

CubeSat Flight Software: Insights and a Case Study

Mohammed Eshaq*, M. Sami Zitouni†, and Shadi Atalla‡

University of Dubai, Dubai, P. O. Box: 14143, United Arab Emirates

Saeed Al-Mansoori§

Mohammed Bin Rashid Space Center (MBRSC), Dubai, P. O. Box: 211833, United Arab Emirates

Malcolm Macdonald**

University of Strathclyde, Glasgow, G1 1XQ, United Kingdom

The development of efficient flight software (FSW) for CubeSats faces significant

challenges due to lack of mainstream guidelines and frameworks. Addressing the challenge of

developing such FSW within the ever evolving yet stringent hardware constraints forms the

core of this study. This paper presents a comprehensive analysis of FSW specifications,

development challenges, and proposes a novel approach to software design that maximizes

functionality while adhering to hardware limitations. It begins by scrutinizing current trends

in CubeSat FSW, emphasizing the significance of modularity and reusability for successful,

adaptable, and repeatable space missions. Drawing from a diverse array of literature sources,

various aspects of CubeSat FSW is explored, encompassing design methodologies, subsystems,

mission applications, reliability, fault tolerance, testing, validation, and communication.

Subsequently, a case study is introduced featuring an app-based FSW solution tailored for a

12U CubeSat with a 5G Internet-of-Things payload and green propulsion. This case study

incorporates insights from the literature review, featuring a service-oriented. The FSW

solution includes a user-friendly command line interface for efficient onboard and ground

communication, a script engine for timely in-orbit execution and payload control, and a

bootloader for in-mission updates, enhancing adaptability and future readiness. The analysis

and case study reaffirm the pivotal role of robust and efficient flight software in mission

* Corresponding Author (meshaq@ud.ac.ae), Senior Embedded Engineer, Mohammed Bin Rashid Space Center

(MBRSC) Lab, College of Engineering & IT.
† Assistant Professor, Mohammed Bin Rashid Space Center (MBRSC) Lab, College of Engineering & IT.
‡ Associate Professor, Mohammed Bin Rashid Space Center (MBRSC) Lab, College of Engineering & IT.
§ Director, Remote Sensing Department.
** Professor and Director, Applied Space Technology Laboratory (ApSTL), Department of Electronic and Electrical

Engineering.

This is a peer-reviewed, accepted manuscript of the following paper: Eshaq, M., Zitouni, M. S., Atalla, S., Al-Mansoori, S., & Macdonald, M.
(in press). CubeSat flight software: insights and a case study. Journal of Spacecraft and Rockets.

success, while underscoring the need for freely available, modular, and reusable solutions to

foster innovation in the field, ultimately reducing reliance on commercial products or

continual redevelopment.

I. Introduction

ECHNOLOGICAL advancements have led to the creation of smaller satellites that can be easily held and handled

by a single person. A popular category of such smaller satellites is the nanosatellite category (weighing between 1 to

10 KG) [1]. An even more popular type of nanosatellite is the Cube Satellite (CubeSat), a miniaturized satellite built

out of standardized cubes; the name comes from the cubed units used to build the satellite. Any CubeSat may have

the size of 1 Unit (1U), or multiples of such units where each unit measures 10 x 10 x 10 cm. These units typically

have a little over 1 kilogram mass per unit. CubeSats were first developed in 1999 by California Polytechnic State

University and Stanford University and have since grown in popularity due to their low cost and flexibility [2]. A

CubeSat can be quickly built with in-house-developed or commercial-off-the-shelf (COTS) electronics and

components. CubeSats are typically used for space research and commercial use [3]. This means that developers with

limited to no experience in satellite technology away from large space agencies, such as students at universities and

research centers or even enthusiasts, can now explore the realms of space with CubeSats [4]. CubeSat hardware

standardization and adoption in academia and industry has led to increased volumes of production of off-the-shelf

components. Although this has resulted in a significant reduction in satellite development time and cost, a considerable

amount of mission development time and effort is still spent on flight software (FSW) development [5] unless the

code is reusable [6].

In exploring the domain of CubeSat flight software (FSW), this study first undertakes a comprehensive literature

review to scrutinize existing FSW development practices, design methodologies, and the integration challenges

inherent to CubeSat missions. Through this detailed examination, we identify critical shortcomings in the current

approaches, particularly in terms of modularity, reusability, and efficiency. These shortcomings highlight the need for

a more streamlined framework that can adapt to the rapid advancements in space technology and mission requirements.

The analysis of existing Flight Software (FSW) developments reveals a notable absence of several key features,

deemed critical for the efficacy and success of CubeSat missions. These missing elements, and their impacts on both

the FSW and the overarching mission objectives, are identified and summarized as shown in Table 1.

T

CubeSat flight software: insights and a case study

Table 1 Missing Essential Features in Existing Solutions and Their Impact on Mission Succes

Essential Features Often Lacking in Current FSW

Solutions

Impact on FSW and the Mission

Modularity and Service-Oriented Architecture Constrains the potential for software reuse in subsequent missions, leading to

increased developmental efforts and costs.

Multi-Layered Architecture Diminishes software abstraction and portability, adversely affecting

modularity and the ability to adapt software across different mission contexts.

Utilization of FreeRTOS The preference for more sophisticated operating systems necessitates the

deployment of more robust hardware, potentially escalating mission costs and

complexity.

Implementation of a Command Line Interface Complicates testing procedures and the development of efficient script

engines, potentially hindering operational agility.

Incorporation of a Script Engine Restricts the versatility of Mission Control Systems for use in future missions,

limiting the longevity and adaptability of the software.

Integration of a Bootloader Absence of in-mission software update or patching capabilities renders any

post-launch software issues intractable, risking mission failure.

This work’s significant contribution emerges in the form of a case study detailing the development and deployment

of a novel FSW framework for a 12U CubeSat mission. This framework, characterized by its service-oriented and

multi-layered architecture, introduces a modular app-based software and runs on FreeRTOS. The solution features an

intuitive command-line interface, a versatile script engine for enhanced in-orbit operations, and a bootloader for in-

mission FSW updates. The case study not only serves as a practical implementation of the proposed framework but

also validates its efficacy in improving mission outcomes, offering a scalable and adaptable solution for future CubeSat

projects.

While widely adopted frameworks like NASA’s Core Flight System (cFS) [7] and F Prime [8] provide strong

modularity and service-oriented architecture, they have notable limitations. For instance, cFS does not natively support

FreeRTOS, a lightweight, widely used real-time operating system ideal for resource-constrained CubeSat missions.

Additionally, neither cFS nor F Prime provide a built-in script engine for automating satellite operations, or a flexible

bootloader for in-mission software updates. These features are essential for mission adaptability and efficiency. They

have been specifically addressed in this work to improve scalability, simplify operations, and enhance flexibility

during the mission.

 By bridging the gap between theoretical research and practical application, this study provides a robust foundation

for advancing CubeSat FSW development. The combination of a thorough literature review with a space-proven case

study underscores the dual focus on understanding the current landscape and contributing a tangible, innovative

framework that addresses identified deficiencies. This approach aims to foster broader participation in CubeSat

development, encouraging open-source collaborations and setting a new benchmark for mission success.

CubeSat flight software: insights and a case study

 The paper begins with an extensive literature review, comprehensively evaluating advancements and challenges

in CubeSat FSW. Subsequently, the paper transitions into a detailed case study, focusing on the FSW design and

implementation development for the PHI-Demo spacecraft. The CubeSat is a 12U CubeSat featuring a 5G Internet-

of-Things (IoT) subsystem as its primary payload and a green propulsion system as a secondary, demonstrative

payload. This case study not only illustrates insights gleaned from the literature review but also serves as a practical

blueprint for future software development endeavors.††

A. Challenges and Motivation

The National Academies’ report titled “Achieving Science with CubeSats: Thinking Inside the Box” [2] provided

an overview of CubeSats developed to facilitate cost-effective access to space for scientific and technological

purposes. The authors asserted that CubeSats often have lower reliability than traditional satellites. This claim can be

validated by examining Fig. 1 as it shows the status of all CubeSat launched, and scheduled to launch, to date and

their mission status [9]. In the graph, the mission statuses are defined as:

1. Pre-launch: CubeSats that are in the planning, design, or manufacturing stage and have not yet been

launched into space.

2. Launch Fail: CubeSats that experienced a failure during the launch process, resulting in an unsuccessful

mission.

3. DOA (Dead on Arrival): CubeSats that, upon reaching orbit, were found to be non-functional or failed

to establish communication with ground stations.

4. Early Loss: CubeSats that became non-functional or lost communication shortly after the launch, before

completing their intended mission objectives.

5. Partial Mission: CubeSats that accomplished some, but not all, of their mission objectives before

encountering issues or reaching the end of their operational lifetime.

6. Full Mission: CubeSats that successfully completed all their intended mission objectives and

demonstrated full operational capability.

7. Unknown: CubeSats for which the mission status is uncertain or has not been reported, making it difficult

to determine their success or failure.

†† The case study section is an expanded version of our previously published conference paper [40].

CubeSat flight software: insights and a case study

Fig. 1 CubeSat Mission Status per Year [9]

One way to mitigate the risk of failure is to adopt a ‘fly-learn-re-fly’ approach [2], where two flight models are

developed, and the second flight model is modified and launched if any issues arise during the first flight. This

approach can decrease development time, and testing costs, but can also result in increased costs, especially when the

cost of a launch is considered. Additionally, this approach can lead to delays in achieving mission objectives if issues

arise during the first flight that requires significant modifications to the second model. Despite these potential

drawbacks, the ‘fly-learn-re-fly’ approach has been widely adopted for CubeSat development, due to its effectiveness

in improving mission success rates. Nevertheless, other sources, in section B, suggest that FSW is potentially the most

critical aspect in determining mission success for CubeSats.

In light of the challenges highlighted by the National Academies' report and the diverse mission outcomes of

CubeSats as shown in Fig. 1, this paper is motivated by the pressing need to enhance CubeSat mission reliability and

success rates. Despite the advances in CubeSat technology, the variance in mission outcomes—from early loss to full

mission success—underscores a critical gap in current CubeSat development practices, particularly in the realm of

flight software (FSW). The 'fly-learn-re-fly' approach, while effective, points to deeper underlying issues in the design

CubeSat flight software: insights and a case study

and testing phases that could benefit from improved FSW methodologies. Consequently, this paper aims to address

these gaps by presenting a comprehensive analysis and a novel framework for FSW development, tailored to mitigate

the risks identified and to streamline the process for achieving mission objectives. Our motivation is rooted in the

belief that through targeted improvements in FSW, CubeSats can achieve higher reliability and operational success,

making space more accessible for scientific and technological exploration.

B. The Significance of FSW

Just as with any other satellite, a CubeSat comprises multiple subsystems each with a specific function: power,

communication, attitude control, and so forth. These subsystems are embedded systems connected to the Onboard

Computer (OBC). The OBC is responsible for processing commands and responses, managing communication with

the ground, and overseeing the overall operation of the satellite. Therefore, designing and implementing the FSW that

runs on the OBC is vital to CubeSat missions.

CubeSat FSW development often significantly differs from that of large missions. The teams involved in CubeSat

development are smaller, more open to adopting new technology, rely less on formal verification methods, and often

produce FSW solutions with only a few thousand lines of code compared to millions of lines in large flight projects

[2].

The FSW must provide “numerous services, such as computer boot-up and initialization, time management,

hardware interface control, command processing, telemetry processing, data storage management, FSW patch and

load, and fault protection” [10]. Implementing FSW is more challenging than other commercial embedded software;

once the satellite has launched, there is no interaction with users unless the satellite makes contact with the ground

station. Even then, it can only communicate via uplink and downlink during short, intermittent time windows. Most

of the mission time, the FSW runs unsupervised by the ground. Thus, it must be able to recover from faults on its own

[10]. To achieve this and despite all the recent advancements in technology, a significant portion of mission

development resources are allocated to the development of FSW [5].

Many sources suggested that FSW is a critical aspect in determining mission success for CubeSats. The work in

[11] emphasized the importance of the FSW. Gonzalez et al. [4] emphasized the importance of FSW architecture and

monitoring during the software life cycle to ensure software quality and reduce mission risk. Furthermore, [12] asserts

that CubeSats do not have an outstanding record of mission success. Therefore, the authors provided recommendations

to improve the likelihood of mission success for future CubeSat development projects, including implementing

CubeSat flight software: insights and a case study

common-sense practices, such as thorough testing and mission assurance. Overall, these papers suggested that FSW

is critical in determining mission success for CubeSats and should be carefully designed, monitored, and tested to

ensure software quality and reduce mission risk. Yet, the National Academies report [2] highlighted that CubeSat

Flight Software (FSW) development lagged behind hardware advancements in the CubeSat field.

