineer’s
explainability (Type 1) describes how an AI model arrives at its decisions. Causal
explainability (Type 2) focuses on understanding or revealing the fundamental
input–output relationships, and finally local explainability (Type 3) clarifies a
model’s local prediction, often required by end users who need to understand and
trust the model’s specific decisions.

https://doi.org/10.1038/s44334-024-00006-9 Perspective

npj Advanced Manufacturing |             (2024) 1:8 5

www.nature.com/npjadvmanuf


pose critical challenges. Expressing TCP positioning errors as interpretable
mathematical functions of process parameters enables us to identify their
root causes and derive effective solutions, thereby enhancing our scientific
understanding of these systems.

XAI-driven scientific discovery
In the manufacturing context, scientific discovery refers to the process of
identifying new methods, materials, and processes which can enhance
efficiency, quality, and innovation in manufacturing systems. This includes
the discovery of new manufacturing techniques, optimization of existing
processes, anduncovering previously unknownphenomena that can lead to
breakthroughs in production technologies and practices. In 2021, a Nobel
Turing Challenge was proposed towards using AI for scientific discoveries
in the domain of biological sciences85. Similarly, we anticipate the utilization
of XAI for comprehending and uncovering manufacturing science in the
future. In this regard, we propose the multi-stage XAI-driven discovery of
manufacturing science.

Stage I: autonomous explorations. In smart manufacturing, the
exploration of a data/knowledge space has traditionally been based on
global search algorithms like evolutionary and swarm search, especially
in the case of well-defined responses. These explorations are usually fully
defined by human scientists in terms of the objective function (responses
of interest), constraints and search space. However, we anticipate that, in
future, identifying exceptional or unique trends from manufacturing
datasets through open-ended explorations will have more chances of
leading to breakthrough findings, which may be near-impossible for
humans to grasp86. We argue that explainability in AI-driven explora-
tions is crucial because the path and methodology of scientific discovery
must be transparent, enabling further discoveries and applicability across
various manufacturing domains.

To push exploration beyond traditional boundaries (as depicted in
Fig. 3, inspired by ref. 85), redefining response and objective functions
is essential. One strategy involves incentivizing intrinsic responses like
curiosity, surprise, and creativity, rather than the typical manu-
facturing responses. For instance, a curiosity algorithm-driven robot
(CA-robot) has explored and revealed unpredictable behaviours in
complex chemical systems, leading to the discovery of novel protocell
behaviour87.

Such approaches increase the likelihood of uncovering previously
hidden physics signatures in manufacturing, which can subsequently be
comprehended and understood by humans. This reveals previously over-
looked patterns, fostering fresh conceptual understanding.

Stage II: autonomous hypothesis generation. Next, we anticipate that
XAI will advance beyond autonomous data explorations to a stage where
it can independently propose hypotheses and plan experiments without
human intervention. One potential approach to achieve autonomous
hypothesis generation is by leveraging the extensive repository of online
publicationswithin a specificmanufacturing domain. A similar approach
has already proven successful in material science, where it rediscovered
existing scientific knowledge88 and unveiled previously unknown com-
plex scientific inferences89.

As detailed in Fig. 4, our concept involves extracting a transparent and
explainable semantic knowledge graph from online manufacturing litera-
ture, with each node representing a manufacturing concept and inter-
connected links illustrating their relationships. Recent work has
demonstrated a framework for knowledge graph extraction from raw
data90,91. The knowledge space clearly delineates the boundaries of current
human knowledge, while outside this space lie current manufacturing
challenges (Fig. 4a). AI will autonomously expand manufacturing knowl-
edge by proposing and substantiating hypotheses to address these chal-
lenges, bridging the gap between existing domain knowledge space and
unsolved problem space (Fig. 4b).

However, we argue that gaining the autonomy to propose a hypothesis
will just not be enough to persuade the industries, stakeholders, and reg-
ulatory and funding agencies to trust and fund the AI-generated theory.
Here, explainability will hold the key to the concept’s success, especially in
high-stakes manufacturing. The AI hypothesis generation logic and the
hypothesis itself need to be human comprehensible, to be judged for bias,
fairness, novelty, and feasibility.

Stage III: towards completemanufacturing autonomy. Finally, a stage
is reached where robot scientists can autonomously ‘experiment and
analyze’ the AI-generated hypothesis to push the scientific boundaries, a
typical example being robot scientists Adam and Eve92.We argue that the
manufacturing domain has good potential to be one of the earliest
adopters of this level of autonomy due to the already existing deep

Fig. 3 | Autonomous AI-driven explorations. The
different domains of knowledge related to manu-
facturing processes and the potential role of AI in
expanding these domains are illustrated. Existing
scientific knowledge on the physics behind manu-
facturing processes is shown in red. Knowledge of
manufacturing processes discoverable by humans,
but not yet explored is shown in orange circular
region. This circle represents the knowledge that
humans have the potential to discover (through
conventional methods) but have not yet explored.
Shaded blue region within the dashed line repre-
senting the knowledge that can be discovered by AI
systems designed to work in conjunction with
humans. It includes knowledge that we currently
possess. Region outside the dashed line represents
the knowledge of manufacturing processes that
might be beyond human reach but could potentially
be discovered by future AI systems operating
autonomously (figure created by the author, taking
inspiration from ref. 85).
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integration of robots in smart factories. Explainability will still be the key
at this stage since reliance on non-explainable systems for autonomous
experiments will not be trustworthy due to its high-risk nature.

This stage marks the achievement of fully autonomous scientific dis-
covery in manufacturing, where an XAI-based system explores knowledge
space (Stage I), proposes and prioritizes the hypothesis (Stage II), plans and
conducts the experiments, and analyses the results (Stage III). With refer-
ence to the earlier proposed knowledge graph, solving one challenge not
only expands and pushes the knowledge boundary, it also opens up fresh
challenges. The semantic graph continuously updates itself by its con-
tinuously evolvingunderstanding as shown inFig. 4b.As this systemevolves
further, human involvementwill beminimal,mostly at the supervisory level.

This autonomous scientific discovery through XAI promises to revo-
lutionize research and development in manufacturing by accelerating the
discovery of novel solutions, reducing reliance on human intervention, and
facilitating rapid adaptation to evolving scientific understanding within the
manufacturing field.

XAI for dialogue-based human–machine interactions (HMI)
Smart manufacturing and digital twins will see significant advancements in
terms of HMI, especially in connection with the explainability of decision-
making rationale. Advancements in LLM tools such as GPT, BARD, and
BERT allow dialogue-based scientific discussions between themachine and
the operator/expert. This will be achieved by leveraging LLM’s capacity to
act as an intermediate layer between operator and machine, converting

abstract-level instructions into technical information and vice versa. A chat-
based virtual assistant called Bot-X has already beenproposed for intelligent
manufacturing, which allows natural language communication between
man and machine for tasks like ordering, production execution, etc.55.
Dialogue-based HMI is relevant in the context of XAI, since natural lan-
guage explanations offer a better understanding to technical non-experts, in
comparison to graph-based or plots-based post-hoc explanations which
demands a basic level of subject knowledge and expertise.

HMI will advance to a stage where explanations for any AI-based
decisions can be connected to or sourced frompublished literature.Thiswill
even enable the machine to propose innovative solutions to previously
unseen manufacturing problems. What’s even more intriguing is that such
suggestions might inspire human scientists towards new scientific insights
and innovative solutions, as claimed by Leslie93.

Other potential applications
A few other notable applications related to XAI include immersive expla-
nations through Augmented Reality (AR) and VR interfaces, as well as
holographic data visualization, offering interactivity, spatial understanding,
and scalability for complexmanufacturing systems. Explainable digital twin
systems, when implemented, enable real-time insights into the functioning
of physical assets, enhancing predictive maintenance and overall system
reliability. Moreover, stringent regulations will likely lead to dedicated XAI
frameworks, andpossibly even the establishment of explainability standards
for various high-stakes manufacturing sectors (such as medical devices,

Fig. 4 | Theory of AI-driven hypothesis genera-
tion. a A hypothetical representation of scientific
knowledge based on an online repository of scien-
tific literature is depicted as a network of inter-
connected nodes, with each node representing a
piece of scientific knowledge. The nodes are inter-
connected, indicating the relationships between
different pieces of knowledge. The boundary sur-
rounding the network represents the current extent
of scientific knowledge in the manufacturing
domain, with existing research problems and chal-
lenges represented outside this knowledge bound-
ary. b The potential expansion of the knowledge
space through the application of AI is illustrated.
Explainable AI (XAI) has the potential to autono-
mously propose hypotheses, conduct experiments,
and perform analyses to validate these hypotheses,
thereby further expanding the knowledge space. The
revised knowledge boundary represents the poten-
tial new extent of knowledge, leading to new chal-
lenges represented outside the new boundary.
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nuclear, and aerospace components). This will ensure that the required and
acceptable level of transparency, as per regulatory requirements, is met.

Based on our perspectives on the role of XAI in advancing the man-
ufacturing domain, we now propose a novel framework for explainability
assessment.

Explainability evaluation framework
To address the urgent need for proper evaluation metrics and a consensus
on the types and levels of interpretability, we propose a new explainability
assessment framework called Transparency–Cohesion–Comprehensibility
(TCC) evaluation framework, which includes its constituent elements and
its substructure. The overall computational structure of the TCC evaluation
framework is given in Fig. 5.

