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Abstract

We introduce a new combined repair process to describe repairs that are initially better-than-

minimal, then become minimal, before �nally becoming worse-than-minimal. The extended general-

ized Polya process (EGPP), non-homogeneous Poisson process (NHPP), and generalized Polya process

(GPP) are used to describe this repair pattern, respectively. Several useful properties are derived for

the combined process under two settings: change in repair type after a speci�ed time and change in

repair type after a speci�ed number of failures/repairs. As an application, the optimal age replacement

problem is de�ned and its optimal solution is analyzed. Detailed numerical examples support our

�ndings.

Keywords: Better-than-minimal repair; minimal repair; worse-than-minimal repair; minimal re-

pair; optimal age replacement.

1 Introduction

In reliability literature, various repair models have been proposed to describe processes of failures and

their subsequent repairs. These models can be vital tools for optimization, de�ning maintenance policies,

and analyzing the performance of various repairable systems. As the repair time of systems in practice is

usually much smaller than the corresponding lifetime, it is often assumed that each failure of the repairable

system is instantaneously repaired such that the failure and repair processes coincide. This has allowed

for the use of a number of well-de�ned point stochastic processes for modelling and as such, will be the

assumption throughout this paper.

Two basic repair types that are commonly used in reliability applications are perfect and minimal repairs.

Perfect repairs restore a system to the 'as good as new' state and can be thought of as an equivalent
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to instantaneously replacing the system with a new one. As such, the corresponding process of repairs

can be modeled by the classical renewal process (see, e.g., Barlow and Proschan [1]). On the other

hand, minimal repairs restore a system to the 'as bad as old' state. A commonly used example of this

is in a multi-component system, where one of the minor components fails, and only this component is

repaired or replaced. This imperfect repair model, proposed by Barlow and Hunter [2], is widely used in

numerous applications. Minimal repair provides a more realistic and mathematically tractable model to

describe repairs in practice. It is well known that the process of instantaneous minimal repairs can be

described by the non-homogeneous Poisson process (NHPP) with rate corresponding to the failure rate of

the underlying lifetime distribution. As the NHPP allows for closed-form analytical results, a number of

minimal repair-based models have been considered in the literature (see, for example, Tadj et al. [3] and

references therein). It is important to note that, in practice, a repair is neither perfect nor minimal, and

thus numerous other (intermediate) imperfect repair models (see, for example, Luo et al. [4] for a recent

overview, as well as Tanwar et al. [5] and Pham and Wang [6]) have been extensively studied as some

kind of natural generalizations to the concept of minimal repair.

In slightly more recent literature, there has been a move to describe other types of repairs. This includes

repairs that are worse-than-minimal, which restore a system to the 'worse than old' state, and, as already

mentioned above, repairs that are better-than-minimal, which implies that the state of the system after

the repair is better than that just before the failure. Worse-than-minimal repairs take into account the

impact that previous failures/repairs have had on the system and, in certain situations, can be a more

realistic assumption than that of minimal repair. One of the simplest and most commonly used examples to

illustrate this type of repair is that of the failure of a single component in a multi-component system. This

single-component failure can increase the load on or cause additional damage to the non-failed components,

increasing the overall failure rate. A number of more speci�c real-world applications can be found in Lee

and Cha [7]. Further, Lee and Cha [7] have shown that worse-than-minimal repairs can be e�ectively

described using the generalized Polya process (GPP), introduced and extensively studied in Cha [8]. Some

other notable contributions to the applications of the GPP to repair modeling can be seen in, for example,

Badía et al. [9] and Cha and Finkelstein [10].

On the other hand, and somewhat dual to the idea of worse-than-minimal repair (see the next section for

a formal justi�cation of this claim), is that of better-than-minimal repair of the considered speci�c type.

