
 

CubeSat Flight Software: Insights and a Case Study 

Mohammed Eshaq*, M. Sami Zitouni†, and Shadi Atalla‡ 

University of Dubai, Dubai, P. O. Box: 14143, United Arab Emirates 

Saeed Al-Mansoori§ 

Mohammed Bin Rashid Space Center (MBRSC), Dubai, P. O. Box: 211833, United Arab Emirates 

Malcolm Macdonald** 

University of Strathclyde, Glasgow, G1 1XQ, United Kingdom 

The development of efficient flight software (FSW) for CubeSats faces significant 

challenges due to lack of mainstream guidelines and frameworks. Addressing the challenge of 

developing such FSW within the ever evolving yet stringent hardware constraints forms the 

core of this study. This paper presents a comprehensive analysis of FSW specifications, 

development challenges, and proposes a novel approach to software design that maximizes 

functionality while adhering to hardware limitations. It begins by scrutinizing current trends 

in CubeSat FSW, emphasizing the significance of modularity and reusability for successful, 

adaptable, and repeatable space missions. Drawing from a diverse array of literature sources, 

various aspects of CubeSat FSW is explored, encompassing design methodologies, subsystems, 

mission applications, reliability, fault tolerance, testing, validation, and communication. 

Subsequently, a case study is introduced featuring an app-based FSW solution tailored for a 

12U CubeSat with a 5G Internet-of-Things payload and green propulsion. This case study 

incorporates insights from the literature review, featuring a service-oriented. The FSW 

solution includes a user-friendly command line interface for efficient onboard and ground 

communication, a script engine for timely in-orbit execution and payload control, and a 

bootloader for in-mission updates, enhancing adaptability and future readiness. The analysis 

and case study reaffirm the pivotal role of robust and efficient flight software in mission 
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success, while underscoring the need for freely available, modular, and reusable solutions to 

foster innovation in the field, ultimately reducing reliance on commercial products or 

continual redevelopment.  

I. Introduction 

ECHNOLOGICAL advancements have led to the creation of smaller satellites that can be easily held and handled 

by a single person. A popular category of such smaller satellites is the nanosatellite category (weighing between 1 to 

10 KG) [1]. An even more popular type of nanosatellite is the Cube Satellite (CubeSat), a miniaturized satellite built 

out of standardized cubes; the name comes from the cubed units used to build the satellite. Any CubeSat may have 

the size of 1 Unit (1U), or multiples of such units where each unit measures 10 x 10 x 10 cm. These units typically 

have a little over 1 kilogram mass per unit. CubeSats were first developed in 1999 by California Polytechnic State 

University and Stanford University and have since grown in popularity due to their low cost and flexibility [2]. A 

CubeSat can be quickly built with in-house-developed or commercial-off-the-shelf (COTS) electronics and 

components. CubeSats are typically used for space research and commercial use [3]. This means that developers with 

limited to no experience in satellite technology away from large space agencies, such as students at universities and 

research centers or even enthusiasts, can now explore the realms of space with CubeSats [4]. CubeSat hardware 

standardization and adoption in academia and industry has led to increased volumes of production of off-the-shelf 

components. Although this has resulted in a significant reduction in satellite development time and cost, a considerable 

amount of mission development time and effort is still spent on flight software (FSW) development [5] unless the 

code is reusable [6].  

In exploring the domain of CubeSat flight software (FSW), this study first undertakes a comprehensive literature 

review to scrutinize existing FSW development practices, design methodologies, and the integration challenges 

inherent to CubeSat missions. Through this detailed examination, we identify critical shortcomings in the current 

approaches, particularly in terms of modularity, reusability, and efficiency. These shortcomings highlight the need for 

a more streamlined framework that can adapt to the rapid advancements in space technology and mission requirements. 

The analysis of existing Flight Software (FSW) developments reveals a notable absence of several key features, 

deemed critical for the efficacy and success of CubeSat missions. These missing elements, and their impacts on both 

the FSW and the overarching mission objectives, are identified and summarized as shown in Table 1.  

T 
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Table 1 Missing Essential Features in Existing Solutions and Their Impact on Mission Succes 

Essential Features Often Lacking in Current FSW 

Solutions 

Impact on FSW and the Mission 

Modularity and Service-Oriented Architecture Constrains the potential for software reuse in subsequent missions, leading to 

increased developmental efforts and costs. 

Multi-Layered Architecture Diminishes software abstraction and portability, adversely affecting 

modularity and the ability to adapt software across different mission contexts. 

Utilization of FreeRTOS The preference for more sophisticated operating systems necessitates the 

deployment of more robust hardware, potentially escalating mission costs and 

complexity. 

Implementation of a Command Line Interface Complicates testing procedures and the development of efficient script 

engines, potentially hindering operational agility. 

Incorporation of a Script Engine Restricts the versatility of Mission Control Systems for use in future missions, 

limiting the longevity and adaptability of the software. 

Integration of a Bootloader Absence of in-mission software update or patching capabilities renders any 

post-launch software issues intractable, risking mission failure. 

 

This work’s significant contribution emerges in the form of a case study detailing the development and deployment 

of a novel FSW framework for a 12U CubeSat mission. This framework, characterized by its service-oriented and 

multi-layered architecture, introduces a modular app-based software and runs on FreeRTOS. The solution features an 

intuitive command-line interface, a versatile script engine for enhanced in-orbit operations, and a bootloader for in-

mission FSW updates. The case study not only serves as a practical implementation of the proposed framework but 

also validates its efficacy in improving mission outcomes, offering a scalable and adaptable solution for future CubeSat 

projects. 

While widely adopted frameworks like NASA’s Core Flight System (cFS) [7] and F Prime [8] provide strong 

modularity and service-oriented architecture, they have notable limitations. For instance, cFS does not natively support 

FreeRTOS, a lightweight, widely used real-time operating system ideal for resource-constrained CubeSat missions. 

Additionally, neither cFS nor F Prime provide a built-in script engine for automating satellite operations, or a flexible 

bootloader for in-mission software updates. These features are essential for mission adaptability and efficiency. They 

have been specifically addressed in this work to improve scalability, simplify operations, and enhance flexibility 

during the mission. 

 By bridging the gap between theoretical research and practical application, this study provides a robust foundation 

for advancing CubeSat FSW development. The combination of a thorough literature review with a space-proven case 

study underscores the dual focus on understanding the current landscape and contributing a tangible, innovative 

framework that addresses identified deficiencies. This approach aims to foster broader participation in CubeSat 

development, encouraging open-source collaborations and setting a new benchmark for mission success.  
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  The paper begins with an extensive literature review, comprehensively evaluating advancements and challenges 

in CubeSat FSW. Subsequently, the paper transitions into a detailed case study, focusing on the FSW design and 

implementation development for the PHI-Demo spacecraft. The CubeSat is a 12U CubeSat featuring a 5G Internet-

of-Things (IoT) subsystem as its primary payload and a green propulsion system as a secondary, demonstrative 

payload. This case study not only illustrates insights gleaned from the literature review but also serves as a practical 

blueprint for future software development endeavors.††  

A. Challenges and Motivation 

The National Academies’ report titled “Achieving Science with CubeSats: Thinking Inside the Box” [2] provided 

an overview of CubeSats developed to facilitate cost-effective access to space for scientific and technological 

purposes. The authors asserted that CubeSats often have lower reliability than traditional satellites. This claim can be 

validated by examining  Fig. 1 as it shows the status of all CubeSat launched, and scheduled to launch, to date and 

their mission status [9]. In the graph, the mission statuses are defined as: 

1. Pre-launch: CubeSats that are in the planning, design, or manufacturing stage and have not yet been 

launched into space. 

2. Launch Fail: CubeSats that experienced a failure during the launch process, resulting in an unsuccessful 

mission. 

3. DOA (Dead on Arrival): CubeSats that, upon reaching orbit, were found to be non-functional or failed 

to establish communication with ground stations. 

4. Early Loss: CubeSats that became non-functional or lost communication shortly after the launch, before 

completing their intended mission objectives. 

5. Partial Mission: CubeSats that accomplished some, but not all, of their mission objectives before 

encountering issues or reaching the end of their operational lifetime. 