The fundamental constituents of the TCC framework are:
• Transparency: this assesses the accessibility and understandability of

an AI-driven manufacturing system’s inner workings and decision
processes with respect to algorithms, models, data, and reasoning.
Transparent systems enable users to trace how decisions are made and
understand the factors influencing those decisions. It promotes trust,
accountability, and the ability to identify and rectify potential issues or
biases.

• Cohesion: cohesion refers to the alignment and consistency
between the XAI-driven manufacturing system and established
manufacturing principles, guidelines, and ethical standards. It
involves ensuring that the logic employed by the AI system
resonates with the goals, objectives, and best practices of the
manufacturing domain. A cohesive system integrates seamlessly
with existing manufacturing processes and practices, maintaining
coherence and harmony between human decision-making and AI-
driven decision-support.

• Comprehensibility: comprehensibility focuses on the ability of
human stakeholders to interpret and understand the explanations
provided by the AI-driven manufacturing system. It involves
presenting information in a manner that is meaningful and
interpretable to domain experts, operators, and decision-makers.
Comprehensible systems bridge the gap between the technical
complexities of AI and human comprehension, allowing stake-
holders to validate, trust, and effectively utilize the outputs and
recommendations of the AI system.

The proposed TCC evaluation framework is designed to com-
prehensively assess the entire explanation process, which inherently
includes both the XAI algorithms and the explanation outcomes. It

evaluates the transparency and simplicity of the algorithms, ensuring
their inner workings are accessible and understandable. Additionally,
it assesses the consistency, reliability, and comprehensibility of the
explanation outcomes, ensuring they are robust and compatible with
various input/output types. By focusing on the entire explanation
process, the TCC framework ensures that explanations are integrated
and consistent with existing models and systems. This approach
facilitates the effective use of AI-driven systems in manufacturing by
bridging the gap between technical complexities and human
understanding.

Each aspect is evaluated on a numerical scale from 0 to 1, each
representing the least andmost degree of explainability (DoX), respectively.
The explainability scoring scheme in terms of transparency, cohesion, and
comprehensibility is detailed in Table 1.

Degree of transparency (DoT)
Transparency is the primary level of explainability that evaluates the
extent to which data, training algorithms, computational structure,
and prediction rationale are disclosed for subsequent use in
understanding and improving the manufacturing system under
consideration. The evaluation schemes and scoring criteria for
various sub-categories under the transparency section are detailed as
follows:
• Model output interpretability: it distinguishes between answering

and explaining. In addition to accurate response predictions, an
explainable manufacturing system shall answer several archetypal
and interrogative questions, such as what, why, or how each
decision has been made. Since such explanations are offered after
the output prediction, the interpretability of the model output can
be quantified by the choices of post-hoc interpretations (PHI)
available. Ideally, the more questions are answered, the better
performance will be. In Table 1, the explainability score is
maximum (score = 1) when at least 3 PHIs are offered by the
system under consideration.

• Modelling simplicity: the simplicity of developing (or training) an AI
model can be estimated by considering the computational steps/
iterations required for model convergence and/or the time taken for
this process. These two factors effectively capture the complexity of the
task and its computational requirements, respectively. However, since
the computational load canoftenbe application-specific, it is preferable
to use a predefined reference value, typically a maximum threshold. If
the thresholds are not user-defined, then, for model comparisons, the
larger value can be considered the threshold.

Fig. 5 | Evaluation structure of the TCC frame-
work. A structural framework consisting of three
main components of overall explainability is illu-
strated. The first component, ‘transparency,’
emphasizes the importance of clarity in model out-
puts and processes. It includes four sub-criteria:
model output interpretability, modelling simplicity,
data transparency, and rule-based model simulat-
ability. The second component, ‘cohesion,’ addres-
ses how well the explanations integrate with existing
knowledge and systems. It has three sub-compo-
nents: explanation consistency, input/output com-
patibility, and compatibility with existing machine
learning models. The third and final component,
‘comprehensibility,’ is evaluated through its sub-
components: explanation modes, non-technical
modes of explanation, and technical and scientific
reasoning.

https://doi.org/10.1038/s44334-024-00006-9 Perspective

npj Advanced Manufacturing |             (2024) 1:8 8

www.nature.com/npjadvmanuf


For any two arbitrary models S1 and S2, the computational steps and
time thresholds are given as:

Computational steps threshold; τcs ¼
τ̂cs τ̂cs ≠ null

max cs S1
� �

; cs S2
� �

; . . .
� �

τ̂cs ¼ null

(

ð1Þ

Computational time threshold; τcs ¼
τ̂cs τ̂cs ≠ null

max cs S1
� �

; cs S2
� �

; . . .
� �

τ̂cs ¼ null

(

ð2Þ

Where τ̂cs and τ̂ct are the predefined computational steps and time
thresholds, and cs and ct are functions to extract computational steps
and time respectively. Equation (3) computes the simplicity score
(ϵ (0,1), 1 being the best).

Simplicity score ðSiÞ ¼ 1� wcs ×
cs Si
� �

τcs

� �
þ wcT ×

ct Si
� �

τct

� �� �

ð3Þ
Herewcs andwcT are the relative weights of computational steps and
time, respectively.

The underlying concept of calculating an AI model’s simplicity by
both computational time and steps is derived from the study con-
ducted by Pfitscher et al.94. The computational time and steps can
either be compared to a predefined threshold or, in the absence of
such a threshold, to the largest number of steps observed. Predefined
thresholds can be specific to the manufacturing process or applica-
tion. For instance, real-time predictionswould havemuch lower time
thresholds compared to offline predictions. Developing a threshold
database based on experimental data or expert knowledge for various
manufacturing processes and applications can facilitate this
computation.
In the absence of a predefined threshold, we propose using the larger
computational time and steps as the threshold to compare the
modelling simplicity between two AI models for the same manu-
facturing process. This approach provides a relative measure of
simplicity between the two models, with simpler models often being
more explainable. The rationale for this method is that it offers a
comparative view of the models’ computational efficiency, which is
essential in determining the most appropriate model amongst the
available alternatives for specific manufacturing applications.

• Data transparency: the data transparency score (ϵ∈ (0,1)) indicates the
extent to which different aspects of data, including data acquisition
(DA), pre-processing (PP), feature extraction (FE), and dimension

Table 1 | Evaluation of explainability using the proposed TCC framework

No. Categories Sub-category Evaluation criteria Explainability score

1 Transparency Model output
interpretability

Types of post-hoc interpretations (PHI)
available

p � 3 0:25p
p> 3 1

�

where p is the no. of PHI types available

2 Modelling simplicity Computational steps (CS), computational
time (CT)

Simplicity score, refer Eq. (3)

3 Data transparency Data transparencies (DT) in:
(1) Data acquisition (DTDA),
(2) Pre-processing (DTPP),
(3) Feature extraction (DTFE), &
(4) Dim. reduction (DTDR)

d � 4 1
0 � d >4 0:25d

�

where d is the number of valid DTs

4 Rule-based model
simulatability

Number of rules/nodes Applicable for rule-based/tree-type explainable systems
n> 100 0:25
50 � n � 100 0:5
10< n< 50 0:75
1 � n � 10 1

8
>><

>>:

where n is the no. of rules/nodes

5 Symbolic model
simulatability

MC =Number of operators+Number of
features (Eqn)

Complexity score, refer Eq. (5)

1 Cohesion Explanation consistency Objective explanations—consistent
Generative explanations—inconsistent
(LLM based)

Computational explanations 1
Generative explanations 0:5
Else 0

8
<

:

2 Compatibility with i/
o types

Level of compatibility with input-responses
(numeric, categorical, & image)

p ¼ 1 0:33
p ¼ 2 0:66
p> 2 1

8
<

:

where p is the number of i/o types for which explanations are
offered

3 Integration with existing
ML algorithms

Level of integration with regression (R),
classification (C), and timeseries (T)MLmodels

m ¼ 1 0:33
m ¼ 2 0:66
m> 2 1

8
<

:

where m is the number of ML model types for which
explanations are offered

1 Comprehensibility Explanation modes Levels of explainability: intrinsic (by-design),
post-hoc

Intrinsic AND Posthoc 1
Intrinsic OR Posthoc 0:5
Else 0

8
<

:

2 Non-technical reasoning Provision for non-expert’s comprehensibility
(error debugging and process control)

Yes 1
No=NA 0

�

3 Technical & scientific
insights

Provision for scientists/expert’s
comprehensibility for scientific discoveries/
insights

Scientific discovery 1
Scientific understanding 0:5
No=NA 0

8
<

:
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reduction (DR), are transparently available for the considered
manufacturing system.

• Rule-based model simulatability: simulatability measures the human-
comprehensibility of a model’s computing architecture. Although rule-
based systems are generally regarded as simple, simulatability depends
on the extent of the system,or inotherwords, on thenumberof rules (or
number of nodes for a tree-type model). Following this logic, Table 1
presents the criteria for assigning a transparency score to such models.