This type of repair can occur when, for example, under some reasonable assumptions, a defect is eliminated

from the failed system during the repair operation. This would result in a smaller failure rate than that

before the failure/repair. These defects could be as a result of manufacturing discrepancies, damaged parts

that may have initially gone unnoticed, some design faults, bugs in software, etc. Therefore, this type of

repair can be considered in the framework of reliability growth modeling (see, for example, Finkelstein [11]

and Singpurwalla and Wilson [12] for several models that were developed subsequent to the introduction

of the basic Jelenski-Moranda [13] model for software reliability growth, as well as Al Turk and Alsolami

[14] and references therein). In order to model the process of repairs that are better-than-minimal of the

described type, a new point process called the extended generalized Polya process (EGPP) can be used.

This process was recently suggested and studied in Cha [15].

There have also been a number of recent advances in combining various point processes to describe possible

changes in the pattern of repairs. Cha et al. [16], for example, consider a delayed worse-than-minimal
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repair model, which combines the NHPP with the GPP to model repairs that are minimal up to a certain

event or time, and then become worse-than-minimal. Similarly, Langston et al. [17] de�ne a point process

with �nite memory, which combines the GPP with the NHPP to model repairs that are worse-than-

minimal up to a certain event or time, and then become minimal. On the other hand, Cha and Finkelstein

[18] and Finkelstein and Cha [19] also de�ne a point process combining the NHPP with the GPP/EGPP

in a di�erent way to model repairs that are minimal with some given probability and are worse-than-

minimal/better-than-minimal with the complimentary probability. These are meaningful generalizations

to the well-known Brown-Proschan model [20], which accounts for the randomness in combining minimal

and perfect repair.

In line with these recent advances, our paper goes further and de�nes a new combined (three-stage) repair

process to describe repair operations that begin as better-than-minimal, which then become minimal, and

then �nally become worse-than-minimal. To describe this process, we introduce the EGPP+NHPP+GPP

model, discuss some of its relevant stochastic properties, and, �nally, develop the methodology for ap-

plication to the optimal replacement problem. Our approach is innovative as we are the �rst to propose

and describe the natural long-term repair pattern that has a loose analogy with the well-known bathtub

curve for the failure rate of an item during its entire life cycle. Indeed, the EGPP, as discussed above,

is decreasing the failure rate with each repair (similar to modeling the 'infant mortality' phase), minimal

repairs do not change the failure rate (similar to modeling the 'normal' life phase), whereas the GPP

increases the failure rate with each repair (similar to modeling the degradation phase).

Notably, all stages in this new process have a uniform stochastic description via the Poisson-induced point

processes, which is not straightforward. Therefore, the main contribution of this paper is in proposing this

three-stage process and developing a theoretical framework for its description. In addition to this, and to

illustrate an application of the proposed model, we consider the corresponding optimal age replacement

problem.

The paper is organized as follows. In Section 2, we provide some de�nitions and a brief preliminary

discussion, as well as de�ne the combined repair processes for the two settings. Section 3 is devoted

to deriving the long-run expected cost rates, and an application of the combined repair process to the

optimal age replacement problem. Numerical illustrations are presented in Section 4. Section 5 provides

some concluding remarks.

2 Model Descriptions

2.1 Preliminaries

Point processes can be characterized in a number of di�erent ways, and are most commonly characterized

via the joint distribution of the times between successive events, or the joint distribution of the number of

events in all �nite sets of disjoint intervals. Throughout this paper, however, we will characterize our point

process of interest through the notion of stochastic intensity. This is in line with the characterizations of

the EGPP and the GPP that underlie our process. The stochastic intensity (or the intensity process),

λt, t ≥ 0 for some orderly (without multiple occurrences) point process {N (t) , t ≥ 0} is de�ned as the
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following limit:

λt = lim
∆t→0

P (N (t, t+∆t) = 1 | Ht−)

∆t
= lim

∆t→0

E [N (t, t+∆t) | Ht−]

∆t
,

where N (t, t+∆t) represents the number of events in [t, t+∆t) and Ht− ≡ {N (u) , 0 ≤ u < t} is the

history (internal �ltration) of the process in [0, t), which can be equivalently de�ned in terms of N (t−)

and the sequential arrival times of the events 0 ≤ T1 ≤ T2 ≤ · · · ≤ TN(t−) < t, where Ti is the time from 0

until the arrival of the ith event in [0, t) (see, for example, Finkelstein [11] and Cha and Finkelstein [10]).