C. Hardware Components: Typical and Emerging

Understanding the composition of a CubeSat requires a detailed look at its hardware components. This section will

summarize the typical components and highlight emerging technologies pertinent to CubeSat hardware.

1) OBC: As the primary computer, it governs mission operations, communication, and overall satellite

management, with the FSW operating on it. The in-depth discussion on this component will be the focus of

the upcoming sections.

2) Electrical Power Subsystem (EPS): This system collects energy from solar panel arrays, storing it in the

satellite’s batteries. With CubeSat growth, power generation through deployable solar arrays has become

more prevalent. Future advancements in solar cell technology could potentially revolutionize CubeSat power

generation. CubeSats typically use Lithium-ion and Lithium-polymer batteries due to their efficiency and

affordability [2].

3) Communication Subsystem (COM): Essential for ground communication, CubeSats commonly employ

UHF, VHF, L-band, X-band, Ku-band, or Ka-band frequencies. Technological boundaries of CubeSat

communication are continually pushed to accommodate more sophisticated missions, with inter-satellite

communication links now becoming more common.

4) Attitude Determination and Control Subsystem (ADCS): Determines the satellite’s position and

orientation, executing required maneuvers. Modern CubeSats have moved beyond passive control systems

and now integrate advanced techniques and systems like Sun and Earth sensors, angular rate sensors, star

trackers, and reaction wheels. Some CubeSats achieve an accuracy of less than 10 arcseconds. Furthermore,

GPS is now being widely used for orbit determination, [2] although CubeSats are considered physically too

small to use GPS for attitude control.

5) Payload Subsystems: These are mission-specific subsystems delivered to space to fulfill mission objectives.

They might include imaging instruments, specialized communication devices, or emerging technologies for

space-testing.

CubeSat flight software: insights and a case study

Advancements in technology also introduce novel components and subsystems to CubeSats, such as:

1) Advanced Payloads: Sophisticated payloads, such as high-resolution cameras [13], thermal imaging [14],

synthetic aperture radar (SAR) [15], hyperspectral imagers [16], and scientific instruments for Earth

observation [17], space weather monitoring [18], and even deep space exploration [19] are increasingly being

incorporated in CubeSats.

2) Software-Defined Radio (SDR): Offering reconfigurable communication systems, SDRs adds more

flexibility to CubeSat missions. Several commercial off-the-shelf SDR subsystems are readily available

[20,21].

3) Optical Communication: An alternative to radio frequency communication, optical communication systems

allow larger data volumes or high-resolution imagery transmission [22]. Recent developments include low-

power optical communications, providing potentially gigabits-per-second data rates [2], and even the use of

LEDs rather than lasers to reduce both power and attitude control requirements [23,24].

4) Propulsion Subsystem: Small-scale propulsion systems are being developed for CubeSats [25], enabling

more complex maneuvers, orbit adjustments, and extended mission durations, as in the case study of this

work, and deorbiting at end-of-life.

5) Active Thermal Control: While passive thermal control methods like paint, thermal tape, and Multi-Layer

Insulation (MLI) are still used. CubeSats now also incorporate active thermal control systems, such as heaters

and thermal switches, to maintain temperature stability [2]. The CubeSat in the presented case study

incorporates this feature.

6) Deployable Structures: CubeSats are increasingly using deployable structures and mechanisms, such as

extendable solar panels, antennas, booms, and de-orbit devices, to enhance their capabilities, improve power

generation, increase communication range, and facilitate end-of-life disposal [2].

7) Onboard Artificial Intelligence and Machine Learning: Advanced data processing and embedded vision

capabilities are being integrated into CubeSats, enabling real-time data analysis, autonomous decision-

making, and optimization of mission objectives. A study in [26] showed simulated results for such an

approach in a 6U CubeSat.

CubeSat flight software: insights and a case study

8) Swarm, Cluster, or Constellation Technologies: CubeSats are increasingly being deployed in groups to

achieve better coverage, data redundancy, or coordinated measurements. These arrangements demand unique

architecture and internal components compared to traditional stand-alone CubeSats.

The rest of the paper is organized as follows: first, a comprehensive literature review is conducted. The references

are classified and a summary of each is provided. Then, the state-of-the-art is analyzed and characteristics for modular

FSW are drawn. After that, a Case Study of a 12U CubeSat is presented. The FSW Design and Architecture for this

CubeSat is also showcased and tested. Finally, discussions and conclusions are drawn.

II. Literature Review

A comprehensive search was conducted on the Scopus database and Google Scholar using the keywords “Flight

Software” and “CubeSat.” This search strategy aimed to identify a wide range of papers specifically addressing the

intersection of FSW and CubeSat technologies to help build the CubeSat FSW. The inclusion criteria were that the

references must specifically address FSW in CubeSats. Following the retrieval of a total of 63 papers, they were

carefully reviewed and categorized into distinct thematic areas, namely ‘FSW Design and Development’, ‘CubeSat

Subsystems and Components’, ‘CubeSat Missions and Applications’, ‘CubeSat Reliability, and Fault Tolerance and

Anomaly Analysis’, ‘CubeSat Testing and Validation’, and ‘CubeSat Communication and Networking’. Some papers

were relevant to multiple categories, yet they were categorized under the category that best aligned with the paper’s

primary focus. This categorization facilitated a structured analysis of the current state of research in FSW for CubeSats,

enabling the identification of key trends, challenges, and future directions in this rapidly evolving field. Fig. 2 below

shows how these topics were categorized, while Fig. 3 shows the number of papers in each category.

CubeSat flight software: insights and a case study

Fig. 2 CubeSat FSW Taxonomy

Fig. 3 Number of Papers in each Category

Furthermore, the papers were grouped based on publication year as shown in Fig. 4. The oldest paper found was

dated 2006, and the newest was 2023.

CubeSat Flight
Software

Flight Software
Design and

Development

Frameworks
and Guidelines

Specific
Implementation

s and
Applications

CubeSat
Subsystems

and
Component
Interfacing

Attitude
Determination
and Control

Avionics and
Subsystem

Design

Data
Processing and

Digital
Communication

CubeSat
Missions and
Applications

CubeSat
Reliability,

Fault
Tolerance, and

Anomaly
Analysis

CubeSat
Testing and
Validation

CubeSat
Communication
and Networking

3

5

7

10

13

25

0 5 10 15 20 25 30

CubeSat Communication and Networking

CubeSat Testing and Validation

CubeSat Reliability, Fault Tolerance, and Anomaly…

CubeSat Missions and Applications

CubeSat Subsystems and Component Interfacing

Flight Software Design and Development

CubeSat flight software: insights and a case study

Fig. 4 Number of Publications per Year

Based on Fig. 4, the following can immediately be concluded. The number of publications in the field of CubeSat

FSW has generally increased over time, suggesting that the field has gained more interest and attention in recent years.

This could however simply be attributed to technological advancements and increased interest in space exploration

and research. The highest number of publications occurred in 2021, with 12 publications, followed by slight drop in

the number of publications in 2022. Between 2013 and 2020, there was a relatively steady growth in the number of

publications per year, indicating a consistent interest in CubeSat FSW during this period. This growth appears to lag

the growth in CubeSat missions seen in Fig. 1.

A. FSW Design and Development

This category addresses the design and development aspect and can be further divided into ‘Frameworks and

Guidelines’ and ‘Specific Implementations and Applications’. They cover methodologies, principles, and practical

examples for creating FSW for various projects and missions.

1. Frameworks and Guidelines

To pave the road for FSW development, many attempts were made to provide frameworks and guidelines for such

an undertaking. For example, [5] introduced a highly modular software framework for nanosatellites to reduce

software development time, while [27] explored the design and implementation of reusable and reliable flight-control

CubeSat flight software: insights and a case study

software for cost-efficient CubeSat missions. On the other hand, [28] presented design guidelines for general-purpose

payload-oriented nanosatellite software architectures, focusing on improving system robustness, modularity, and

autonomy. Nevertheless, [4] proposed an architecture-tracking approach to evaluate modular and extensible FSW for

CubeSat nanosatellites, while [29] discussed the development of an FSW framework specifically for student CubeSat

missions. Furthermore, [30] explored design techniques for onboard software of nanosatellites, focusing on the FSW

of ICUBE-1 CubeSat from Pakistan. Also, a publication that can be used as a guideline, [31], described the design

and implementation of generic FSW for a CubeSat to increase reusability and reduce future development costs. The

paper in [32] introduces a model-based systems engineering (MBSE) methodology combined with documentation as

code (docs-as-code) to streamline the CubeSat flight software development process.

An open-source pysimCoder-based framework [33], and a recent study in [34] both present innovative approaches

to CubeSat flight software development, specifically designed to support academic projects. The pysimCoder-based

work allows for dynamic system modeling, simulation, and real-time code generation from block diagrams,

streamlining the development cycle. Meanwhile, the modular architecture introduced in [34] employs agile software

development methodology and promises enhancing software efficiency and scalability.

In [10], the complexity of FSW in NASA’s space missions was investigated, with the authors providing

recommendations for managing and reducing complexity. The article in [35] discussed the implementation of NASA’s

open-source cFS framework in an undergraduate space mission program in Mexico. Furthermore, [8] introduced F

Prime, an open-source framework by a team from NASA for small-scale FSW systems. Finally, the paper in [36]

presented a novel approach to CubeSat FSW development using the Robot Operating System (ROS).

2. Specific Implementations and Applications

The papers selected for this category discussed various examples of FSW development for particular applications.

For example, [11] and [37] focused on specific CubeSat missions, EIRSAT-1 and KySat-1, respectively, and both

discussed the challenges while developing and testing FSW in an academic environment. The authors in [38] presented

an analysis of software architectures for deep-space navigation filters and argue for a modular approach supported by

the Basilisk astrodynamics framework. Similarly, [6,39,40] emphasized the importance of software reuse, modularity,

and scalability in FSW development. Furthermore, an older article, [1], described the design and implementation of

the bootloader and COM for the CanX-2 nanosatellite, while [3,40] presented a multi-layered architecture for a

CubeSat mission software running on an STM32-based OBC. Additionally, Fitzpatrick et al. in [41] explored the flight

CubeSat flight software: insights and a case study

software architecture for the SWARM-EX CubeSat mission, focusing on low-power design choices and novel

communication protocols for spacecraft swarming, thereby illustrating another approach towards enhancing CubeSat

mission efficacy with student engagement in mind.

Finally, [42] discussed the implementation of an embedded RTOS for the twin nanosatellite STUDSAT-2, while

[43] discussed the challenges of over-the-air firmware updates for educational CubeSats. In summary, these articles

highlighted the importance of robust, modular, and reusable FSW for small satellite missions while addressing the

challenges and constraints faced mostly by university-based teams and low-resource satellite platforms.

B. CubeSat Subsystems and Component Interfacing

This category focuses on the essential building blocks that enable CubeSats to function effectively. The subsequent

three subcategories, ‘Attitude Determination and Control’, ‘Avionics and Subsystem Design’, and ‘Data Processing

and Digital Communication’, delve deeper into the intricacies of these subsystems, exploring their specific roles in

maintaining the performance, stability, and data transmission capabilities of CubeSats.

1. Attitude Determination and Control

This section addresses various aspects of CubeSat Guidance, Navigation, and Control (GNC) systems, with some

references focusing on attitude determination and control approaches. Other references emphasized the development

of low-cost subsystems. For example, research by Gatherer and Manchester [44] proposed a magnetorquer-only

attitude control technique that demonstrated improved performance over previous methods by using trajectory

optimization. The article in [45] presented the ADCS for the Microwave Radiometer Technology Acceleration

(MiRaTA) mission, which requires accurate and agile pointing. Moreover, [46] outlined the development and

validation process of a highly automated GNC subsystem for on-orbit inspection applications, enabling proximity

operations without human intervention. Reference [47] discussed a low-cost magnetic cleanliness routine for

CubeSats, aiming to minimize disturbances during design and assembly while providing a spacecraft-specific

disturbance model. Papers [48,49] emphasized rapid and low-cost development approaches, with [48] detailing the

expedited GNC development schedule of Seeker, a free-flying inspector CubeSat, COTS sensors and lean

development practices. Paper [49] focused on a low-cost star tracker, significantly reducing costs compared to

commercial offerings while maintaining high performance. The star tracker uses COTS components and a modular

design, making it compatible with various hardware configurations and FSW architectures.