• Symbolic model simulatability: similar to the previous criteria, the
simulatability of a symbolic model, or the complexity of an analytical
expression, is defined in terms of the number of features and/or the
number of operators95. This type of scoring is appropriate for symbolic
regression models where the AI model extracts a mathematical
expression, correlating inputs, and responses. Surely, since the model
complexity is contextual, a threshold τc is required to evaluate the
complexity score, as given below

Model complexity threshold; τc ¼
τ̂c τ̂c ≠ null

max c S1
� �

; c S2
� �� �

τ̂c ¼ null

(

ð4Þ

where τ̂c is a predefined complexity threshold, and c is the complexity
function, which sums up the number of features and operators. Now, the
complexity score is computed as

Complexity score ðSiÞ ¼ 1� c Si
� �

τc

� �
ð5Þ

Once all the five sub-categories of transparency are scored, the total
DoT is evaluated as

DoT ¼ wT1
×T1 þ wT2

×T2 þ wT3
×T3 þ wT4

×T4 þ wT5
×T5 ð6Þ

Here Ti denotes the transparency scores of each sub-category in the
discussed order, and wTi

indicates their corresponding weights.

Degree of cohesion (DoC)
Cohesion indicates the level of integration and consistency of the expla-
nations with respect to existing models, systems, and data types.
• Explanation consistency: it is essential to assess the consistency and

reliability of explanations across different scenarios. In smart manu-
facturing, additive feature attribution models like SHAP and LIME
tend to exhibit greater consistency and repeatability compared to data
generation-based techniques such as LLM explanations.

• Compatibility with I/O types: explanations should be robust enough to
accommodate various input/output types, as shown in Fig. 1. This
ensures smooth integration across manufacturing systems and
domains. The ability to provide explanations for a higher number of I/O
types correlateswith a higher explainability score, as outlined inTable 1.
For example, a monitoring system that employs an XAI model
capable of explanations based on both sensor data (e.g., temperature
and pressure readings) and visual data (e.g., images of product
defects) would receive a high cohesion score, in comparison to a
model which is restricted to accommodate just numeric inputs.

• Integration with existing ML model types: another important char-
acteristic is compatibility and consistency across different types of ML
models, including regression, classification, and time series models.
Greater support for a variety of ML types enhances cohesion.

DoC is computed by the weighted summation of cohesion sub-
category scores as follows

DoC ¼ wC1
×C1 þ wC2

×C2 þ wC3
×C3 ð7Þ

Here Ci and wCi
indicate the individual cohesion scores and their

corresponding weights in the listed order.

Degree of comprehensibility (DoCm)
Comprehensibility represents the highest level of explainability, evaluating
the depth and impact of explanations. This framework assesses the expla-
nationmodes, whether explanations enable non-experts to understand and
improve AI decisions, help experts grasp underlying physics to enhance
similar systems, and inspire scientists towards breakthrough discoveries or
autonomous scientific advancements. While current technology may not
fully achieve these goals, we believe it represents a future possibility.

In this context, the comprehensibility aspects are scored as follows:
• Explanation modes: the framework evaluates the available modes of

explainability to ensure maximum comprehensibility. For example, if
the system offers both ante-hoc and post-hoc explanations, it is more
likely to provide better comprehensibility. The scoring reflects this
consideration.

• Non-technical reasoning: next, the framework evaluates whether the
model offers sufficient recommendations for a non-expert to improve
the manufacturing system under consideration. These recommenda-
tions may come in the form of local explanations associated with a
predictive decision.Currently, a binary subjective scoring system(1 if it
offers, 0 otherwise) is used for this criterion.

• Technical and scientific insights: finally, the framework assesses whe-
ther the model stimulates an expert or scientist to comprehend or
reveal the physical phenomena behind the manufacturing problem
under consideration. Certainmodels, such as symbolic regressions, are
equipped with such capabilities. It also evaluates if the model is inde-
pendently capable of scientific discoveries.

DoCm is computed as theweighted sumof the aforementioned scores.

DoCm ¼ wcm1
×Cm1 þ wcm2

×Cm2 þ wcm3
×Cm3 ð8Þ

Here Cmi and wCmi
indicate the individual comprehensibility scores

and their corresponding weights in the listed order.

Degree of explainability (DoX)
Once the DoT, DoC, and DoCm are computed, the overall DoX is com-
puted as

DoX ¼ wT ×DoTþ wC ×DoCþ wCm ×DoCm ð9Þ

Here wT ,wc and wcm represent the relative weights of transparency, cohe-
sion, and comprehensibility, respectively, towards the total explainability of
the system. Here, the subjectivity of human evaluators primarily influences
the assignment of weights to various evaluation criteria. This subjective
weighting reflects the relative importance of different aspects of explain-
ability, which can be highly specific to the application and context of the AI
system being assessed. One prominent method for subjective weighting is
theDelphimethod96. Such subjectiveweight assignmentwill indeed have an
impact on the evaluation outcomes. Different evaluators may prioritize
certain aspects of transparency, cohesion, or comprehensibility differently
based on their expertise, experience, and the specific needs of the manu-
facturing process.

While the subjective assignment of weights introduces variability, it
also adds valuable flexibility, allowing the framework to be tailored to
diverse applications. For example, in some applications like biomedical or
nuclear, transparency might be deemed more critical due to regulatory
requirements or the necessity of understanding decision-making processes
for safety reasons. In other scenarios, comprehensibility might take pre-
cedence to ensure that non-expert users can effectively interact with and
trust the AI system.

Apart from the three fundamental aspects of explainability, an addi-
tional four desirable characteristics are proposed herewith. These are
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accountability, fairness, regulatory compliance, and user centricity. These
aspects are currently not included in the scoring but can be potentially
considered based on the context and application.
• Accountability: there should bemechanisms in place to track and audit

the AI system’s actions, allowing manufacturers to understand why
specific decisions were made and facilitating post-hoc analysis,
debugging, and error correction.

• Fairness: explainable systems should be designed tomitigate biases and
ensure fair treatment of all stakeholders. For example, theAImodel for
personalized bioimplant recommendation should mitigate training
data bias towards certain demographic groups.

• Regulatory compliance: the AI-driven manufacturing system should
align with guidelines and standards set forth by regulatory bodies to
ensure safety, privacy, data protection, and ethical considerations in the
manufacturing domain.

• User centricity: the explanations provided by the system should be
tailored to the knowledge level and context of the intended audience,
facilitating effective communication and understanding.

A case study: explainability of fingerprint development
systems
Concept of fingerprints
In the context of smartmanufacturing, the process and product fingerprints
(FP) represent the core contributing process parameters (including sensor
features) and surface geometric characteristics respectively, towards a
manufactured product’s functional performance. FP development is a
relatively recent concept which identifies the most significant features of a
process/product (suppressing the other irrelevant ones) with respect to its
end functionality.This approach ensures that controlling theFPs guarantees
design compliance and functional performance, thereby substantially
reducing the time and effort needed for offline metrology and separate
process optimization97.

Given that manual, statistical, and physics-based FP extraction
methods have been demonstrated to be time-consuming, resource-inten-
sive, and prone to inaccuracies, researchers have increasingly turned toML-
based FP extraction with notable success98. In addition to computational
efficiency and other discussed merits, an implicit advantage of the FP
concept is its ability to explain the underlying physical phenomena of a
manufacturing process. Therefore, it is crucial for an ML-based FP
extraction framework to be explainable; otherwise, it fails to provide insights
into the underlying physics of the process, rendering it non-generalizable
and challenging to debug. These shortcomings could cumulatively have a
significant negative impact on the performance of a manufacturing system.

ML-based approach for FP development
For this case study, we have chosen two different FP extraction frameworks
recently developedbyus: one is random forest regression (RFR) based98, and
the other is XAI-based79, to demonstrate the TCC framework. Both fra-
meworks use a common dataset—nanosecond laser structuring for super-
hydrophobic surface fabrication.

Superhydrophobic surfaces, characterized by their extreme water
repellence, have significant relevance and applications across various
industries, including self-cleaning materials, anti-icing coatings, and fluid
transport systems. The design and manufacturing of such surfaces are
complex due to the precise control required over surface textures at the
micro- and nanoscale. Laser texturing, a sophisticated manufacturing
process, can generate the intricate patterns needed for superhydrophobicity,
but it involves numerous process parameters and interactions that are
challenging to optimize. The FP approach is particularly relevant here as it
identifies the key features and parameters thatmost significantly impact the
functional performance of the surfaces, thereby streamlining the design and
manufacturing process. ML can greatly aid in this task by efficiently
handling large datasets and uncovering complex relationships between
process parameters and surface properties.

Figure 6 shows the details of the experiment, the correlations probed,
and the resultant surfaces. Both the frameworks are shown inFig. 7.Here the
process fingerprint FP candidates are process parameters—laser power,
exposure time, andpitchdistance; and theproduct FP candidates are surface
geometric candidates—Sa, Sz, Sdr, Sku, Sdq, and Rsm. The product functional
performance, the hydrophobicity of the surface, is measured in terms of
contact angle (CA).

The RFR and XAI frameworks are from hereon called S1 and S2,
respectively. The fundamental difference between the two FP development
frameworks is that, while framework S1 has chosen an exhaustive search
approach combined with a black-box model for its predictions, framework
S2 uses amulti-level interpretable approach for both FPdevelopment and its
subsequent predictions. Due to these fundamental differences, the final
extractedFPsare alsodifferent for both frameworks as given inEqs. (10–13).
The differences also exist in the computational steps, time, and dimen-
sionality reduction.

