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Quantum correlations, mixed states, and bistability at the onset of lasing
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We derive a model for a single-mode laser that includes all two-particle quantum correlations between photons
and electrons. In contrast to the predictions of semiclassical models, we find that lasing takes place in the
presence of quantum bistability between a nonlasing and a nonclassical coherent state. The coherent state is
characterized by a central frequency and a finite linewidth and emerges with finite amplitude from a saddle-node
bifurcation together with an unstable coherent state. Hence coherent emission in nanolasers originates through
a mixing of lasing and nonlasing states. In the limit of a macrolaser with a large number of emitters and
nonresonant modes, the laser threshold approaches the prediction of the semiclassical theory, but with the
important difference that lasing can be achieved only in the presence of finite-size perturbations.
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The development of nanolasers in recent years [1,2] has
been driven by the demand for devices with a minimal
footprint and thermal load for applications such as on-chip
communications, sensing, and biological probes [3], with po-
tential nonclassical applications enabled by photon number
squeezing [4–6]. The size of these devices raises interesting
fundamental questions about the identification of the lasing
threshold [6–8] and the role of light-matter quantum corre-
lations. These are expected to affect the dynamics and the
statistics of light emission in nanolasers more strongly than
in macroscopic lasers, where the large number of cavity
modes and intracavity emitters ensure the validity of the semi-
classical limit [9]. The search for performing models is of
paramount importance at the nanoscale, where the challenging
nature of the signals (low photon flux and large bandwidth)
restricts the experimental information to the photon statistics.
Reliable predictions become the only source for a meaningful
comparison and interpretation of experimental results. For
small numbers of emitters and electromagnetic field modes,
laser quantum models become crucial under the requirement
of overlapping their predictions with those of semiclassical
theories when reaching the macroscopic scale.

Quantum models for nanolasers have been developed
by using Heisenberg-Langevin equations [10], density ma-
trix theory [11], nonequilibrium Green’s functions [12],
or by applying the cluster expansion [13], where the fast
variables associated with coherent emission are neglected
[4,14–16] and only the slowly varying quantum correlations
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are kept. These models have recently been extended within
a semiclassical theory, by including the expectation values
of the coherent field and the medium polarization, and by
neglecting electron-electron and fast photon-electron quantum
correlations [coherent-incoherent model (CIM)] [6,8]. The
introduction of coherent variables has allowed us to identify
a laser threshold, which can be experimentally detected by
measuring the first-order correlation g(1)(τ ) [1], beyond which
stimulated emission becomes continuous [17].

In this Letter we address two fundamental questions:
to what extent do quantum correlations affect lasing, and
whether models that include them can reduce to the semi-
classical theory as the number of intracavity emitters grows.
We consider all two-particle quantum correlations (photon-
photon, photon-electron, and electron-electron) in a nanolaser
model [4] containing quantum dots at a cryogenic temperature
[two-particle model (TPM)]. The quantum dots have two lo-
calized levels where electrons and holes are injected from the
wetting layer, and the light-matter coupling is weak. Coulomb
[14,16] and phonon [18] scattering are considered through
dephasing terms and the interaction Hamiltonian is simpli-
fied by keeping only terms that do not oscillate at the light
frequency scale (rotating-wave approximation in the weak-
coupling regime) [6,8]. The bosonic operators b†, b describe
photon creation and annihilation processes, and the fermionic
operators c†, c (v†, v) represent the upper (lower) energy level
electron creation and annihilation. To understand the physical
meaning of the theory, it is important to associate the opera-
tors with particles: b†, b are single-particle bosonic operators,
while the single-particle fermionic operators [19] are com-
posed of pairs of operators such as the electron number in the
upper level, c†c, and the polarization, c†v.

The interaction between light and matter gives rise to an
infinite hierarchy of differential equations for the expectation
values of operators involving an increasing number of parti-
cles. The hierarchy can be truncated to a finite set by noting
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that the expectation value of any M-particle operator is the
sum of an M-particle correlation—originated by processes
involving all the M particles—and products of expectation
values of operators with numbers of particles ranging from
1 to (M − 1) [19].

A detailed analysis of different approximation schemes has
been performed in Ref. [20], where it was shown that some
approximations can lead to nonphysical results such as nega-
tive populations of the excited state. Our model considers only
two-particle correlations, which, in the weak-coupling regime,
are expected to be larger than higher-order correlations [13]
and we have verified that it produces physical results for both
populations and photon numbers.