CubeSat flight software: insights and a case study

Overall, the papers presented in this section showcased diverse GNC systems for CubeSats, addressing challenges

in attitude determination and control, automation, cost reduction, and rapid development by employing various

techniques, such as trajectory optimization, magnetic cleanliness routines, and the use of COTS components.

2. Avionics and Subsystem Design

The papers in this subcategory discussed various aspects of CubeSat design, development, and lessons learned

from different missions. For example, [50] presented an analysis of two generations of avionics design for CubeSats,

highlighting design principles relevant to other missions. Furthermore, [51] described the design, implementation, and

testing of the subsystems in ICUBE-1 CubeSat, emphasizing software architecture and redundancy techniques to

ensure reliability in orbit. Another work, [52], detailed the system design of the INCA spacecraft, a student-built

CubeSat meant to demonstrate the functionality of a new Scintillator-SiPM-based neutron detector, covering various

subsystems and lessons learned during assembly and integration. Lastly, the authors in [53] recounted the experiences

and lessons learned from the UNITE CubeSat project, including challenges faced during the design, build, integration,

test, delivery, and early operational phases, with a focus on the importance of communication, documentation, and

testing for a successful mission.

3. Data Processing and Digital Communication

The publications in this category explored different aspects of information processing, digital communications,

and data handling that occur among the subsystems in a satellite. For example, [54] implemented CubeSat Space

Protocol (CSP) over Controller Area Network (CAN) and CSP over Serial Peripheral Interface (SPI) in a modular

satellite system. Similarly, [55] discussed the heart unit of the ISTNanosat-1, a CubeSat developed to study the flyby

anomaly phenomenon, emphasizing the unit’s digital communications and command & data handling subsystems.

Meanwhile, [56] presented a distributed computing architecture to address power constraints in a CubeSat with

precision three-axis attitude control. It detailed the distributed design of operating modes and telemetry budget across

two computing platforms, including a low-power flight computer and a high-speed auxiliary processor. While all

papers investigate communication and data handling systems in CubeSats, their specific contexts and objectives differ,

revealing diverse solutions and architectures.

C. Missions and Applications

The publications belonging to this category exhibit a diverse range of CubeSat missions and applications,

addressing various challenges and design requirements. For example, the work in [57] built a CubeSat (3CAT-2) that

CubeSat flight software: insights and a case study

is focused on multi-constellation Global Navigation Satellite System Reflectometry (GNSS-R) and Global Navigation

Satellite System Radio Occultation (RO GNSS-RO) experimental missions with ADCS and FSW validation

campaigns to be conducted at Polytechnic University of Catalonia. Moreover, the work in [58] aimed to mature

technologies, such as telescopes, while investigating space weather effects on instrument behavior. LightSail 2

technology [59] demonstrated controlled solar sailing in Earth orbit using a CubeSat platform, successfully harnessing

momentum from solar photons.

IonSat [60] was a 6U CubeSat equipped with an ion thruster to maintain altitude in Very Low Earth Orbit (VLEO),

using a step-down descent mission strategy. Another CubeSat was developed that is capable of High-Resolution Image

and Video (HIREV) [61]. It explored the development of a 6U CubeSat platform with domestically manufactured

parts. In another work, Near-Earth Asteroid (NEA) Scout CubeSat [62] focused on software techniques to address

limitations in a small form factor, with technologies like target acquisition and onboard image calibration. IDEASSat

[63] was a 3U CubeSat designed to measure ionospheric irregularities, while nSight-1 [64] was built to gather

scientific measurements for the QB50 project and capture Earth observation images with the Gecko camera.

A system engineering approach for CubeSat design was proposed in [65] to ensure reliability, traceability, and

reusability. Lastly, the book chapter in [66] demonstrated an interplanetary CubeSat mission accompanying the

InSight mission to Mars, relaying Entry, Descent, and Landing (EDL) data to Earth during the process. These

publications highlight the versatility and potential of CubeSats, with various missions and applications targeting Earth

observation, interplanetary exploration, and technology demonstrations.

D. Reliability, Fault Tolerance, and Anomaly Analysis

The papers explore various aspects of CubeSat FSW in this category, focusing on reliability, fault tolerance, and

autonomy. The works in [67] and [68] both emphasized the development of cost-efficient and reliable CubeSat

architectures. While the former discussed the design of a reusable and fail-safe software architecture for student-built

CubeSat missions, the latter presented the Southwest Low-Earh Orbit (LEO) EXplorer (SLX-6), a high-reliability

CubeSat bus. Regarding fault tolerance, the studies in [69] and [70] introduced strategies to ensure CubeSat resilience

against adversarial space environments. The earlier employed a deterministic state machine and fault-tolerant global

memory structure, while the latter suggested a comprehensive, multi-level fault protection system for nanosatellites.

Both [71] and [72] discussed techniques for reliability assessment; the former employed high-order Markov chains

for CubeSat software, while the latter demonstrated onboard Model-Based Fault Diagnosis (MBFD) for CubeSat

CubeSat flight software: insights and a case study

ADCS using flight data. Lastly, [73] proposed a reference architecture for integrating autonomy-enabling components

into mature FSW, allowing for more responsive and autonomous small satellite operations.

E. Testing and Validation

The articles in [74,75] focused on hardware-in-the-loop (HIL) testing for CubeSat missions, while the three

publications in [76–78] discussed various software testing methodologies for CubeSat FSW. For example, [74]

detailed the development of a system-level HIL test for the DICE mission, emphasizing the importance of simulating

orbital dynamics, attitude dynamics, and environmental physics for testing subsystem interactions with the ADCS.

Similarly, the authors of [75] reported their experience with HIL and software-in-the-loop (SIL) tests in the

development of the MOVE-II CubeSat, emphasizing the benefits of including the electrical domain of the satellite for

accurate power budget verification. The authors also described how the simulation environment was used to analyze

issues detected after launch and verify the performance of new software developed to address in-flight anomalies.

Papers [76–78] focused on testing and mitigating software-related issues in CubeSats. In [76], for instance, the

authors presented their experience with radiation testing on COTS components and the development of software to

gain beneficial results during radiation testing. In addition, the authors emphasize the importance of understanding

single-event effects on components and how FSW can be designed to tolerate them. In contrast, [77] and [78] presented

the application of fuzz testing techniques to expedite the operational testing of CubeSats while maintaining their

completeness. The authors also demonstrated the effectiveness of this approach by finding and solving bugs not

covered by traditional strategies like unit testing and software in the loop simulation. While the work in [77] focused

on three new 3U CubeSats under development at the University of Chile, the work in [78] discussed explicitly the

application of fuzz testing techniques on the SUCHAI series of nanosatellites.

F. Communication and Networking

The three papers in this category [79–81] focus on different aspects of CubeSat and nanosatellite technology,

emphasizing communication in the first place, followed by control and FSW. The first paper, [79], explored utilizing

the Globalstar network for CubeSat and small satellite communications through the development of the LinkStar radio

architecture and open-source flight management system QuickSAT/VMS. The second paper, [80], addressed the agile

operation of prominent nanosatellite constellations with inter-satellite communications, proposing an evolutionary

contact plan design using evolutionary algorithms to control the constellation operations. Lastly, [81] discussed the

CubeSat flight software: insights and a case study

FSW aspects of Microsats and Nanosats in the context of fast-paced, small-scale development environments. It

highlighted the importance of satellite safe modes, configuration updates, on-orbit software upgrades, and security.

While all three papers delve into the complexities of CubeSat and nanosatellite systems, the authors approach the

subject matter from different perspectives. The first paper focuses on communication networks, the second on

constellation control, and the other third on software-driven approaches to small satellite networks.

III. Review Analysis for FSW Design

To showcase the practical implementation of the best practices extracted from the literature of CubeSat FSW a

proof of concept is presented as a case study, focusing on FSW Design and Development. The core of this investigation

is to address the specific needs and challenges inherent in the design and implementation of CubeSat FSW.

A. Essential Features of an Effective FSW

This section identifies the desired features for the proposed FSW design and architecture by carefully examining

existing works and solutions from the literature.

1. Modularity and Service-Oriented Architecture

A modular application, or app-based software architecture satisfies requirements, accelerates development, and

allows future mission reuse by selecting needed apps. Commercial hardware companies offer modular FSW systems,

but custom software interfaces may still be needed for scientific payloads [2]. Therefore, developing a custom FSW

is typically inevitable. Yet, CubeSat missions, having different payloads, also have different FSW requirements. Thus,

it is essential to have scalable and flexible software architectures where modules can be added, modified, or removed

depending on the mission, without affecting the architecture [28]. In light of this, the Norwegian University of Science

and Technology developed an FSW for a nanosatellite OBC [39]. The authors in [37] even asserted that modularity

determines FSW quality. Consequently, they argued that all design aspects should be highly modular to enhance the

flexibility and modifiability of the code.

Furthermore, many additional efforts were made to develop FSW for CubeSats with a heavy emphasis on

modularity [3] [6] [27] [29] [34]. The authors in [4] summarized several published papers describing FSWs of CubeSat

missions and added that “modularity, extensibility, flexibility, robustness, and fault-tolerance have been identified as

the main features of the FSW for nanosatellites”.

CubeSat flight software: insights and a case study

2. Multi-layered Architecture

In addition to modularity, some works concluded that most of the FSWs were implemented as multi-layered

architecture to exploit abstraction layers. For example, the FSW proposed in [37] is “divided into four modular layers:

at the top are application-specific tasks, next are hardware specific libraries, at the bottom, are microcontroller specific

drivers, and supporting all layers are general purpose software libraries.” This approach is similar to the approach

proposed in this work. However, the final FSW architecture differs from the proposed design due to dissimilarities in

hardware. Reference [82] also demonstrated a multi-layered architecture.

3. Selection of Operating System

Simple embedded software has evolved into more sophisticated Embedded Operating Systems. Real-Time

Operating Systems (RTOS) are emerging to address the challenges of multitasking, scheduling, and dynamic

management of flight system resources [2]. The RTOS for CubeSat missions is usually chosen based on the

microcontroller selected. Many of these Operating Systems are open-source libraries that can be ported to various

microcontrollers and hardware platforms. Commonly used RTOS options include GNU/Linux or Free Real-Time

Operating System (FreeRTOS). The choice of microcontroller and RTOS are interrelated, as a more powerful

microcontroller is needed for FSW that requires high-level programming language or features only available in

GNU/Linux, resulting in increased power consumption. On the other hand, using a lightweight RTOS can conserve

power at the expense of some processing capabilities [4]. In the case study, the FSW is designed and implemented

using the FreeRTOS [83], as in [3], [5], [31], [39], [42], and [55]. In addition, the work in [27] also uses FreeRTOS

yet focuses heavily on the design of FSW robustness by employing Fault Detection, Isolation, and Recovery (FDIR)

methods, aspects which are also investigated in this article.

4. Other Important Features

The works in [1] and [3] employ bootloaders for their FSWs for in-mission image update capability, as in the case

study presented in this paper. However, their implementation of the bootloader is quite different in design.

Furthermore, the work in [3] also implemented a Command Line Interface (CLI) used in their testing. The CLI is

expanded upon in this paper, implementing it over the CubeSat Space Protocol (CSP) to form CLI/CSP, which is then

used as the foundation for the script engine. CSP is a simple network and transport protocol stack written in C

language. It was initially developed at Aalborg University in 2008 and is currently maintained by GomSpace. It is

especially designed for satellite embedded systems [84].

CubeSat flight software: insights and a case study

B. FSW Guidelines, Frameworks, and Development Kits

The literature review concluded that many resources, including guidelines, frameworks, and FSW Development

Kits (section A.1), are available for FSW development. However, while these tools allow expediting software

development to some extent, there is not yet a widely adopted community standards for CubeSat FSW [2].

Nevertheless, before starting the implementation of the FSW, the following were reviewed in depth.

The comprehensive work in [31] attempted to develop a generic FSW and seemed promising. However, many

generic and simulated works are published, such as [28], just to lay the foundation for future FSW developers without

actually implementing and testing the FSW for actual satellite missions. Works as such remain theoretical and lack

space heritage. The National Academies recognized this fundamental challenge in CubeSat FSW: numerous

individuals attempting valuable work face difficulties in achieving space heritage. As a result, many developers are

duplicating the effort rather than trust in existing solutions [2].