For a more detailed discussion of the notion of stochastic intensity, we refer the reader to Aven and Jensen

[21, 22].

It is well known that for the NHPP with rate λ (t), the stochastic intensity is deterministic and reduces

to the rate of the process. That is, for the NHPP, λt = λ (t) , t ≥ 0. The GPP, discussed and extensively

studied in Cha [8], is de�ned as follows.

De�nition 1. Generalized Polya Process

A counting process {N (t) , t ≥ 0} is said to be a generalized Polya process (GPP) with the set of parameters

(λ (t) , α, β), α ≥ 0, β > 0, if

i. N (0) = 0;

ii. λt = (αN (t−) + β)λ (t).

From Cha [8], the GPP can be understood as a generalization of the NHPP, as the GPP with parameter

set (λ (t) , α = 0, β = 1) reduces to the NHPP with rate λ (t). It is also clear from this de�nition that

λ (t) is some baseline rate function for the process, whereas α models the extent of positive dependence

in the corresponding increments. That is, for α > 0, the probability of occurrence of an event in the

next in�nitesimal time interval increases with the number of events that have occurred in the previous

time interval. Lee and Cha [7] have shown that the general three parameter de�nition of the GPP given

in De�nition 1 can be re-parameterized, without loss of generality, using two parameters by considering

β = 1. It obviously follows that the stochastic intensity corresponding to this re-parameterization is given

by

λt = (αN (t−) + 1)λ (t) .

Throughout this paper, we will use the re-parameterization of this process as it su�ciently describes

repairs that are worse-than-minimal [7]. For ease of notation, we will refer to the GPP with parameter set

(λ (t) , α). In order to de�ne our point process of interest probabilistically, we will require the following

supplementary results for the GPP:

Lemma 1. For the GPP with set of parameters (λ (t) , α) , α > 0, the following properties hold:

i. The distribution of N (t) is given by

P (N (t) = n) =
Γ
(
1
α + n

)
Γ
(
1
α

)
n!

(1− exp {−αΛ (t)})n exp {−Λ (t)} , n = 0, 1, 2, . . . (1)

where Λ (t) ≡
∫ t
0 λ (u) du.
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ii. E [N (t)] = 1
α (exp {αΛ (t)} − 1).

The proofs for these properties, as well as an extensive discussion of other properties for the GPP with

parameter set (λ (t) , α, β), α ≥ 0, β > 0, can be found in Cha [8].

The EGPP, recently introduced and stochastically described by Cha [15], is de�ned as follows.

De�nition 2. Extended Generalized Polya Process

A counting process {N (t) , t ≥ 0} is said to be an extended generalized Polya process (EGPP) with the

set of parameters (λ (t) , l0), where l0 is a positive integer, if

i. N (0) = 0;

ii. λt = (l0 −N (t−))λ (t),

where, as previously, λ (t) is some baseline rate function for the process, but now there is a kind of negative

dependence in the corresponding increments. That is, for N (t−) < l0, the probability of occurrence of

an event in the next in�nitesimal time interval decreases with the number of events that have occurred in

the previous time interval. On the other hand, once N (t−) = l0, no additional events can occur as the

process terminates in this case. This process, therefore, can describe repairs that are better-than-minimal

(see, for example, Finkelstein and Cha [19] and our discussion in the Introduction above). In order to

de�ne our point process of interest probabilistically, we will require the following supplementary results

for the EGPP:

Lemma 2. For the EGPP with set of parameters (λ (t) , l0) ,where l0 is a positive integer, the following

properties hold:

i. The distribution of N (t) is given by

P (N (t) = n) =

(
l0

n

)
(1− exp {−Λ (t)})n (exp {−Λ (t)})l0−n , n = 0, 1, 2, . . . , l0 (2)

where Λ (t) ≡
∫ t
0 λ (u) du.

ii. E [N (t)] = l0 (1− exp {−Λ (t)}).