6. Full Mission: CubeSats that successfully completed all their intended mission objectives and 

demonstrated full operational capability. 

7. Unknown: CubeSats for which the mission status is uncertain or has not been reported, making it difficult 

to determine their success or failure. 

 
†† The case study section is an expanded version of our previously published conference paper [40]. 
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Fig. 1 CubeSat Mission Status per Year [9] 

 

One way to mitigate the risk of failure is to adopt a ‘fly-learn-re-fly’ approach [2], where two flight models are 

developed, and the second flight model is modified and launched if any issues arise during the first flight. This 

approach can decrease development time, and testing costs, but can also result in increased costs, especially when the 

cost of a launch is considered. Additionally, this approach can lead to delays in achieving mission objectives if issues 

arise during the first flight that requires significant modifications to the second model. Despite these potential 

drawbacks, the ‘fly-learn-re-fly’ approach has been widely adopted for CubeSat development, due to its effectiveness 

in improving mission success rates. Nevertheless, other sources, in section B, suggest that FSW is potentially the most 

critical aspect in determining mission success for CubeSats.  

In light of the challenges highlighted by the National Academies' report and the diverse mission outcomes of 

CubeSats as shown in Fig. 1, this paper is motivated by the pressing need to enhance CubeSat mission reliability and 

success rates. Despite the advances in CubeSat technology, the variance in mission outcomes—from early loss to full 

mission success—underscores a critical gap in current CubeSat development practices, particularly in the realm of 

flight software (FSW). The 'fly-learn-re-fly' approach, while effective, points to deeper underlying issues in the design 
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and testing phases that could benefit from improved FSW methodologies. Consequently, this paper aims to address 

these gaps by presenting a comprehensive analysis and a novel framework for FSW development, tailored to mitigate 

the risks identified and to streamline the process for achieving mission objectives. Our motivation is rooted in the 

belief that through targeted improvements in FSW, CubeSats can achieve higher reliability and operational success, 

making space more accessible for scientific and technological exploration. 

B. The Significance of FSW 

Just as with any other satellite, a CubeSat comprises multiple subsystems each with a specific function: power, 

communication, attitude control, and so forth. These subsystems are embedded systems connected to the Onboard 

Computer (OBC). The OBC is responsible for processing commands and responses, managing communication with 

the ground, and overseeing the overall operation of the satellite. Therefore, designing and implementing the FSW that 

runs on the OBC is vital to CubeSat missions.  

CubeSat FSW development often significantly differs from that of large missions. The teams involved in CubeSat 

development are smaller, more open to adopting new technology, rely less on formal verification methods, and often 

produce FSW solutions with only a few thousand lines of code compared to millions of lines in large flight projects 

[2]. 

The FSW must provide “numerous services, such as computer boot-up and initialization, time management, 

hardware interface control, command processing, telemetry processing, data storage management, FSW patch and 

load, and fault protection” [10]. Implementing FSW is more challenging than other commercial embedded software; 

once the satellite has launched, there is no interaction with users unless the satellite makes contact with the ground 

station. Even then, it can only communicate via uplink and downlink during short, intermittent time windows. Most 

of the mission time, the FSW runs unsupervised by the ground. Thus, it must be able to recover from faults on its own 

[10]. To achieve this and despite all the recent advancements in technology, a significant portion of mission 

development resources are allocated to the development of FSW [5]. 

Many sources suggested that FSW is a critical aspect in determining mission success for CubeSats. The work in 

[11] emphasized the importance of the FSW. Gonzalez et al. [4] emphasized the importance of FSW architecture and 

monitoring during the software life cycle to ensure software quality and reduce mission risk. Furthermore, [12] asserts 

that CubeSats do not have an outstanding record of mission success. Therefore, the authors provided recommendations 

to improve the likelihood of mission success for future CubeSat development projects, including implementing 
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common-sense practices, such as thorough testing and mission assurance. Overall, these papers suggested that FSW 

is critical in determining mission success for CubeSats and should be carefully designed, monitored, and tested to 

ensure software quality and reduce mission risk. Yet, the National Academies report [2] highlighted that CubeSat 

Flight Software (FSW) development lagged behind hardware advancements in the CubeSat field. 

C. Hardware Components: Typical and Emerging 

Understanding the composition of a CubeSat requires a detailed look at its hardware components. This section will 

summarize the typical components and highlight emerging technologies pertinent to CubeSat hardware. 

1) OBC: As the primary computer, it governs mission operations, communication, and overall satellite 

management, with the FSW operating on it. The in-depth discussion on this component will be the focus of 

the upcoming sections. 

2) Electrical Power Subsystem (EPS): This system collects energy from solar panel arrays, storing it in the 

satellite’s batteries. With CubeSat growth, power generation through deployable solar arrays has become 

more prevalent. Future advancements in solar cell technology could potentially revolutionize CubeSat power 

generation. CubeSats typically use Lithium-ion and Lithium-polymer batteries due to their efficiency and 

affordability [2]. 

3) Communication Subsystem (COM): Essential for ground communication, CubeSats commonly employ 

UHF, VHF, L-band, X-band, Ku-band, or Ka-band frequencies. Technological boundaries of CubeSat 

communication are continually pushed to accommodate more sophisticated missions, with inter-satellite 

communication links now becoming more common.  

4) Attitude Determination and Control Subsystem (ADCS): Determines the satellite’s position and 

orientation, executing required maneuvers. Modern CubeSats have moved beyond passive control systems 

and now integrate advanced techniques and systems like Sun and Earth sensors, angular rate sensors, star 

trackers, and reaction wheels. Some CubeSats achieve an accuracy of less than 10 arcseconds. Furthermore, 

GPS is now being widely used for orbit determination, [2] although CubeSats are considered physically too 

small to use GPS for attitude control. 

5) Payload Subsystems: These are mission-specific subsystems delivered to space to fulfill mission objectives. 

They might include imaging instruments, specialized communication devices, or emerging technologies for 

space-testing. 
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Advancements in technology also introduce novel components and subsystems to CubeSats, such as: 

1) Advanced Payloads: Sophisticated payloads, such as high-resolution cameras [13], thermal imaging [14], 

synthetic aperture radar (SAR) [15], hyperspectral imagers [16], and scientific instruments for Earth 

observation [17], space weather monitoring [18], and even deep space exploration [19] are increasingly being 

incorporated in CubeSats.  

2) Software-Defined Radio (SDR): Offering reconfigurable communication systems, SDRs adds more 

flexibility to CubeSat missions. Several commercial off-the-shelf SDR subsystems are readily available 

[20,21]. 

3) Optical Communication: An alternative to radio frequency communication, optical communication systems 

allow larger data volumes or high-resolution imagery transmission [22]. Recent developments include low-

power optical communications, providing potentially gigabits-per-second data rates [2], and even the use of 

LEDs rather than lasers to reduce both power and attitude control requirements [23,24].  

4) Propulsion Subsystem: Small-scale propulsion systems are being developed for CubeSats [25], enabling 

more complex maneuvers, orbit adjustments, and extended mission durations, as in the case study of this 

work, and deorbiting at end-of-life. 

5) Active Thermal Control: While passive thermal control methods like paint, thermal tape, and Multi-Layer 

Insulation (MLI) are still used. CubeSats now also incorporate active thermal control systems, such as heaters 

and thermal switches, to maintain temperature stability [2]. The CubeSat in the presented case study 

incorporates this feature. 

6) Deployable Structures: CubeSats are increasingly using deployable structures and mechanisms, such as 

extendable solar panels, antennas, booms, and de-orbit devices, to enhance their capabilities, improve power 

generation, increase communication range, and facilitate end-of-life disposal [2]. 

7) Onboard Artificial Intelligence and Machine Learning: Advanced data processing and embedded vision 

capabilities are being integrated into CubeSats, enabling real-time data analysis, autonomous decision-

making, and optimization of mission objectives. A study in [26] showed simulated results for such an 

approach in a 6U CubeSat. 
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8) Swarm, Cluster, or Constellation Technologies: CubeSats are increasingly being deployed in groups to 

achieve better coverage, data redundancy, or coordinated measurements. These arrangements demand unique 

architecture and internal components compared to traditional stand-alone CubeSats. 