One of the few open-source and freely available frameworks is the well-established NASA’s cFS [7]. In fact, this

work’s software design was inspired by NASA’s cFS architecture. It employs a highly modular design where a

software module and apps manage each functionality. Each app can be added or removed from the FSW based on the

requirements, the mission, and the subsystems used. The work in [35] uses cFS to develop nanosatellite FSWs.

However, it is technically challenging to configure and deploy cFS due to its rooted history with large and complex

satellites [5]. The OpenSatKit was created to mitigate these problems [85]. OpenSatKit is a platform for developing

and learning about NASA's cFS. However, it adds a learning curve with even additional complexity [5] [29]. Even

though this suite is tested in NASA’s nanosatellite missions, its adoption is still not broad enough. Many current

CubeSat FSWs are still implemented directly (without cFS) over simpler lightweight operating systems such as

FreeRTOS [28].

Another framework gaining popularity is F Prime developed by Jet Propulsion Laboratory (JPL) [8]. While cFS

and F Prime offer substantial advantages for modularity and service-oriented architecture, they are not without their

limitations in the context of CubeSat missions. cFS, for example, is deeply rooted in traditional, large-scale satellite

systems, making it technically complex for CubeSat developers. Moreover, neither cFS nor F Prime inherently support

FreeRTOS, a useful operating system for resource-constrained environments. As of now, cFS is primarily designed to

run on RTOS like VxWorks, RTEMS, and Linux. This gap in compatibility limits flexibility for CubeSats with stricter

hardware constraints. Additionally, neither framework offers a built-in bootloader or script engine, making it difficult

CubeSat flight software: insights and a case study

to update software during a mission or automate satellite operations. These gaps highlight the need for a more

streamlined, CubeSat-specific framework like the one presented in this work, which directly addresses these

challenges. Furthermore, the complexity in cFS and F Prime might increase development time for teams unfamiliar

with these frameworks. The framework presented in this paper is designed to be more intuitive, helping lower the

barriers for smaller teams or academic environments.

The FSW Development Kit (FSDK) by Bright Ascension [86] is also worth mentioning. This FSDK is a platform

designed to expedite the creation of mission-specific FSW by leveraging a component-based architecture. This

approach enables the reuse of pre-validated software components in various combinations. The FSDK was used in

[87] to interface Clyde Space COTS components.

In partnership with the University of Patras, the Libre Space Foundation developed both the software and

hardware for UPSat, a 2U CubeSat launched in 2017. Aligned with the foundation’s main goal of offering open-source

access to space technologies, the UPSat’s FSW has been made publicly available [87]. The LibreCube [88] is an

initiative designed to democratize space exploration by allowing everyone access to open-source hardware and

software systems. Another open-source solution is KubOS, a platform that is a custom Linux distribution adapted to

host the satellite applications [29]. Other attempts are promising yet still are work-in-progress, such as CubedOS [29],

and NanoSat MO [89].

Moreover, the framework showcased in [33] uses pysimCoder, is an open-source tool used for developing real-

time control applications. The main downsides of pysimCoder, when compared FSW architecture presented in this

work, include its reliance on block diagram models for system development, which may limit the flexibility and depth

of customization for complex CubeSat missions.

PyCubed [90] is an open-source hardware and software platform designed for CubeSat development, with a focus

on simplicity. It provides a modular framework tailored for academic teams and small satellite developers, integrating

features such as fault-tolerant power management and a streamlined software stack. By leveraging Python, PyCubed

lowers the barrier to entry for CubeSat developers, making it a popular choice in educational and research

environments. On the other hand, its reliance on CircuitPython and specific hardware configurations may limit

performance, customization, and scalability for complex missions like PHI-Demo. The Python-centric design is less

efficient for time-critical and resource-constrained tasks, and the platform’s limited flight heritage raises concerns

about reliability for high-stakes missions. Additionally, its community support and documentation are less extensive,

CubeSat flight software: insights and a case study

making it better suited for educational or experimental use rather than advanced CubeSat missions with demanding

payloads and operational requirements.

Furthermore, the work described in [5] reviews other available FSW development frameworks and proposes a

framework tailored explicitly for CubeSat missions. Similarly, reference [91] is a survey comparing six FSW

frameworks based on ‘New Space’ criteria, aiming to identify the most suitable one for a nanosatellite mission.

IV. Case Study: 5G-Enabled, 12U CubeSat with Green Propulsion

Satellites are becoming a fundamental part of the Internet’s infrastructure, especially the IoT. Therefore, the

Mohammed Bin Rashid Space Center (MBRSC) has launched a Payload Hosting Initiative (PHI) program for Cube

Satellites. The first iteration of this program is called PHI-Demo, a 12U CubeSat hosting a 5G-capable COM as a

payload. As a secondary payload, it hosts a green propulsion technology to be tested in space. In the following sections,

the design and architecture of FSW for PHI-Demo CubeSat is crafted and presented. This was achieved by first

reviewing previous works in this realm to elicit the desired features for the FSW.

Mission

Requirements

FSW

Requirements

Previous

Missions and

Space

Heritage

Literature

Review and

Analysis

Design

Implementation

Testing on

FlatSat

Deploy on

Flight Model

Maintenance:

Uplink FSW

releases from

Ground using

the Bootloader

L
a

u
n

ch

Fig. 5 A modified waterfall model depicting FSW development

The modified version of the waterfall model followed in this work for the FSW development is illustrated in Fig.

5. The process begins with defining the mission requirements which shape the FSW requirements. Next, influences

from previous missions and the broader context of space heritage of MBRSC and the literature review and analysis

presented in this work drove the design process. The subsequent stages of, implementation, and testing are executed

CubeSat flight software: insights and a case study

in a structured manner, each phase building on the preceding one. Notably, the testing on the FlatSat provides a critical

simulation environment before deployment on the actual flight model. This step was thoroughly discussed and

illustrated in the Testing Methodology section. The diagram culminates with the post-launch maintenance phase,

highlighting the capability of uplinking FSW releases from the ground using the bootloader, thus demonstrating a

closed-loop lifecycle from conception to operational management.

A. CubeSat Hardware Components

The CubeSat in the case study is a typical satellite that comprises various hardware components, including an OBC

that runs the FSW, an EPS for energy collection and distribution, a COM for ground communication, an ADCS for

location and orientation management, and payload subsystems designed to carry out 5G IoT communication, and

propulsion.

1. The Onboard Computer

The “FSW typically runs on radiation-hardened processors and microcontrollers that are relatively slow and

memory-limited” [10]. The CubeSat in this study uses an ARM Cortex M7 microcontroller from STMicroelectronics.

This microcontroller out-of-the-box supports third-party software libraries such as FreeRTOS and FATFS, which are

used in this work. Unfortunately, it has a RAM of only 1 MB, a limitation that must be kept in mind during the

implementation. The ARM processor can be considered a System on Chip; The processor is combined with a set of

peripherals on the die. These peripherals (such as UART, SPI, I2C, and CAN) can be configured by writing to memory-

mapped registers [1]. In addition, Error Correcting Codes (ECC) were enabled for the RAM and the Flash Memory,

where the FSW images are stored.

2. The Subsystems

The subsystems that make up the CubeSat are as follows: an EPS that has a Distribution Board (DB) and two

Power Conditioning and Control Modules (PCCM) for redundancy, A COM subsystem that has both UHV/VHF and

S-Band capability, an ADCS Subsystem, two Payload Subsystems; one is a 5G IoT device, and the other is a green

propulsion technology to be tested in space (PROP). Refer to Fig. 6 CubeSat Hardware Components.

CubeSat flight software: insights and a case study

OBC

EPS

PCCM

1

PCCM

2
DB

Payload 1

(5G IoT)
ADCS

CSP/CAN

COM

Intra-Satellite Communications

Payload 2

(PROP)

UHF/VHF S-Band

Fig. 6 CubeSat Hardware Components. Adapted from Eshaq, M., et al. [40], 2023 ASET, IEEE.

Regrettably, CubeSats have a poor track record in terms of mission success. This is due to a common practice

among researchers and developers, who tend to prioritize subsystems and hardware design over the development of

FSW and the integration of the satellite as a complete system. To address this issue, it is crucial to invest more

resources into the architecture, design, and implementation of FSW, as well as the development of fault tolerance

mechanisms [3].

V. FSW Design and Architecture

The FSW comprises various Applications (Apps) and supporting libraries, each with a specific purpose and

function. The aim is to create a modular and service-oriented architecture where Apps can be added or removed based

on the mission requirements and reused for future missions. The FSW architecture is illustrated in Fig. 7 below.

CubeSat flight software: insights and a case study

Hardware Abstraction Layer (HAL) Drivers

File System (FATFS)

FreeRTOS

I2CSPICAN

CSP Library

H
o

u
s
e

k
e

e
p

e
r

A
p

p

E
P

S

A
p

p

C
O

M

A
p

p

Io
T

A
p

p

A
D

C
S

A
p

p

S
to

ra
g

e
 A

p
p

Message

Queues

Software

Timers

Mutexes and

Semaphores

TX/RX Glue

API Functions

Storage

(SD

Card)

S
c
ri
p

t

M
a
n
a

g
e
r

CLI Interpreter
F

D
IR

A
p

p

C
S

P

S
e

rv
e

r

Subsystems

UART

Fig. 7 Layered Software Model. Adapted from Eshaq, M., et al. [40], 2023 ASET, IEEE.

The Housekeeper App collects spacecraft telemetry and stores it as Whole Orbit Data (WOD) files. This app is

critical for ensuring the overall health and performance of the spacecraft, making it an essential component of the

FSW in a CubeSat mission. The FDIR App continuously monitors the telemetry and determines the spacecraft’s

health. The FDIR employs Watch Points (WP) and Action Points (AP). The WP are subsets of telemetry that are

constantly monitored to ensure they remain within safe levels for the spacecraft’s nominal operation. Each WP has an

AP linked to it. If a WP falls outside the safe range, the corresponding AP is executed to recover from the detected

fault. If recovery fails, the spacecraft enters a ‘safe mode’ until ground intervention.

The EPS App manages the solar panels, batteries, and the power distribution. The COM App manages all satellite

communication activities. The Payload (PLD) App manages the payloads. It provides an interface to the payload and

handles its data flow. The ADCS App governs the spacecraft’s attitude by controlling the ADC subsystem. Finally,

the Storage App manages and ensures the integrity of the storage unit (SD Card). It mounts and initializes a File

Allocation Table 32 (FAT32) volume, handles all commands related to files and systems from the ground and carries

out file transfers (large data transfers) via Uplink and Downlink.

CubeSat flight software: insights and a case study

A CSP Server App is critical to the FSW. It accepts all incoming CSP connections to the OBC, whether the

connection is coming from an onboard subsystem or ultimately from the ground via the COM subsystems. Several

dedicated CSP ports are assigned and used. One port is dedicated to receiving and processing CLI commands sent in

CSP packets, explained in the ‘CLI Commands over CSP’ section below. Another very central component of the

satellite operation is the Script Manager App. Details on this App are highlighted in section D.

Algorithm CubeSat Flight Software Operation

Input: Libraries, Hardware Initializations, FreeRTOS, CSP

Output: Running CubeSat Operations

1. Initialize the system including hardware, FreeRTOS, and CSP

2. Start the FreeRTOS kernel leading to parallel execution of applications

3. Define Applications (Apps) for specific tasks

 - Housekeeper App:

 a. Collect telemetry from all subsystems periodically

 b. Store collected telemetry into Whole Orbit Data (WOD) file

 - FDIR App:

 a. Monitor Watch Points (selected telemetry) against predefined triggers

 and thresholds

 b. Execute corresponding Action Points as required, potentially putting

 the spacecraft in Safe Mode

 - CSP Server App:

 a. Await and process incoming packets from Ground

 b. Distribute packets or commands to respective Apps via message queues

 if not addressed to the server

 - Other Apps:

 a. Check for and process messages in the message queue

 b. Perform app-specific operations or remain in idle state

4. Repeat the process for each App, ensuring continuous operation

 5. Utilize sleep or delay as necessary to manage operation timing and resource usage

Fig. 8 FSW Apps Pseudocode

The pseudocode in Fig. 8 highlights the code skeleton for selected apps such as, the Housekeeper, FDIR, and CSP

Server App, while also providing a generic pseudocode at the end for the other apps which roughly follow the same

structure. The script engine was excluded from this figure since its operation is thoroughly illustrated later in the Script

Engine section.

