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A B S T R A C T

For some repairable systems executing missions/tasks, a functional failure, i.e., a failure of a mission or task
can occur not immediately after equipment failure but with some delay. This happens when a failure/defect
is not repaired within some specified period of time. Alternatively, a functional failure can also occur when
a new failure/defect happens relatively soon after the completion of the previous repair. In this paper, we
present a new stochastic model that defines and describes the lifetimes of this kind of repairable systems with
operational constraints. A new approach based on Laplace transforms is developed to study the reliability
function and the mean time to failure for these systems. Furthermore, we consider the stochastic model when
only a finite number of repairs are allowed and obtain relevant reliability indices for this case as well. Detailed
numerical examples illustrate our findings.
1. Introduction

In this section, we first discuss motivation of the proposed problem
and then we give a brief literature survey.

1.1. Motivation and discussion of the problem

Stochastic modeling of performance for repairable systems is one
of the main topics in reliability theory. Through the years, there were
numerous ground breaking papers and books devoted to this versatile
topic. Along with classical Barlow & Proschan [1,2],

some recent developments relevant to our study include, for exam-
ple, Ahmadi et al. [3], Asadi [4], Cui & Li [5], Cheng & Zhao [6], de
Oliveria Valadares et al. [7], Finkelstein [8], Jubari et al. [9], Levitin
et al. [10], Li & Kagaris [11], Li et al. [12], Zhang et al. [13], Zhang
et al. [14] to name a few. Although this general field is well developed,
practical applications often suggest new settings that demand new
approaches to the corresponding modeling. One of these approaches
that is applied to a practical problem is developed and justified in our
paper.

In many real-life scenarios, systems’ performance becomes unac-
ceptable resulting in a functional/mission failure not immediately fol-
lowing a defect or failure of a system as such, but only after some
delay . For further convenience, we will use abbreviation ‘‘FF’’ for this
type of failure. It can happen, e.g., due to some ‘inertia’ in the output
characteristics and can be considered as ‘tolerable’ for some limited

∗ Corresponding author at: Department of Mathematical Statistics and Actuarial Science, University of the Free State, 339 Bloemfontein, 9300, South Africa.
E-mail address: FinkelM@ufs.ac.za (M. Finkelstein).

time after a failure of a system. Thus, if a repair is completed within
this interval of time, it does not result in a functional failure (FF). This
can be also interpreted in terms of the corresponding time redundancy of
the model as one can think about some imaginary cold standby system
that is switched into operation after the failure of the prime one and
has the lifetime described by the distribution of time of repair of the
prime system. Some real-world examples that describe this situation are
as follows:

(a) For marine navigational systems: if the repair of the failed
navigational equipment is completed within a relatively short
period of time, then the altitude or longitude for a vessel is not
changing much and the initial defect/failure does not become
the FF with respect to these navigational parameters;

(b) In certain power generation systems, a defect or failure is clas-
sified as catastrophic only if it remains unresolved beyond a
specified time frame. For example, in a power station comprising
multiple generating units, the continuity of electricity supply
can still be deemed acceptable during the repair of one or more
generating units, provided the duration of repair does not exceed
a predetermined threshold value;

(c) Consider a thermo-stabilization system designed for a highly
accurate gyroscopic unit. This system exhibits ‘thermo-inertia,’
meaning that if it experiences a malfunction, prompt repairs
within a defined time frame will not significantly affect the
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Acronyms

FF functional failure
SF system failure
𝑖𝑖𝑑 independent and identically distributed
LT Laplace transform
PH phase-type

Notation

𝑈 underlying non-negative random variable
𝑓𝑈 (⋅) probability density function of 𝑈
𝐹𝑈 (⋅) cumulative distribution function of 𝑈
𝐹𝑈 (⋅) reliability/survival function of 𝑈
𝐸(𝑈 ) mean of 𝑈
ℒ (𝑔(𝑡))[⋅] LT of the function 𝑔(𝑡)
𝑋1 time to the first SF
𝑋𝑖 time elapsed since the (𝑖 − 1)th repair to the

𝑖th SF, 𝑖 = 2, 3, 4,…
𝑅𝑖 repair time of the system after 𝑖th SF,

𝑖 = 1, 2, 3,…
𝜏 repair time threshold
𝛿 no-failure time after a repair
𝑀 random variable such that 𝑀 = 𝑚 represents

the event that
the FF occurs due to the 𝑚th SF

𝑇𝐹 𝐹 time to FF
𝑀𝑙 number of SFs ‘required’ for the FF given

that 𝑙 repairs are allowed
𝑇 𝑙
𝐹 𝐹 time to FF given that 𝑙 repairs are allowed
n
P

l

gyroscopic unit’s performance. However, prolonged delays in
repairs could be deemed critical, leading to the FF (the accuracy
of obtaining navigational parameters is not within the specified
limits).

Other situations (but not limited to) of acceptable delay, where
 timely repaired defect or failure does not result in the functional
ailures (FF) are: pumping systems with intermediate storage, com-
unication and weather satellites, unmanned aerial vehicles, military
issions, medical equipment malfunction, etc. Thus, this setting can be

onsidered as rather common in practice.
However, at least, in some of the listed examples, where the initial

imely repaired failure prevents from immediate FF; vulnerability to a
ubsequent failure can be substantially increased if this failure occurs
elatively soon after the repair is completed. Therefore, this subsequent
ailure can result in the FF and the corresponding events should form
he criterion of a failure for a mission or task. One of the possible
xplanations in this case is that the relevant ‘inertia capability’ is not
estored to the required extent for ‘addressing’ the next failure. This can
e due to external or internal reasons. Thus, in these cases, technically
he failed equipment can be restored to the ‘‘as good as new’’ state
ut the ‘inertia capability’ described above needs more time for that.

This means, that the repair on a general/functional level is imperfect
in the described sense. Therefore, if the next failure of a system occurs
relatively soon, this results in the FF . Some of the possible examples
are listed below.

For instance, for the pump with intermediate storage, this storage
an be significantly depleted after repair, and it starts replenishing but
ather slowly, so if the failure of the system occurs soon it means FF
immediately or very soon). Another possible scenario that can result in
he FF in this case is when the repair team is unavailable for some time
fter completing the previous repair (e.g., in some offshore wind farms,
hen the team leaves the site after repair and should be transported
ack again to deal with the next repair). Finally, in high precision
avigational systems, there external sources for correction/repair are

equired. For instance, for a submarine on the long patrol mission, the i

2 
corrections of navigation parameters after replacement of the failed
equipment can be performed only in the surface condition. However,
due to operational and logistic reasons, this is not usually possible for
some period of time after the previous repair and correction. Thus,
if the next failure of the navigation system occurs in this period of
time, it results in the FF and the mission should be usually terminated
or adjusted in some way. The main goal of our study is reliability
modeling (i.e., the stochastic description of the time to the FF) of a
repairable systems of the described type.

1.2. Literature review

Note that, only a possible acceptable delay for the FF in some
specific cases was previously considered in the literature. To the best
of our knowledge, the first reference to this topic was Zarudniy [15],
where the discussion was inspired by the navigational setting men-
tioned above. In Vaurio [16], some general approaches to defining
the reliability function via the corresponding integral equations and
subsequent computational solutions were discussed. Recently, Cha &
Finkelstein [17] also have obtained the reliability function for some
specific cases (i.e., for a system with exponentially distributed lifetime).
Moreover, considerable attention in the latter paper was also devoted
to asymptotic ‘fast repair’ approximations.

For repairable systems, other than reliability analysis, concept of
tolerable delay has been considered in various other topics such as
availability analysis, optimal spare allocation, etc. Bao and Cui [18]
proposed a novel model for evaluating the availability of repairable
systems based on Markov processes, wherein failures can either be
eglected or delayed based on repair time (see also Qiu and Cui [19]).
ark et al. [20,21] provided maintenance models for repairable systems

under a renewable warranty policy, where systems are either minimally
repaired or replaced if a repair cannot be completed within a certain
time. Drefuss and Giat [22] discussed the optimization of spare item al-
ocation in multi-location repair system by considering tolerable delay
n service.



D. Goyal et al.

e

o
i
e
t
(

a

r
i
g
t
a

t

Reliability Engineering and System Safety 255 (2025) 110631 
Fig. 1. Realization of events for the defined model.
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In the current paper, we develop a new alternative and more gen-
ral approach to obtaining reliability characteristics for the described

settings, which allows for explicit general solutions via the Laplace
transforms. Moreover, we are the first to consider and analyze stochas-
tically a general and practically sound model combining acceptable
delays with the possibility of a mission failure when a system’s failure
ccurs too soon after the previous repair. Note that the latter part,
n a way, resembles the delta-shock models (a system fails due to
xternal shocks when the time between two consecutive shocks is less
han the pre-fixed threshold delta) extensively studied in the literature
e.g., Li & Zhao [23], Goyal et al. [24,25], Lyu et al. [26], Eryilmaz &

Unlu [27], to name a few). We believe that this is the main, innovative
contribution of our paper. The main focus is on the case when the
acceptable delay time and the no-failure time after the last repair are
constants. However, generalization to the case of the corresponding
random variables is also provided.

The contribution and novelty of the paper can be summarize as
follows:

(i) We present a novel stochastic model for analyzing the reliability
of repairable systems operating under some constraints, such as
limited repair time and the possibility of FF if a SF occurs too
soon after the previous repair.

(ii) A significant contribution is the use of Laplace transforms to
derive reliability of the time to first FF and mean time to FF.
This approach allows for explicit solutions, making it more
general and robust than previous methods that relied on integral
equations.