The proofs for these properties, as well as an extensive discussion of other properties for the EGPP, can

be found in Cha [15].

In addition to the notation and de�nitions above, note that throughout this paper, we will de�ne the

cumulative baseline rate function in the interval (a, b] as Λ (b, a) =
∫ b
a λ (u) du =

∫ b
0 λ (u) du−

∫ a
0 λ (u) du.

In the sections to follow, two models to describe the new combined repair process will be de�ned.

2.2 Model 1: Repair type changes after some time

The repair is better-than-minimal (EGPP) for t ≤ s, the repair is minimal (NHPP) for s < t ≤ u, and the

repair is worse-than-minimal (GPP) for t > u. The described combined repair process can be de�ned as

follows.
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De�nition 3. Combined Repair Process I

i. N (0) = 0;

ii. λt = (l0 −N (t−))λ (t) , t ≤ s;

iii. λt = (l0 −N (s))λ (t) , s < t ≤ u;

iv. λt = (α (N (t−)−N (u)) + 1) (l0 −N (s))λ (t) , t > u.

In some sense, we can think of the initial stage of this process when t ≤ s as some kind of testing period

for the system where the majority of major defects are eliminated. This would usually imply (but not

necessary) that s is relatively small in comparison to the remaining operational period of the system. As

a practical example of this in application, we can think of some type of software system. Before a software

is released to the market, it will undergo some type of initial run or early software testing. During this

period, majority of the major bugs in the system will be addressed/eliminated. This testing period will be

relatively short in comparison to the period for which the software is expected to operate. Also, in reality,

it is fairly uncommon to achieve a completely bug-free software, meaning that the number of major bugs

eliminated by the release date is unlikely to reach the threshold l0. Obviously, there can be other examples

for this set up as well.

We will now characterize the process probabilistically. Therefore, let us derive P (N (t) = n).

1. For t ≤ s, the process is the EGPP. Obviously, in this case P (N (t) = n) is given by (2).

2. For s < t ≤ u, the process is the NHPP. Observe that

P (N (t) = n) =

n∑
j=0

P (N (t) = n | N (s) = j)P (N (s) = j)

=

n∑
j=0

P (N (t)−N (s) = n− j | N (s) = j)P (N (s) = j) ,

for n = 0, 1, 2, . . . ,∞. Although it is possible to observe n > l0 failures/repairs in the interval (s, u]

note that P (N (t) = n) reduces to

P (N (t) = n) =

l0∑
j=0

P (N (t)−N (s) = n− j | N (s) = j)P (N (s) = j)

for all n > l0. This holds as P (N (s) = j) = 0 for all j > l0.

Now, in the interval (s, u], the process is the NHPP with intensity function λt = (l0 −N (s))λ (t).

Therefore,

P (N (t)−N (s) = n− j | N (s) = j) =
(Wj (t, s))

n−j

(n− j)!
exp {−Wj (t, s)} ,
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where Wj (t, s) = Wj (t)−Wj (s), where Wj (t) =
∫ t
0 (l0 − j)λ (u) du = (l0 − j) Λ (t).

On the other hand, P (N (s) = j) follows from (2). Therefore,

P (N (t) = n) =
n∑

j=0

P (N (t)−N (s) = n− j | N (s) = j)P (N (s) = j)

=

n∑
j=0

(Wj (t, s))
n−j

(n− j)!
exp {−Wj (t, s)}

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j .

3. For t > u, the process is the GPP. Observe that now

P (N (t) = n) =

n∑
k=0

k∑
j=0

P (N (t) = n | N (u) = k,N (s) = j)P (N (u) = k | N (s) = j)P (N (s) = j) ,

for n = 0, 1, 2, . . . ,∞. Once again, although it is possible to observe n > l0 failures/repairs in the

interval (u,∞), note that P (N (t) = n) reduces to

P (N (t) = n) =
n∑

k=0

min{k,l0}∑
j=0

P (N (t) = n | N (u) = k,N (s) = j)P (N (u) = k | N (s) = j)P (N (s) = j)

for all n > l0. This holds as P (N (s) = j) = 0 for all j > l0.