To implement this scheme we use the identity 〈OiOjOk〉 =
〈OiOjOk〉C + 〈OiOjOk〉D, where Oi, Oj, Ok are arbitrary one-
particle operators, 〈OiOjOk〉C is the three-particle correlation,
and 〈OiOjOk〉D the sum of products of single- and two-
particle expectation values. We then truncate the equations at
the two-particle level by setting 〈OiOjOk〉C = 0. We apply
this procedure to the exact (not-closed) equation

d

dt

[ 〈Oi〉
〈OiOj〉

]
= L

[ 〈Oi〉
〈OiOj〉

]
+

[ 〈A(Oi )〉
〈A(OiOj )〉

]

+
[

0
R〈OiOjOk〉

]
, (1)

where L is a square matrix, A accounts for the presence of
nonresonant modes [Eqs. (S2) and (S3) in the Supplemental
Material [21]], and R is a rectangular matrix that describes the
coupling between two- and three-particle expectation values.
The end result is an approximate (closed) system of equa-
tions obtained by replacing the last two terms in Eq. (1) by[ 〈A(Oi )〉

〈A(OiOj )〉
]

−→
[

Ã(〈Oi〉)
Ã(〈Oi〉〈Oj〉)

]
, (2a)

[
0

R〈OiOjOk〉
]

−→
[

0
R〈OiOjOk〉D

]
, (2b)

where Ã are functions that give the radiative decay and
pumping terms resulting from the adiabatic elimination of
the correlations of the nonresonant modes with the polar-
ization [see Eq. (12) in Ref. [16] and Eqs. (S10) and (S11)
[21]]. While Eq. (1) is linear, the terms Ã(〈Oi〉〈Oj〉) and
R〈OiOjOk〉D are nonlinear. More generally, we can truncate
the equations at any M number of particles by neglecting
all correlations of M + 1 particle operators [22,23], and thus
approximate the eigenstates of a linear open quantum system
of very large (possibly infinite) dimension with the stable
steady states of a nonlinear system of much smaller dimen-
sion. For simplicity sake, we consider here a set of N identical
single-electron quantum dots [24]. In this case, Eqs. (1) and
(2) are equivalent to a set of 12 complex equations, the TPM
equations with identical quantum dots [Eqs. (S12) [21]].

We determine the role of different two particle correla-
tions by comparing the TPM and CIM predictions [8,17].
The CIM variables comprise three slow variables, electron
number 〈c†c〉, photon-assisted polarization 〈bc†v〉, and photon
number 〈b†b〉, and two complex fast variables oscillating at
the laser frequency: coherent field amplitude 〈b〉 and polar-
ization 〈v†c〉. The TPM has additional photon-electron and

photon-photon fast variables including two photon-electron
expectation values, namely 〈bc†c〉, and 〈bv†c〉, and one fast
photon-photon expectation value 〈bb〉. Additionally, it has
electron-electron expectation values comprising two slow
variables, 〈c†v†cv〉, 〈c†c†cc〉, and two fast variables, 〈v†c†cc〉,
〈v†v†cc〉. We model phonon scattering by adding a dephasing
term to electron-electron expectation values, μγ , with μ � 0,
following Ref. [18], where it was shown that this dephasing
reproduces the key effects of a microscopic theory of phonon
scattering. The other control parameters are common to all
models: the light-matter coupling g; the decay rates of the
upper-level population due to nonradiative processes, γnr, and
nonlasing modes, γnl; the dephasing rate of the polarization,
γ ; the pump rate per emitter, r; and the number of quantum
dots N inside the laser. All the parameter values have been
chosen based on experimental considerations (see Sec. SVII
[21]). For both CIM and TPM we characterize the lasing solu-
tion using its coherence time, which can be experimentally
measured through the visibility of interference fringes [1].
The richer nonlinear structure of the TPM with respect to the
CIM equations is expected to lead to multistability, which,
as shown in similar situations [25–27], corresponds to mixed
states in the open quantum system.

In Fig. 1 we show the absolute value of the amplitude of
the coherent field, |〈b〉|, versus the ratio of the pump rate per
emitter and the nonradiative decay rate, r/γnr, for nanolasers
with N = 25 [Fig. 1(a)] and N = 500 [Fig. 1(b)], computed by
integrating Eqs. (S14) [21]. The vertical bars, of length equal
to the generalized standard deviation

√
|〈bb〉 − 〈b〉2|, illustrate

both the variation of the values of |〈b〉| and that this state is not
a Glauber coherent state—the analog of a coherent classical
field with 〈bb〉 − 〈b〉2 = 0—but a nonclassical Gaussian state
[28]. The key result is that for the TPM the coherent field has
always a finite threshold amplitude, while this is zero in the
semiclassical CIM (solid blue line).