The rest of the paper is organized as follows: first, a comprehensive literature review is conducted. The references 

are classified and a summary of each is provided. Then, the state-of-the-art is analyzed and characteristics for modular 

FSW are drawn. After that, a Case Study of a 12U CubeSat is presented. The FSW Design and Architecture for this 

CubeSat is also showcased and tested. Finally, discussions and conclusions are drawn. 

II. Literature Review 

A comprehensive search was conducted on the Scopus database and Google Scholar using the keywords “Flight 

Software” and “CubeSat.” This search strategy aimed to identify a wide range of papers specifically addressing the 

intersection of FSW and CubeSat technologies to help build the CubeSat FSW. The inclusion criteria were that the 

references must specifically address FSW in CubeSats. Following the retrieval of a total of 63 papers, they were 

carefully reviewed and categorized into distinct thematic areas, namely ‘FSW Design and Development’, ‘CubeSat 

Subsystems and Components’, ‘CubeSat Missions and Applications’, ‘CubeSat Reliability, and Fault Tolerance and 

Anomaly Analysis’, ‘CubeSat Testing and Validation’, and ‘CubeSat Communication and Networking’. Some papers 

were relevant to multiple categories, yet they were categorized under the category that best aligned with the paper’s 

primary focus. This categorization facilitated a structured analysis of the current state of research in FSW for CubeSats, 

enabling the identification of key trends, challenges, and future directions in this rapidly evolving field. Fig. 2 below 

shows how these topics were categorized, while Fig. 3 shows the number of papers in each category. 
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Fig. 2 CubeSat FSW Taxonomy 

 

Fig. 3 Number of Papers in each Category 

 

Furthermore, the papers were grouped based on publication year as shown in Fig. 4. The oldest paper found was 

dated 2006, and the newest was 2023.  
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Fig. 4 Number of Publications per Year 

 

Based on Fig. 4, the following can immediately be concluded. The number of publications in the field of CubeSat 

FSW has generally increased over time, suggesting that the field has gained more interest and attention in recent years. 

This could however simply be attributed to technological advancements and increased interest in space exploration 

and research. The highest number of publications occurred in 2021, with 12 publications, followed by slight drop in 

the number of publications in 2022. Between 2013 and 2020, there was a relatively steady growth in the number of 

publications per year, indicating a consistent interest in CubeSat FSW during this period. This growth appears to lag 

the growth in CubeSat missions seen in Fig. 1. 

A. FSW Design and Development 

This category addresses the design and development aspect and can be further divided into ‘Frameworks and 

Guidelines’ and ‘Specific Implementations and Applications’. They cover methodologies, principles, and practical 

examples for creating FSW for various projects and missions. 

1. Frameworks and Guidelines 

To pave the road for FSW development, many attempts were made to provide frameworks and guidelines for such 

an undertaking. For example, [5] introduced a highly modular software framework for nanosatellites to reduce 

software development time, while [27] explored the design and implementation of reusable and reliable flight-control 
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software for cost-efficient CubeSat missions. On the other hand, [28] presented design guidelines for general-purpose 

payload-oriented nanosatellite software architectures, focusing on improving system robustness, modularity, and 

autonomy. Nevertheless, [4] proposed an architecture-tracking approach to evaluate modular and extensible FSW for 

CubeSat nanosatellites, while [29] discussed the development of an FSW framework specifically for student CubeSat 

missions. Furthermore, [30] explored design techniques for onboard software of nanosatellites, focusing on the FSW 

of ICUBE-1 CubeSat from Pakistan. Also, a publication that can be used as a guideline, [31], described the design 

and implementation of generic FSW for a CubeSat to increase reusability and reduce future development costs. The 

paper in [32] introduces a model-based systems engineering (MBSE) methodology combined with documentation as 

code (docs-as-code) to streamline the CubeSat flight software development process.  

An open-source pysimCoder-based framework [33], and a recent study in [34] both present innovative approaches 

to CubeSat flight software development, specifically designed to support academic projects. The pysimCoder-based 

work allows for dynamic system modeling, simulation, and real-time code generation from block diagrams, 

streamlining the development cycle. Meanwhile, the modular architecture introduced in [34] employs agile software 

development methodology and promises enhancing software efficiency and scalability. 

In [10], the complexity of FSW in NASA’s space missions was investigated, with the authors providing 

recommendations for managing and reducing complexity. The article in [35] discussed the implementation of NASA’s 

open-source cFS framework in an undergraduate space mission program in Mexico. Furthermore, [8] introduced F 

Prime, an open-source framework by a team from NASA for small-scale FSW systems. Finally, the paper in [36] 

presented a novel approach to CubeSat FSW development using the Robot Operating System (ROS). 

2. Specific Implementations and Applications 

The papers selected for this category discussed various examples of FSW development for particular applications. 

For example, [11] and [37] focused on specific CubeSat missions, EIRSAT-1 and KySat-1, respectively, and both 

discussed the challenges while developing and testing FSW in an academic environment. The authors in [38] presented 

an analysis of software architectures for deep-space navigation filters and argue for a modular approach supported by 

the Basilisk astrodynamics framework. Similarly, [6,39,40] emphasized the importance of software reuse, modularity, 

and scalability in FSW development. Furthermore, an older article, [1], described the design and implementation of 

the bootloader and COM for the CanX-2 nanosatellite, while [3,40] presented a multi-layered architecture for a 

CubeSat mission software running on an STM32-based OBC. Additionally, Fitzpatrick et al. in [41] explored the flight 
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software architecture for the SWARM-EX CubeSat mission, focusing on low-power design choices and novel 

communication protocols for spacecraft swarming, thereby illustrating another approach towards enhancing CubeSat 

mission efficacy with student engagement in mind. 

Finally, [42] discussed the implementation of an embedded RTOS for the twin nanosatellite STUDSAT-2, while 

[43] discussed the challenges of over-the-air firmware updates for educational CubeSats. In summary, these articles 

highlighted the importance of robust, modular, and reusable FSW for small satellite missions while addressing the 

challenges and constraints faced mostly by university-based teams and low-resource satellite platforms. 

B. CubeSat Subsystems and Component Interfacing 

This category focuses on the essential building blocks that enable CubeSats to function effectively. The subsequent 

three subcategories, ‘Attitude Determination and Control’, ‘Avionics and Subsystem Design’, and ‘Data Processing 

and Digital Communication’, delve deeper into the intricacies of these subsystems, exploring their specific roles in 

maintaining the performance, stability, and data transmission capabilities of CubeSats.  

1. Attitude Determination and Control 

This section addresses various aspects of CubeSat Guidance, Navigation, and Control (GNC) systems, with some 

references focusing on attitude determination and control approaches. Other references emphasized the development 

of low-cost subsystems. For example, research by Gatherer and Manchester [44] proposed a magnetorquer-only 

attitude control technique that demonstrated improved performance over previous methods by using trajectory 

optimization. The article in [45] presented the ADCS for the Microwave Radiometer Technology Acceleration 

(MiRaTA) mission, which requires accurate and agile pointing. Moreover, [46] outlined the development and 

validation process of a highly automated GNC subsystem for on-orbit inspection applications, enabling proximity 

operations without human intervention. Reference [47] discussed a low-cost magnetic cleanliness routine for 

CubeSats, aiming to minimize disturbances during design and assembly while providing a spacecraft-specific 

disturbance model. Papers [48,49] emphasized rapid and low-cost development approaches, with [48] detailing the 

expedited GNC development schedule of Seeker, a free-flying inspector CubeSat, COTS sensors and lean 

development practices. Paper [49] focused on a low-cost star tracker, significantly reducing costs compared to 

commercial offerings while maintaining high performance. The star tracker uses COTS components and a modular 

design, making it compatible with various hardware configurations and FSW architectures. 
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Overall, the papers presented in this section showcased diverse GNC systems for CubeSats, addressing challenges 

in attitude determination and control, automation, cost reduction, and rapid development by employing various 

techniques, such as trajectory optimization, magnetic cleanliness routines, and the use of COTS components. 