(iii) The model is further extended to consider systems where only
a finite number of repairs are permitted, which is crucial for
real-world applications with repair limitations. Additionally, this
paper expands the model to include cases where delays and no-
failure times are random, offering greater flexibility in reliability
analysis.

The rest of the paper is organized as follows. In Section 2, we give
the model formulation. In Section 3, we derive the reliability function
nd the mean time to failure for the defined model. In Section 4,

we consider systems with finite number of repairs and study different
eliability indices for this model. Numerical illustrations are presented
n Section 5. In Section 6, we do a simulation study. Conclusions are
iven in Section 7. Finally, a generalization of the proposed model to
he case when the delay time and the no-failure time after the repair
re random are discussed in Appendix-B.

2. Model description

Let a new repairable system start operation at time 𝑡 = 0. Assume
hat its failure is self-announced and can be detected immediately.
3 
After each failure, the process of repair starts immediately. If the repair
is not completed within time 𝜏, then this event is considered as a
functional/mission failure (FF). Note that the FF is different from the
ystem failure (SF). Further, if the next SF occurs too early, say within
ime 𝛿 after the completion of the previous repair, it is also considered
s the FF. We are interested in the distribution of the time of the first
F for the repairable system as it terminates a mission or a task. The
orresponding criteria of the FF can be defined formally as follows.

Let 𝑋1 be the random variable representing time to the first SF.
Further, let 𝑋𝑖 be the random time elapsed since the (𝑖 − 1)th repair
to the 𝑖th SF, 𝑖 = 2, 3, 4,… . Let 𝑅𝑖 be the repair time of the system after
the 𝑖th SF, 𝑖 = 1, 2, 3 … . Then, according to the defined model, the 𝑖th
SF can be considered as the FF if one of the following cases holds true:

(𝑎) the 𝑖th SF is not repaired within time 𝜏, i.e., 𝑅𝑖 > 𝜏, 𝑖 = 1, 2, 3,… ;

(𝑏) After the (𝑖 − 1)th repaired of SF, the next 𝑖th SF occurs within
time 𝛿, i.e., 𝑋𝑖 ≤ 𝛿, 𝑖 = 2, 3, 4 … .

Let 𝑀 be a random variable such that 𝑀 = 𝑚 represents the event
hat the FF occurs due to the 𝑚th SF. Let 𝑇𝐹 𝐹 be the random variable

representing the time to FF. Then, according to the defined model, the
vent ‘‘𝑀 = 1’’ happens if 𝑅1 > 𝜏 and consequently,

𝑇𝐹 𝐹 = 𝑋1 + 𝜏 . (2.1)

Further, the event ‘‘𝑀 = 𝑚’’, for 𝑚 = 2, 3, 4,… , can happen in two ways:

(i) 𝑅1 ≤ 𝜏 , 𝑋2 > 𝛿 , 𝑅2 ≤ 𝜏 ,… , 𝑋𝑚−1 > 𝛿 , 𝑅𝑚−1 ≤ 𝜏 , 𝑋𝑚 ≤ 𝛿,
(ii) 𝑅1 ≤ 𝜏 , 𝑋2 > 𝛿 , 𝑅2 ≤ 𝜏 ,… , 𝑋𝑚−1 > 𝛿 , 𝑅𝑚−1 ≤ 𝜏 , 𝑋𝑚 > 𝛿 , 𝑅𝑚 > 𝜏.

For this case,

𝑇𝐹 𝐹 =
𝑚
∑

𝑖=1
𝑋𝑖 +

𝑚−1
∑

𝑖=1
𝑅𝑖 + 𝜏𝟏(𝑋𝑚 > 𝛿), (2.2)

where

𝟏(𝑋𝑚 > 𝛿) =
{

1 𝑖𝑓 𝑋𝑚 > 𝛿
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

and 𝑚 = 2, 3, 4,… . Next, we illustrate the described model. In Fig. 1(𝑎),
he FF occurs due to the 3rd SF, i.e., the failure takes place ‘too early’
within time 𝛿) after the second repair. Clearly, from the figure, we
ave

𝑇𝐹 𝐹 = 𝑋1 + 𝑅1 +𝑋2 + 𝑅2 +𝑋3.

On the other hand, in Fig. 1(𝑏), the FF occurs because the repair time
f the 3rd SF exceeds the threshold 𝜏. Hence, in this case,

𝑇𝐹 𝐹 = 𝑋1 + 𝑅1 +𝑋2 + 𝑅2 +𝑋3 + 𝜏 .

In what follows, we consider the following assumptions.



D. Goyal et al.

t
t
t

n

𝐵

c
c

m

r

Reliability Engineering and System Safety 255 (2025) 110631 
(i) The random variables 𝑋1, 𝑋2, 𝑋3,… are independent and iden-
tically distributed (𝑖𝑖𝑑) with a common distribution 𝐹𝑋1

(⋅).
(ii) The random variables 𝑅1, 𝑅2, 𝑅3,… are 𝑖𝑖𝑑 with a common

distribution 𝐹𝑅1
(⋅).

(iii) The random sequences {𝑋1, 𝑋2, 𝑋3,… } and {𝑅1, 𝑅2, 𝑅3,… } are
independent with each other.

(iv) 𝜏 and 𝛿 are constants. However, these variables may be random;
the results for this case are deferred to Appendix-B.

(v) After each failure, the system as such undergoes a perfect repair
(i.e., as good as new).

3. Reliability indices

In this section, we obtain the reliability function and the mean
ime to failure for the defined model. From (2.1) and (2.2), we see
hat 𝑇𝐹 𝐹 is a convolution of 𝑋𝑖’s and 𝑅𝑖’s. Consequently, obtaining
he reliability function directly from these equations may be difficult

because convolutions are always challenging to deal with analytically
and numerically. Therefore, we derive the Laplace transform (LT) of
𝑇𝐹 𝐹 , which fully describes this random variable.

For convenience and notation-sake let us first define the LT for a
on-negative function and a random variable. Let 𝑔(𝑡) be a real-valued

function defined on the interval (0,∞). Then, the LT of 𝑔(𝑡), denoted by
ℒ (𝑔(𝑡))[⋅], is defined as

ℒ (𝑔(𝑡))[𝑠] = ∫

∞

0
𝑒−𝑠𝑡𝑔(𝑡)𝑑 𝑡,

where 𝑠 is a real number. Further, the LT of a random variable 𝑈 , with
the probability density function 𝑓𝑈 (𝑢), is defined by

ℒ (𝑓𝑈 (𝑡))[𝑠] = 𝐸
(

𝑒−𝑠𝑈
)

= ∫

∞

0
𝑒−𝑠𝑢𝑓𝑈 (𝑢)𝑑 𝑢,

where 𝑠 is a real number.
In the following proposition, we derive the Laplace transform of the

lifetime of a system for the defined model.

Proposition 3.1. Let 𝑝1 = 𝑃 (𝑅1 ≤ 𝜏) and 𝑝2 = 𝑃 (𝑋1 > 𝛿), and let
𝐿1(𝑠) = 𝐸

(

𝑒−𝑠𝑋1
)

, (3.1)

𝐿2(𝑠) = 𝐸
(

𝑒−𝑠𝑋1
|𝑋1 > 𝛿) (3.2)

𝐿3(𝑠) = 𝐸
(

𝑒−𝑠𝑅1
|𝑅1 ≤ 𝜏

)

. (3.3)

Then, the LT of 𝑇𝐹 𝐹 is given by
𝐸
(

𝑒−𝑠𝑇𝐹 𝐹 ) = (1 − 𝑝1)𝑒−𝑠𝜏𝐿1(𝑠)

+
(

𝑝1𝐿1(𝑠)𝐿3(𝑠)(𝐿1(𝑠) − 𝑝2𝐿2(𝑠) + 𝑝2(1 − 𝑝1)𝑒−𝑠𝜏𝐿2(𝑠))
1 − 𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠)

)

.

Proof. Let

𝐴𝑚 = ‘‘𝑅1 ≤ 𝜏 , 𝑋2 > 𝛿 , 𝑅2 ≤ 𝜏 ,… , 𝑋𝑚−1 > 𝛿 , 𝑅𝑚−1 ≤ 𝜏 , 𝑋𝑚 ≤ 𝛿", (3.4)

and

𝐵𝑚 = ‘‘𝑅1 ≤ 𝜏 , 𝑋2 > 𝛿 , 𝑅2 ≤ 𝜏 ,… , 𝑋𝑚−1 > 𝛿 , 𝑅𝑚−1 ≤ 𝜏 , 𝑋𝑚 > 𝛿 , 𝑅𝑚 > 𝜏",
(3.5)

for 𝑚 = 2, 3, 4,… . Now, consider

𝐸
(

𝑒−𝑠𝑇𝐹 𝐹 ) =
∞
∑

𝑚=1
𝐸
(

𝑒−𝑠𝑇𝐹 𝐹 |𝑀 = 𝑚
)

𝑃 (𝑀 = 𝑚)

= 𝐸
(

𝑒−𝑠𝑇𝐹 𝐹 |𝑀 = 1)𝑃 (𝑀 = 1)

+
∞
∑

𝑚=2
𝐸
(

𝑒−𝑠𝑇𝐹 𝐹 |𝑀 = 𝑚
)

𝑃 (𝑀 = 𝑚).