Process FPRFR ¼ Power

Pitch0:75
ð10Þ

Process FPXAI ¼
Pitch0:029

Power0:0315
ð11Þ

Product FPRFR ¼
Sz

0:5 × Sdq ×Rhy

Sdr
2

ð12Þ

Product FPXAI ¼
1

S0:058z ×R0:07
hy

ð13Þ

The two approaches are further discussed in the following subsections.

RFR-based approach. The overall RFR approach has the follow-
ing steps:
• Parameter identification: first, identify the product functional perfor-

mance, process parameters, and surface characterization parameters
relevant to the manufacturing process and product requirement.

• Experimentation: conduct experiments by changing process para-
meters and levels, measuring and recording the functional perfor-
mance and surface characterization parameters.

• FPcandidate generation: use the experimental data to identify potential
process and product fingerprint candidates. Consider cross-terms
(products of first-order parameters) and exponential forms to
represent non-linear relationships.

• ML model selection: the framework utilizes an RFR model due to its
high predictive performance. The RFR model combines predictions
from multiple decision trees for better accuracy.

• ML model training: train the selected ML model utilizing the leave-
one-out cross-validation (LOOCV) approach. In this approach, each
experiment’s data is used as a test set while the rest serve as the training
set. This ensures all datasets are used for both training and validation,
addressing the challenges of small datasets.

• FP candidate evaluation: evaluate the FP candidates by calculating the
testing error using the LOOCV approach. Use the correlation and
testing error ratio (CTER) to evaluate candidates, aiming for a high
correlationwith product characteristics and low testing error. The ‘best
FP’ is determined based on the highest CTER value, balancing the
number of parameters used and optimization efforts.

• Final FP selection: apply a threshold (0.90 ×maximumCTER) to select
candidates with the minimum number of parameters. The candidate
with the highest CTER above this threshold is chosen as the final
process/product FP. If no other candidate meets the threshold criteria,
then the ‘best FP’ having the highest CTER (from the previous step) is
selected as the final FP.
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XAI-based approach. The methodology of XAI-based approach is
briefly summarized as follows:
• Process and parameter selection: this step involves identifying the

manufacturing process, along with relevant process parameters or
product functional performance (PF) indicators.

• Selection of FP expression: an interpretable FP expression is chosen to
be transparent and simple, capable of capturing cross-interactions and
non-linearities between process parameters/surface characteristics and
product functionality.

• Optimization algorithm: a global optimization algorithm, such as
MaxLIPO, is selected to extract the best process and product FP. This
algorithm ensures the best correlation between the FP and product
functionalityby iteratively adjusting theunknownparameters in theFP
expression.

• Dimensionality reduction: recurrent feature elimination (RFE) is used
to reduce the dimensionality of the FP by eliminating the minimum
contributing features in iterative steps until a termination criterion,

typically a drop-in correlation coefficient below a certain threshold, is
reached.

• Response prediction: for continuous responses, an ML model, parti-
cularly a stacked ensemblemodel, is trained to predict responses based
on the extracted process/product FP. Stacked ensemble models com-
bine the predictions of multiple base models to improve accuracy.

• Probabilistic model for event detection: for categorical responses, a
probabilistic model is developed using process FP values to detect
manufacturing events. This involves mapping FP values to prob-
abilities using decision boundaries and training stacked ensemble
models for event prediction.

• Post-hoc explanations: SHAP is used to provide post-hoc
explanations for stacked ensemble model predictions. These
explanations offer insights into both global and local interpreta-
tions of the model’s decisions. Various post-hoc explanations are
offered, including local and global feature importance and partial
dependency analysis.

Fig. 6 | Fingerprint extraction for laser textured superhydrophobic surfaces.
a The experimental setup of the micro-machining system, which consists of micro-
milling and nanosecond laser texturing capabilities, is illustrated. b The concept of
process andproductfingerprints is presented, focusing on three specific correlations.
Correlation A is between the process parameters and the end functionality, the
contact angle. Correlation B connects the geometric characteristics of the product,

such as Sa, Sz, Sku, Sdq, and Rz, with the contact angle. Correlation C links the process
parameters with surface features. c Four 3D surface topography images, obtained
from an optical profilometer and produced by different process parameter combi-
nations, are shown. The resultant contact angles shown within the topography
images are 131°, 141°, 152°, and 161°.
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Fig. 7 | Fingerprint generation frameworks. a The overall RFR approach, as illu-
strated, involves identifying relevant parameters, conducting experiments, gen-
erating potential fingerprint candidates, selecting and training an RFR model using
LOOCV, and evaluating candidates based on testing error and correlation to select
the final process/product fingerprint with the highest CTER value and minimum

parameters98. b The XAI-based approach, as shown, involves selecting process
parameters, extracting an optimal, interpretable FP expression with MaxLIPO, and
reducing dimensionality using recurrent feature elimination. It uses stacked
ensemble models for continuous response prediction and probabilistic models for
event detection, with SHAP providing post-hoc explanations for model insights99.
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The explainability of the RFR-based and XAI-based approaches
varies significantly due to their inherent methodologies and the
transparency of their processes. The RFR-based approach leverages a
black-box RFR, whose overall complexity and the aggregation of
multiple decision trees make it challenging to derive clear insights
into the underlying physical phenomena of the manufacturing pro-
cess. On the other hand, the XAI-based approach is specifically
designed for interpretability, utilizing a transparent FP expression
and optimization algorithms to capture cross-interactions and non-
linearities. As shown in Fig. 8, post-hoc explanations provided by
SHAP enhance this approach by offering detailed insights into how
each feature influences the model’s predictions, both globally and
locally.

It will indeed be an interesting endeavour to quantify and compare the
overall explainability of these frameworks, with respect to a common
dataset, as discussed in the next section.

Explainability of the FP development approach
Now, the proposed TCC evaluation framework is used to quantify and
compare the explainability of both systems in terms of transparency,
cohesion, and comprehensibility, as detailed in Table 2. Throughout this
case study, uniform weighting is applied where applicable. The explain-
ability score computations are further elaborated in the below subsections.

DoT calculation.
• Model output interpretability (T1): here the evaluation criteria are the

number of PHIs offered. RFR approach (S1) does not offer any post-hoc
explanations andhence is scored0.XAI approach (S2) offers threePHIs:
partial dependency analysis and global and local feature importance, as
given in Fig. 8. Since, the number of PHI types available, p = 3, the XAI
approach gets a score of 0:25 × 3 ¼ 0:75, as given in Table 1.

• Modelling simplicity (T2): the simplicity score is computed based on
computational steps and time. As given in ref. 98, computational steps
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Fig. 8 | Post-hoc explanations offered by XAI approach99. SHAP-based post-hoc
explanations for the stacked ensemble prediction of CA for a given process para-
meter combination (power = 20W; pitch = 130 μm; time = 0.4 s) are illustrated.

Various forms of explanations offered include local and global feature contribution
visualizations, as well as partial dependence plots.

Table 2 | Explainability evaluation using the TCC framework

TCC categories Sub-category Explainability evaluation details Scores Overall
scores

Total score

RFR based (S1) XAI based (S2) S1 S2 S1 S2 S1 S2

Transparency Model output interpretability NA Local feature contribution
Global contribution
Partial dependence

0 0.75 0.22 0.63 0.14 0.74

Modelling simplicity CS: 531,441 steps
CT: 19.19 h

CS: 2000 steps
CT: <1min

0 0.99

Data transparency Transparent Transparent 1 1

Rule transparency NA NA 0 0

Model complexity Operators: 5
Features: 4

Operators: 4
Features: 2

0.1 0.4

Cohesion Explanation consistency NA Computational explanations 0 1 0.22 0.77

Compatibility with I/O types I/O: numeric I/O: numeric, categorical 0.33 0.66

Integration with existing ML
algorithms

Explanation support for ML
types: R

Explanation support for ML
types:
R, C

0.33 0.66

Comprehensibility Explanation modes NA Intrinsic & post-hoc 0 1 0.00 0.83

Non-technical reasoning NA Supported 0 1

Technical & scientific insights NA Supported 0 0.5
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and time for S1 are 531,441 steps and 1151.4 min, respectively. On the
other hand, for S2, the computational steps and time for convergence
are <2000 steps and 1min99.

Based on Eq. (3), the simplicity score is computed for S1 and S2

Simplicity score S1
� � ¼ 1� 0:5×

531441
531441

� �
þ 0:5×

1151:4
1151:4

� �� �
¼ 0

Simplicity score S2
� � ¼ 1� 0:5×

2000
531441

� �
þ 0:5×

1
1151:4

� �� �
¼ 0:99

Here the threshold for computational steps (τcs) and time (τct) is not
predefined.Thus, followingEqs. (1) and (2), the steps and time threshold are
considered as the maximum value among S1 and S2 as 531,441 steps and
1151.4 min, respectively.
• Data transparency (T3): data are transparent for both S1 and S2 during

all the stages: acquisition, processing, feature extraction, and dimen-
sionality reduction. Hence both S1 and S2 are assigned the maximum
score of 1.

• Rule-based simulatability (T4): both S1 and S2 are not rule-based
approaches and hence this criterion is not applicable.

• Symbolic model simulatability (T5): the complexity function, c(Si),
sums up the number of features and operators, as explained in the
‘Degree of transparency (DoT)’ section. From final FP Eqs. (12) and
(13), it can be noted that the complexity function values for S1 and S2
are 9 and 6, respectively.