2. Avionics and Subsystem Design 

The papers in this subcategory discussed various aspects of CubeSat design, development, and lessons learned 

from different missions. For example, [50] presented an analysis of two generations of avionics design for CubeSats, 

highlighting design principles relevant to other missions. Furthermore, [51] described the design, implementation, and 

testing of the subsystems in ICUBE-1 CubeSat, emphasizing software architecture and redundancy techniques to 

ensure reliability in orbit. Another work, [52], detailed the system design of the INCA spacecraft, a student-built 

CubeSat meant to demonstrate the functionality of a new Scintillator-SiPM-based neutron detector, covering various 

subsystems and lessons learned during assembly and integration. Lastly, the authors in [53] recounted the experiences 

and lessons learned from the UNITE CubeSat project, including challenges faced during the design, build, integration, 

test, delivery, and early operational phases, with a focus on the importance of communication, documentation, and 

testing for a successful mission. 

3. Data Processing and Digital Communication 

The publications in this category explored different aspects of information processing, digital communications, 

and data handling that occur among the subsystems in a satellite. For example, [54] implemented CubeSat Space 

Protocol (CSP) over Controller Area Network (CAN) and CSP over Serial Peripheral Interface (SPI) in a modular 

satellite system. Similarly, [55] discussed the heart unit of the ISTNanosat-1, a CubeSat developed to study the flyby 

anomaly phenomenon, emphasizing the unit’s digital communications and command & data handling subsystems. 

Meanwhile, [56] presented a distributed computing architecture to address power constraints in a CubeSat with 

precision three-axis attitude control. It detailed the distributed design of operating modes and telemetry budget across 

two computing platforms, including a low-power flight computer and a high-speed auxiliary processor. While all 

papers investigate communication and data handling systems in CubeSats, their specific contexts and objectives differ, 

revealing diverse solutions and architectures. 

C. Missions and Applications 

The publications belonging to this category exhibit a diverse range of CubeSat missions and applications, 

addressing various challenges and design requirements. For example, the work in [57] built a CubeSat (3CAT-2) that 
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is focused on multi-constellation Global Navigation Satellite System Reflectometry (GNSS-R) and Global Navigation 

Satellite System Radio Occultation (RO GNSS-RO) experimental missions with ADCS and FSW validation 

campaigns to be conducted at Polytechnic University of Catalonia. Moreover, the work in [58] aimed to mature 

technologies, such as telescopes, while investigating space weather effects on instrument behavior. LightSail 2 

technology [59] demonstrated controlled solar sailing in Earth orbit using a CubeSat platform, successfully harnessing 

momentum from solar photons. 

IonSat [60] was a 6U CubeSat equipped with an ion thruster to maintain altitude in Very Low Earth Orbit (VLEO), 

using a step-down descent mission strategy. Another CubeSat was developed that is capable of High-Resolution Image 

and Video (HIREV) [61]. It explored the development of a 6U CubeSat platform with domestically manufactured 

parts. In another work, Near-Earth Asteroid (NEA) Scout CubeSat [62] focused on software techniques to address 

limitations in a small form factor, with technologies like target acquisition and onboard image calibration. IDEASSat 

[63] was a 3U CubeSat designed to measure ionospheric irregularities, while nSight-1 [64] was built to gather 

scientific measurements for the QB50 project and capture Earth observation images with the Gecko camera. 

A system engineering approach for CubeSat design was proposed in [65] to ensure reliability, traceability, and 

reusability. Lastly, the book chapter in [66] demonstrated an interplanetary CubeSat mission accompanying the 

InSight mission to Mars, relaying Entry, Descent, and Landing (EDL) data to Earth during the process. These 

publications highlight the versatility and potential of CubeSats, with various missions and applications targeting Earth 

observation, interplanetary exploration, and technology demonstrations. 

D. Reliability, Fault Tolerance, and Anomaly Analysis 

The papers explore various aspects of CubeSat FSW in this category, focusing on reliability, fault tolerance, and 

autonomy. The works in [67] and [68] both emphasized the development of cost-efficient and reliable CubeSat 

architectures. While the former discussed the design of a reusable and fail-safe software architecture for student-built 

CubeSat missions, the latter presented the Southwest Low-Earh Orbit (LEO) EXplorer (SLX-6), a high-reliability 

CubeSat bus. Regarding fault tolerance, the studies in [69] and [70] introduced strategies to ensure CubeSat resilience 

against adversarial space environments. The earlier employed a deterministic state machine and fault-tolerant global 

memory structure, while the latter suggested a comprehensive, multi-level fault protection system for nanosatellites. 

Both [71] and [72] discussed techniques for reliability assessment; the former employed high-order Markov chains 

for CubeSat software, while the latter demonstrated onboard Model-Based Fault Diagnosis (MBFD) for CubeSat 
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ADCS using flight data. Lastly, [73] proposed a reference architecture for integrating autonomy-enabling components 

into mature FSW, allowing for more responsive and autonomous small satellite operations. 

E. Testing and Validation 

The articles in [74,75] focused on hardware-in-the-loop (HIL) testing for CubeSat missions, while the three 

publications in [76–78] discussed various software testing methodologies for CubeSat FSW. For example, [74] 

detailed the development of a system-level HIL test for the DICE mission, emphasizing the importance of simulating 

orbital dynamics, attitude dynamics, and environmental physics for testing subsystem interactions with the ADCS. 

Similarly, the authors of [75] reported their experience with HIL and software-in-the-loop (SIL) tests in the 

development of the MOVE-II CubeSat, emphasizing the benefits of including the electrical domain of the satellite for 

accurate power budget verification. The authors also described how the simulation environment was used to analyze 

issues detected after launch and verify the performance of new software developed to address in-flight anomalies.  

Papers [76–78] focused on testing and mitigating software-related issues in CubeSats. In [76], for instance, the 

authors presented their experience with radiation testing on COTS components and the development of software to 

gain beneficial results during radiation testing. In addition, the authors emphasize the importance of understanding 

single-event effects on components and how FSW can be designed to tolerate them. In contrast, [77] and [78] presented 

the application of fuzz testing techniques to expedite the operational testing of CubeSats while maintaining their 

completeness. The authors also demonstrated the effectiveness of this approach by finding and solving bugs not 

covered by traditional strategies like unit testing and software in the loop simulation. While the work in [77] focused 

on three new 3U CubeSats under development at the University of Chile, the work in [78] discussed explicitly the 

application of fuzz testing techniques on the SUCHAI series of nanosatellites. 

F. Communication and Networking 

The three papers in this category [79–81] focus on different aspects of CubeSat and nanosatellite technology, 

emphasizing communication in the first place, followed by control and FSW. The first paper, [79], explored utilizing 

the Globalstar network for CubeSat and small satellite communications through the development of the LinkStar radio 

architecture and open-source flight management system QuickSAT/VMS. The second paper, [80], addressed the agile 

operation of prominent nanosatellite constellations with inter-satellite communications, proposing an evolutionary 

contact plan design using evolutionary algorithms to control the constellation operations. Lastly, [81] discussed the 
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FSW aspects of Microsats and Nanosats in the context of fast-paced, small-scale development environments. It 

highlighted the importance of satellite safe modes, configuration updates, on-orbit software upgrades, and security. 

While all three papers delve into the complexities of CubeSat and nanosatellite systems, the authors approach the 

subject matter from different perspectives. The first paper focuses on communication networks, the second on 

constellation control, and the other third on software-driven approaches to small satellite networks. 

III. Review Analysis for FSW Design  

To showcase the practical implementation of the best practices extracted from the literature of CubeSat FSW a 

proof of concept is presented as a case study, focusing on FSW Design and Development. The core of this investigation 

is to address the specific needs and challenges inherent in the design and implementation of CubeSat FSW. 

A. Essential Features of an Effective FSW  

This section identifies the desired features for the proposed FSW design and architecture by carefully examining 

existing works and solutions from the literature. 