Note that, the event ‘‘𝑀 = 𝑚’’ is a union of disjoint events 𝐴𝑚 and
, 𝑚 = 2, 3,… . Thus, from the above equation, we can write
𝑚

4 
𝐸
(

𝑒−𝑠𝑇𝐹 𝐹 ) = 𝐸
(

𝑒−𝑠(𝑋1+𝜏)
|𝑅1 > 𝜏)𝑃 (𝑅1 > 𝜏)

+
∞
∑

𝑚=2
𝐸
(

𝑒−𝑠
(

∑𝑚
𝑖=1 𝑋𝑖+

∑𝑚−1
𝑖=1 𝑅𝑖

)

|𝐴𝑚

)

𝑃 (𝐴𝑚)

+
∞
∑

𝑚=2
𝐸
(

𝑒−𝑠
(

∑𝑚
𝑖=1 𝑋𝑖+

∑𝑚−1
𝑖=1 𝑅𝑖+𝜏

)

|𝐵𝑚

)

𝑃 (𝐵𝑚)

= (1 − 𝑝1)𝑒−𝑠𝜏𝐿1(𝑠)

+
∞
∑

𝑚=2
𝐿1(𝑠)(𝐿2(𝑠))𝑚−2(𝐿3(𝑠))𝑚−1

×𝐸
(

𝑒−𝑠𝑋1
|𝑋1 ≤ 𝛿

)

𝑝𝑚−11 𝑝𝑚−22 (1 − 𝑝2)

+
∞
∑

𝑚=2
𝑒−𝑠𝜏𝐿1(𝑠)(𝐿2(𝑠))𝑚−1(𝐿3(𝑠))𝑚−1𝑝𝑚−11 (1 − 𝑝1)𝑝𝑚−12

= (1 − 𝑝1)𝑒−𝑠𝜏𝐿1(𝑠)

+ 𝑝1(1 − 𝑝2)𝐿1(𝑠)𝐿3(𝑠)𝐸
(

𝑒−𝑠𝑋1
|𝑋1 ≤ 𝛿

)

×
∞
∑

𝑚=2
(𝑝1𝑝2)𝑚−2(𝐿3(𝑠)𝐿2(𝑠))𝑚−2

+ 𝑒−𝑠𝜏 (1 − 𝑝1)𝐿1(𝑠)
∞
∑

𝑚=2
(𝐿2(𝑠)𝐿3(𝑠))𝑚−1(𝑝1𝑝2)𝑚−1

= (1 − 𝑝1)𝑒−𝑠𝜏𝐿1(𝑠)

+
(

𝑝1(1 − 𝑝2)𝐿1(𝑠)𝐿3(𝑠)𝐸(exp { − 𝑠𝑋1|𝑋1 ≤ 𝛿)
1 − 𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠)

)

+𝑒−𝑠𝜏𝐿1(𝑠)(1 − 𝑝1)
(

(𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠))
1 − 𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠)

)

= (1 − 𝑝1)𝑒−𝑠𝜏𝐿1(𝑠)

+
(

𝑝1𝐿1(𝑠)𝐿3(𝑠)(𝐿1(𝑠) − 𝑝2𝐿2(𝑠) + 𝑝2(1 − 𝑝1)𝑒−𝑠𝜏𝐿2(𝑠))
1 − 𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠)

)

,

where the last equality follows from the fact that

(1 −𝑝2)𝐸(exp{−𝑠𝑋1}|𝑋1 ≤ 𝛿) +𝑝2𝐸(exp{−𝑠𝑋1}|𝑋1 > 𝛿) = 𝐸(exp{−𝑠𝑋1}).

Hence, the result is proved. □
The following result is an immediate consequence of Proposition 3.1:
If 𝛿 = 0, then the LT of 𝑇𝐹 𝐹 is given by

𝐸
(

𝑒−𝑠𝑇𝐹 𝐹 ) = (1 − 𝑝1)𝑒−𝑠𝜏𝐿1(𝑠)
1 − 𝑝1𝐿1(𝑠)𝐿3(𝑠)

. □

Note that, the reliability function of a random variable 𝑈 can be
derived from its LT. Let 𝑓𝑈 (⋅) and 𝐹𝑈 (⋅) be the probability density
function and the reliability function of 𝑈 , respectively. Then, 𝑓𝑈 (⋅) of 𝑈
an be obtained by applying the inverse LT on 𝐸

(

𝑒−𝑠𝑈
)

. Further, 𝐹𝑈 (𝑡)
an be obtained by taking inverse LT on

[

1 − 𝐸
(

𝑒−𝑠𝑈
)]

∕𝑠 because

ℒ (𝐹𝑈 (𝑡))[𝑠] =
[

1 − 𝐸
(

𝑒−𝑠𝑈
)]

∕𝑠, 𝑠 ≠ 0, (3.6)

holds.
In the following proposition, we derive the mean time to FF,

i.e., 𝐸(𝑇𝐹 𝐹 ), which is an important reliability characteristic in practice.
Formally, it can be obtained also as the derivative of the LT of 𝑇𝐹 𝐹 at
the origin. However, this is more cumbersome than the direct, speaking
for itself probabilistic reasoning below.

Proposition 3.2. Let 𝑝1 = 𝑃 (𝑅1 ≤ 𝜏) and 𝑝2 = 𝑃 (𝑋1 > 𝛿). Then, the
ean time to FF of the system is given by

𝐸(𝑇𝐹 𝐹 ) = 𝐸(𝑋1) +
(

𝐸(𝑋1) + 𝐸(𝑅1|𝑅1 ≤ 𝜏)
)

(

𝑝1
1 − 𝑝1𝑝2

)

+ 𝜏
(

1 − 𝑝1
1 − 𝑝1𝑝2

)

.

Proof. Let the events 𝐴𝑚 and 𝐵𝑚 are the same as in (3.4) and (3.5),
espectively. Now, consider

𝐸(𝑇𝐹 𝐹 ) =
∞
∑

𝑚=1
𝐸(𝑇𝐹 𝐹 |𝑀 = 𝑚)𝑃 (𝑀 = 𝑚)

= 𝐸(𝑇𝐹 𝐹 |𝑀 = 1)𝑃 (𝑀 = 1) +
∞
∑

𝐸(𝑇𝐹 𝐹 |𝑀 = 𝑚)𝑃 (𝑀 = 𝑚)

𝑚=2
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= 𝐸(𝑋1 + 𝜏|𝑅1 > 𝜏)𝑃 (𝑅1 > 𝜏)

+
∞
∑

𝑚=2
𝐸

( 𝑚
∑

𝑖=1
𝑋𝑖 +

𝑚−1
∑

𝑖=1
𝑅𝑖|𝐴𝑚

)

𝑃 (𝐴𝑚)

+
∞
∑

𝑚=3
𝐸

( 𝑚
∑

𝑖=1
𝑋𝑖 +

𝑚−1
∑

𝑖=1
𝑅𝑖 + 𝜏|𝐵𝑚

)

𝑃 (𝐵𝑚)

= (𝐸(𝑋1) + 𝜏)(1 − 𝑝1)

+

[ ∞
∑

𝑚=2

(

𝐸(𝑋1) + (𝑚 − 2)𝐸(𝑋1|𝑋1 > 𝛿) + 𝐸(𝑋1|𝑋1 ≤ 𝛿)

+ (𝑚 − 1)𝐸(𝑅1|𝑅1 ≤ 𝜏)
)

(1 − 𝑝2)𝑝𝑚−22 𝑝𝑚−11

]

+

[ ∞
∑

𝑚=2

(

𝐸(𝑋1) + (𝑚 − 1)𝐸(𝑋1|𝑋1 > 𝛿)

+ (𝑚 − 1)𝐸(𝑅1|𝑅1 ≤ 𝜏) + 𝜏
)

(1 − 𝑝1)𝑝𝑚−11 𝑝𝑚−12

]

.

After simplifying the above expression, we get

𝐸(𝑇𝐹 𝐹 ) = 𝐸(𝑋1) + 𝜏
(

1 − 𝑝1
1 − 𝑝1𝑝2

)

+ 𝐸(𝑅1|𝑅1 ≤ 𝜏)
(

𝑝1
1 − 𝑝1𝑝2

)

+𝐸(𝑋1|𝑋1 ≤ 𝛿)
(

𝑝1(1 − 𝑝2)
1 − 𝑝1𝑝2

)

+𝐸(𝑋1|𝑋1 > 𝛿)
(

𝑝1𝑝2
1 − 𝑝1𝑝2

)

= 𝐸(𝑋1) +
(

𝐸(𝑋1) + 𝐸(𝑅1|𝑅1 ≤ 𝜏)
)

(

𝑝1
1 − 𝑝1𝑝2

)

+ 𝜏
(

1 − 𝑝1
1 − 𝑝1𝑝2

)

,

where the last equality follows from the fact that

𝐸(𝑋1) = 𝑝2𝐸(𝑋1|𝑋1 > 𝛿) + (1 − 𝑝2)𝐸(𝑋1|𝑋1 ≤ 𝛿).

Hence, the result is proved. □

The following result follows from the above proposition:
If 𝛿 = 0, then 𝐸(𝑇𝐹 𝐹 ) can be expressed as

𝐸(𝑇𝐹 𝐹 ) =
(

𝑝1
1 − 𝑝1

)

(𝐸(𝑋1) + 𝐸(𝑅1|𝑅1 ≤ 𝜏)) + 𝐸(𝑋1) + 𝜏 .

4. Finite number of repairs

In this section, we explore a potentially significant extension of the
roposed model, wherein only a finite number of repairs (or equiv-
lently, SFs), say 𝑙, are permitted. Systems subject to a restricted
umber of repairs are considered in various applications of different
ngineering and service domains. For instance, consider aircraft en-
ine turbine blades, which endure high temperatures and centrifugal
tresses, resulting in elongated microstructure particles. This elongation
iminishes fatigue strength, leading to the formation of voids and
racks at the blade tips. These blades can undergo rework only a
imited number of times before necessitating replacement to ensure
light safety. Another example involves strategically managing a limited
umber of available repairs for systems purchased with a constrained
arranty. While many warranties operate within fixed time frames,

ertain warranties impose restrictions on the number of permissible
epair actions before becoming void (see Kurt & Kharoufeh [28]).