Electron-electron correlations increase both the thresholds
and the generalized standard deviation even for a large number
of QDs. These effects, however, are severely reduced by the
presence of a small amount of phonon scattering, e.g., the
μ = 0.05 curves in Fig. 1. This sensitivity is in agreement
with the results of Refs. [18,29]. In the presence of phonon
scattering, the amplitude of the coherent field approaches
that of the semiclassical theory as the number of emitters
increases. A similar dependence on quantum correlations of
the dynamics of large numbers of particles has been recently
found also in spin systems [30].

Furthermore, contrary to what happens in the semiclas-
sical theory, there are two lasing solutions, one stable and
one unstable, that appear at the lasing threshold (Fig. 2).
The real part of only one eigenvalue of the Jacobian matrix
changes sign at this point, which can therefore be classified
as a saddle-node bifurcation of limit cycles. The bifurcation
appears when the correlation between the population of the
upper level and the field—a nonclassical correlation emerging
from the interaction between field and quantum dots—is in-
troduced, even if all other correlations are neglected. We have
verified numerically in the physically relevant pump value
ranges used in this Letter, that there are two observable stable
states, one with coherent emission and the other without, and
an unstable state. Physically, the unstable state is a state with
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FIG. 1. Lasing solutions for the CIM (solid blue line) and the
TPM (dashed lines, yellow for μ = 0, red for μ = 0.05) with (a) N =
25 and (b) N = 500. The thin vertical lines measure the generalized
standard deviation

√
|〈bb〉 − 〈b〉2|. Time, decay rates, and coupling

parameters are scaled with γnr = 10−9 s−1. Other parameter values
(common to all figures) are g = 70, �ν = 0, γ = 104, γc = 10, and
γnl = 0 (equivalent to β = 1).

coherent emission and extremely short lifetime that acts as a
separatrix between the incoherent and the stable laser solution
in the one-dimensional center manifold of the lasing bifurca-
tion where the slow dynamics takes place. Even though the
unstable coherent solution seems to tend to a finite nonzero
value [see Fig. 2(b)], the ratio of the amplitude squared of its
coherent field with respect to the incoherent solution photon
number tends to zero [see Fig. 2(c)]. This indicates that the
incoherent solution will be destabilized by perturbations with
smaller and smaller relative amplitudes as the pump parameter
increases.

An accurate analytical estimate of the laser threshold (ver-
tical dashed lines in Fig. 2) is found from the analytical
solution of the incoherent state,

rth =
(

�n + �g

K

) 〈c†c〉th

1 − 〈c†c〉th
, (3)

where 〈c†c〉th is the CIM threshold value, Eq. (S.29) [21],
�n = γnr + γnl, �g = 2g2(γ + γc)/[(γ + γc)2 + �ν2], and
K = 1 − �g(2〈c†c〉th − 1){N/2γc + (N − 1)/[2γ (1 + μ)]}.

For completeness, we note there are other ways to de-
fine the threshold [31], which appear to identify different
points in the transition from incoherent to coherent emission

FIG. 2. (a) Bifurcation diagram of the TPM lasing solution (sta-
ble, solid, unstable, dashed) for N = 25 as a function of the pump
for μ = 0.00 (blue lines) and μ = 0.05 (red lines). The bifurcation
points where the stable and unstable solutions meet are the lasing
thresholds. They are indicated by open circles for equally spaced
values of μ in the range [0,0.05]. The incoherent solution |〈b〉| = 0
(not shown) is stable. The dotted line is only a guide for the eye.
The vertical dashed lines show the analytical values of the threshold
provided by Eq. (3). (b) Extension of the bifurcation diagram in
(a) for the case μ = 0.05 showing that the unstable lasing solution
approaches the incoherent solution, but remains bounded away from
it. (c) Plot of the ratio |〈b〉|2/〈b†b〉in for the stable (solid) and unstable
(dashed) lasing solutions, where 〈b†b〉in is the photon number of the
incoherent solution (〈b〉 = 0) at the same pump value.