Now, based on Eq. (5), the complexity score is calculated as follows:

Complexity score S1
� � ¼ 1� ð9=10Þ ¼ 0:1

Complexity score ðS2Þ ¼ 1� ð6=10Þ ¼ 0:4

Contrary to the previous case, the threshold (τc) is predefined
as τ̂c ¼ 10.

Based on the individual transparency scores, the overall DoT of the
models is computed using Eq. (6) as

DoT S1
� � ¼ 0:2× 0þ 0:2× 0þ 0:2× 1þ 0:2× 0þ 0:2× 0:1 ¼ 0:22

DoT ðS2Þ ¼ 0:2× 0:75þ 0:2× 0:99þ 0:2× 1þ 0:2× 0þ 0:2× 0:4 ¼ 0:63

DoC calculation.
• Explanation consistency: post-hoc explanations like feature impor-

tance and partial dependency are objective computations and hence
consistent. In comparison, generative explanations based on LLMswill
be less consistent. S1 does not offer any explanations either objective or
generative, and hence is scored 0. On the other hand, since S2 uses
intrinsic XAI with SHAP, its explanations are objective and thus
consistent. S2 is thus scored 1.

• I/O compatibility: this criterion evaluates the robustness to handle
various I/O types. S1 can accommodate only numeric data (p = 1) and
is thus assigned a score of 0.33 as given in Table 1. S2 follows a generic
architecture and offers explanations to numeric and categorical inputs
(hence, p = 2) and is assigned a score of 0.66. To handle categorical
responses, a probability mapping scheme is embedded within S2, as
detailed in the ‘XAI-based approach’ section.

• MLmodel integration: compatibility with various types of MLmodels
is scored under this criterion. S1 is limited to handling just regression
tasks and is given a score of 0.33. S2 can handle regression and classi-
fication, owing to its integrated probability mapping scheme, and is
thus scored 0.66.

Based on the individual cohesion scores, the overall DoC of themodels
is computed using Eq. (7) as

DoC S1
� � ¼ 1

3
× 0þ 1

3
× 0:33þ 1

3
× 0:33 ¼ 0:22

DoC S2
� � ¼ 1

3
× 1þ 1

3
× 0:66þ 1

3
× 0:66 ¼ 0:77

DoCm calculation.
• Explanation modes: here the capacity to offer various modes of

explanations, like intrinsic and post-hoc, are scored. S1 does not offer
any modes of explanation and is scored 0. S2, however, offers both
intrinsic and post-hoc explainability and is scored 1.

• Non-technical reasoning: the ability to provide clarity in the model’s
local predictions aiding model debugging and process control is
assessed. S1 with no capability for local prediction explanations is
scored 0. S2, however, could assist non-experts with non-technical
reasoning through its partial dependency and local feature contribu-
tion analytics and is scored 1.

• Technical and scientific insights: S1 does not offer any technical or
scientific insights due to its black-box nature, thus scored 0. S2 can
provide a further scientific understanding of the manufacturing
process, however, is not yet capable of discoveries, and is scored 0.5.

Based on the individual comprehensibility scores, the overall DoCmof
the models is computed using Eq. (8) as

DoCm S1
� � ¼ 1

3
× 0þ 1

3
× 0þ 1

3
× 0 ¼ 0

DoCm S2
� � ¼ 1

3
× 1þ 1

3
× 1þ 1

3
× 0:5 ¼ 0:83

Finally, basedon theDoT,DoC, andDoCmvalues of themodels S1 and
S2, DoX is computed using Eq. (9) as

DoX S1
� � ¼ 1

3
× 0:22þ 1

3
× 0:22þ 1

3
× 0 ¼ 0:146

DoX S2
� � ¼ 1

3
× 0:63þ 1

3
× 0:77þ 1

3
× 0:83 ¼ 0:74

The comparison of the explainability of the considered FP develop-
ment approaches in terms of their explainability score, as per the proposed
TCC framework is summarized as:
• S2 is 3 times more transparent than S1.
• In terms of cohesion, S2 is 3.5 times better than S1.
• S1 does not offer any scientific insights, while S2 has a high degree of

comprehensibility.
• Overall, S2 is 5 times more explainable than S1.

The case study presented here employed a uniform weighing scheme
for explanation categories and sub-categories. However, non-uniform
subjective weighting methods like Delphi96 can be applied based on the
relative importance of different aspects of explainability and on the appli-
cation and context of the AI system being assessed. This ensures a more
precise evaluation of explainability tailored to specific applications. For
instance, in manufacturing contexts, such as in biomedical or nuclear
industries, transparency can be especially crucial. This is often due to reg-
ulatory demands and theneed for clear decision-makingprocesses to ensure
safety. Conversely, in other situations, ensuring the AI system is compre-
hensible might be more important. This helps non-expert operators to
interact with the system effectively and build trust in its operations.
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Discussion and insights
The TCC framework presents a structured and systematic approach to
evaluate the explainability of AI-driven manufacturing systems, addressing
a critical gap in the current landscape of explainability metrics. By
decomposing explainability into three fundamental components—trans-
parency, cohesion, and comprehensibility—the framework provides a
comprehensive assessment that encompasses not only the technical trans-
parency of models but also their alignment with domain-specific principles
and their interpretability for various stakeholders. The proposed approach
ensures that the evaluation is holistic, taking into account different aspects
that contribute to the overall explainability of AI systems in complex
environments like manufacturing. It is essential to highlight that the fra-
mework is both generalizable and flexible, allowing for the incorporation of
multiple scoring, ranking, and weighting schemes tailored to diverse
manufacturing applications and systems. The case study can be viewed as a
successful initial step, and the framework holds the potential for significant
expansion through additional case studies and discussions.

However, the framework has several opportunities for enhance-
ment through future investigations and improvements. One of the
present challenges is the subjective nature of weighting and scoring
within the TCC categories. For instance, assigning weights to different
sub-categories (e.g., modelling simplicity, explanation modes) can
introduce biases based on the evaluator’s perspective or the specific
application context. Additionally, the binary scoring for certain aspects,
such as non-technical reasoning and scientific insights, might over-
simplify the nuances of explainability. Finally, accommodating and
quantifying explainability in the latest generative AI-based manu-
facturing systems poses a potential future challenge.While not currently
a significant issue due to the limited use of generative AI in manu-
facturing, this could becomemore relevant as the adoption of generative
AI increases, necessitating further adaptations of the framework.

Despite these challenges, the TCC framework represents a significant
step forward in the systematic evaluation of AI explainability, offering a

robust foundation for enhancing trust, accountability, and usability of AI
systems across various applications.

Manufacturing autonomy through explainability
We argue that explainability is vital to achieve autonomy in smart manu-
facturing. While some of the proposed routes may initially be resource-
intensive and operationally expensive, we believe that in the long run,
trustworthy and explainable systems will only be able to attract wider
acceptance among stakeholders, regulatory bodies, and policymakers. This,
in turn, will lead to better investments in this direction and cover up for the
initial expenses.

Until now, there existed a false perception that anAImodel’s predictive
performance is the key to trusting it with autonomous decisions. However,
we argue that this is not the case, especially for high-stakes manufacturing
applications. From now on, more than accuracy, explainability will deter-
mine the level of autonomy in manufacturing systems. The proposed
explainability–autonomy correlation is shown in Fig. 9. Currently, we are at
the stage of intrinsically explainable systems, which can inspire an under-
standing of process physics.

The integration of explainability will progress towards novel modes of
collaboration between humans and computers, leading to hybrid intelli-
gence. At this level, scientific understanding will accelerate, but unexpected
discoveries are still unlikely. This is because human scientists still hold the
autonomy of defining problems, prioritizing them, and predefining them
from the set of potential AI-suggested hypotheses. While the AI–human
collaborative approach is indeed an improvement over traditionalmethods,
there is still some lost potential since seemingly less relevant research pro-
blems, which could have later led tomajor discoveries, may be screened out
by human scientists.

The synergies between human intelligence and AI intelligence are
crucial in this context. Human intelligence excels in creative problem-sol-
ving, contextual understanding, and ethical judgement,whileAI intelligence
is characterized by its ability to process vast amounts of data, identify

Fig. 9 | The proposed explainability–autonomy correlation. This figure presents
the proposed correlation between explainability and autonomy. The diagram
demonstrates how the level of autonomy increases in relation to the increase in
explainability, according to the TCC evaluation framework. Both explainability and
the level of autonomy are at their lowest for black-box model predictions.
Advancements in AI have resulted in various levels of explainability, namely, post-

hoc explainability, intrinsic explainability (model is by-design explainable and can
reveal process physics), hybrid human–AI systems (where AI can suggest/assist in
hypothesis generation and the results can enhance scientific understanding), and
autonomous AI systems (AI can independently solve hypotheses, leading to scien-
tific discoveries). These advancements are illustrated to enhance both explainability
and autonomy in the listed order.
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patterns, and perform repetitive tasks with high precision and consistency.
By integratingXAI,we can ensure thatAI systemsnot only provide accurate
insights but also offer transparency and interpretability in their decision-
making processes. This combination can lead to transformative advance-
ments in manufacturing systems. Collaborative decision-making, where
human intuition and contextual knowledge combine with XAI’s data-
driven insights, can lead to higher efficiency and innovation. Hybrid intel-
ligence systems, where humans and AI work together seamlessly, create
more robust and adaptable manufacturing processes. XAI can augment
human capabilities, providing tools and insights that were previously
inaccessible and can continuously learn and adapt, guided by human
expertise. Moreover, human supervision ensures that the deployment of
XAI in manufacturing is ethical and fair, fostering trust and facilitating the
adoption of AI-driven solutions across the industry.