Note that, in this case, the FF criteria will be the same (i.e., with no
estriction on repairs) as in Section 2 until 𝑙th SF. However, the system
ill surely fail due to (𝑙 + 1)th SF because the repair of the system can
e done at most 𝑙 times. This failure may occur due to either early
ccurrence (within time 𝛿) of (𝑙+ 1)th SF after 𝑙th repair or non-repairing
he (𝑙 + 1)th SF within time 𝜏 (because (𝑙 + 1)th repair is not allowed).

Let 𝑀𝑙 denote the number of SFs ‘required’ for the FF given that 𝑙
epairs are allowed. According to our model, 𝑃 (𝑀𝑙 = 𝑚) is the same as
(𝑀 = 𝑚), for all 𝑚 = 1, 2, 3,… , 𝑙, where the random variable 𝑀 is the

ame as in Section 2. Further,
 r

5 
𝑃 (𝑀𝑙 = 𝑙 + 1) = 𝑃 (𝑅1 ≤ 𝜏 , 𝑋2 > 𝛿 , 𝑅2 ≤ 𝜏 ,… , 𝑋𝑙 > 𝛿 , 𝑅𝑙 ≤ 𝜏).

Let 𝑇 𝑙
𝐹 𝐹 denote the time to FF given that 𝑙 repairs are allowed. Then,

𝑇 𝑙
𝐹 𝐹 = 𝑋1 + 𝜏, if 𝑀𝑙 = 1, and

𝑇 𝑙
𝐹 𝐹 =

𝑀𝑙
∑

𝑖=1
𝑋𝑖 +

𝑀𝑙−1
∑

𝑖=1
𝑅𝑖 + 𝜏𝟏(𝑋𝑀𝑙

> 𝛿),

if 𝑀𝑙 = 𝑚, for 𝑚 = 2, 3, 4,… , 𝑙 + 1.
In the following proposition, we derive the LT of 𝑇 𝑙

𝐹 𝐹 . The proof is
eferred to Appendix-A.

Proposition 4.1. Let 𝑝1 = 𝑃 (𝑅1 ≤ 𝜏) and 𝑝2 = 𝑃 (𝑋1 > 𝛿). Then, the LT
f 𝑇 𝑙

𝐹 𝐹 is given by in Box I where 𝐿1(𝑠), 𝐿2(𝑠) and 𝐿3(𝑠) are the same as
n (3.1), (3.2), and (3.3), respectively. □

In the following proposition, we derive the mean time to FF for the
efined model. The proof of this proposition is deferred to Appendix-A.

Proposition 4.2. Let 𝑝1 = 𝑃 (𝑅1 ≤ 𝜏) and 𝑝2 = 𝑃 (𝑋1 > 𝛿). Then, the
ean time to FF of the system is given by

𝐸
(

𝑇 𝑙
𝐹 𝐹

)

= 𝐸(𝑋1) + (𝐸(𝑋1) + 𝐸(𝑅1|𝑅1 ≤ 𝜏))
(

𝑝1
1 − 𝑝1𝑝2

)

(1 − (𝑝1𝑝2)𝑙)

+ 𝜏
(

1 − 𝑝1
1 − 𝑝1𝑝2

)

(1 − (𝑝1𝑝2)𝑙+1).

Remark 4.1. Obviously, when 𝑙 → ∞, the results of this section
coincide with those given in the previous section.

5. Numerical examples

In this section, we present several illustrative examples by assuming
that 𝑋1 and 𝑅1 follow the phase-type (PH) distribution.

PH distributions are versatile and powerful family of distributions
hat arise from the time until absorption in a Markov process with one
bsorbing state. A non-negative random variable 𝑈 is said to follow a
H distribution with the parameter set {𝛼𝛼𝛼 , 𝐴𝐴𝐴}, denoted by 𝑃 𝐻(𝛼𝛼𝛼 , 𝐴𝐴𝐴), if
ts cumulative distribution function is given by:

𝐹𝑈 (𝑢) = 1 − 𝛼𝛼𝛼 𝑒𝐴𝐴𝐴𝑢𝑒𝑒𝑒, 𝑢 ≥ 0,

where 𝑒𝐴𝐴𝐴𝑢 =
∑∞

𝑛=0𝐴𝐴𝐴
𝑛 𝑢𝑛

𝑛! , 𝑒𝑒𝑒 is a column vector with all elements equal
o one, 𝛼𝛼𝛼 is a row vector with non-negative elements such that 𝛼𝛼𝛼𝑒𝑒𝑒 =
, and 𝐴𝐴𝐴 is a non-singular matrix with negative diagonal elements,
on-negative off-diagonal elements, and non-positive row sums.

The PH distribution possesses several valuable properties. Notably,
it is dense within the family of distributions with non-negative support,
allowing it to approximate any distribution on the interval (0,∞) with
igh accuracy. This characteristic makes the PH distribution remark-
bly versatile. Its use enhances the flexibility of analytical properties
hile also ensure the practical applicability of models, particularly

n engineering contexts. For instance, the lifetimes of systems and
maintenance times, which often follow different PH distributions under
various conditions, can be effectively modeled using this distribution.
As a result, PH distributions are widely employed in maintenance
applications (see Li et al. [12], Perez-Ocon & Montoro-Cazorla [29],
Wang et al. [30], Juybari et al. [31], Sun & Vatn [32], to name a few).

Various algorithms have been proposed for fitting a phase-type
istribution to a sample of non-negative data. Particularly, Thummler
t al. [33], presented an EM algorithm that fits a restricted class of PH

distributions, namely, mixture of Erlang distributions, to true data.
Below we give three examples that illustrate the results presented in

previous sections with the corresponding sensitivity analysis. The latter
is fairly obvious, as the parameters of the models has a clear ‘physical’
meaning. In Example 5.1 (resp. Example 5.2), we use Algorithms 1
and 2 to calculate 𝐹𝑇𝐹 𝐹 (𝑡) (resp., 𝐹𝑇 𝑙

𝐹 𝐹 (𝑡)) and 𝐸(𝑇𝐹 𝐹 ) (resp. 𝐸(𝑇 𝑙
𝐹 𝐹 )),

espectively.
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𝐸
(

𝑒−𝑠𝑇
𝑙
𝐹 𝐹

)

= (1 − 𝑝1)𝑒−𝑠𝜏𝐿1(𝑠) +
(

𝑝1𝐿1(𝑠)𝐿3(𝑠)(𝐿1(𝑠) − 𝑝2𝐿2(𝑠))(1 − (𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠))𝑙)
1 − 𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠)

)

+
𝑝1𝑝2𝑒−𝑠𝜏𝐿1(𝑠)𝐿2(𝑠)𝐿3(𝑠)(1 − 𝑝1) + 𝑝1(𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠))𝑙−1 − (𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠))𝑙

1 − 𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠)
,

Box I.
S
S
P

O

f
t
o

𝑇
f
t
a
S
c
a

d
a

In the following two examples we assume that 𝑋1 and 𝑅1 follow
the Erlang distribution (a special case of PH distribution). A random
variable 𝑍 is said to have the Erlang distribution with parameters 𝑟 and
, denoted by 𝑍 ∼ 𝐸 𝑟𝑙 𝑎𝑛𝑔(𝑟, 𝜆), if its cumulative distribution function

is given by

𝑃 (𝑍 ≤ 𝑧) = 1 − 𝛽𝛽𝛽𝑟𝑒
𝑧𝐵𝐵𝐵𝑟,𝜆𝑒𝑒𝑒𝑟, 𝑧 ≥ 0,

where 𝛽𝛽𝛽𝑟 = (1, 0,… , 0)1×𝑟, 𝑒𝑒𝑒𝑟 = (1,… , 1)𝑟×1,

𝑟,𝜆 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝜆 𝜆 0 … 0
0 −𝜆 𝜆 … 0
⋮ ⋮ ⋱ ⋱ ⋮
0 0 … −𝜆 𝜆
0 0 … 0 −𝜆

⎞

⎟

⎟

⎟

⎟

⎟

⎠𝑟×𝑟

,

𝜆 is a positive real number and 𝑟 is a positive integer.