in nanolasers and behave differently from very large values
of g. Equations (3) and (S29) [21] identify the appearance
of a stable coherent solution with constant amplitude; based
on Ref. [32] we expect that below this threshold, transients
of coherent emission are possible and can lead to a gradual
increase of time-averaged measures of the coherence as the
pump approaches the threshold value. Moreover, the nonlas-
ing solution continues to be linearly stable above the lasing
threshold. It should be noted that this bistability does not
appear in the semiclassical limit, where, in a framework where
quantum correlations vanish, bistability is associated with a
first-order phase transition. Here, however, bistability is a con-
sequence of the inclusion of two-particle quantum correlations
and indicates the presence of a mixing of lasing and nonlasing
states in nanolasers far from the semiclassical limit. In Fig. 2
we also plot the effect of phonon scattering on the lasing
threshold. For all values of μ plotted there are stable and
unstable lasing solutions at the threshold. This implies that the
bistability is present also when the laser threshold and the |〈b〉|
curve approach the semiclassical theory, showing that lasing
can be started only by finite amplitude perturbations.

To illustrate further the difference between the CIM and
TPM lasing and nonlasing solutions and the impact these
have on nano- and macrolasers, we plot their first-order co-
herence time, τc, defined in Eq. (S17) [21], for a nano- and a
macrolaser, Figs. 3(a) and 3(b), respectively. For all nonlasing
solutions g(1)(τ ) is calculated from a system of linear differen-
tial equations, derived from the CIM and TPM equations using
the quantum regression [33] theory. In this approach each
CIM or TPM equation for a variable 〈O(t )〉 leads to a linear
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FIG. 3. Decay time of the first-order correlation function, τc, for
lasing (L) and nonlasing (NL) CIM and TPM solutions for (a) a
nanolaser and (b) a macrolaser. The vertical dashed lines show from
left to right the analytical values of the threshold, Eq. (3), for the
CIM, TPM μ = 0.05, and TPM μ = 0.00 lasing solutions. The cor-
relation time of the CIM (NL) solution diverges at threshold. The
CIM (NL) and TPM (NL) curves were computed using Eqs. (S27)
and (S24), respectively [21]. The TPM (L) curves were computed
using the Schawlow-Townes theory, Eq. (S25) [21], and plotted only
for pump values at least 10% above threshold. The parameters are
β = 1 and N = 25 for the nanolaser in (a), and β = 3.4 × 10−6 and
N = 500 for the macrolaser in (b). All other parameters are as in
Fig. 1.

differential equation for the mixed time expectation value
〈b†(t )O(t + τ )〉, where τ is the delay time [17,34]. For the
CIM and TPM nonlasing solutions this approach leads to a
2 × 2 and a 5 × 5 system, respectively [Eqs. (S27) and (S24)
[21]]. Unfortunately, this approach is not suitable for the las-
ing solutions. These are phase-rotation invariant and, hence,
their decoherence is dictated by slow fluctuations of the phase
[35,36]. Mathematically, the invariance implies that the linear
equations have a zero eigenvalue and it is not straightforward
to use this theory to study their (slow) dynamics in the cor-
responding manifold. Therefore, we follow the approach of
Ref. [37], where it is shown that, for systems such as those
considered here in which the polarization decays much faster
than the other variables [see Eqs. (24) and (30) in Ref. [37]],
τc can be estimated by the Schawlow-Townes formula
[Eq. (S25) [21]].

The coherence time of the CIM nonlasing solution, CIM
(NL), diverges at the threshold. This is due to the nature of
the CIM lasing transition: The nonlasing solution changes its
stability and the stable lasing solution appears with zero am-
plitude. As the transition point is approached the fluctuations
become slower and the coherence time diverges. This is not
the case of the TPM nonlasing solution, TPM (NL), which
remains always stable and with a finite and small coherence
time. The lasing solutions of either model, CIM (L) and TPM
(L), have similar behaviors: Their τc are much larger than the
nonlasing solutions and increase with the pump.

Because of the bistability between TPM (L) and TPM
(NL) solutions, even above threshold a nanolaser will be in
a mixture of these two states and, therefore, its coherence will
be a combination of theirs. In particular, the experimentally
observed smooth increase in correlation as the bifurcation is
approached [1] can be explained in terms of mixed lasing and
nonlasing states with the weight of the lasing state component
increasing with the pump.