As the level of explainability progresses, a stage is reached where the
attained trust, acceptability, and investmentsmake it feasible to explore even
seemingly low-stakes hypothesis spaces. This is done with the anticipation
that itwill ultimately yieldhigh-value outcomes.At this point,AI can engage
in an unrestricted exploration of the generated hypothesis space, subse-
quently planning and executing experiments autonomously with robot
scientists. Human involvement mainly revolves around monitoring and
overseeing the entire process. Thus, at the highest level AI will grow into a
stage where it can be implemented for the discovery of novel unseen con-
cepts. Ultimately, a series of new discoveries will be integrated into an
integrated model that is large-scale, high-precision, and in-depth.

In summary, this perspective paper highlights the evolving landscape
of XAI in smart manufacturing, emphasizing transparency and interpret-
ability in AI-driven decision-making. We have shared some implicit chal-
lenges that might be causing the slow adaptation of XAI in smart
manufacturing. We have explored AI’s transformative potential in gen-
erating scientific understandingwithinmanufacturing, envisioningAI as an
autonomous investigator driving innovation and informed decision-
making. The transition from weak AI to ultra-strong AI heralds a new era
of seamless collaboration between machines and humans, bridging data-
driven AI and domain expertise.

Furthermore, a TCC evaluation framework is proposed, which offers a
structured and systematic approach to the evaluation of the explainability of
smart manufacturing systems. The framework underscores the importance
of transparency, cohesion, and comprehensibility of explanations. It
introduces a detailed evaluation criterion which has been demonstrated
through a case study.

The road ahead for AI in manufacturing is paved with challenges, but
alsowith immense possibilities. By embracing explainability,manufacturers
can not only enhance the quality and productivity of their products but also
gain the trust of regulators, stakeholders, and the public. The transition from
Industry 4.0 to Industry 5.0 is driven by the demand for transparency and
accountability, and regulatory bodies are taking steps to ensure responsible
AI integration. The responsible integration of XAI into manufacturing
processes is not just a technological advancement but a paradigm shift that
will shape the future of smart manufacturing, ensuring that it is both
technically advanced and morally sound.

Data availability
No datasets were generated or analysed during the current study.

Received: 11 April 2024; Accepted: 2 September 2024;

References
1. Wang, J., Ma, Y., Zhang, L., Gao, R. X. & Wu, D. Deep learning for

smart manufacturing: methods and applications. J. Manuf. Syst. 48,
144–156 (2018).

2. Ahmed, I., Jeon, G. & Piccialli, F. From artificial intelligence to
explainable artificial intelligence in industry 4.0: a survey on what,
how, and where. IEEE Trans. Ind. Inform. 18, 5031–5042 (2022).

3. Tercan, H. & Meisen, T. Machine learning and deep learning based
predictive quality in manufacturing: a systematic review. J. Intell.
Manuf. 33, 1879–1905 (2022).

4. Rudin,C.Whyblackboxmachine learning shouldbeavoided for high-
stakes decisions, in brief. Nat. Rev. Methods Prim. 2, 1–2 (2022).
2022 21.

5. Gunning, D. et al. XAI-Explainable artificial intelligence. Sci. Robot. 4,
eaay7120 (2019).

6. Rožanec, J. M. et al. Human-centric artificial intelligence architecture
for industry 5.0 applications. Int. J. Prod. Res. 2023,
6847–6872 (2022).

7. Kundu, S. AI in medicine must be explainable. Nat. Med. 27,
1328 (2021).

8. Muggleton, S. H., Schmid, U., Zeller, C., Tamaddoni-Nezhad, A. &
Besold, T. Ultra-strong machine learning: comprehensibility of
programs learned with ILP.Mach. Learn. 107, 1119–1140 (2018).

9. Guo,W.,Gawade,V., Zhang,B. &Guo,Y. ExplainableAI for layer-wise
emission prediction in laser fusion. CIRP Ann. 72, 437–440 (2023).

10. Hanchate, A., Bukkapatnam, S. T. S., Lee, K. H., Srivastava, A. &
Kumara, S. Explainable AI (XAI)-driven vibration sensing scheme for
surface quality monitoring in a smart surface grinding process. J.
Manuf. Process. 99, 184–194 (2023).

11. Wang, Y. C. &Chen, T. NewXAI tools for selecting suitable 3Dprinting
facilities in ubiquitous manufacturing. Complex Intell. Syst. 9,
6813–6829 (2023).

12. Chen, T. C. T. Explainable artificial intelligence (XAI) in manufacturing.
in SpringerBriefs in Applied Sciences and Technology 1–11 (Springer
Science and Business Media Deutschland GmbH, 2023). https://doi.
org/10.1007/978-3-031-27961-4_1.

13. Baum, D., Baum, K., Gros, T. P. & Wolf, V. XAI requirements in smart
production processes: a case study. inCommunications in Computer
and Information Science CCIS Vol. 1901, 3–24 (Springer Science and
Business Media Deutschland GmbH, 2023).

14. Montavon, G., Samek,W. &Müller, K. R. Methods for interpreting and
understanding deep neural networks. Digit. Signal Process. 73, 1–15
https://doi.org/10.1016/j.dsp.2017.10.011 (2018).

15. Guidotti,R. et al. A surveyofmethods for explainingblackboxmodels.
ACM Comput. Surv. 51, (2018).

16. Barredo Arrieta, A. et al. Explainable artificial intelligence (XAI):
concepts, taxonomies, opportunities and challenges toward
responsible AI. Inf. Fusion 58, 82–115 (2020).

17. Lipton, Z. C. Themythos of model interpretability.Commun. ACM 61,
35–43 (2018).

18. Luo, X., Liu, Q., Madathil, A. P. & Xie, W. Predictive digital twin-driven
dynamic error control for slow-tool-servo ultraprecision diamond
turning. CIRP Ann. 73, 377–380 (2024).

19. Peng, C. Y. J., Lee, K. L. & Ingersoll, G. M. An introduction to logistic
regression analysis and reporting. J. Educ. Res. 96, 3–14 (2002).

20. Bursac, Z., Gauss, C. H., Williams, D. K. & Hosmer, D. W. Purposeful
selection of variables in logistic regression.SourceCodeBiol. Med. 3,
17 (2008).

21. Mood,C. Logistic regression: whywecannot dowhatwe thinkwecan
do, and what we can do about it. Eur. Sociol. Rev. 26, 67–82 (2010).

22. Rokach, L &Maimon, O.DataMining with Decision Trees: Theory and
Applications 2nd edn, Vol. 81, 1–305 (2014).

23. Li, L., Umbach, D. M., Terry, P. & Taylor, J. A. Application of the GA/
KNN method to SELDI proteomics data. Bioinformatics 20,
1638–1640 (2004).

24. Guo, G., Wang, H., Bell, D., Bi, Y. & Greer, K. An kNN model-based
approach and its application in text categorization. In LectureNotes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) Vol. 2945,
559–570 (2004).

25. Angelov, P. & Yager, R. A new type of simplified fuzzy rule-based
system. Int. J. Gen. Syst. 41, 163–185 (2012).

https://doi.org/10.1038/s44334-024-00006-9 Perspective

npj Advanced Manufacturing |             (2024) 1:8 17

https://doi.org/10.1007/978-3-031-27961-4_1
https://doi.org/10.1007/978-3-031-27961-4_1
https://doi.org/10.1007/978-3-031-27961-4_1
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1016/j.dsp.2017.10.011
www.nature.com/npjadvmanuf


26. Núñez, H., Angulo, C. & Català, A. Rule-based learning systems for
support vector machines. Neural Process. Lett. 24, 1–18 (2006).

27. Synnaeve, G. & Bessière, P. A Bayesianmodel for opening prediction
in RTS games with application to StarCraft. In 2011 IEEE Conference
on Computational Intelligence and Games, CIG 281–288 https://doi.
org/10.1109/CIG.2011.6032018 (IEEE, 2011).

28. Taylan, P., Weber, G.W. & Beck, A. New approaches to regression by
generalized additive models and continuous optimization for modern
applications in finance, science and techology. Optimization 56,
675–698 (2007).

29. Moradi, M. & Samwald, M. Post-hoc explanation of black-box
classifiers using confident itemsets. Expert Syst. Appl. 165,
113941 (2021).

30. de Sousa, I. P., Vellasco, M. M. B. R. & da Silva, E. C. Local
interpretable model-agnostic explanations for classification of lymph
node metastases. Sensors 19, 2969 (2019).

31. Ramamurthy, K. N., Vinzamuri, B., Zhang, Y. & Dhurandhar, A. Model
agnostic multilevel explanations. In Advances in Neural Information
Processing Systems Vol. 2020-Decem 5968–5979 (2020).

32. Zafar, M. R. & Khan, N. Deterministic local interpretable model-
agnostic explanations for stable explainability. Mach. Learn. Knowl.
Extr. 3, 525–541 (2021).