Example 5.1. Let 𝑅1 ∼ 𝐸 𝑟𝑙 𝑎𝑛𝑔(𝑟1, 𝜆1) and 𝑋1 ∼ 𝐸 𝑟𝑙 𝑎𝑛𝑔(𝑟2, 𝜆2). Further,
let 𝑟1 = 2, 𝜆1 = 2, 𝑟2 = 2, and 𝜆2 = 0.1. Then,

𝑝1 = 1 − 𝛽𝛽𝛽𝑟1𝑒
𝜏 𝐵𝐵𝐵𝑟1 ,𝜆1 𝑒𝑒𝑒𝑟1 ,

𝑝2 = 𝛽𝛽𝛽𝑟2𝑒
𝛿𝐵𝐵𝐵𝑟2 ,𝜆2 𝑒𝑒𝑒𝑟2 ,

𝐿1(𝑠) = 𝛽𝛽𝛽𝑟2 (𝑠𝐼𝐼𝐼 𝑟2 −𝐵𝐵𝐵𝑟2 ,𝜆2 )
−1𝐵𝐵𝐵0

𝑟2 ,𝜆2
,

𝑝2𝐿2(𝑠) = 𝛽𝛽𝛽𝑟2 (𝑠𝐼𝐼𝐼 𝑟2 −𝐵𝐵𝐵𝑟2 ,𝜆2 )
−1𝑒−𝛿(𝑠𝐼𝐼𝐼𝑟2−𝐵𝐵𝐵𝑟2 ,𝜆2 )𝐵𝐵𝐵0

𝑟2 ,𝜆2
,

𝑝1𝐿3(𝑠) = 𝛽𝛽𝛽𝑟1 (𝑠𝐼𝐼𝐼 𝑟1 −𝐵𝐵𝐵𝑟1 ,𝜆1 )
−1

(

𝐼𝐼𝐼 𝑟1 − 𝑒−𝜏(𝑠𝐼𝐼𝐼𝑟1−𝐵𝐵𝐵𝑟1 ,𝜆1 )
)

𝐵𝐵𝐵0
𝑟1 ,𝜆1

,

𝐸(𝑋1) = −𝛽𝛽𝛽𝑟2𝐵𝐵𝐵−1
𝑟2 ,𝜆2

𝑒𝑒𝑒𝑟2 ,

and 𝑝1𝐸(𝑅1|𝑅1 ≤ 𝜏) = −𝜏 𝛽𝛽𝛽𝑟1𝑒𝜏 𝐵𝐵𝐵𝑟1,𝜆1 𝑒𝑒𝑒𝑟1 + 𝛽𝛽𝛽𝑟1𝐵𝐵𝐵
−1
𝑟1,𝜆1

𝑒𝜏 𝐵𝐵𝐵𝑟1,𝜆1 𝑒𝑒𝑒𝑟1 − 𝛽𝛽𝛽𝑟1𝐵𝐵𝐵
−1
𝑟1,𝜆1

𝑒𝑒𝑒𝑟1,

where 𝐵𝐵𝐵0
𝑟𝑖 ,𝜆𝑖

= −𝐵𝐵𝐵𝑟𝑖 ,𝜆𝑖𝑒𝑒𝑒𝑟𝑖 ; 𝐼𝑟𝑖 is an identity matrix of size 𝑟𝑖, 𝑖 = 1, 2;
1 = 𝑃 (𝑅1 ≤ 𝜏), 𝑝2 = 𝑃 (𝑋1 > 𝛿), and 𝐿1(𝑠), 𝐿2(𝑠) and 𝐿3(𝑠) are
he same as in (3.1), (3.2), and (3.3), respectively. Now, we plot the

survival function and the mean time to FF in Figs. 2 and 3, respectively.
In Fig. 2(a), we plot the reliability function for different values of
, whereas, in Fig. 2(b), we plot the same for different values of 𝜏.
rom these figures, we can observe that an increment in 𝛿 decreases
he reliability, whereas an increment in 𝜏 increases the reliability. In

Fig. 2(a), we compare reliability of the system for the cases 𝛿 = 0 (note
that considering 𝛿 equal to zero reduces our model to the classical time
redundancy model) and 𝛿 > 0. From this comparison, we can see that
consideration of 𝛿 may help us to get a better reliability approximation.

Algorithm 1 Find the reliability of 𝑇𝐹 𝐹 (resp. 𝑇 𝑙
𝐹 𝐹 )

Input: 𝑟𝑖, 𝜆𝑖, 𝛽𝛽𝛽𝑟𝑖 , 𝐵𝐵𝐵𝑟𝑖 ,𝜆𝑖 , 𝑒𝑒𝑒𝑟𝑖, 𝜏, 𝛿, 𝑡, (𝑙, in case of Example 5.2), for 𝑖 = 1, 2
Step 1. Compute 𝑝1, 𝑝2, 𝐿1(𝑠), 𝐿2(𝑠), and 𝐿3(𝑠)
Step 2. Compute LT of 𝑇𝐹 𝐹 (resp. 𝑇 𝑙

𝐹 𝐹 ) from Proposition 3.1 (resp.
Proposition 4.1)
Step 3. Compute LT of 𝐹𝑇𝐹 𝐹 (𝑡) (resp. 𝐹𝑇 𝑙

𝐹 𝐹 (𝑡)) from Eq. (3.6)
Step 4. Apply dehoog inverse LT algorithm to find 𝐹𝑇𝐹 𝐹 (𝑡) (resp. 𝐹𝑇 𝑙

𝐹 𝐹 (𝑡))
Output: 𝐹𝑇𝐹 𝐹 (𝑡) (resp. 𝐹𝑇 𝑙

𝐹 𝐹 (𝑡))

In Fig. 3(a), we plot the mean time to FF with respect to 𝜏 for fixed
𝛿 = 1, whereas, in Fig. 3(b), we plot the same with respect to 𝛿 for fixed
= 1. These figures show that the mean time to FF is an increasing

unction with respect to 𝜏, whereas it is decreasing with respect to 𝛿.
In the following example, we illustrate the reliability function and

the mean time to FF when 𝑙 number of repairs are allowed.
 i

6 
Algorithm 2 Find the mean of 𝑇𝐹 𝐹 (resp. 𝑇 𝑙
𝐹 𝐹 )

Input: 𝑟𝑖, 𝜆𝑖, 𝛽𝛽𝛽𝑟𝑖 , 𝐵𝐵𝐵𝑟𝑖 ,𝜆𝑖 , 𝑒𝑒𝑒𝑟𝑖, 𝜏, 𝛿, (𝑙, in case of Example 5.2), for 𝑖 = 1, 2
tep 1. Compute 𝑝1, 𝑝2, 𝐸(𝑋1), and 𝐸(𝑅1|𝑅1 ≤ 𝜏)
tep 2. Compute 𝐸(𝑇𝐹 𝐹 ) (resp. 𝐸(𝑇 𝑙

𝐹 𝐹 )) from Proposition 3.2 (resp.
roposition 4.2)

utput: 𝐸(𝑇𝐹 𝐹 ) (resp. 𝐸(𝑇 𝑙
𝐹 𝐹 ))

Table 1
Mean time to FF when 𝑙 repairs are allowed.
𝑙 𝜏 𝛿 𝐸(𝑇 𝑙

𝐹 𝐹 )
2 1 1 40.2058

2 40.1060
3 39.9552

2 1 56.5450
2 56.3182
3 55.9754

3 1 1 44.5552
2 44.3428
3 44.0246

2 1 72.1565
2 71.5276
3 70.5872

4 1 1 47.1266
2 46.8153
3 46.3526

2 1 86.2719
2 85.1028
3 83.3786

Example 5.2. Let 𝑅1 ∼ 𝐸 𝑟𝑙 𝑎𝑛𝑔(𝑟1, 𝜆1) and 𝑋1 ∼ 𝐸 𝑟𝑙 𝑎𝑛𝑔(𝑟2, 𝜆2) with
𝑟1 = 2, 𝜆1 = 2, 𝑟2 = 2, and 𝜆2 = 0.1. We assume the same set of
parameters as in Example 5.1. In Fig. 4, we plot the reliability function
or different values of 𝑙 for fixed 𝜏 = 2 and 𝛿 = 1. This figure shows
hat the reliability function increases with the increment in the value
f 𝑙. Further, in Table 1, we evaluate the mean time to FF for different

values of 𝑙, 𝜏, and 𝛿. From this table, we observe that, if the value of
𝑙 or 𝜏 increases, considering the other two parameters fixed, the mean
time to FF increases. On the other hand, if 𝛿 increases, then the mean
time to FF decreases. □

Note that, an increment in 𝜏 increases both reliability and mean of
𝐹 𝐹 . This happens because larger 𝜏 means that more times are needed
or repairs of SFs. Consequently, the probability of repairing a SF within
ime 𝜏 increases. Further, an increment in 𝛿 decreases both reliability
nd mean of 𝑇𝐹 𝐹 because it increases the chance of occurrence of a
F within time 𝛿 (and consequently, more chances of FF). The same
onclusions also valid for the case when finite number of repairs are
llowed.

In the next example, we conduct a sensitivity analysis similar to
that in Examples 5.1 and 5.2, but with different PH distributions for
𝑋1 and 𝑅1. This demonstrates that the effects of the parameters 𝜏,
𝛿, and 𝑙 on reliability measures remain consistent regardless of the
istribution of 𝑋1 and 𝑅1. Additionally, we perform a comparative
nalysis between the earlier examples and this one to illustrate the
mpact of the distributional shapes of 𝑋 and 𝑅 on system reliability
1 1
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Fig. 2. Plot of reliability function.
Fig. 3. Mean time to FF.
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Fig. 4. Reliability of the system for 𝑙 number of repairs.

measures. Like above examples, we used Algorithm 1 and Algorithm 2
for plotting figures in this example.

Example 5.3. Let 𝑅1 ∼ 𝑃 𝐻(𝛼𝛼𝛼1, 𝐴𝐴𝐴1) and 𝑋1 ∼ 𝑃 𝐻(𝛼𝛼𝛼2, 𝐴𝐴𝐴2), where

1 = (1, 0), 𝐴𝐴𝐴1 =
(

−1 0
1 −5

)

7 
and

𝛼2 = (1, 0), 𝐴𝐴𝐴2 =
(

−0.2 0.1
0.1 −0.1

)

.