An experimental verification of the bifurcation diagram in
Fig. 2 can be obtained from the distributions of the experi-
mental measures of light coherence at different pump values.
From an experimental point of view, the expected temporal
scales over which noise tips a nanolaser away from the stable
incoherent state are nowadays accessible. As an estimate, we
can assume the cavity buildup time as the needed (minimal)
timescale. Since the current photon statistical apparatus has
a temporal resolution better than 10 ps, it is possible to
construct lasers where the statistics can be experimentally
collected. The scheme would consist in collecting emission
levels [possibly with spectral information through interfero-
metric measurements of g(1)(τ )] by repeatedly modulating the
laser across the threshold and accumulating a probability den-
sity function (PDF) of the collected photon number (and/or
coherence level). The measurement could be performed either
at a fixed time—detecting the population of the two states (in-
coherent and coherent emission) which present well-separated
peaks in coherence times—or in collecting the statistics of the
time delay for threshold crossing. The expected results would
have a form similar to that found in the transient bimodality
in optical bistability as predicted in Ref. [38] and observed in
Ref. [39].

We conclude the analysis of the TPM (L) solutions with a
study of their frequency. The steady state single-mode lasing
frequency �, derived analytically in Sec. SVI [21], is

� = ν + γc
Im(〈v†c〉∗〈b〉)

Re(〈v†c〉∗〈b〉)
. (4)

In the case of the CIM this formula simplifies to �(CIM) =
ν + γc�ν/(γc + γ ) [8], which appears to be also an excel-
lent approximation of the TPM (L) frequency, as shown in
Fig. 4.

In conclusion, we have observed that in the TPM, i.e., a
model that includes two-particle quantum correlations, lasing
appears through a saddle-node bifurcation of limit cycles for
both nano- and macrolasers. Furthermore, incoherent and co-
herent states are bistable, and the lasing solutions have a finite
linewidth. For nanolasers with a small number of QDs, quan-
tum effects result in a significant departure from semiclassical
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FIG. 4. Frequency vs detuning �ν for the CIM and TPM (with
μ = {0.00, 0.05}) lasing solutions. The solid line is the analytical
CIM frequency �(CIM). The + markers are the CIM and TPM lasing
frequencies computed using Eq. (4) averaged over 100/γnr s. The cir-
cle markers are the frequency computed by taking the dominant peak
in the power spectrum of the numerical solution of the coherent field
〈b〉 averaged over the same time interval. The differences between
the CIM and the two TPM simulations are not visible on the scale of
the graph. All parameters are as in Fig. 1 except that r/γnr = 8 × 105.

theories; the same effects are present also in macrolasers, but
are much harder to observe. From the perspective of appli-
cations, this affects key properties such as the signal-to-noise
ratio as well as the buildup or collapse of coherence that are
crucial in all applications where coherence is essential, such
as spectroscopy, and in those involving ramping up or down
of the laser parameters, such as data processing and storing.
The nonclassical nature of the coherent states and the quantum
correlations described here can have practical applications

in continuous-variable quantum technologies which rely on
Gaussian states. Nonclassical Gaussian states, present both
in the CIM [6] and in the TPM, can lead to entanglement,
as recently proven with two-mode Gaussian states [40]. The
advantages of nanolasers is that they can be integrated into
photonic chips leading to portable quantum optical devices
[41]. Furthermore, the theory provides measurable quanti-
ties such as laser frequency and linewidth that allow one to
identify emission processes and laser threshold. We remark
that the predicted bistability is consistent with the experimen-
tal observation of spontaneous photon burst emission at the
threshold of microlasers [42,43] for which no first-principles
theory has been previously identified. Finally, preliminary nu-
merical simulations show that the condition of identical QDs
can be relaxed without changing the scenario described in this
Letter even without fermionic correlations, which indicates
that the effect should be observable even at higher temper-
atures. The bifurcation scheme emerging from this Letter
also suggests different topologies in which to study delay-
controlled bifurcations and their shifts. This topic, outlined for
lasers in Ref. [44], is of great interest and finds applications in
a broad variety of fields (see, e.g., Refs. [45,46]) and is very
actively pursued for its potential applications. Lasers present
considerable advantages over other systems—irrespective of
their nature—given their stability and reproducibility, in addi-
tion to the easy and rapid data collection. The features of this
bifurcation offer an alternative scenario for the acquisition of
information on different schemes. Finally, we can envisage
forms of control of the bifurcation switch towards lasing, for
instance through the injection of light pulses into the laser,
to ensure a rapid transition through threshold for low desired
emission levels.

We thank Peter Kirton and John Jeffers for many illuminat-
ing discussions
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