As for the choice of programming language for this work, using C for a CubeSat mission offers several advantages:

it's widely supported, efficient for low-power and limited-resource environments like those found in CubeSats, and

provides direct control over hardware for performance-critical applications. Its extensive libraries and broad

community support facilitate solving complex problems and interfacing with various hardware components. The use

CubeSat flight software: insights and a case study

of C language for flight software development has been demonstrated, particularly in the context of CubeSat missions

[3] [4]. Moreover, it is worth noting that NASA’s cFS, CSP library, and FreeRTOS are all C-based. In light of this,

the FSW in this study was written in C language.

A. Operating System

The operating system of choice was the FreeRTOS, distributed freely under the MIT open-source license [83].

FreeRTOS was selected due to many reasons. One was that it has recently gained popularity, especially in CubeSat

missions, as established in section 3. Second, FreeRTOS was also chosen because the microcontroller natively

supports it. Finally, FreeRTOS is also often chosen due to its simplicity and large user community in the field of

satellites and other embedded systems [39].

B. File System

The File Allocation Table File System (FATFS) is a basic file system module for embedded systems that is also

Windows-compatible [83]. It is a software library that allows managing and organizing files on a storage device, such

as a disk drive or memories. In this project, the FAT32 variant of the file system is used due to its ability to handle

larger storage sizes and a more significant number of files. The low-level disk I/O modules are entirely separate from

the FATFS module [92]. FATFS is a middle layer that allows the FSW to be written independently of the underlying

media storage device drivers or host controllers. The adoption of this middle layer aligns with the intended Multi-

layered Architecture. FATFS was selected for this project due to its simplicity and native support by the

Microcontroller and IDE. In addition, having a file system allows all Apps to have the ability to record events to their

designated log files.

C. Command Line Interface

To simplify commanding the satellite, a CLI layer is added, which provides a layer of abstraction that allows

planners and operators on the ground to control the spacecraft without having to work with the many native binary

commands and responses used in each subsystem. The CLI commands introduced are high-level and human-readable,

implemented with the help of the FreeRTOS-Plus CLI Framework. Examples of such commands are presented in

Table 2.

CubeSat flight software: insights and a case study

Table 2. CLI Commands and Replies

CLI Command (Input) Expected Reply (Output) Description

obc get time OK 1632133618 Get time in seconds using Unix epoch time format.

obc set time 1632133620 OK
Set current OBC time in seconds using Unix epoch time

format.

adcs point-to nadir OK Maneuver the Sat to Nadir.

eps iot on OK Power ON the IoT Payload.

delay 15 mins OK Delay the Script Engine for 15 mins.

eps iot off OK Power OFF the IoT Payload.

msat set mode safe OK Change the Sat mode to safe.

boot install FSW.bin 2
Installation

COMPLETE
Install the FSW image to slot 2.

boot from image 2 OK Boot from the FSW in slot 2.

script run sequence.scr

1
OK Run script stored in the file starting from line 1.

1. Command Console

Once CLI commands are defined in the FreeRTOS CLI Interpreter, they can be invoked anywhere within the

FreeRTOS environment. Apps (FreeRTOS tasks) can execute commands by sending a ‘string’ containing the

command and any required parameters to the CLI interpreter function. The command is then processed and executed,

and a reply is returned to the caller. In light of this, a Command Console was implemented to exploit this mechanism.

When testing the satellite on the ground (in a FlatSat test environment), the OBC was connected to via a serial port

and a terminal. Then, the commands were typed in and executed, and outputs could be observed in real-time, as shown

in Fig. 9. This allowed the team to test all of the CLI commands defined and registered and observe the output, without

the need for a complete Mission Control Software (MCS) to be implemented and ready for testing. The Command

Console also assisted in the Assembly, Integration, and Testing (AIT) process and in testing the operation scenarios

of the satellite as a whole.

CubeSat flight software: insights and a case study

Fig. 9 Command Console via Serial Terminal. Reprinted from Eshaq, M., et al. [40], 2023 ASET, IEEE.

2. CLI Commands over CSP

The CSP server is designed to receive CSP packets that also contain CLI command strings. Each command is

executed upon arrival, and a response is subsequently transmitted back to the ground station within a separate CSP

packet. This allows the ground team, using the MCS, to interact with the satellite during contact periods with CLI

commands. This interaction closely mirrors the experience of employing the Command Console, as previously

described.

The command line abstraction layer effectively conceals the satellite’s underlying hardware specifications and

communication protocols. As a result, the MCS no longer requires knowledge of the specific hardware architecture or

the intra-satellite communication protocols between the OBC and subsystems. This facilitates the potential for the

MCS to be repurposed for future missions, enhancing its reusability.

CubeSat flight software: insights and a case study

D. Script Engine

A script file can be uploaded to the satellite pre-launch or upon contact. A script file is simply a sequence of CLI

commands optionally separated by time delays and stored in a text file. When a script file is triggered, commands are

released and executed in a timely fashion while orbiting, whether the satellite is still in contact or not.

The script engine works by first setting the engine itself to armed. A script file must also be marked as armed.

This means that the file is now ready to be executed. Arming must be done by ground or by a previously running

script. Next, the script engine reads the armed file and starts executing the (input) CLI commands stored in the script

file line-by-line. Upon execution, an output file is created and filled with (output) reply lines corresponding to each

CLI command executed. Upon contact, the ground team can then download and examine the output file, and new

script files for subsequent satellite operation can be uploaded. At the end of each script file, another script file can also

be ‘armed’. Upon finishing the execution of the first one, the following script file is executed. This allows the ground

team to queue or chain many script files covering satellite operations for many orbits spanning many upcoming days

or weeks. This feature means satellite operations do not have to be hardcoded in the FSW. Instead, satellite operations

can be defined as scripts and potentially reused in future missions. This mechanism will govern the operation of the

CubeSat while orbiting in the mission as well as the operation and communication of the 5G IoT payload. Propulsion

firing can also be managed by a script file. Operators can upload scripts during contacts to start the payload operation

at predetermined time schedules.

CubeSat flight software: insights and a case study

Idle

Start

LEOP

Run LEOP Script

Armed

Script Engine Armed by command

Running

Script File Armed by command

FinishedAborted
YesNo

Script Engine Armed by commandScript Engine Armed by command

Script Executed with no errors?

Fig. 10 State Machine Diagram for the Script Engine

Similarly, when the FSW is initialized and run for the first time (upon separation), a script dedicated for Launch

and Early Orbit Phase (LEOP) operations is run immediately. The LEOP script conducts operation such as solar panel

and antenna deployment. Then, the script engine enters an idle mode waiting to be armed, as shown in Fig. 10.

E. Bootloader

A bootloader is a small piece of software that runs before the main FSW and is responsible for checking and

executing the FSW. With a bootloader, a CubeSat can be updated with new FSW while in orbit. The FSW running on

the OBC must be highly reliable, as maintenance is almost impossible after launch. Scenarios leading to faults and

errors, and ultimately mission failure, must be predicted beforehand, and solutions to such issues should be prepared

for in advance [39]. A bootloader can provide a safety net if the FSW becomes corrupted or fails. The bootloader can

detect a failure to load an FSW image and load a backup version, providing a fail-safe mechanism for the spacecraft.

This makes the ability to modify/update FSW while in-mission a highly desirable feature. It may not directly contribute

CubeSat flight software: insights and a case study

to the modularity of the FSW; however, it certainly adds flexibility to its design and development process and makes

the FSW future-proof and thus reusable.

The bootloader has four slots for storing FSW images. The first slot contains the main image (Golden Image),

installed pre-launch, and can never be overwritten. Other slots may store additional FSW images as a form of software

redundancy and backup. If an image is corrupt, the bootloader can boot from other images. Refer to Fig. 11.

Bootloader

Bootloader

Configuration

FSW Slot 0

(Golden

Image)

FSW Slot 1

Size: 128 KB

(1 Sector)

Size: 128 KB

(1 Sector)

Size: 384 KB

(3 Sectors)

Size: 384 KB

(3 Sectors)

FSW Slot 2
Size: 384 KB

(3 Sectors)

FSW Slot 3
Size: 384 KB

(3 Sectors)

Start Address:

0x8000000

Start Address:

0x8020000

Start Address:

0x8040000

Start

Address:

0x80A0000

Start Address:

0x8100000

Start Address:

0x8160000

Memory Bank 1

Total Size allocated

1024 KB

Memory Bank 2

Total Size allocated 768

KB

Fig. 11 Memory Organization for Bootloader in Flash Memory

New images can be uploaded to the spacecraft as a binary file during a mission. After uploading, the image must

then be installed in any of the other slots. The spacecraft is then instructed to boot from the newly uploaded image.

The bootloader then starts by attempting to boot from the newly uplinked image. If it fails, it attempts to boot from

the image the satellite managed to boot from the last time. If that fails, it will look for images in other slots. In each

attempt, the bootloader checks the slot area in the memory and sees if the slot is empty or not, then makes three

attempts to boot from it. Finally, if all of the above fails, the bootloader defaults to the Golden Image and boots from

it (as illustrated by Fig. 12). The bootloader achieves this by employing a watchdog. A watchdog is a hardware timer

that monitors the operation of the system. When a fault or an unknown state occurs, the watchdog timer will time out

CubeSat flight software: insights and a case study

(after 4 seconds, for instance), and it will restart the system or put the system back into a known state from which the

system can recover. Watchdogs have been used in terrestrial and space systems and can improve system reliability in

CubeSats [93]. When the bootloader starts, the watchdog timer is also started, and a crash counter is incremented.

Successful execution of the FSW will clear the watchdog timer and reset the crash counter. If the watchdog timer is

not cleared within a given time window, the watchdog will reset the OBC, forcing it to enter the bootloader again to

decide what to do next. A crash counter higher than a certain threshold (3 counts, for instance) indicates that the image

is unstable, and the bootloader should choose another image instead.

CubeSat flight software: insights and a case study

Bootloader

Start

Decide which

image to

boot?

Boot from Image 0 (Golden)

Boot Golden

Image;

Start

Watchdog;

Boot from Image 1~3

Yes

Attempt to

Boot New

Image;

Start

Watchdog;

Successful Image

Boot-up?

Yes

Stay in Image

Update flags and

crash coutners

Watchdog

timed out.

Reboot!

No

Check Crash

Counter;

Check that

Image is

present;

Bootloader

FSW Image

Fig. 12 Bootloader Flowchart

VI. Testing and Results

A substantial portion of project time should be dedicated to FSW Testing. Identifying and rectifying defects during

the initial implementation phase offers substantial benefits, yielding savings of no less than ten times in contrast to

detecting them during integration or, even less favorably, post-launch [39]. Furthermore, the challenging space

CubeSat flight software: insights and a case study

environment presents a multitude of potential system failures due to ionized particles that have the capacity to trigger

catastrophic software crashes and power outages. Additionally, the considerable fluctuations in temperature can lead

to the degradation of batteries and other crucial components [28]. It's worth noting that CubeSats have historically

demonstrated a less than optimal mission success rate [3], thus necessitating significant endeavors to enhance their

robustness [28].

A. Test Setup

The Eclipse-based STM32CubeIDE was used for code development. STM32CubeIDE uses the GCC toolchain for

development and GDB for debugging [94]. Furthermore, FreeRTOS version 10.3.1 was used, with CMSIS version

2.00. The RTOS was set to Cooperative Scheduling. The memory scheme used was heap 4. As a rule of thumb, using

dynamic memory in embedded systems is not recommended. Nonetheless, a study focused on assessing various

memory schemes within the context of the CubeSat project reached the determination that heap 4 presented the most

optimal suitability. This selection was based on its ability to strike a favorable equilibrium between code size overhead

and segmentation level considerations [39].

B. Testing Methodology

The objective was to ensure that the FSW meets all of the functional requirement and the non-functional

requirements. Test cases for the mission FSW were driven by analyzing both types of requirements. These test cases

were designed to thoroughly evaluate the performance and capabilities of the FSW in various mission scenarios. These

test cases were executed and meticulously documented the results to assess the FSW’s conformance to its requirements

and identify any potential issues or improvements needed. In addition to the individual test cases, a long-term test was

conducted for the FSW, simulating a prolonged mission environment using a FlatSat setup. During this extensive test,

which lasted over ten days, the software operated continuously, emulating the conditions it would encounter during

actual mission operations. Throughout this period, all software activities and events were logged, providing valuable

insights into the FSW’s long-term stability, reliability, and performance. This comprehensive testing approach allowed

us to identify and address any potential issues, ensuring that the FSW is well-prepared for the challenges it will face

during the actual CubeSat mission. Fig. 13 highlights the testing process and methodology.