33. Plumb,G.,Molitor, D. & Talwalkar, A.Model agnostic supervised local
explanations. in Advances in Neural Information Processing Systems
Vol. 2018-Decem 2515–2524 (2018).

34. Ribeiro, M. T., Singh, S. & Guestrin, C. ‘Why should i trust you?’
Explaining the predictions of any classifier. In Proc. ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
Vol. 13-17-Augu, 1135–1144 (Association for Computing
Machinery, 2016).

35. Ribeiro, M. T., Singh, S. & Guestrin, C. Nothing else matters: model-
agnostic explanations by identifying prediction invariance (2016).

36. Lundberg, S. M. & Lee, S. I. A unified approach to interpreting model
predictions. in Advances in Neural Information Processing Systems
2017-Decem, 4766–4775 (2017).

37. Deng, H. Interpreting tree ensembles with inTrees. Int. J. Data Sci.
Anal. 7, 277–287 (2019).

38. Breiman, L., Friedman, J. H., Olshen, R. A. &Stone, C. J.Classification
and Regression Trees (CRC Press, 2017). https://doi.org/10.1201/
9781315139470.

39. Fu, X., Ong, C., Keerthi, S., Hung, G. G. & Goh, L. Extracting the
knowledge embedded in support vector machines. In IEEE
International Conference on Neural Networks—Conference
Proceedings Vol. 1, 291–296 (IEEE, 2004).

40. Üstün, B., Melssen, W. J. & Buydens, L. M. C. Visualisation and
interpretation of support vector regression models. Anal. Chim. Acta
595, 299–309 (2007).

41. Montavon, G., Lapuschkin, S., Binder, A., Samek, W. & Müller, K. R.
Explaining nonlinear classification decisions with deep Taylor
decomposition. Pattern Recognit. 65, 211–222 (2017).

42. Zeiler, M. D., Taylor, G. W. & Fergus, R. Adaptive deconvolutional
networks for mid and high level feature learning. In Proc. IEEE
International Conference on Computer Vision 2018–2025 https://doi.
org/10.1109/ICCV.2011.6126474 (2011).

43. Zhang, Q., Wu, Y. N. & Zhu, S. C. Interpretable convolutional neural
networks. In Proc. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition 8827–8836 (IEEE Computer Society,
2018). https://doi.org/10.1109/CVPR.2018.00920.

44. Xiao, T. et al. The application of two-level attention models in deep
convolutional neural network for fine-grained image classification. In
Proc. IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Vol. 07-12-June 842–850 (IEEE Computer
Society, 2015).

45. Arras, L.,Montavon,G.,Müller,K.R. &Samek,W.Explaining recurrent
neural networkpredictions in sentiment analysis. InEMNLP2017 - 8th

Workshop on Computational Approaches to Subjectivity, Sentiment
and Social Media Analysis, WASSA 2017—Proc. Workshop 159–168
(Association for Computational Linguistics (ACL), 2017). https://doi.
org/10.18653/v1/w17-5221.

46. Rajani, N. F. & Mooney, R. J. Stackingwith auxiliary features for visual
question answering. In NAACL HLT 2018 - 2018 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies—Proc. Conference Vol.
1, 2217–2226 (Association for Computational Linguistics
(ACL), 2018).

47. Chen, H., Lundberg, S. & Lee, S. I. Explaining models by propagating
Shapley values of local components. in Studies in Computational
Intelligence Vol. 914, 261–270 (Springer Science and BusinessMedia
Deutschland GmbH, 2021).

48. Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep
networks. In 34th International Conference on Machine Learning,
ICML Vol. 7, 5109–5118 (PMLR, 2017).

49. Alzetta, F., Giorgini, P., Najjar, A., Schumacher,M. I. &Calvaresi, D. In-
time explainability in multi-agent systems: challenges, opportunities,
and roadmap. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence, LNAI and Lecture
Notes in Bioinformatics) Vol. 12175, 39–53 (Springer, 2020).

50. Gunning, D. & Aha, D. W. DARPA’s explainable artificial intelligence
program. AI Mag. 40, 44–58 (2019).

51. Hagras,H. Toward human-understandable, explainableAI.Computer
51, 28–36 (2018).

52. Hussain, F.,Hussain,R. &Hossain,E. Explainable artificial intelligence
(XAI): an engineering perspective. Preprint at https://doi.org/10.
48550/arXiv.2101.03613 (2021).

53. Chromik, M. & Butz, A. Human-XAI interaction: a review and design
principles for explanation user interfaces. In Lecture Notes in
Computer Science, LNCS (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 12933,
619–640 (Springer Science and Business Media Deutschland
GmbH, 2021).

54. Hendricks, L. A. et al.Generating visual explanations. InLectureNotes
in Computer Science, LNCS (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 9908,
3–19 (Springer Verlag, 2016).

55. Li, C. & Yang, H. J. Bot-X: an AI-based virtual assistant for intelligent
manufacturing.Multiagent Grid Syst. 17, 1–14 (2021).

56. Trappey, A. J. C., Trappey, C. V., Chao, M. H. &Wu, C. T. VR-enabled
engineering consultation chatbot for integrated and intelligent
manufacturing services. J. Ind. Inf. Integr. 26, 100331 (2022).

57. Islam,M.R., Ahmed,M.U., Barua,S. &Begum,S. A systematic review
of explainable artificial intelligence in terms of different application
domains and tasks. Appl. Sci. 12, 1353 (2022).

58. Walker,C. et al. Digital twinof dynamicerror of a collaborative robot. In
European Society for Precision Engineering and Nanotechnology,
Conference Proceedings—23rd International Conference and
Exhibition, EUSPEN 309–312 (2023).

59. Goldman, C. V., Baltaxe, M., Chakraborty, D., Arinez, J. & Diaz, C. E.
Interpreting learning models in manufacturing processes: towards
explainable AI methods to improve trust in classifier predictions. J.
Ind. Inf. Integr. 33, 100439 (2023).

60. Lee, M., Jeon, J. & Lee, H. Explainable AI for domain experts: a post
Hoc analysis of deep learning for defect classification of TFT–LCD
panels. J. Intell. Manuf. 33, 1747–1759 (2022).

61. McLaughlin, M. P. et al. Enhanced defect detection in after develop
inspection with machine learning disposition. In ASMC (Advanced
Semiconductor Manufacturing Conference) Proceedings Vol. 2021-
May (Institute of Electrical and Electronics Engineers Inc., 2021).

62. Glock, A. C. Explaining a random forest with the difference of two
ARIMA models in an industrial fault detection scenario. In Proc.
Computer Science Vol. 180, 476–481 (Elsevier, 2021).

https://doi.org/10.1038/s44334-024-00006-9 Perspective

npj Advanced Manufacturing |             (2024) 1:8 18

https://doi.org/10.1109/CIG.2011.6032018
https://doi.org/10.1109/CIG.2011.6032018
https://doi.org/10.1109/CIG.2011.6032018
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.1109/ICCV.2011.6126474
https://doi.org/10.1109/ICCV.2011.6126474
https://doi.org/10.1109/ICCV.2011.6126474
https://doi.org/10.1109/CVPR.2018.00920
https://doi.org/10.1109/CVPR.2018.00920
https://doi.org/10.18653/v1/w17-5221
https://doi.org/10.18653/v1/w17-5221
https://doi.org/10.18653/v1/w17-5221
https://doi.org/10.48550/arXiv.2101.03613
https://doi.org/10.48550/arXiv.2101.03613
https://doi.org/10.48550/arXiv.2101.03613
www.nature.com/npjadvmanuf


63. Alvanpour, A., Das, S. K., Robinson, C. K., Nasraoui, O. & Popa, D.
Robot failure mode prediction with explainable machine learning.
IEEE Int. Conf. Autom. Sci. Eng. 2020-Augus, 61–66 (2020).

64. Matzka, S. Explainable artificial intelligence for predictive
maintenance applications. In Proc.—2020 3rd International
Conference on Artificial Intelligence for Industries AI4I 69–74 https://
doi.org/10.1109/AI4I49448.2020.00023 (2020).

65. Torcianti, A. & Matzka, S. Explainable artificial intelligence for
predictivemaintenance applications using a local surrogatemodel. In
Proc.—2021 4th International Conference on Artificial Intelligence for
Industries AI4I 86–88 https://doi.org/10.1109/AI4I51902.2021.
00029 (2021).

66. Hermansa, M. et al. Sensor-based predictive maintenance with
reductionof false alarms—a case study in heavy industry.Sensors22,
226 (2022).

67. Wang, J., Liu,C., Zhu,M.,Guo, P. &Hu,Y. Sensor databased system-
level anomaly prediction for smart manufacturing. In Proc.—2018
IEEE International Congress on Big Data, BigData Congress 2018—
Part of the 2018 IEEE World Congress on Services 158–165 (Institute
of Electrical and Electronics Engineers Inc., 2018). https://doi.org/10.
1109/BigDataCongress.2018.00028.

68. Gribbestad, M., Hassan, M. U., Hameed, I. A. & Sundli, K. Health
monitoring of air compressors using reconstruction-based deep
learning for anomaly detection with increased transparency. Entropy
23, 83 (2021).

69. Chowdhury, D., Sinha, A. & Das, D. XAI-3DP: diagnosis and
understanding faults of 3-Dprinterwith explainable ensembleAI. IEEE
Sensors Lett. 7, 1–4 (2023).