In this case,

𝑝1 = 1 − 𝛼𝛼𝛼1𝑒
𝜏 𝐴𝐴𝐴1𝑒𝑒𝑒1,

𝑝2 = 𝛼𝛼𝛼2𝑒
𝛿𝐴𝐴𝐴2𝑒𝑒𝑒2,

𝐿1(𝑠) = 𝛼𝛼𝛼2(𝑠𝐼𝐼𝐼 −𝐴𝐴𝐴2)−1𝐴𝐴𝐴0
2,

𝑝2𝐿2(𝑠) = 𝛼𝛼𝛼2(𝑠𝐼𝐼𝐼 −𝐴𝐴𝐴2)−1𝑒−𝛿(𝑠𝐼
𝐼𝐼−𝐴𝐴𝐴2)𝐴𝐴𝐴0

2,

𝑝1𝐿3(𝑠) = 𝛼𝛼𝛼1(𝑠𝐼𝐼𝐼 −𝐴𝐴𝐴1)−1
(

𝐼𝐼𝐼 − 𝑒−𝜏(𝑡𝐼𝐼𝐼−𝐴𝐴𝐴1)
)

𝐴𝐴𝐴0
1,

𝐸(𝑋1) = −𝛼𝛼𝛼2𝐴𝐴𝐴−1
2 𝑒𝑒𝑒,

and 𝑝1𝐸(𝑅1|𝑅1 ≤ 𝜏) = −𝜏 𝛼𝛼𝛼1𝑒𝜏 𝐴𝐴𝐴1𝑒𝑒𝑒 + 𝛼𝛼𝛼1𝐴𝐴𝐴
−1
1 𝑒𝜏 𝐴𝐴𝐴1𝑒𝑒𝑒 − 𝛼𝛼𝛼1𝐴𝐴𝐴

−1
1 𝑒𝑒𝑒,

where 𝐴𝐴𝐴0
𝑖 = −𝐴𝐴𝐴𝑖𝑒𝑒𝑒, 𝑖 = 1, 2; 𝐼 is an identity matrix of size 2.

For the given PH distributions of 𝑋1 and 𝑅1, we plot the survival
function of 𝑇𝐹 𝐹 against 𝜏 and 𝛿 in Fig. 5. This figure shows that the
eliability decreases as 𝛿 increases, while an increment in 𝜏 leads to an

increment in reliability. In Fig. 6, we plot the survival function of 𝑇 𝑙
𝐹 𝐹 ,

which shows that increasing 𝑙 enhances the system’s reliability.
Based on the analysis in Example 5.1, Example 5.2, and this example

(so far), it can be seen that the influence of the parameters 𝜏, 𝛿, and
𝑙 remain unchanged with respect to distributions of 𝑋1 and 𝑅1, which
ne can expect from the definition of these parameters.

To keep the paper concise, we do not include figures for the mean
ime to FF. However, the parameters 𝜏, 𝛿, and 𝑙 influence the mean time
o FF in the same manner as they do for reliability.

Now, to capture the effects of the distributional shapes of 𝑋1 and
𝑅 on system reliability measures, we perform a comparison analysis
1
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Fig. 5. Plot of reliability function.
Fig. 6. Reliability of the system for 𝑙 number of repairs.
f
t
p
w

s

between the examples mentioned earlier and this example. Note that for
ny 𝑈 ∼ 𝑃 𝐻(𝛼𝛼𝛼 , 𝐴𝐴𝐴), 𝐸(𝑈 ) = −𝛼𝛼𝛼𝐴𝐴𝐴−1𝑒𝑒𝑒. Therefore, 𝐸(𝑅1) = 𝐸(𝐸 𝑟𝑙 𝑎𝑛𝑔(2, 2))

and 𝐸(𝑋1) = 𝐸(𝐸 𝑟𝑙 𝑎𝑛𝑔(2, 0.1)). In other words, distributions of 𝑋1 and
𝑅1 in Example 5.1 and in this example have the same mean. Under
his condition, in Fig. 7, we compare reliabilities of 𝑇𝐹 𝐹 and 𝑇 𝑙

𝐹 𝐹 (for
Examples 5.1 and 5.3) by considering fixed 𝜏 = 2, 𝛿 = 1, and 𝑙 = 2.
Further, we also compare mean time to FF in Fig. 8 with respect to
𝜏 and 𝛿. From these figures, it can be seen that the shapes of the
distributions of 𝑋1 and 𝑅1 significantly impact the system’s reliability
measures such as 𝐹𝑇𝐹 𝐹 (⋅) and 𝐸(𝑇𝐹 𝐹 ).

In Figs. 7 and 8, the label ‘‘Example 5.1’’ (resp. ‘‘Example 5.3’’)
enotes that 𝑋1 and 𝑅1 follow the distribution given in Example 5.1

(resp. Example 5.3).

6. Simulated data analysis

In this section, we validate our model using simulated data, focusing
on the scenario with no restriction on the number of repairs. The case
of a finite number of repairs can be analyzed similarly.

To validate the analytical model developed for assessing system
eliability, a Monte Carlo simulation was conducted, generating 10,000
amples for the random variable 𝑇𝐹 𝐹 for each fixed value of 𝑡; here we
ssume that 𝜏 = 1, 𝛿 = 1, 𝑋 ∼ 𝐸 𝑟𝑙 𝑎𝑛𝑔(2, 0.1) and 𝑅 ∼ 𝐸 𝑟𝑙 𝑎𝑛𝑔(2, 2). The
1 1 c

8 
empirical cumulative distribution function of 𝑇𝐹 𝐹 was then calculated,
and the estimated reliability of 𝑇𝐹 𝐹 was determined for various values
of 𝑡 using the empirical cumulative distribution function (see Algorithm
3 for this simulation procedure).

Fig. 9, presents a graphical comparison between the reliability
unctions derived from the simulated data (labeled as ‘Simulation’) and
he analytical model (labeled as ‘Approximation’). This shows that the
roposed theoretical model of the reliability function is closely aligned
ith the results obtained from the Monte Carlo simulation.

7. Conclusions

In many real-life scenarios, a functional failure of a repairable
ystem takes place when either a defect/failure of a system as such is

not repaired within a grace period of time or the next defect/failure
occurs too early after the previous repair.

For these scenarios, we develop the corresponding stochastic model
and obtain relevant reliability characteristics (the reliability function
and the mean time to failure). These results are illustrated numerically
for the case when both the time to failure of a system and the time of
repair follow the PH distribution. Furthermore, we consider a practi-
ally important case when only the limited number of repairs can be
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Fig. 7. Plot of reliability function for fixed 𝜏 = 2, 𝛿 = 1, and 𝑙 = 2.

Fig. 8. Mean time to FF 𝐸(𝑇𝐹 𝐹 ).

Fig. 9. Comparison of reliability functions obtained from the theoretical model and the simulation.
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Algorithm 3 Simulation procedure for 𝑇𝐹 𝐹 reliability estimation
At time 𝑡, 𝑛 = 1, 2, 3,… , 𝐽 = 10000
Step 1. Define maximum repair time threshold 𝜏 and after a repair no
failure time threshold 𝛿
Step 2. Generate a dataset, say 𝑑 𝑎𝑡𝑎𝑠𝑒𝑡1, of size 𝐾 = 1000 from the
distribution of 𝑅1
Step 3. Generate a dataset, say 𝑑 𝑎𝑡𝑎𝑠𝑒𝑡2, of size 𝐾 = 1000 from the
distribution of 𝑋1
Step 4. Let 𝑑 𝑎𝑡𝑎𝑠𝑒𝑡𝑖[𝑘] denote the 𝑘th entry of 𝑑 𝑎𝑡𝑎𝑠𝑒𝑡𝑖, 𝑖 = 1, 2. Then,
find

𝑀1 = 𝑚𝑖𝑛{𝑘 ≥ 2|𝑑 𝑎𝑡𝑎𝑠𝑒𝑡1[𝑘] > 𝜏},
𝑀2 = 𝑚𝑖𝑛{𝑘 ≥ 2|𝑑 𝑎𝑡𝑎𝑠𝑒𝑡2[𝑘] ≤ 𝛿}.

If 𝑑 𝑎𝑡𝑎𝑠𝑒𝑡1[1] > 𝜏, define 𝑀 = 1; else, define 𝑀 =
𝑚𝑖𝑛(𝑀1, 𝑀2).
Step 5. If 𝑀 = 1, define 𝑇𝐹 𝐹 = 𝑑 𝑎𝑡𝑎𝑠𝑒𝑡2[1] + 𝜏; else, define

𝑇𝐹 𝐹 =
𝑀−1
∑

𝑘=1
𝑑 𝑎𝑡𝑎𝑠𝑒𝑡1[𝑘] +

𝑀
∑

𝑖=1
𝑑 𝑎𝑡𝑎𝑠𝑒𝑡2[𝑘] + 𝜏𝟏(𝑑 𝑎𝑡𝑎𝑠𝑒𝑡2[𝑀] > 𝛿)

Step 6. Find empirical cumulative distribution function by
𝐹𝑇𝐹 𝐹 (𝑡) =

1
𝐽
∑𝐽

𝑁=1 𝐼𝑁 ,
where 𝐼𝑁 = 1 when 𝑇𝐹 𝐹 [𝑁] ≤ 𝑡; otherwise 𝐼𝑁 = 0.

tep 7. Calculate estimated reliability by ̂̄𝐹𝑇𝐹 𝐹 (𝑡) = 1 − 𝐹𝑇𝐹 𝐹 (𝑡).

performed during a mission (defined, e.g., by the number of available
pare parts).

Our results are obtained explicitly in the form of Laplace transforms
that can be easily inverted numerically. The other option is to derive
the corresponding integral equations for the reliability function. How-
ever, this approach on our level of generality can encounter substantial
analytical and computational problems.