CubeSat flight software: insights and a case study

Mission

Requirements

Derive
FSW

Requirements

(Functional)

FSW

Requirements

(Non-

Functional)

Test Cases

Perform

Functional

Testing

Perform Non-

Functional

Testing

Fix Bugs (if any)

and repeat

Perform Long-

Term Test

(10+ days)

Record Bugs

Fix Bugs

Test for Bugs

End: Submit FSW Release

Start: Testing Process

Bugs Persist

Fig. 13 FlatSat Testing Methodology

During the testing process, no instances of crashes were observed in which the FSW became entirely unresponsive

and incapable of recovering on its own. Three distinct types of bugs were identified that occurred during the test runs;

however, the FSW was able to independently recover from each of these issues, demonstrating its resilience and fault

tolerance capabilities. In one particular instance, a memory leak event was detected. Following this observation,

measures to address the identified bugs were taken, implementing appropriate fixes to prevent similar issues from

arising in the future. Moreover, an FDIR Watch Point/Action Point (WP/AP) was introduced to the FSW, ensuring

that it could promptly rectify the situation if a similar event were to occur during actual mission operations. This

proactive approach to addressing potential problems enhances the overall reliability and robustness of the FSW,

contributing to mission success and longevity.

CubeSat flight software: insights and a case study

Fig. 14 CPU Utilization

The graph depicted in Fig. 14 illustrates the CPU usage over time for each individual task during the initial 16

seconds of FSW startup. A noteworthy observation is that, even with the inclusion of all features in the FSW, the CPU

utilization on average remained below the 40% threshold. This finding indicates that the FSW effectively manages

system resources, ensuring efficient performance without overwhelming the CPU, which is vital for maintaining the

overall stability and reliability of the CubeSat system during its mission.

CubeSat flight software: insights and a case study

Fig. 15 Trace View of CubeSat FSW Task Execution with One-Second Intervals. Reprinted from Eshaq, M.,

et al. [40], 2023 ASET, IEEE.

Furthermore, Fig. 15 presents a trace view, which is essentially a timeline visualization of how various tasks within

the flight software are being executed over time. It’s interesting to see how tasks are scheduled and managed, with

clear indications of their execution periods and any overlaps that may occur. This type of trace is crucial for ensuring

that tasks are completed within their allotted time slots and that the system meets the real-time requirements of the

mission. The periodic delay of one second across tasks aligns with constraints from prior missions and suggests a

deliberate pacing to accommodate processing or communication needs.

C. Discussions

The aim was to ensure the robustness of the software while meeting the FSW requirements. The most crucial phase

of our testing was the long-term test lasting over 10 days. The idea was to keep the satellite as a whole (in a FlatSat

setup) running while performing all the tasks that it is expected to perform in the mission and observe the behavior.

The FSW recovered from faults as expected. The test engineers were allowed to interact with the satellite pretending

that they were in contact. No physical interactions (such as power cycling) were allowed with the FlatSat.

The subsequent tests and results gathered were to ensure that the OBC was not overloaded and running the FSW

with ease. This is why CPU utilization was monitored as well as memory consumption. Faults accumulate and result

CubeSat flight software: insights and a case study

in failures when systems run at their maximum potential. Moreover, the intention of this work was to demonstrate that

FSW for CubeSats can be packed with features (such as script engines) without compromising performance. Modern

CubeSat CPU and hardware allows for this, and FreeRTOS is lightweight indeed.

The testing methods offered valuable insights and validation, yet they also had some limitations. First, the long-

term testing period, although extensive, spanned just over 10 days. This duration may not fully capture potential issues

that could arise over a longer, more realistic mission period. Additionally, the testing environment, using a FlatSat

setup, though designed to simulate the conditions of a space mission, cannot replicate the challenges and complexities

of the actual space environment. This includes factors like radiation effects, thermal variations, and unexpected

hardware anomalies.

In the realm of CubeSat development, while mechanical and electronic interfacing of components is guided by

established standards, the flight software (FSW) lacks a clear and standardized development roadmap [2]. This

situation is compounded by the tendency within the engineering community to allocate insufficient focus and attention

to FSW and its critical testing phase [78]. This oversight contributes to the common occurrence of software failures

in CubeSat missions, highlighting a critical area for improvement in the pursuit of reliable and efficient space

exploration endeavors.

VII. Conclusion

In conclusion, this study highlights the growing interest and continuous advancements in CubeSat flight software

(FSW) development. A comprehensive analysis of the literature reveals a steady rise in publications, demonstrating a

strong commitment to exploring various facets of CubeSat technology and its associated FSW. Key areas of

investigation encompass design and development methodologies, subsystems, component interfacing, reliability, fault

tolerance, anomaly analysis, testing, validation, communication, and networking. It is evident that the development of

robust and efficient FSW is fundamental to the success of CubeSat missions. However, despite the progress made in

this field, a significant challenge remains—the absence of freely-available, truly modular, and reusable FSW solutions

and frameworks. This gap necessitates students and enthusiasts to undertake FSW development, often from scratch,

impeding innovation and efficiency. Addressing this challenge requires the adoption of characteristics such as service-

oriented architecture layered software, such as the FSW presented in this work. Additionally, standardizing

communication protocols, particularly the use of the CubeSat Space Protocol (CSP), can significantly contribute to

FSW modularity. Looking ahead, the future of CubeSat FSW development is envisioned to be greatly streamlined

CubeSat flight software: insights and a case study

through modular, portable, and reusable solutions. The incorporation of features like Command Line Interfaces (CLIs),

Script Engines, and Bootloaders will empower future space engineers and researchers to build efficient and adaptable

FSW with reduced development time. Moreover, the use of CSP as a standard for intra-satellite and ground

communication is poised to become a cornerstone of CubeSat FSW design. In sum, this study not only sheds light on

the current state of CubeSat FSW but also points to a promising future where modular, reusable solutions will foster

innovation and excellence in small satellite technology.

References

[1] Kekez, D. D., “Development of Flight Software and Communication Systems for the CanX-2 Nanosatellite,”

University of Toronto, Toronto, 2006.
[2] National Academies of Sciences, E. and M., “Achieving Science with CubeSats: Thinking Inside the Box,”

Achieving Science with CubeSats, 2016. https://doi.org/10.17226/23503

[3] de Souza, K. V. C. K., Bouslimani, Y., and Ghribi, M., “Flight Software Development for a CubeSat

Application,” IEEE Journal on Miniaturization for Air and Space Systems, Vol. 3, No. 4, 2022, pp. 184–196.

https://doi.org/10.1109/jmass.2022.3206713

[4] Gonzalez, C. E., Rojas, C. J., Bergel, A., and Diaz, M. A., “An Architecture-Tracking Approach to Evaluate

a Modular and Extensible Flight Software for CubeSat Nanosatellites,” IEEE Access, Vol. 7, 2019, pp.

126409–126429. https://doi.org/10.1109/ACCESS.2019.2927931

[5] El Allam, A. K., Jallad, A. H. M., Awad, M., Takruri, M., and Marpu, P. R., “A Highly Modular Software

Framework for Reducing Software Development Time of Nanosatellites,” IEEE Access, Vol. 9, 2021, pp.

107791–107803. https://doi.org/10.1109/ACCESS.2021.3097537

[6] Hansen, L. J., and Hanson, J., “Reusable, Modular, and Scalable Flight Software,” IEEE Aerospace

Conference, 2014. https://doi.org/10.1109/AERO.2014.6836259

[7] Lisa Kane, “Core Flight System,” NASA, 2023. Retrieved 4 April 2023. https://cfs.gsfc.nasa.gov/

[8] Bocchino, R. L., Canham, T., Watney, G. J., Reder, L. J., and Levison, J., “FPrime: An Open-Source

Framework for Small-Scale Flight Software Systems,” 32nd Annual AIAA/USU Conference on Small

Satellites, 2018. Retrieved 6 April 2023. https://core.ac.uk/download/pdf/220136003.pdf

[9] Michael Swartwout, “CubeSat Database,” 2023. Retrieved 7 May 2023.

https://sites.google.com/a/slu.edu/swartwout/cubesat-database

[10] Dvorak, D. L., “NASA Study on Flight Software Complexity,” 2009.

[11] Doyle, M., Gloster, A., Griffin, M., Hibbett, M., Kyle, J., O’Toole, C., Mangan, J., Murphy, D., Wong, N. L.,

Akarapu, S. K. R., Dunwoody, R., Erkal, J., Finneran, G., Reilly, J., Salmon, L., Thompson, J., Walsh, S.,

Shortt, B., Martin-Carrillo, A., McBreen, S., McKeown, D., O’Connor, W., Uliyanov, A., Wall, R., and

Hanlon, L., “Design, Development and Testing of Flight Software for EIRSAT-1: A University-Class CubeSat

Enabling Astronomical Research,” Journal of Astronomical Telescopes, Instruments, and Systems, Vol. 9, No.

1, 2023, p. 017002. https://doi.org/10.1117/1.JATIS.9.1.017002

[12] Venturini, C., Braun, B. M., Hinkley, D., and Berg, G., “Improving Mission Success of CubeSats,” June 2017.

[13] Dániel, V., Svoboda, P., Junas, M., Sabol, M., Cagáň, J., Stejskal, M., Dudas, J., Mikulickova, L., Marek, A.,

Pavlica, R., Sedláčková, P., and Jech, D., “Development of CubeSat with COTS Camera Enabling EO with

High GSD,” Sensors, Systems, and Next-Generation Satellites XXIV, Vol. 11530, 2020, pp. 179–187.

https://doi.org/10.1117/12.2575862

[14] Nagarajan, C., D’Souza, R. G., Karumuri, S., and Kinger, K., “Design of a Cubesat Computer Architecture

Using COTS Hardware for Terrestrial Thermal Imaging,” 2014 IEEE International Conference on Aerospace

Electronics and Remote Sensing Technology, 2014, pp. 67–76.

https://doi.org/10.1109/ICARES.2014.7024379

[15] Mireault-Lecourt, C., Pelletier, E. C., and Laurin, J. J., “Study of a SAR Mission Onboard a 12U CubeSat

Using the Reflectarray Technology,” 2021 IEEE 19th International Symposium on Antenna Technology and

Applied Electromagnetics, ANTEM, 2021. https://doi.org/10.1109/ANTEM51107.2021.9518994

CubeSat flight software: insights and a case study

[16] Bauer, A., Viard, T., Liu, Y., and Rolland, J. P., “Freeform Hyperspectral Imager Design in a CubeSat

Format,” Optics Express, Vol. 29, No. 22, 2021, pp. 35915–35928. https://doi.org/10.1364/OE.439530

[17] Munoz-Martin, J. F., Fernandez, L., Ruiz-De-Azua, J., and Camps, A., “The Flexible Microwave Payload -2:

Architecture and Testing of a Combined GNSS-R and L-Band Radiometer with RFI Mitigation Payload for

Cubesat-Based Earth Observation Missions,” International Geoscience and Remote Sensing Symposium

(IGARSS), 2019, pp. 5185–5188. https://doi.org/10.1109/IGARSS.2019.8898402

[18] Burghardt, T., Picquet, R., Ternus, K., Shah, U., Mejias, H., Rodriguez, D., Ketchersid, S., Zarandi, K., and

Juganu, N., “Space-Weather Monitoring, 12U CubeSat Design,” AIAA Southeastern Regional Student

Conference, 2021. Retrieved 12 May 2023.

https://commons.erau.edu/cgi/viewcontent.cgi?article=1110&context=aiaar2sc#:~:text=The%20proposed%2

012U%20CubeSat%20concept,Coronal%20Mass%20Ejections%20(CMEs).