70. Kusiak, A. Federated explainable artificial intelligence (fXAI): a digital
manufacturing perspective. Int. J. Prod. Res. 62, 171–182 (2023).

71. Rožanec, J.M. et al. STARdom: an architecture for trusted and secure
human-centered manufacturing systems. In IFIP Advances in
Information and Communication Technology Vol. 633, 199–207
(Springer Science and Business Media Deutschland GmbH, 2021).

72. Senoner, J., Netland, T. & Feuerriegel, S. Using explainable artificial
intelligence to improveprocessquality: evidence fromsemiconductor
manufacturing.Manage. Sci. https://doi.org/10.1287/mnsc.2021.
4190 (2021).

73. Holm, E. A. In defense of the black box. Science 364, 26–27 (2019).
74. Mohammadi, B., Malik, N., Derdenger, T. & Srinivasan, K. Sell Me the

Black Box! Regulating eXplainable AI (XAI) May Harm Consumers.
arXiv 1–17.

75. Katharine Miller. Should AI Models Be Explainable? That Depends
https://hai.stanford.edu/news/should-ai-models-be-explainable-
depends (Stanford University Human-Centered Artificial
Intelligence, 2021).

76. Wald, B.Making AI More ‘Explainable’ in Health-Care Settings May
Lead to More Mistakes: U of T Researcher https://www.utoronto.ca/
news/making-ai-more-explainable-health-care-settings-may-lead-
more-mistakes-u-t-researcher (University of Toronto, 2020).

77. Kulkarni, P. G. et al. Overcoming challenges and innovations in
orthopedic prosthesis design: an interdisciplinary perspective.
Biomed. Mater. Devices 1, 1–12 (2023).

78. Farah, L. et al. Assessment of performance, interpretability, and
explainability in artificial intelligence–based health technologies: what
healthcare stakeholders need to know.Mayo Clin. Proc. Digit. Health
1, 120–138 (2023).

79. Arbelaez Ossa, L. et al. Re-focusing explainability in medicine. Digit.
Health 8, https://doi.org/10.1177/20552076221074488 (2022).

80. Wang, H. et al. Scientific discovery in the age of artificial intelligence.
Nature 620, 47–60 (2023).

81. Wang, Y., Wagner, N. & Rondinelli, J. M. Symbolic regression in
materials science.MRS Commun. 9, 793–805 (2019).

82. Udrescu,S.M.&Tegmark,M.AI Feynman: aphysics-inspiredmethod
for symbolic regression. Sci. Adv. 6, eaay2631 (2020).

83. Wilstrup, C. & Cave, C. Combining symbolic regression with the Cox
proportional hazards model improves prediction of heart failure
deaths. BMC Med. Inform. Decis. Mak. 22, 1–7 (2022).

84. René Broløs, K. et al. An Approach to Symbolic Regression Using
Feyn (2021).

85. Kitano, H. Nobel Turing Challenge: creating the engine for scientific
discovery. npj Syst. Biol. Appl. 7, 1–12 (2021).

86. Krenn, M. et al. On scientific understanding with artificial intelligence.
Nat. Rev. Phys. 4, 761–769 (2022).

87. Grizou, J., Points, L. J., Sharma, A. & Cronin, L. A curious formulation
robot enables the discovery of a novel protocell behavior. Sci. Adv. 6,
eaay4237 (2020).

88. Tshitoyan, V. et al. Unsupervised word embeddings capture latent
knowledge from materials science literature. Nature 571,
95–98 (2019).

89. Olivetti, E. A. et al. Data-driven materials research enabled by natural
language processing and information extraction. Appl. Phys. Rev. 7,
41317 (2020).

90. Shi, Y. et al. ChatGraph: interpretable text classification by converting
ChatGPT knowledge to graphs (2023).

91. Adesso, G. Towards the ultimate brain: exploring scientific discovery
with ChatGPT AI. AI Mag. https://doi.org/10.1002/AAAI.12113
(2023).

92. Sparkes, A. et al. Towards robot scientists for autonomous scientific
discovery. Autom. Exp. 2, 1–11 (2010).

93. Birhane, A., Kasirzadeh, A., Leslie, D. &Wachter, S. Science in the age
of large language models. Nat. Rev. Phys. 5, 277–280 (2023).

94. Pfitscher, R. J., Rodenbusch, G. B., Dias, A., Vieira, P. & Fouto, N. M.
M.D. Estimating code running time complexitywithmachine learning.
In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence, LNAI and Lecture Notes in
Bioinformatics) Vol. 14196, 400–414 (Springer Science and Business
Media Deutschland GmbH, 2023).

95. Cranmer, M. Interpretable machine learning for science with PySR
and SymbolicRegression.jl (2023).

96. Okoli, C. & Pawlowski, S. D. The Delphi method as a research tool: an
example, design considerations and applications. Inf. Manag. 42,
15–29 (2004).

97. Cai, Y. et al. Product and process fingerprint for nanosecond pulsed
laser ablated superhydrophobic surface.Micromachines 10,
177 (2019).

98. Kundu, P., Luo, X., Qin, Y., Cai, Y. & Liu, Z. A machine learning-based
framework for automatic identification of process and product
fingerprints for smart manufacturing systems. J. Manuf. Process. 73,
128–138 (2022).

99. Abhilash, P. M. et al. Intrinsic and post-hoc XAI approaches for
fingerprint identification and response prediction in smart
manufacturing processes. J. Intell. Manuf. https://doi.org/10.1007/
s10845-023-02266-2 (2024).

Acknowledgements
The authors gratefully acknowledge the financial support from the UK
Engineering and Physical Sciences Research Council (EPSRC, EP/
T024844/1, EP/V055208/1, and EP/X033686/1).

Author contributions
A.P.M.: conceptualization, methodology, formal analysis, investigation,
visualization, writing—original draft. X.L.: conceptualization, methodology,
supervision, project administration, funding acquisition, writing—review &
editing. Q.L.: writing—review & editing. R.M.: writing—review & editing.
C.W.: writing—review & editing.

https://doi.org/10.1038/s44334-024-00006-9 Perspective

npj Advanced Manufacturing |             (2024) 1:8 19

https://doi.org/10.1109/AI4I49448.2020.00023
https://doi.org/10.1109/AI4I49448.2020.00023
https://doi.org/10.1109/AI4I49448.2020.00023
https://doi.org/10.1109/AI4I51902.2021.00029
https://doi.org/10.1109/AI4I51902.2021.00029
https://doi.org/10.1109/AI4I51902.2021.00029
https://doi.org/10.1109/BigDataCongress.2018.00028
https://doi.org/10.1109/BigDataCongress.2018.00028
https://doi.org/10.1109/BigDataCongress.2018.00028
https://doi.org/10.1287/mnsc.2021.4190
https://doi.org/10.1287/mnsc.2021.4190
https://doi.org/10.1287/mnsc.2021.4190
https://hai.stanford.edu/news/should-ai-models-be-explainable-depends
https://hai.stanford.edu/news/should-ai-models-be-explainable-depends
https://hai.stanford.edu/news/should-ai-models-be-explainable-depends
https://www.utoronto.ca/news/making-ai-more-explainable-health-care-settings-may-lead-more-mistakes-u-t-researcher
https://www.utoronto.ca/news/making-ai-more-explainable-health-care-settings-may-lead-more-mistakes-u-t-researcher
https://www.utoronto.ca/news/making-ai-more-explainable-health-care-settings-may-lead-more-mistakes-u-t-researcher
https://www.utoronto.ca/news/making-ai-more-explainable-health-care-settings-may-lead-more-mistakes-u-t-researcher
https://doi.org/10.1177/20552076221074488
https://doi.org/10.1177/20552076221074488
https://doi.org/10.1002/AAAI.12113
https://doi.org/10.1002/AAAI.12113
https://doi.org/10.1007/s10845-023-02266-2
https://doi.org/10.1007/s10845-023-02266-2
https://doi.org/10.1007/s10845-023-02266-2
www.nature.com/npjadvmanuf


Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to
Xichun Luo.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’snoteSpringerNature remainsneutralwith regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s44334-024-00006-9 Perspective

npj Advanced Manufacturing |             (2024) 1:8 20

http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjadvmanuf

	Towards next-gen smart manufacturing systems: the explainability revolution
	Impact of technological maturity of AI in smart manufacturing
	XAI in manufacturing
	State-of-the-art XAI techniques
	XAI approaches in manufacturing

	Key challenges in XAI implementation
	Not everyone is concerned
	The Trust Paradox
	The right selection of explainability
	Lack of a robust evaluation matrix

	Perspectives on the road ahead
	XAI-driven scientific understanding
	XAI-driven scientific discovery
	Stage I: autonomous explorations
	Stage II: autonomous hypothesis generation
	Stage III: towards complete manufacturing autonomy

	XAI for dialogue-based human–machine interactions (HMI)
	Other potential applications

	Explainability evaluation framework
	Degree of transparency (DoT)
	Degree of cohesion (DoC)
	Degree of comprehensibility (DoCm)
	Degree of explainability (DoX)

	A case study: explainability of fingerprint development systems
	Concept of fingerprints
	ML-based approach for FP development
	RFR-based approach
	XAI-based approach

	Explainability of the FP development approach
	DoT calculation
	DoC calculation
	DoCm calculation

	Discussion and insights

	Manufacturing autonomy through explainability
	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