1. Modularity and Service-Oriented Architecture 

A modular application, or app-based software architecture satisfies requirements, accelerates development, and 

allows future mission reuse by selecting needed apps. Commercial hardware companies offer modular FSW systems, 

but custom software interfaces may still be needed for scientific payloads [2]. Therefore, developing a custom FSW 

is typically inevitable. Yet, CubeSat missions, having different payloads, also have different FSW requirements. Thus, 

it is essential to have scalable and flexible software architectures where modules can be added, modified, or removed 

depending on the mission, without affecting the architecture [28]. In light of this, the Norwegian University of Science 

and Technology developed an FSW for a nanosatellite OBC [39]. The authors in [37] even asserted that modularity 

determines FSW quality. Consequently, they argued that all design aspects should be highly modular to enhance the 

flexibility and modifiability of the code.  

Furthermore, many additional efforts were made to develop FSW for CubeSats with a heavy emphasis on 

modularity [3] [6] [27] [29] [34]. The authors in [4] summarized several published papers describing FSWs of CubeSat 

missions and added that “modularity, extensibility, flexibility, robustness, and fault-tolerance have been identified as 

the main features of the FSW for nanosatellites”.  
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2. Multi-layered Architecture 

In addition to modularity, some works concluded that most of the FSWs were implemented as multi-layered 

architecture to exploit abstraction layers. For example, the FSW proposed in [37] is “divided into four modular layers: 

at the top are application-specific tasks, next are hardware specific libraries, at the bottom, are microcontroller specific 

drivers, and supporting all layers are general purpose software libraries.” This approach is similar to the approach 

proposed in this work. However, the final FSW architecture differs from the proposed design due to dissimilarities in 

hardware. Reference [82] also demonstrated a multi-layered architecture.  

3. Selection of Operating System  

Simple embedded software has evolved into more sophisticated Embedded Operating Systems. Real-Time 

Operating Systems (RTOS) are emerging to address the challenges of multitasking, scheduling, and dynamic 

management of flight system resources [2]. The RTOS for CubeSat missions is usually chosen based on the 

microcontroller selected. Many of these Operating Systems are open-source libraries that can be ported to various 

microcontrollers and hardware platforms. Commonly used RTOS options include GNU/Linux or Free Real-Time 

Operating System (FreeRTOS). The choice of microcontroller and RTOS are interrelated, as a more powerful 

microcontroller is needed for FSW that requires high-level programming language or features only available in 

GNU/Linux, resulting in increased power consumption. On the other hand, using a lightweight RTOS can conserve 

power at the expense of some processing capabilities [4]. In the case study, the FSW is designed and implemented 

using the FreeRTOS [83], as in [3], [5], [31], [39], [42], and [55]. In addition, the work in [27] also uses FreeRTOS 

yet focuses heavily on the design of FSW robustness by employing Fault Detection, Isolation, and Recovery (FDIR) 

methods, aspects which are also investigated in this article. 

4. Other Important Features 

The works in [1] and [3] employ bootloaders for their FSWs for in-mission image update capability, as in the case 

study presented in this paper. However, their implementation of the bootloader is quite different in design. 

Furthermore, the work in [3] also implemented a Command Line Interface (CLI) used in their testing. The CLI is 

expanded upon in this paper, implementing it over the CubeSat Space Protocol (CSP) to form CLI/CSP, which is then 

used as the foundation for the script engine. CSP is a simple network and transport protocol stack written in C 

language. It was initially developed at Aalborg University in 2008 and is currently maintained by GomSpace. It is 

especially designed for satellite embedded systems [84]. 
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B. FSW Guidelines, Frameworks, and Development Kits 

The literature review concluded that many resources, including guidelines, frameworks, and FSW Development 

Kits (section A.1), are available for FSW development. However, while these tools allow expediting software 

development to some extent, there is not yet a widely adopted community standards for CubeSat FSW [2]. 

Nevertheless, before starting the implementation of the FSW, the following were reviewed in depth. 

The comprehensive work in [31] attempted to develop a generic FSW and seemed promising. However, many 

generic and simulated works are published, such as [28], just to lay the foundation for future FSW developers without 

actually implementing and testing the FSW for actual satellite missions. Works as such remain theoretical and lack 

space heritage. The National Academies recognized this fundamental challenge in CubeSat FSW: numerous 

individuals attempting valuable work face difficulties in achieving space heritage. As a result, many developers are 

duplicating the effort rather than trust in existing solutions [2].  

One of the few open-source and freely available frameworks is the well-established NASA’s cFS [7]. In fact, this 

work’s software design was inspired by NASA’s cFS architecture. It employs a highly modular design where a 

software module and apps manage each functionality. Each app can be added or removed from the FSW based on the 

requirements, the mission, and the subsystems used. The work in [35] uses cFS to develop nanosatellite FSWs. 

However, it is technically challenging to configure and deploy cFS due to its rooted history with large and complex 

satellites [5]. The OpenSatKit was created to mitigate these problems [85]. OpenSatKit is a platform for developing 

and learning about NASA's cFS. However, it adds a learning curve with even additional complexity [5] [29]. Even 

though this suite is tested in NASA’s nanosatellite missions, its adoption is still not broad enough. Many current 

CubeSat FSWs are still implemented directly (without cFS) over simpler lightweight operating systems such as 

FreeRTOS [28]. 

Another framework gaining popularity is F Prime developed by Jet Propulsion Laboratory (JPL) [8]. While cFS 

and F Prime offer substantial advantages for modularity and service-oriented architecture, they are not without their 

limitations in the context of CubeSat missions. cFS, for example, is deeply rooted in traditional, large-scale satellite 

systems, making it technically complex for CubeSat developers. Moreover, neither cFS nor F Prime inherently support 

FreeRTOS, a useful operating system for resource-constrained environments. As of now, cFS is primarily designed to 

run on RTOS like VxWorks, RTEMS, and Linux. This gap in compatibility limits flexibility for CubeSats with stricter 

hardware constraints. Additionally, neither framework offers a built-in bootloader or script engine, making it difficult 
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to update software during a mission or automate satellite operations. These gaps highlight the need for a more 

streamlined, CubeSat-specific framework like the one presented in this work, which directly addresses these 

challenges. Furthermore, the complexity in cFS and F Prime might increase development time for teams unfamiliar 

with these frameworks. The framework presented in this paper is designed to be more intuitive, helping lower the 

barriers for smaller teams or academic environments. 

The FSW Development Kit (FSDK) by Bright Ascension [86] is also worth mentioning. This FSDK is a platform 

designed to expedite the creation of mission-specific FSW by leveraging a component-based architecture. This 

approach enables the reuse of pre-validated software components in various combinations. The FSDK was used in 

[87] to interface Clyde Space COTS components. 

In partnership with the University of Patras, the Libre Space Foundation developed both the software and 

hardware for UPSat, a 2U CubeSat launched in 2017. Aligned with the foundation’s main goal of offering open-source 

access to space technologies, the UPSat’s FSW has been made publicly available [87]. The LibreCube [88] is an 

initiative designed to democratize space exploration by allowing everyone access to open-source hardware and 

software systems. Another open-source solution is KubOS, a platform that is a custom Linux distribution adapted to 

host the satellite applications [29]. Other attempts are promising yet still are work-in-progress, such as CubedOS [29], 

and NanoSat MO [89]. 

Moreover, the framework showcased in [33] uses pysimCoder, is an open-source tool used for developing real-

time control applications. The main downsides of pysimCoder, when compared FSW architecture presented in this 

work, include its reliance on block diagram models for system development, which may limit the flexibility and depth 

of customization for complex CubeSat missions.  

PyCubed [90] is an open-source hardware and software platform designed for CubeSat development, with a focus 

on simplicity. It provides a modular framework tailored for academic teams and small satellite developers, integrating 

features such as fault-tolerant power management and a streamlined software stack. By leveraging Python, PyCubed 

lowers the barrier to entry for CubeSat developers, making it a popular choice in educational and research 

environments. On the other hand, its reliance on CircuitPython and specific hardware configurations may limit 

performance, customization, and scalability for complex missions like PHI-Demo. The Python-centric design is less 

efficient for time-critical and resource-constrained tasks, and the platform’s limited flight heritage raises concerns 

about reliability for high-stakes missions. Additionally, its community support and documentation are less extensive, 
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making it better suited for educational or experimental use rather than advanced CubeSat missions with demanding 

payloads and operational requirements. 