[19] Massaro Tieze, S., Liddell, L. C., Santa Maria, S. R., and Bhattacharya, S., “BioSentinel: A Biological

CubeSat for Deep Space Exploration,” Astrobiology, 2020. https://doi.org/10.1089/AST.2019.2068

[20] “GOMspace | Software Defined Radio (MK2),” 2023. Retrieved 18 May 2023.

https://gomspace.com/shop/phased-out-products/software-defined-radio.aspx

[21] “Versatile Wideband Software Defined Radio (SDR) | EnduroSat,” 2023. Retrieved 18 May 2023.

https://www.endurosat.com/cubesat-store/cubesat-communication-modules/versatile-wideband-sdr/

[22] Medina, I., Santiago, L., Hernández Gómez, J. J., Castillo, R., and Couder Castañeda, C., “Artificial Vision

Algorithm for Earth Station Location from CubeSats in Narrow Beam Optical Communications,” Journal of

Physics: Conference Series, Vol. 2307, No. 1, 2022, p. 012023. https://doi.org/10.1088/1742-

6596/2307/1/012023

[23] Hassan, N. B., Ali, M., Griffiths, A. D., Lowe, C., MacDonald, M., Dawson, M. D., Herrnsdorf, J., and Strain,

M. J., “Integration of an LED/SPAD Optical Wireless Transceiver with CubeSat On-Board Systems,”

Proceedings of the 2020 IEEE Photonics Conference, IPC 2020, 2020.

https://doi.org/10.1109/IPC47351.2020.9252367

[24] Griffiths, A. D., Herrnsdorf, J., Lowe, C., Macdonald, M., Henderson, R., Strain, M. J., and Dawson, M. D.,

“Temporal Encoding to Reject Background Signals in a Low Complexity, Photon Counting Communication

Link,” Materials 2018, Vol. 11, No. 9, 2018, p. 1671. https://doi.org/10.3390/MA11091671

[25] Pascoa, J. C., Teixeira, O., and Filipe, G., “A Review of Propulsion Systems for CubeSats,” ASME

International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), Vol. 1, 2019.

https://doi.org/10.1115/IMECE2018-88174

[26] Adams, C., Parker, J., and Cotten, D., “A Hardware Accelerated Computer Vision Library for 3D

Reconstruction Onboard Small Satellites,” IEEE Aerospace Conference, 2021.

https://doi.org/10.1109/AERO50100.2021.9438159

[27] Latachi, I., Rachidi, T., Karim, M., and Hanafi, A., “Reusable and Reliable Flight-Control Software for a Fail-

Safe and Cost-Efficient Cubesat Mission: Design and Implementation,” Aerospace, Vol. 7, No. 10, 2020, p.

146. https://doi.org/10.3390/AEROSPACE7100146

[28] Araguz, C., Marí, M., Bou-Balust, E., Alarcon, E., and Selva, D., “Design Guidelines for General-Purpose

Payload-Oriented Nanosatellite Software Architectures,” Journal of Aerospace Information Systems, Vol. 15,

No. 3, 2018, pp. 107–119. https://doi.org/10.2514/1.I010537

[29] Quiros-Jimenez, O. D., and D’Hemecourt, D., “Development of a Flight Software Framework for Student

CubeSat Missions,” Revista Tecnología en Marcha, 2019. https://doi.org/10.18845/tm.v32i8.4992

[30] Mahmood, R., Khurshid, K., and Ul Isalm, Q., “Design Techniques for On-Board Software of Nano-

Satellites,” 2013 6th International Conference on Recent Advances in Space Technologies (RAST), 2013, pp.

517–522. https://doi.org/10.1109/RAST.2013.6581263

[31] Heunis, A. E., “Design and Implementation of Generic Flight Software for a CubeSat,” Stellenbosch

University, 2014.

[32] Marquez, S., Asundi, S., and Chiu, K., “Model-Based CubeSat Flight-Software Architecture Using a Docs-

as-Code Approach,” AIAA SCITECH 2023 Forum, 2023. https://doi.org/10.2514/6.2023-1126

[33] do Vale Pereira, P., Depine, F. J., and Bucher, R., “An Open-Source Python-Based Framework of Real-Time

Controls as Flight Software of CubeSats,” AIAA SCITECH 2024 Forum, 2024.

https://doi.org/10.2514/6.2024-1663

[34] Liubimov, O., Turkin, I., Pavlikov, V., and Volobuyeva, L., “Agile Software Development Lifecycle and

Containerization Technology for CubeSat Command and Data Handling Module Implementation,”

Computation 2023, Vol. 11, No. 9, 2023, p. 182. https://doi.org/10.3390/COMPUTATION11090182

CubeSat flight software: insights and a case study

[35] De la Vega-Martínez, M., Velázquez-García, M. C., Zavala-López, M. F., Hernández, E., Gutiérrez-Esparza,

R. A., Arcos-Bravo, D. G., Medina, D., Gilardi-Velázquez, H. E., and McComas, D., “Implementation of the

CFS Framework for the Development of Software in Aerospace Missions: First Application in an

Undergraduate Program in Mexico,” IFAC-PapersOnLine, Vol. 54, No. 12, 2021, pp. 88–93.

https://doi.org/10.1016/j.ifacol.2021.11.014

[36] Buckner, S., Carrasquillo, C., Elosegui, M., and Bevilacqua, R., “A Novel Approach to CubeSat Flight

Software Development Using Robot Operating System (ROS),” Small Satellite Conference, 2020. Retrieved

2 April 2023. https://digitalcommons.usu.edu/smallsat/2020/all2020/241

[37] Hishmeh, S. F., Doering, T. J., and Lumpp, J. E., “Design of Flight Software for the KySat CubeSat Bus,”

IEEE Aerospace Conference, 2009. https://doi.org/10.1109/AERO.2009.4839646

[38] Cols Margenet, M., Harris, A., and Schaub, H., “Software Architecture for Deep-Space Navigation Filter

Development,” Proceedings of the International Astronautical Congress, IAC, Vol. 22, 2017, p. 38512.

Retrieved 2 April 2023. https://hanspeterschaub.info/Papers/ColsMargenet2017a.pdf

[39] Normann, M. A., and Birkeland, R., “Software Design of an Onboard Computer for a Nanosatellite,”

Norwegian University of Science and Technology, 2016.

[40] Eshaq, M., Al-Midfa, I., Al-Shamsi, Z., Atalla, S., Al-Mansoori, S., and Al-Ahmad, H., “Flight Software

Design and Implementation for a CubeSat,” 2023 Advances in Science and Engineering Technology

International Conferences (ASET), 2023, pp. 1–6. https://doi.org/10.1109/ASET56582.2023.10180675

[41] Fitzpatrick, D. J., Rainville, N., Palo, S. E., and Woods, T., “Designing a Bare-Metal Flight Software

Architecture for the Academic SWARM-EX CubeSat Constellation,” AIAA SCITECH 2024 Forum, 2024.

https://doi.org/10.2514/6.2024-1664

[42] Lamichhane, K., Kiran, M., Kannan, T., Sahay, D., Ranjith, H. G., and Sandya, S., “Embedded RTOS

Implementation for Twin Nano-Satellite STUDSAT-2,” Proceedings of the 2nd IEEE International Workshop

on Metrology for Aerospace, MetroAeroSpace 2015, 2015, pp. 541–546.

https://doi.org/10.1109/MetroAeroSpace.2015.7180715

[43] Monowar, M. I., Cho, M., Monowar, M. I., and Cho, M., “Over-the-Air Firmware Update for an Educational

CubeSat Project,” International Review of Aerospace Engineering (IREASE), Vol. 14, No. 1, 2021, pp. 39–

50. https://doi.org/10.15866/IREASE.V14I1.19832

[44] Gatherer, A., and Manchester, Z., “Magnetorquer-Only Attitude Control of Small Satellites Using Trajectory

Optimization,” Proceedings of AAS/AIAA Astrodynamics Specialist Conference, 2019. Retrieved 2 April

2023. https://www.ri.cmu.edu/publications/magnetorquer-only-attitude-control-of-small-satellites-using-

trajectory-optimization/

[45] Marlow, W., Marinan, A., and Riesing, K., “Attitude Determination and Control Approach to Achieve Co-

Located Microwave Radiometer and GPS Radio Occultation Measurements on a Nanosatellite,” 2015 AAS

Guidance, Navigation, and Control (GNC) Conference, 2015. Retrieved 2 April 2023

[46] Schulte, P. Z., and Spencer, D. A., “Development of an Integrated Spacecraft Guidance, Navigation, & Control

Subsystem for Automated Proximity Operations,” Acta Astronautica, Vol. 118, 2016, pp. 168–186.

https://doi.org/10.1016/J.ACTAASTRO.2015.10.010

[47] Abdelrahman, N., Annenkova, A., Ivanov, D., and Pritykin, D., “Enhancing CubeSat Active Magnetic

Attitude Control Based on the Results of the Ground Tests,” 28th Saint Petersburg International Conference

on Integrated Navigation Systems, ICINS 2021, 2021. https://doi.org/10.23919/ICINS43216.2021.9470849

[48] Sullivan, J., Gambone, E., Kirven, T., Pedrotty, S., and Wood, B., “Rapid Development of the Seeker Free-

Flying Inspector Guidance, Navigation, and Control System,” 42nd Annual AAS Guidance, Navigation, and

Control Conference, 2019. Retrieved 2 April 2023.

https://ntrs.nasa.gov/api/citations/20190000520/downloads/20190000520.pdf

[49] Grace, J., Soares, L. M. P., Loe, T., and Bellardo, J., “A Low Cost Star Tracker for CubeSat Missions,” AIAA

SCITECH 2022 Forum, 2022. https://doi.org/10.2514/6.2022-0520

[50] Manyak, G., and Bellardo, J. M., “PolySat’s Next Generation Avionics Design,” 2011 IEEE 4th International

Conference on Space Mission Challenges for Information Technology (SMC-IT), 2011, pp. 69–76.

https://doi.org/10.1109/SMC-IT.2011.13

[51] Mahmood, R., Khurshid, K., and Ul Isalm, Q., “Subsystem Testing, Integration and Compliance of ICUBE-

1,” 2013 6th International Conference on Recent Advances in Space Technologies (RAST), 2013, pp. 881–

886. https://doi.org/10.1109/RAST.2013.6581338

[52] Rankin, I., Rankin, K., Lloyd, S., McNeil, I., McGinnis, A., Roberts, M., Stochaj, S., de Nolfo, G., Suarez,

G., Dumonthier, J., Liceaga-Indart, I., and Grant Mitchell, J., “Ionic Neutron Content Analyzer: System

CubeSat flight software: insights and a case study

Design of a Student Built 3U CubeSat,” Proceedings of the International Astronautical Congress, IAC, 2019.

Retrieved 3 April 2023

[53] Loehrlein, R. S., and Kalsch, N. J., “Lessons Learned from an Undergraduate University’s First Cubesat,”

Proceedings of the International Astronautical Congress, IAC, 2019. Retrieved 3 April 2023

[54] Eshaq, M., Al-Midfa, I., Al-Shamsi, E., Al-Shamsi, Z., Atalla, S., Al-Mansoori, S., and Al-Ahmad, H.,

“Information Processing and Digital Communications in a Modular Satellite,” 2021 4th International

Conference on Signal Processing and Information Security (ICSPIS), 2021, pp. 72–75.

https://doi.org/10.1109/ICSPIS53734.2021.9652183

[55] Ferreira, J., “ISTNanosat-1 Heart Processing and Digital Communications Unit,” Technical University of

Lisbon, Lisbon, 2012.