Generalization to the case of random delay time and the time inter-
val after the repair when a failure of a system results in the functional
failure is also considered. In the future research, it is reasonable to
iscuss the case when these random variables are dependent (at least,

the second one depends on the first one). The other possible direction of
urther study could be modeling of shocks impact within the framework
f the discussed model (see, e.g., Eryilmaz [34], Goyal et al. [35],

Chadjiconstantinidis & Eryilmaz [36], Finkelstein & Cha [37]).
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Appendix A. Proofs of Propositions 4.1 and 4.2

Proof of Proposition 4.1. Let the events 𝐴𝑚 and 𝐵𝑚 be the same as
n (3.4) and (3.5), respectively (see Box II), where the last equality
ollows from the fact that

(1 −𝑝2)𝐸(exp{−𝑠𝑋1}|𝑋1 ≤ 𝛿) = 𝐸(exp{−𝑠𝑋1}) −𝑝2𝐸(exp{−𝑠𝑋1}|𝑋1 > 𝛿).
Hence, the result is proved.
10 
Proof of Proposition 4.2. Let the events 𝐴𝑚 and 𝐵𝑚 be the same as
n (3.4) and (3.5), respectively (see Box III), where the last equality

follows from the fact that

𝐸(𝑋1|𝑋1 ≤ 𝛿)(1 − 𝑝2) + 𝐸(𝑋1|𝑋1 > 𝛿)𝑝2 = 𝐸(𝑋1).

Thus, the result is proved.

Appendix B. Generalized reliability model for random 𝝉 and 𝜹

In practice, for various reasons, 𝜏 and 𝛿 need not to be constant.
Here, we consider 𝜏 and 𝛿 as random variables and derive the reliability
and the mean time to FF of the system. The results for this case can
be derived in the same line as in Sections 3 and 4 and therefore, the
proofs are not included. Here, we assume that 𝛿, {𝑋1, 𝑋2, 𝑋3,… } and
{𝑅1, 𝑅2, 𝑅3,… } are all independent with each other.

We first assume that there is no restriction on the number of repairs.
n the first two propositions, we derive the LT and the mean time to FF
f the lifetime of a system.

Proposition 7.1. Let

𝐿1(𝑠) = 𝐸
(

𝑒−𝑠𝑋1
)

,

𝐿2(𝑠) = 𝐸
(

𝑒−𝑠𝑋1
|𝑋1 > 𝛿) ,

3(𝑠) = 𝐸
(

𝑒−𝑠𝑅1
|𝑅1 ≤ 𝜏

)

,

𝐿4(𝑠) = 𝐸 (𝑒−𝑠𝜏 ) .

Then, the LT of 𝑇𝐹 𝐹 is given by
𝐸
(

𝑒−𝑠𝑇𝐹 𝐹 ) = (1 − 𝑝1)𝐿1(𝑠)𝐿4(𝑠)

+
(

𝑝1𝐿1(𝑠)𝐿3(𝑠)(𝐿1(𝑠) − 𝑝2𝐿2(𝑠) + 𝑝2(1 − 𝑝1)𝐿2(𝑠)𝐿4(𝑠))
1 − 𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠)

)

,

where 𝑝1 = 𝑃 (𝑅1 ≤ 𝜏) and 𝑝2 = 𝑃 (𝑋1 > 𝛿). □

Proposition 7.2. The mean time to FF of the system is given by
𝐸(𝑇𝐹 𝐹 ) = 𝐸(𝑋1) +

(

𝐸(𝑋1) + 𝐸(𝑅1|𝑅1 ≤ 𝜏)
)

(

𝑝1
1 − 𝑝1𝑝2

)

+ 𝐸(𝜏)
(

1 − 𝑝1
1 − 𝑝1𝑝2

)

,

where 𝑝1 = 𝑃 (𝑅1 ≤ 𝜏) and 𝑝2 = 𝑃 (𝑋1 > 𝛿). □

Next, we assume that the system can be repaired only finite number
of times. In the following propositions, we derive the reliability indices
for this case.

Proposition 7.3. Let 𝑝1 = 𝑃 (𝑅1 ≤ 𝜏) and 𝑝2 = 𝑃 (𝑋1 > 𝛿). Then, the LT
f 𝑇 𝑙

𝐹 𝐹 is given in Box IV where 𝐿𝑖(𝑡) is the same as in Proposition 7.1, for
𝑖 = 1, 2, 3, 4. □

Proposition 7.4. The mean time to FF of the system is given by
𝐸(𝑇𝐹 𝐹 ) = 𝐸(𝑋1) + (𝐸(𝑋1) + 𝐸(𝑅1|𝑅1 ≤ 𝜏))

(

𝑝1
1 − 𝑝1𝑝2

)

(1 − (𝑝1𝑝2)𝑙)

+𝐸(𝜏)
(

1 − 𝑝1
1 − 𝑝1𝑝2

)

(1 − (𝑝1𝑝2)𝑙+1),

where 𝑝1 = 𝑃 (𝑅1 ≤ 𝜏) and 𝑝2 = 𝑃 (𝑋1 > 𝛿). □

Data availability

No data was used for the research described in the article.
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𝐸
(

𝑒−𝑠𝑇
𝑙
𝐹 𝐹

)

=
𝑙+1
∑

𝑚=1
𝐸
(

𝑒−𝑠𝑇
𝑙
𝐹 𝐹

|𝑀𝑙 = 𝑚
)

𝑃 (𝑀𝑙 = 𝑚)

= 𝐸
(

𝑒−𝑠𝑇
𝑙
𝐹 𝐹

|𝑀𝑙 = 1
)

𝑃 (𝑀𝑙 = 1) +
𝑙

∑

𝑚=2
𝐸
(

𝑒−𝑠𝑇
𝑙
𝐹 𝐹

|𝑀𝑙 = 𝑚
)

𝑃 (𝑀𝑙 = 𝑚)

+𝐸
(

𝑒−𝑠𝑇
𝑙
𝐹 𝐹

|𝑀𝑙 = 𝑙 + 1
)

𝑃 (𝑀𝑙 = 𝑙 + 1)

= 𝐸
(

𝑒−𝑠(𝑋1+𝜏)
|𝑅1 > 𝜏)𝑃 (𝑅1 > 𝜏) +

𝑙
∑

𝑚=2
𝐸
(

𝑒−𝑠
(

∑𝑚
𝑖=1 𝑋𝑖+

∑𝑚−1
𝑖=1 𝑅𝑖

)

|𝐴𝑚

)

𝑃 (𝐴𝑚)

+
𝑙

∑

𝑚=2
𝐸
(

𝑒−𝑠
(

∑𝑚
𝑖=1 𝑋𝑖+

∑𝑚−1
𝑖=1 𝑅𝑖+𝜏

)

|𝐵𝑚

)

𝑃 (𝐵𝑚)

+

[

𝐸
(

𝑒−𝑠
(

∑𝑙+1
𝑖=1 𝑋𝑖+

∑𝑙
𝑖=1 𝑅𝑖

)

|𝑅1 ≤ 𝜏 , 𝑋2 > 𝛿 ,… , 𝑋𝑙 > 𝛿 , 𝑅𝑙 ≤ 𝜏 , 𝑋𝑙+1 ≤ 𝛿
)

×𝑃 (𝑅1 ≤ 𝜏 , 𝑋2 > 𝛿 ,… , 𝑋𝑙 > 𝛿 , 𝑅𝑙 ≤ 𝜏 , 𝑋𝑙+1 ≤ 𝛿)
]

+

[

𝐸
(

𝑒−𝑠
(

∑𝑙+1
𝑖=1 𝑋𝑖+

∑𝑙
𝑖=1 𝑅𝑖+𝜏

)

|𝑅1 ≤ 𝜏 , 𝑋2 > 𝛿 ,… , 𝑋𝑙 > 𝛿 , 𝑅𝑙 ≤ 𝜏 , 𝑋𝑙+1 > 𝛿
)

×𝑃 (𝑅1 ≤ 𝜏 , 𝑋2 > 𝛿 ,… , 𝑋𝑙 > 𝛿 , 𝑅𝑙 ≤ 𝜏 , 𝑋𝑙+1 > 𝛿)
]

= (1 − 𝑝1)𝑒−𝑠𝜏𝐿1(𝑠) + 𝑒−𝑠𝜏 (1 − 𝑝1)𝐿1(𝑠)
𝑙

∑

𝑚=2
(𝐿2(𝑠)𝐿3(𝑠))𝑚−1(𝑝1𝑝2)𝑚−1

+ 𝑝1(1 − 𝑝2)𝐿1(𝑠)𝐿3(𝑠)𝐸
(

𝑒−𝑠𝑋1
|𝑋1 ≤ 𝛿

)

𝑙
∑

𝑚=2
(𝑝1𝑝2)𝑚−2(𝐿3(𝑠)𝐿2(𝑠))𝑚−2

+𝐿1(𝑠)(𝐿2(𝑠))𝑙−1(𝐿3(𝑠))𝑙𝑝𝑙1𝑝
𝑙−1
2 (1 − 𝑝2)𝐸

(

𝑒−𝑠𝑋1
|𝑋1 ≤ 𝛿

)

+ 𝑒−𝑠𝜏𝐿1(𝑠)(𝐿3(𝑠))𝑙(𝐿2(𝑠))𝑙𝑝𝑙1𝑝
𝑙
2

= (1 − 𝑝1)𝑒−𝑠𝜏𝐿1(𝑠) + 𝑒−𝑠𝜏 (1 − 𝑝1)𝐿1(𝑠)
𝑙

∑

𝑚=2
(𝐿2(𝑠)𝐿3(𝑠))𝑚−1(𝑝1𝑝2)𝑚−1

+ 𝑝1(1 − 𝑝2)𝐿1(𝑠)𝐿3(𝑠)𝐸
(

𝑒−𝑠𝑋1
|𝑋1 ≤ 𝛿

)