Furthermore, the work described in [5] reviews other available FSW development frameworks and proposes a 

framework tailored explicitly for CubeSat missions. Similarly, reference [91] is a survey comparing six FSW 

frameworks based on ‘New Space’ criteria, aiming to identify the most suitable one for a nanosatellite mission. 

IV. Case Study: 5G-Enabled, 12U CubeSat with Green Propulsion 

Satellites are becoming a fundamental part of the Internet’s infrastructure, especially the IoT. Therefore, the 

Mohammed Bin Rashid Space Center (MBRSC) has launched a Payload Hosting Initiative (PHI) program for Cube 

Satellites. The first iteration of this program is called PHI-Demo, a 12U CubeSat hosting a 5G-capable COM as a 

payload. As a secondary payload, it hosts a green propulsion technology to be tested in space. In the following sections, 

the design and architecture of FSW for PHI-Demo CubeSat is crafted and presented. This was achieved by first 

reviewing previous works in this realm to elicit the desired features for the FSW.  
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Fig. 5 A modified waterfall model depicting FSW development 

 

The modified version of the waterfall model followed in this work for the FSW development is illustrated in Fig. 

5. The process begins with defining the mission requirements which shape the FSW requirements. Next, influences 

from previous missions and the broader context of space heritage of MBRSC and the literature review and analysis 

presented in this work drove the design process. The subsequent stages of, implementation, and testing are executed 
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in a structured manner, each phase building on the preceding one. Notably, the testing on the FlatSat provides a critical 

simulation environment before deployment on the actual flight model. This step was thoroughly discussed and 

illustrated in the Testing Methodology section. The diagram culminates with the post-launch maintenance phase, 

highlighting the capability of uplinking FSW releases from the ground using the bootloader, thus demonstrating a 

closed-loop lifecycle from conception to operational management. 

A. CubeSat Hardware Components 

The CubeSat in the case study is a typical satellite that comprises various hardware components, including an OBC 

that runs the FSW, an EPS for energy collection and distribution, a COM for ground communication, an ADCS for 

location and orientation management, and payload subsystems designed to carry out 5G IoT communication, and 

propulsion. 

1. The Onboard Computer 

The “FSW typically runs on radiation-hardened processors and microcontrollers that are relatively slow and 

memory-limited” [10]. The CubeSat in this study uses an ARM Cortex M7 microcontroller from STMicroelectronics. 

This microcontroller out-of-the-box supports third-party software libraries such as FreeRTOS and FATFS, which are 

used in this work. Unfortunately, it has a RAM of only 1 MB, a limitation that must be kept in mind during the 

implementation. The ARM processor can be considered a System on Chip; The processor is combined with a set of 

peripherals on the die. These peripherals (such as UART, SPI, I2C, and CAN) can be configured by writing to memory-

mapped registers [1]. In addition, Error Correcting Codes (ECC) were enabled for the RAM and the Flash Memory, 

where the FSW images are stored. 

2. The Subsystems  

The subsystems that make up the CubeSat are as follows: an EPS that has a Distribution Board (DB) and two 

Power Conditioning and Control Modules (PCCM) for redundancy, A COM  subsystem that has both UHV/VHF and 

S-Band capability, an ADCS Subsystem, two Payload Subsystems; one is a 5G IoT device, and the other is a green 

propulsion technology to be tested in space (PROP). Refer to Fig. 6 CubeSat Hardware Components. 
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Fig. 6 CubeSat Hardware Components. Adapted from Eshaq, M., et al. [40], 2023 ASET, IEEE. 

 

Regrettably, CubeSats have a poor track record in terms of mission success. This is due to a common practice 

among researchers and developers, who tend to prioritize subsystems and hardware design over the development of 

FSW and the integration of the satellite as a complete system. To address this issue, it is crucial to invest more 

resources into the architecture, design, and implementation of FSW, as well as the development of fault tolerance 

mechanisms [3]. 

V. FSW Design and Architecture 

The FSW comprises various Applications (Apps) and supporting libraries, each with a specific purpose and 

function. The aim is to create a modular and service-oriented architecture where Apps can be added or removed based 

on the mission requirements and reused for future missions. The FSW architecture is illustrated in Fig. 7 below. 
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Fig. 7 Layered Software Model. Adapted from Eshaq, M., et al. [40], 2023 ASET, IEEE. 

 

The Housekeeper App collects spacecraft telemetry and stores it as Whole Orbit Data (WOD) files. This app is 

critical for ensuring the overall health and performance of the spacecraft, making it an essential component of the 

FSW in a CubeSat mission. The FDIR App continuously monitors the telemetry and determines the spacecraft’s 

health. The FDIR employs Watch Points (WP) and Action Points (AP). The WP are subsets of telemetry that are 

constantly monitored to ensure they remain within safe levels for the spacecraft’s nominal operation. Each WP has an 

AP linked to it. If a WP falls outside the safe range, the corresponding AP is executed to recover from the detected 

fault. If recovery fails, the spacecraft enters a ‘safe mode’ until ground intervention. 

The EPS App manages the solar panels, batteries, and the power distribution. The COM App manages all satellite 

communication activities. The Payload (PLD) App manages the payloads. It provides an interface to the payload and 

handles its data flow. The ADCS App governs the spacecraft’s attitude by controlling the ADC subsystem. Finally, 

the Storage App manages and ensures the integrity of the storage unit (SD Card). It mounts and initializes a File 

Allocation Table 32 (FAT32) volume, handles all commands related to files and systems from the ground and carries 

out file transfers (large data transfers) via Uplink and Downlink.  
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A CSP Server App is critical to the FSW. It accepts all incoming CSP connections to the OBC, whether the 

connection is coming from an onboard subsystem or ultimately from the ground via the COM subsystems. Several 

dedicated CSP ports are assigned and used. One port is dedicated to receiving and processing CLI commands sent in 

CSP packets, explained in the ‘CLI Commands over CSP’ section below. Another very central component of the 

satellite operation is the Script Manager App. Details on this App are highlighted in section D.  

 

Algorithm CubeSat Flight Software Operation 

Input: Libraries, Hardware Initializations, FreeRTOS, CSP 

Output: Running CubeSat Operations 

 

1. Initialize the system including hardware, FreeRTOS, and CSP 

2. Start the FreeRTOS kernel leading to parallel execution of applications 

3. Define Applications (Apps) for specific tasks 

   - Housekeeper App: 

     a. Collect telemetry from all subsystems periodically 

     b. Store collected telemetry into Whole Orbit Data (WOD) file 

   - FDIR App: 

     a. Monitor Watch Points (selected telemetry) against predefined triggers  

   and thresholds 

     b. Execute corresponding Action Points as required, potentially putting  

   the spacecraft in Safe Mode 

   - CSP Server App: 

     a. Await and process incoming packets from Ground 

     b. Distribute packets or commands to respective Apps via message queues  

   if not addressed to the server 

   - Other Apps: 

     a. Check for and process messages in the message queue 

     b. Perform app-specific operations or remain in idle state 

4. Repeat the process for each App, ensuring continuous operation 

 5. Utilize sleep or delay as necessary to manage operation timing and resource usage 

 

Fig. 8 FSW Apps Pseudocode 

 

The pseudocode in Fig. 8 highlights the code skeleton for selected apps such as, the Housekeeper, FDIR, and CSP 

Server App, while also providing a generic pseudocode at the end for the other apps which roughly follow the same 

structure. The script engine was excluded from this figure since its operation is thoroughly illustrated later in the Script 

Engine section.  

As for the choice of programming language for this work, using C for a CubeSat mission offers several advantages: 

it's widely supported, efficient for low-power and limited-resource environments like those found in CubeSats, and 

provides direct control over hardware for performance-critical applications. Its extensive libraries and broad 

community support facilitate solving complex problems and interfacing with various hardware components. The use 
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of C language for flight software development has been demonstrated, particularly in the context of CubeSat missions 

[3] [4]. Moreover, it is worth noting that NASA’s cFS, CSP library, and FreeRTOS are all C-based. In light of this, 

the FSW in this study was written in C language. 