[56] Asundi, S. A., and Fitz-Coy, N. G., “Design of Command, Data and Telemetry Handling System for a

Distributed Computing Architecture CubeSat,” IEEE Aerospace Conference, 2013.

https://doi.org/10.1109/AERO.2013.6496901

[57] Carreno-Luengo, H., Amezaga, A., Bolet, A., Vidal, D., Jane, J., Munoz, J. F., Olive, R., Camps, A., Carola,

J., Catarino, N., Hagenfeldt, M., Palomo, P., and Cornara, S., “3CAT-2: A 6U CubeSat-Based Multi-

Constellation, Dual-Polarization, and Dual-Frequency GNSS-R and GNSS-RO Experimental Mission,”

International Geoscience and Remote Sensing Symposium (IGARSS), 2015, pp. 5115–5118.

https://doi.org/10.1109/IGARSS.2015.7326984

[58] Maldonado, C. A., Deming, J., Mosley, B. N., Morgan, K. S., McGlown, J., Nelson, A., Fernandes, P. A.,

Kroupa, M., Katko, K., Hehlen, M. P., Arnold, D., Barney, J., Safi, C., Pyle, M., Schultz, T., Reisenfeld, D.,

Skoug, R., Guider, A., Holloway, M., Morning, H., Krause, E., Sandoval, B., Beckman, D., Miller, Z., Merl,

R., Graham, P. S., White, T. P., Tripp, Z., Hoose, B., Roecker, C., Klimenko, A., Dutch, R., Kaufeld, K., Cox,

E., Cole, Q., Clanton, C., Bloser, P., Larsen, B. A., Fairbanks, T., George, J., Michel, J., Alpine, E. L., Kelby,

C., and Abbott, B. F., “The Experiment for Space Radiation Analysis: A 12U CubeSat to Explore the Earth’s

Radiation Belts,” IEEE Aerospace Conference, 2022. https://doi.org/10.1109/AERO53065.2022.9843239

[59] Spencer, D. A., Betts, B., Bellardo, J. M., Diaz, A., Plante, B., and Mansell, J. R., “The LightSail 2 Solar

Sailing Technology Demonstration,” Advances in Space Research, Vol. 67, No. 9, 2021, pp. 2878–2889.

https://doi.org/10.1016/J.ASR.2020.06.029

[60] Sicsik, A., de Séréville, G., Maurice, L., Ziehlmann, P. P. D., Pinard, A., Assémat, Q., Diniz, D., El Jaïd, A.,

Gachod, C., Gilet, T., Girault, J. N., He, J., Hennion, L., Pauze, T., Shariatian, D., Tamrat, M., Tavant, A.,

Colpari, L. R., and Marmuse, F., “Detailed Design of IonSat: A Station-Keeping Mission at Altitudes Below

300km,” Proceedings of the International Astronautical Congress, IAC, Vol. E2, 2021. Retrieved 3 April

2023

[61] Cho, D. H., Choi, W. S., Kim, M. K., Kim, J. H., Sim, E., and Kim, H. D., “High-Resolution Image and Video

CubeSat (HIREV): Development of Space Technology Test Platform Using a Low-Cost CubeSat Platform,”

International Journal of Aerospace Engineering, Vol. 2019, 2019. https://doi.org/10.1155/2019/8916416

[62] Lightholder, J., Thompson, D. R., Castillo-Rogez, J., and Basset, C., “Near Earth Asteroid Scout CubeSat

Science Data Retrieval Optimization Using Onboard Data Analysis,” IEEE Aerospace Conference, 2019.

https://doi.org/10.1109/AERO.2019.8742190

[63] Chiu, Y. C., Chang, L. C., Chao, C. K., Tai, T. Y., Cheng, K. L., Liu, H. T., Tsai-Lin, R., Liao, C. T., Luo, W.

H., Chiu, G. P., Hou, K. J., Wang, R. Y., Gacal, G. F., Lin, P. A., Denduonghatai, S., Yu, T. R., Liu, J. Y.,

Chandran, A., Athreyas, K. B. N., Hari, P., Varghese, J. J., and Meftah, M., “Lessons Learned from IDEASSat:

Design, Testing, on Orbit Operations, and Anomaly Analysis of a First University CubeSat Intended for

Ionospheric Science,” Aerospace, Vol. 9, No. 2, 2022, p. 110. https://doi.org/10.3390/AEROSPACE9020110

[64] Visagie, L., Steyn, W. H., Burger, H., and Malan, D. F., “Flight Results of the NSight-1 QB50 CubeSat

Mission,” Advances in the Astronautical Sciences, Vol. 163, 2018, pp. 185–198. Retrieved 3 April 2023

[65] Asundi, S. A., and Fitz-Coy, N. G., “CubeSat Mission Design Based on a Systems Engineering Approach,”

IEEE Aerospace Conference, 2013. https://doi.org/10.1109/AERO.2013.6496900

[66] Schoolcraft, J., Klesh, A., and Werne, T., “MarCO: Interplanetary Mission Development on a Cubesat Scale,”

Space Operations: Contributions from the Global Community, 2017, pp. 221–231.

https://doi.org/10.1007/978-3-319-51941-8_10/FIGURES/6

[67] Latachi, I., Karim, M., and Rachidi, T., “Toward a Reusable and Fail-Safe Flight Software Architecture for

Cost-Efficient Student Cubesat Missions,” Proceedings of the International Astronautical Congress, IAC,

Vol. B4, 2021. Retrieved 3 April 2023

[68] Dickinson, J. R., and George, D. E., “The High Reliability Southwest LEO Explorer (SLX-6) CubeSat Bus,”

IEEE Aerospace Conference, 2016. https://doi.org/10.1109/AERO.2016.7500943

CubeSat flight software: insights and a case study

[69] Benson, I., Kaplan, A., Flynn, J., and Katz, S., “Fault-Tolerant and Deterministic Flight-Software System for

a High Performance CubeSat,” International Journal of Grid and High Performance Computing (IJGHPC),

Vol. 9, No. 1, 2017, pp. 92–104. https://doi.org/10.4018/IJGHPC.2017010108

[70] Jackson, B., “A Robust Fault Protection Architecture for Low-Cost Nanosatellites,” IEEE Aerospace

Conference, 2014. https://doi.org/10.1109/AERO.2014.6836506

[71] Yakovyna, V., and Symets, I., “Reliability Assessment of CubeSat Nanosatellites Flight Software by High-

Order Markov Chains,” Procedia Computer Science, Vol. 192, 2021, pp. 447–456.

https://doi.org/10.1016/J.PROCS.2021.08.046

[72] MacKey, R., Nikora, A., Altenbuchner, C., Bocchino, R., Sievers, M., Fesq, L., Kolcio, K. O., Litke, M. J.,

and Prather, M., “On-Board Model Based Fault Diagnosis for CubeSat Attitude Control Subsystem: Flight

Data Results,” IEEE Aerospace Conference, 2021. https://doi.org/10.1109/AERO50100.2021.9438342

[73] Ireland, M. L., Mendham, P., Greenland, S., Karagiannakis, P., and Hogervorst, F., “Enabling and Assuring

Autonomy in Small Satellite Missions,” Sensors, Systems, and Next-Generation Satellites XXIV, Vol. 11530,

2020, p. 1153011. https://doi.org/10.1117/12.2574612

[74] Bingham, B., and Weston, C., “System Level Hardware-in-the-Loop Testing for Cubesats,” Advances in the

Astronautical Sciences, Vol. 151, 2014, pp. 701–716. Retrieved 3 April 2023

[75] Kiesbye, J., Messmann, D., Preisinger, M., Reina, G., Nagy, D., Schummer, F., Mostad, M., Kale, T., and

Langer, M., “Hardware-in-the-Loop and Software-in-the-Loop Testing of the MOVE-II CubeSat,” Aerospace,

Vol. 6, No. 12, 2019, p. 130. https://doi.org/10.3390/AEROSPACE6120130

[76] Arthurs, R., and Zoltan, A., “Software for Testing and Mitigating Radiation-Induced Effects in Commercially

Available Integrated Circuits,” Proceedings of the International Astronautical Congress, IAC, 2020.

Retrieved 3 April 2023.

https://static1.squarespace.com/static/5c941892049079507e8edf50/t/63293352c7a4476de329c00f/16636445

05461/IAC2020__Radiation_Paper.pdf

[77] Gutierrez, T., Bergel, A., Gonzalez, C. E., Rojas, C. J., and Diaz, M. A., “Systematic Fuzz Testing Techniques

on a Nanosatellite Flight Software for Agile Mission Development,” IEEE Access, Vol. 9, 2021, pp. 114008–

114021. https://doi.org/10.1109/ACCESS.2021.3104283

[78] Gutierrez, T., Bergel, A., Gonzalez, C. E., Rojas, C. J., and Diaz, M. A., “Toward Applying Fuzz Testing

Techniques on the Suchai Nanosatellites Flight Software,” 2020 IEEE Congreso Bienal de Argentina

(ARGENCON), 2020, pp. 1–4. https://doi.org/10.1109/ARGENCON49523.2020.9505388

[79] Santangelo, A. D., and Skentzos, P., “Utilizing the Globalstar Network for Cubesat and Small Satellite

Communications,” 33rd AIAA International Communications Satellite Systems Conference and Exhibition,

ICSSC 2015, 2015. https://doi.org/10.2514/6.2015-4308

[80] Gonzalez, C. E., Bergel, A., and Diaz, M. A., “Nanosatellite Constellation Control Framework Using

Evolutionary Contact Plan Design,” 2021 IEEE 8th International Conference on Space Mission Challenges

for Information Technology (SMC-IT), 2021, pp. 85–92. https://doi.org/10.1109/SMC-IT51442.2021.00018

[81] Harvey, R., “Flight Software and Software-Driven Approaches to Small Satellite Networks,” Handbook of

Small Satellites: Technology, Design, Manufacture, Applications, Economics and Regulation, 2020, pp. 295–

329. https://doi.org/10.1007/978-3-030-36308-6_87/COVER

[82] Tipaldi, M., Legendre, C., Koopmann, O., Ferraguto, M., Wenker, R., and D’Angelo, G., “Development

Strategies for the Satellite Flight Software On-Board Meteosat Third Generation,” Acta Astronautica, Vol.

145, 2018, pp. 482–491. https://doi.org/10.1016/J.ACTAASTRO.2018.02.020

[83] Amazon Web Services, “FreeRTOS - Market Leading RTOS (Real Time Operating System) for Embedded

Systems with Internet of Things Extensions,” 2023. Retrieved 4 April 2023. https://www.freertos.org/

[84] Grillmayer, L., and Arnold, S., “Integrating the Cubesat Space Protocol into GSOC’s Multi-Mission

Environment,” Small Satellite Conference, 2020. Retrieved 28 May 2023.

https://digitalcommons.usu.edu/smallsat/2020/all2020/181

[85] McComas, D., “Increasing Flight Software Reuse with OpenSatKit,” IEEE Aerospace Conference, 2018.

https://doi.org/10.1109/AERO.2018.8396631

[86] “Flight Software Development Kit | Bright Ascension,” 2023. Retrieved 12 May 2023.

https://brightascension.com/products/flight-software-development-kit/

[87] Doyle, M., Gloster, A., O’toole, C., Mangan, J., Murphy, D., Dunwoody, R., Emam, M., Erkal, J., Flanaghan,

J., Fontanesi, G., Rajagopalan Nair, R., Reilly, J., Salmon, L., Sherwin, D., Thompson, J., Walsh, S., De

Faoite, D., Javaid, U., Mcbreen, S., Mckeown, D., O’callaghan, D., O’connor, W., Stanton, K., Ulyanov, A.,

Wall, R., and Hanlon, L., “Flight Software Development for the EIRSAT-1 Mission,” Proceedings of the 3rd

Symposium on Space Educational Activities, 2019, pp. 157–161. https://doi.org/10.29311/2020.39

CubeSat flight software: insights and a case study

[88] “LibreCube – Open Source Space Exploration,” 2023. Retrieved 12 May 2023. https://librecube.org/

[89] European Space Agency, “NanoSat MO Framework,” 2022. Retrieved 4 April 2023. https://nanosat-mo-

framework.github.io/

[90] “PyCubed,” GitHub, 2024. Retrieved 15 December 2024. https://github.com/pycubed

[91] Miranda, D. J. F., Ferreira, M., Kucinskis, F., and McComas, D., “A Comparative Survey on Flight Software

Frameworks for ‘New Space’ Nanosatellite Missions,” Journal of Aerospace Technology and Management,

Vol. 11, 2019, p. e4619. https://doi.org/10.5028/JATM.V11.1081

[92] STMicroelectronics, “UM1721 User Manual Developing Applications on STM32CubeTM with FatFs,” 2019.

[93] Beningo, J., “A Review of Watchdog Architectures and Their Application to Cubesats,” April 2010.

[94] STMicroelectronics, “STM32CubeIDE - Integrated Development Environment for STM32 -

STMicroelectronics,” 2023. Retrieved 6 April 2023. https://www.st.com/en/development-

tools/stm32cubeide.html

CubeSat flight software: insights and a case study

	CubeSat Flight Software: Insights and a Case Study
	I. Introduction
	A. Challenges and Motivation
	B. The Significance of FSW
	C. Hardware Components: Typical and Emerging
	II. Literature Review
	A. FSW Design and Development
	B. CubeSat Subsystems and Component Interfacing
	C. Missions and Applications
	D. Reliability, Fault Tolerance, and Anomaly Analysis
	E. Testing and Validation
	F. Communication and Networking
	III. Review Analysis for FSW Design
	A. Essential Features of an Effective FSW
	B. FSW Guidelines, Frameworks, and Development Kits
	IV. Case Study: 5G-Enabled, 12U CubeSat with Green Propulsion
	A. CubeSat Hardware Components
	V. FSW Design and Architecture
	A. Operating System
	B. File System
	C. Command Line Interface
	D. Script Engine
	E. Bootloader
	VI. Testing and Results
	A. Test Setup
	B. Testing Methodology
	C. Discussions
	VII. Conclusion
	References