𝑙+1
∑

𝑚=2
(𝑝1𝑝2)𝑚−2(𝐿3(𝑠)𝐿2(𝑠))𝑚−2

+ 𝑒−𝑠𝜏𝐿1(𝑠)(𝐿3(𝑠))𝑙(𝐿2(𝑠))𝑙𝑝𝑙1𝑝
𝑙
2

= (1 − 𝑝1)𝑒−𝑠𝜏𝐿1(𝑡) + 𝑒−𝑠𝜏 (1 − 𝑝1)𝑝1𝑝2𝐿1(𝑠)𝐿2(𝑠)𝐿3(𝑠)
(

1 − (𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠))𝑙−1

1 − 𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠)

)

+ 𝑝1(1 − 𝑝2)𝐿1(𝑠)𝐿3(𝑠)𝐸
(

𝑒−𝑠𝑋1
|𝑋1 ≤ 𝛿

)

(

1 − (𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠))𝑙

1 − 𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠)

)

+ 𝑒−𝑠𝜏𝐿1(𝑠)(𝐿3(𝑠))𝑙(𝐿2(𝑠))𝑙𝑝𝑙1𝑝
𝑙
2

= (1 − 𝑝1)𝑒−𝑠𝜏𝐿1(𝑠) +
(

𝑝1𝐿1(𝑠)𝐿3(𝑠)(𝐿1(𝑠) − 𝑝2𝐿2(𝑠))(1 − (𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠))𝑙)
1 − 𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠)

)

+
𝑝1𝑝2𝑒−𝑠𝜏𝐿1(𝑠)𝐿2(𝑠)𝐿3(𝑠)(1 − 𝑝1) + 𝑝1(𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠))𝑙−1 − (𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠))𝑙

1 − 𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠)
,

Box II.
11 



D. Goyal et al. Reliability Engineering and System Safety 255 (2025) 110631 
𝐸(𝑇 𝑙
𝐹 𝐹 ) =

𝑙+1
∑

𝑚=1
𝐸(𝑇 𝑙

𝐹 𝐹 |𝑀𝑙 = 𝑚)𝑃 (𝑀𝑙 = 𝑚)

= 𝐸(𝑇 𝑙
𝐹 𝐹 |𝑀𝑙 = 1)𝑃 (𝑀𝑙 = 1) +

𝑙
∑

𝑚=2
𝐸(𝑇 𝑙

𝐹 𝐹 |𝑀𝑙 = 𝑚)𝑃 (𝑀𝑙 = 𝑚)

+𝐸(𝑇 𝑙
𝐹 𝐹 |𝑀𝑙 = 𝑙 + 1)𝑃 (𝑀𝑙 = 𝑙 + 1)

= 𝐸(𝑋1 + 𝜏|𝑅1 > 𝜏)𝑃 (𝑅1 > 𝜏)

+
𝑙

∑

𝑚=2
𝐸

( 𝑚
∑

𝑖=1
𝑋𝑖 +

𝑚−1
∑

𝑖=1
𝑅𝑖|𝐴𝑚

)

𝑃 (𝐴𝑚) +
𝑙

∑

𝑚=2
𝐸

( 𝑚
∑

𝑖=1
𝑋𝑖 +

𝑚−1
∑

𝑖=1
𝑅𝑖 + 𝜏|𝐵𝑚

)

𝑃 (𝐵𝑚)

+

[

𝐸

( 𝑙+1
∑

𝑖=1
𝑋𝑖 +

𝑙
∑

𝑖=1
𝑅𝑖|𝑅1 ≤ 𝜏 , 𝑋2 > 𝛿 ,… , 𝑋𝑙 > 𝛿 , 𝑅𝑙 ≤ 𝜏 , 𝑋𝑙+1 ≤ 𝛿

)

×𝑃 (𝑅1 ≤ 𝜏 , 𝑋2 > 𝛿 ,… , 𝑋𝑙 > 𝛿 , 𝑅𝑙 ≤ 𝜏 , 𝑋𝑙+1 ≤ 𝛿)
]

+

[

𝐸

( 𝑙+1
∑

𝑖=1
𝑋𝑖 +

𝑙
∑

𝑖=1
𝑅𝑖 + 𝜏|𝑅1 ≤ 𝜏 , 𝑋2 > 𝛿 ,… , 𝑋𝑙 > 𝛿 , 𝑅𝑙 ≤ 𝜏 , 𝑋𝑙+1 > 𝛿

)

×𝑃 (𝑅1 ≤ 𝜏 , 𝑋2 > 𝛿 ,… , 𝑋𝑙 > 𝛿 , 𝑅𝑙 ≤ 𝜏 , 𝑋𝑙+1 > 𝛿)
]

= (𝐸(𝑋1) + 𝜏)(1 − 𝑝1) +
[ 𝑙
∑

𝑚=2
(𝐸(𝑋1) + 𝐸(𝑋1|𝑋1 ≤ 𝛿) + 𝐸(𝑋1|𝑋1 > 𝛿)(𝑚 − 2) +

(𝑚 − 1)𝐸(𝑅1|𝑅1 ≤ 𝜏))𝑝𝑚−11 𝑝𝑚−22 (1 − 𝑝2)

]

+

[ 𝑙
∑

𝑚=2
(𝐸(𝑋1) + 𝐸(𝑋1|𝑋1 > 𝛿)(𝑚 − 1)

+ (𝑚 − 1)𝐸(𝑅1|𝑅1 ≤ 𝜏) + 𝜏)𝑝𝑚−11 𝑝𝑚−12 (1 − 𝑝1)

]

+
(

𝐸(𝑋1) + (𝑙 − 1)𝐸(𝑋1|𝑋1 > 𝛿)

+𝐸(𝑋1|𝑋1 ≤ 𝛿) + 𝑙 𝐸(𝑅1|𝑅1 ≤ 𝜏)
)

𝑝𝑙1𝑝
𝑙−1
2 (1 − 𝑝2) +

(

𝐸(𝑋1) + 𝑙 𝐸(𝑋1|𝑋1 > 𝛿)

+ 𝑙 𝐸(𝑅1|𝑅1 ≤ 𝜏)
)

𝑝𝑙1𝑝
𝑙
2

= 𝐸(𝑋1)

[

(1 − 𝑝1) +
( 𝑙
∑

𝑚=2
𝑝𝑚−11 𝑝𝑚−22 (1 − 𝑝2)

)

+

( 𝑙
∑

𝑚=2
𝑝𝑚−11 𝑝𝑚−12 (1 − 𝑝1)

)

+ 𝑝𝑙1𝑝
𝑙−1
2

]

+ 𝜏

(

(1 − 𝑝1) +
𝑙

∑

𝑚=2
𝑝𝑚−11 𝑝𝑚−12 (1 − 𝑝1) + 𝑝𝑙1𝑝

𝑙
2

)

+ 𝐸(𝑅1|𝑅1 ≤ 𝜏)

[( 𝑙
∑

𝑚=2
(𝑚 − 1)𝑝𝑚−11

× 𝑝𝑚−22 (1 − 𝑝2)

)

+

( 𝑙
∑

𝑚=2
(𝑚 − 1)𝑝𝑚−11 𝑝𝑚−12 (1 − 𝑝1)

)

+ 𝑙 𝑝𝑙1𝑝𝑙−12

]

+ 𝐸(𝑋1|𝑋1 ≤ 𝛿)

×

( 𝑙+1
∑

𝑚=2
𝑝𝑚−11 𝑝𝑚−22 (1 − 𝑝2)

)

+ 𝐸(𝑋1|𝑋1 > 𝛿)
[

𝑝1(1 − 𝑝2)

( 𝑙
∑

𝑚=2
(𝑚 − 2)(𝑝1𝑝2)𝑚−2

)

+ (1 − 𝑝1)

( 𝑙
∑

𝑚=3
(𝑚 − 1)(𝑝1𝑝2)𝑚−1

)

+ (𝑙 − 1)𝑝𝑙1𝑝𝑙−12 + 𝑝𝑙1𝑝
𝑙
2

]

= 𝐸(𝑋1) + 𝐸(𝑋1|𝑋1 ≤ 𝛿)
(

𝑝1(1 − 𝑝2)
(

1 − (𝑝1𝑝2)𝑙
1 − 𝑝1𝑝2

))

+𝐸(𝑅1|𝑅1 ≤ 𝜏)
(

𝑝1
1 − 𝑝1𝑝2

)

(1 − (𝑝1𝑝2)𝑙) + 𝐸(𝑋1|𝑋1 > 𝛿)𝑝1𝑝2
(

1 − (𝑝1𝑝2)𝑙
1 − 𝑝1𝑝2

)

+ 𝜏
(

1 − 𝑝1
1 − 𝑝1𝑝2

)

(1 − (𝑝1𝑝2)𝑙+1)

= 𝐸(𝑋1) + (𝐸(𝑋1) + 𝐸(𝑅1|𝑅1 ≤ 𝜏))
(

𝑝1
1 − 𝑝1𝑝2

)

(1 − (𝑝1𝑝2)𝑙) + 𝜏
(

1 − 𝑝1
1 − 𝑝1𝑝2

)

(1 − (𝑝1𝑝2)𝑙+1),

Box III.
12 
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𝐸
(

𝑒−𝑠𝑇
𝑙
𝐹 𝐹

)

= (1 − 𝑝1)𝐿1(𝑠)𝐿4(𝑠) +
(

𝑝1𝐿1(𝑠)𝐿3(𝑠)(𝐿1(𝑠) − 𝑝2𝐿2(𝑠))(1 − (𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠))𝑙)
1 − 𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠)

)

+
𝑝1𝑝2𝐿1(𝑠)𝐿2(𝑠)𝐿3(𝑠)𝐿4(𝑠)((1 − 𝑝1) + 𝑝1(𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠))𝑙−1 − (𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠))𝑙)

1 − 𝑝1𝑝2𝐿2(𝑠)𝐿3(𝑠)
,

Box IV.
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