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**  This work aims to find the remaining
useful life of Heavy Water Filters in
CANDU Reactors

+» Differential Pressure across the filters,
builds as the filter degrades

**  While a wealth of historical data is
available, there are many hidden
variables other than just differential
pressure.

** The filters are not uniform in
degradation.

**  The aim of this project is to see if

Knowledge models can be used to keep

track of those variables and therefore

improve prediction

Current Methodology
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« The current methodology extracts differential pressure across these filters using data
contained in maintenance logs

» It uses a sliding window to search across this Time series data, and automatically split the
pressure data into curves, each of which correlates to a filter’s lifespan

*  The data points across the lifespan are then filtered and categorized

* Curve fitting is then applied to predict the remaining useful life of the filter.

* The bounds for this curve fitting is adjusted based on the 7 known examples of ‘full

degradation curves’ which span from filter change date to alarm value
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» A Knowledge Model is a NeuroSymbolic Knowledge Graph used to model a decision-
making process.

*  The model relates the physical asset, to the decision-making process, to any software that

impacts that decision process, data used across that decision and any conceptual elements

that exist in that process.
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Knowledge Model before Data is passed through Decision Process
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Automated Splitting of filter lifespans
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Differential Pressure Data across a
single quadrant of Channels

Filter 7

Key Node types in graph, Decision, Software, Data, Physical, Conceptual
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® Stable *** Using the knowledge model, each new data point can be examined based on it’s

relationships with all other data points.
** This Similarity analysis helps identify outliers and assess the potential accuracy of

i predictions
i *** Similarity scores can also serve as a proxy for the expected reliability and consistency of
o | predictions
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Enhancing this Prediction
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* Not all filters degrade at equal rates

* The different quadrants, in different stations, different filter sizes, different times of year -> 02
all effect the degradation rate

* But the current mechanism does not take into account any of these factors

* A key component here is the decision-making process must be both transparent and

explainable.
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Graph Indexes

Comparative Similarity of Data Points based on Knowledge Model Relationships
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Future Work and Next Steps

Graph Retrieval

»* The current methodology improves curve fitting by using bounding based on the
handful of completed curves

** The next step here is to map all data regardless of completion to the knowledge
model.

**  The model will then use the most similar previous examples in terms of filter

variables to improve the predictive curve fitting

** This is the first step in a larger attempt to make use of Knowledge Models

* Next Steps involve using Graph Embeddings to in place of current relationship based
similarity

* Using these similarity values to help more accurately bound curves

* Following that showcasing the reusability of Decision-Making elements
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