A. Operating System 

The operating system of choice was the FreeRTOS, distributed freely under the MIT open-source license [83]. 

FreeRTOS was selected due to many reasons. One was that it has recently gained popularity, especially in CubeSat 

missions, as established in section 3. Second, FreeRTOS was also chosen because the microcontroller natively 

supports it. Finally, FreeRTOS is also often chosen due to its simplicity and large user community in the field of 

satellites and other embedded systems [39].  

B. File System  

The File Allocation Table File System (FATFS) is a basic file system module for embedded systems that is also 

Windows-compatible [83]. It is a software library that allows managing and organizing files on a storage device, such 

as a disk drive or memories. In this project, the FAT32 variant of the file system is used due to its ability to handle 

larger storage sizes and a more significant number of files. The low-level disk I/O modules are entirely separate from 

the FATFS module [92]. FATFS is a middle layer that allows the FSW to be written independently of the underlying 

media storage device drivers or host controllers. The adoption of this middle layer aligns with the intended Multi-

layered Architecture. FATFS was selected for this project due to its simplicity and native support by the 

Microcontroller and IDE. In addition, having a file system allows all Apps to have the ability to record events to their 

designated log files. 

C. Command Line Interface  

To simplify commanding the satellite, a CLI layer is added, which provides a layer of abstraction that allows 

planners and operators on the ground to control the spacecraft without having to work with the many native binary 

commands and responses used in each subsystem. The CLI commands introduced are high-level and human-readable, 

implemented with the help of the FreeRTOS-Plus CLI Framework. Examples of such commands are presented in 

Table 2. 
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Table 2. CLI Commands and Replies 

 

CLI Command (Input) Expected Reply (Output) Description 

obc get time OK 1632133618 Get time in seconds using Unix epoch time format. 

obc set time 1632133620 OK 
Set current OBC time in seconds using Unix epoch time 

format. 

adcs point-to nadir OK Maneuver the Sat to Nadir. 

eps iot on OK Power ON the IoT Payload. 

delay 15 mins OK Delay the Script Engine for 15 mins. 

eps iot off OK Power OFF the IoT Payload. 

msat set mode safe OK Change the Sat mode to safe. 

boot install FSW.bin 2 
Installation 

COMPLETE 
Install the FSW image to slot 2. 

boot from image 2 OK Boot from the FSW in slot 2. 

script run sequence.scr 

1 
OK Run script stored in the file starting from line 1. 

 

1. Command Console 

Once CLI commands are defined in the FreeRTOS CLI Interpreter, they can be invoked anywhere within the 

FreeRTOS environment. Apps (FreeRTOS tasks) can execute commands by sending a ‘string’ containing the 

command and any required parameters to the CLI interpreter function. The command is then processed and executed, 

and a reply is returned to the caller. In light of this, a Command Console was implemented to exploit this mechanism. 

When testing the satellite on the ground (in a FlatSat test environment), the OBC was connected to via a serial port 

and a terminal. Then, the commands were typed in and executed, and outputs could be observed in real-time, as shown 

in Fig. 9. This allowed the team to test all of the CLI commands defined and registered and observe the output, without 

the need for a complete Mission Control Software (MCS) to be implemented and ready for testing. The Command 

Console also assisted in the Assembly, Integration, and Testing (AIT) process and in testing the operation scenarios 

of the satellite as a whole. 
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Fig. 9 Command Console via Serial Terminal. Reprinted from Eshaq, M., et al. [40], 2023 ASET, IEEE. 

 

2. CLI Commands over CSP 

The CSP server is designed to receive CSP packets that also contain CLI command strings. Each command is 

executed upon arrival, and a response is subsequently transmitted back to the ground station within a separate CSP 

packet. This allows the ground team, using the MCS, to interact with the satellite during contact periods with CLI 

commands. This interaction closely mirrors the experience of employing the Command Console, as previously 

described. 

The command line abstraction layer effectively conceals the satellite’s underlying hardware specifications and 

communication protocols. As a result, the MCS no longer requires knowledge of the specific hardware architecture or 

the intra-satellite communication protocols between the OBC and subsystems. This facilitates the potential for the 

MCS to be repurposed for future missions, enhancing its reusability. 
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D. Script Engine 

A script file can be uploaded to the satellite pre-launch or upon contact. A script file is simply a sequence of CLI 

commands optionally separated by time delays and stored in a text file. When a script file is triggered, commands are 

released and executed in a timely fashion while orbiting, whether the satellite is still in contact or not. 

The script engine works by first setting the engine itself to armed. A script file must also be marked as armed. 

This means that the file is now ready to be executed. Arming must be done by ground or by a previously running 

script. Next, the script engine reads the armed file and starts executing the (input) CLI commands stored in the script 

file line-by-line. Upon execution, an output file is created and filled with (output) reply lines corresponding to each 

CLI command executed. Upon contact, the ground team can then download and examine the output file, and new 

script files for subsequent satellite operation can be uploaded. At the end of each script file, another script file can also 

be ‘armed’. Upon finishing the execution of the first one, the following script file is executed. This allows the ground 

team to queue or chain many script files covering satellite operations for many orbits spanning many upcoming days 

or weeks. This feature means satellite operations do not have to be hardcoded in the FSW. Instead, satellite operations  

can be defined as scripts and potentially reused in future missions. This mechanism will govern the operation of the 

CubeSat while orbiting in the mission as well as the operation and communication of the 5G IoT payload. Propulsion 

firing can also be managed by a script file. Operators can upload scripts during contacts to start the payload operation 

at predetermined time schedules.  
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Fig. 10 State Machine Diagram for the Script Engine  

 

Similarly, when the FSW is initialized and run for the first time (upon separation), a script dedicated for Launch 

and Early Orbit Phase (LEOP) operations is run immediately. The LEOP script conducts operation such as solar panel 

and antenna deployment. Then, the script engine enters an idle mode waiting to be armed, as shown in Fig. 10.   

E. Bootloader 

A bootloader is a small piece of software that runs before the main FSW and is responsible for checking and 

executing the FSW. With a bootloader, a CubeSat can be updated with new FSW while in orbit. The FSW running on 

the OBC must be highly reliable, as maintenance is almost impossible after launch. Scenarios leading to faults and 

errors, and ultimately mission failure, must be predicted beforehand, and solutions to such issues should be prepared 

for in advance [39]. A bootloader can provide a safety net if the FSW becomes corrupted or fails. The bootloader can 

detect a failure to load an FSW image and load a backup version, providing a fail-safe mechanism for the spacecraft. 

This makes the ability to modify/update FSW while in-mission a highly desirable feature. It may not directly contribute 
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to the modularity of the FSW; however, it certainly adds flexibility to its design and development process and makes 

the FSW future-proof and thus reusable.  

The bootloader has four slots for storing FSW images. The first slot contains the main image (Golden Image), 

installed pre-launch, and can never be overwritten. Other slots may store additional FSW images as a form of software 

redundancy and backup. If an image is corrupt, the bootloader can boot from other images. Refer to Fig. 11. 
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Fig. 11 Memory Organization for Bootloader in Flash Memory 

 

New images can be uploaded to the spacecraft as a binary file during a mission. After uploading, the image must 

then be installed in any of the other slots. The spacecraft is then instructed to boot from the newly uploaded image. 

The bootloader then starts by attempting to boot from the newly uplinked image. If it fails, it attempts to boot from 

the image the satellite managed to boot from the last time. If that fails, it will look for images in other slots. In each 

attempt, the bootloader checks the slot area in the memory and sees if the slot is empty or not, then makes three 

attempts to boot from it. Finally, if all of the above fails, the bootloader defaults to the Golden Image and boots from 

it (as illustrated by Fig. 12). The bootloader achieves this by employing a watchdog. A watchdog is a hardware timer 

that monitors the operation of the system. When a fault or an unknown state occurs, the watchdog timer will time out 
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(after 4 seconds, for instance), and it will restart the system or put the system back into a known state from which the 

system can recover. Watchdogs have been used in terrestrial and space systems and can improve system reliability in 

CubeSats [93]. When the bootloader starts, the watchdog timer is also started, and a crash counter is incremented. 

Successful execution of the FSW will clear the watchdog timer and reset the crash counter. If the watchdog timer is 

not cleared within a given time window, the watchdog will reset the OBC, forcing it to enter the bootloader again to 

decide what to do next. A crash counter higher than a certain threshold (3 counts, for instance) indicates that the image 

is unstable, and the bootloader should choose another image instead. 
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Fig. 12 Bootloader Flowchart 

 

VI. Testing and Results 

A substantial portion of project time should be dedicated to FSW Testing. Identifying and rectifying defects during 

the initial implementation phase offers substantial benefits, yielding savings of no less than ten times in contrast to 

detecting them during integration or, even less favorably, post-launch [39]. Furthermore, the challenging space 
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environment presents a multitude of potential system failures due to ionized particles that have the capacity to trigger 

catastrophic software crashes and power outages. Additionally, the considerable fluctuations in temperature can lead 

to the degradation of batteries and other crucial components [28]. It's worth noting that CubeSats have historically 

demonstrated a less than optimal mission success rate [3], thus necessitating significant endeavors to enhance their 

robustness [28]. 

A. Test Setup 

The Eclipse-based STM32CubeIDE was used for code development. STM32CubeIDE uses the GCC toolchain for 

development and GDB for debugging [94]. Furthermore, FreeRTOS version 10.3.1 was used, with CMSIS version 

2.00. The RTOS was set to Cooperative Scheduling. The memory scheme used was heap 4. As a rule of thumb, using 

dynamic memory in embedded systems is not recommended. Nonetheless, a study focused on assessing various 

memory schemes within the context of the CubeSat project reached the determination that heap 4 presented the most 

optimal suitability. This selection was based on its ability to strike a favorable equilibrium between code size overhead 

and segmentation level considerations [39]. 

B. Testing Methodology 

The objective was to ensure that the FSW meets all of the functional requirement and the non-functional 

requirements. Test cases for the mission FSW were driven by analyzing both types of requirements. These test cases 

were designed to thoroughly evaluate the performance and capabilities of the FSW in various mission scenarios. These 

test cases were executed and meticulously documented the results to assess the FSW’s conformance to its requirements 

and identify any potential issues or improvements needed. In addition to the individual test cases, a long-term test was 

conducted for the FSW, simulating a prolonged mission environment using a FlatSat setup. During this extensive test, 

which lasted over ten days, the software operated continuously, emulating the conditions it would encounter during 

actual mission operations. Throughout this period, all software activities and events were logged, providing valuable 

insights into the FSW’s long-term stability, reliability, and performance. This comprehensive testing approach allowed 

us to identify and address any potential issues, ensuring that the FSW is well-prepared for the challenges it will face 

during the actual CubeSat mission. Fig. 13 highlights the testing process and methodology. 
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Fig. 13 FlatSat Testing Methodology 

 

During the testing process, no instances of crashes were observed in which the FSW became entirely unresponsive 

and incapable of recovering on its own. Three distinct types of bugs were identified that occurred during the test runs; 

however, the FSW was able to independently recover from each of these issues, demonstrating its resilience and fault 

tolerance capabilities. In one particular instance, a memory leak event was detected. Following this observation, 

measures to address the identified bugs were taken, implementing appropriate fixes to prevent similar issues from 

arising in the future. Moreover, an FDIR Watch Point/Action Point (WP/AP) was introduced to the FSW, ensuring 

that it could promptly rectify the situation if a similar event were to occur during actual mission operations. This 

proactive approach to addressing potential problems enhances the overall reliability and robustness of the FSW, 

contributing to mission success and longevity. 
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Fig. 14 CPU Utilization 

 

The graph depicted in Fig. 14 illustrates the CPU usage over time for each individual task during the initial 16 

seconds of FSW startup. A noteworthy observation is that, even with the inclusion of all features in the FSW, the CPU 

utilization on average remained below the 40% threshold. This finding indicates that the FSW effectively manages 

system resources, ensuring efficient performance without overwhelming the CPU, which is vital for maintaining the 

overall stability and reliability of the CubeSat system during its mission. 
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Fig. 15 Trace View of CubeSat FSW Task Execution with One-Second Intervals. Reprinted from Eshaq, M., 

et al. [40], 2023 ASET, IEEE. 

 

Furthermore, Fig. 15 presents a trace view, which is essentially a timeline visualization of how various tasks within 

the flight software are being executed over time. It’s interesting to see how tasks are scheduled and managed, with 

clear indications of their execution periods and any overlaps that may occur. This type of trace is crucial for ensuring 

that tasks are completed within their allotted time slots and that the system meets the real-time requirements of the 

mission. The periodic delay of one second across tasks aligns with constraints from prior missions and suggests a 

deliberate pacing to accommodate processing or communication needs. 

C. Discussions 

The aim was to ensure the robustness of the software while meeting the FSW requirements. The most crucial phase 

of our testing was the long-term test lasting over 10 days. The idea was to keep the satellite as a whole (in a FlatSat 

setup) running while performing all the tasks that it is expected to perform in the mission and observe the behavior. 

The FSW recovered from faults as expected. The test engineers were allowed to interact with the satellite pretending 

that they were in contact. No physical interactions (such as power cycling) were allowed with the FlatSat.  

The subsequent tests and results gathered were to ensure that the OBC was not overloaded and running the FSW 

with ease. This is why CPU utilization was monitored as well as memory consumption. Faults accumulate and result 
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in failures when systems run at their maximum potential. Moreover, the intention of this work was to demonstrate that 

FSW for CubeSats can be packed with features (such as script engines) without compromising performance. Modern 

CubeSat CPU and hardware allows for this, and FreeRTOS is lightweight indeed.  

The testing methods offered valuable insights and validation, yet they also had some limitations. First, the long-

term testing period, although extensive, spanned just over 10 days. This duration may not fully capture potential issues 

that could arise over a longer, more realistic mission period. Additionally, the testing environment, using a FlatSat 

setup, though designed to simulate the conditions of a space mission, cannot replicate the challenges and complexities 

of the actual space environment. This includes factors like radiation effects, thermal variations, and unexpected 

hardware anomalies.  

In the realm of CubeSat development, while mechanical and electronic interfacing of components is guided by 

established standards, the flight software (FSW) lacks a clear and standardized development roadmap [2]. This 

situation is compounded by the tendency within the engineering community to allocate insufficient focus and attention 

to FSW and its critical testing phase [78]. This oversight contributes to the common occurrence of software failures 

in CubeSat missions, highlighting a critical area for improvement in the pursuit of reliable and efficient space 

exploration endeavors. 

VII. Conclusion 

In conclusion, this study highlights the growing interest and continuous advancements in CubeSat flight software 

(FSW) development. A comprehensive analysis of the literature reveals a steady rise in publications, demonstrating a 

strong commitment to exploring various facets of CubeSat technology and its associated FSW. Key areas of 

investigation encompass design and development methodologies, subsystems, component interfacing, reliability, fault 

tolerance, anomaly analysis, testing, validation, communication, and networking. It is evident that the development of 

robust and efficient FSW is fundamental to the success of CubeSat missions. However, despite the progress made in 

this field, a significant challenge remains—the absence of freely-available, truly modular, and reusable FSW solutions 

and frameworks. This gap necessitates students and enthusiasts to undertake FSW development, often from scratch, 

impeding innovation and efficiency. Addressing this challenge requires the adoption of characteristics such as service-

oriented architecture layered software, such as the FSW presented in this work. Additionally, standardizing 

communication protocols, particularly the use of the CubeSat Space Protocol (CSP), can significantly contribute to 

FSW modularity. Looking ahead, the future of CubeSat FSW development is envisioned to be greatly streamlined 
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through modular, portable, and reusable solutions. The incorporation of features like Command Line Interfaces (CLIs), 

Script Engines, and Bootloaders will empower future space engineers and researchers to build efficient and adaptable 

FSW with reduced development time. Moreover, the use of CSP as a standard for intra-satellite and ground 

communication is poised to become a cornerstone of CubeSat FSW design. In sum, this study not only sheds light on 

the current state of CubeSat FSW but also points to a promising future where modular, reusable solutions will foster 

innovation and excellence in small satellite technology. 
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