Now, consider,

P (N (t) = n | N (u) = k,N (s) = j) = P (N (t)−N (u) = n− k | N (u) = k,N (s) = j) .

Now, when t > u, it follows from De�nition 3 that the process {Mu (v) , v ≥ 0}, where Mu (v) =

N (v + u) − N (u) is the GPP with parameter set (w (u+ v) , α), where w (t) = (l0 −N (s))λ (t),

and is independent of N (u). Therefore, N (t)−N (u) = n−k | N (u) = k,N (s) = j is stochastically

equivalent to Mu (t− u), t > u, regardless of k. Thus,

P (N (t) = n | N (u) = k,N (s) = j) = P (N (t)−N (u) = n− k | N (u) = k,N (s) = j)

= P (N (t)−N (u) = n− k | N (s) = j)

=
Γ
(
1
α + n− k

)
Γ
(
1
α

)
(n− k)!

exp {−Wj (t, u)} (1− exp {−αWj (t, u)})n−k ,

where Wj (t, u) = (l0 − j) Λ (t, u). While, as from above,

P (N (u) = k | N (s) = j) = P (N (u)−N (s) = k − j | N (s) = j)

=
(Wj (u, s))

k−j

(k − j)!
exp {−Wj (u, s)} ,
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where Wj (u, s) = (l0 − j) Λ (u, s), and P (N (s) = j) follows from (2). Therefore,

P (N (t) = n)

=
n∑

k=0

k∑
j=0

[
Γ
(
1
α + n− k

)
Γ
(
1
α

)
(n− k)!

exp {−Wj (t, u)} (1− exp {−αWj (t, u)})n−k (Wj (u, s))
k−j

(k − j)!
exp {−Wj (u, s)}

×

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j

]
.

Given the above, we can de�ne the mean number of repairs in [0, t).

Theorem 1. The mean number of repairs in [0, t) is given by

E [N (t)] = l0 (1− exp {−Λ (t)}) (3)

for t ≤ s,

E [N (t)] = l0Λ (t, s) exp {−Λ (s)}+ l0 (1− exp {−Λ (s)}) (4)

for s < t ≤ u, and

E [N (t)] =

l0∑
j=0

1

α
(exp {α (l0 − j) Λ (t, u)} − 1)

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j

+ l0Λ (u, s) exp {−Λ (s)}+ l0 (1− exp {−Λ (s)}) (5)

for t > u.

Proof. The proof for t ≤ s is straightforward as it follows from E [N (t)] when {N (t) , t ≥ 0} is the EGPP

with parameter set (λ (t) , l0), where l0 is a positive integer.

For s < t ≤ u, observe that

E [N (t)] = E [E [N (t) | N (s)]] .

Consider,

E [N (t) | N (s) = j] = E [N (t)−N (s) +N (s) | N (s) = j]

= E [N (t)−N (s) | N (s) = j] + E [N (s) | N (s) = j]

= Wj (t, s) + j

= (l0 − j) Λ (t, s) + j.

Therefore,

E [N (t)] =

l0∑
j=0

[(l0 − j) Λ (t, s) + j]P (N (s) = j) .

Finally, for t > u, observe that

E [N (t)] = E [E [N (t) | N (s)]] .
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Consider,

E [N (t) | N (s) = j] = E [N (t)−N (u) +N (u)−N (s) +N (s) | N (s) = j]

= E [N (t)−N (u) | N (s) = j] + E [N (u)−N (s) | N (s) = j] + E [N (s) | N (s) = j]

=
1

α
(exp {αWj (t, u)} − 1) +Wj (u, s) + j

=
1

α
(exp {αWj (t, u)} − 1) + (l0 − j) Λ (u, s) + j.

Therefore,

E [N (t)] =

l0∑
j=0

[
1

α
(exp {αWj (t, u)} − 1) + (l0 − j) Λ (u, s) + j

]
P (N (s) = j) .

Alternate proofs for E [N (t)] when s < t ≤ u and t > u can be found in Appendix I.

2.3 Model 2: Repair type changes after some number of events

From the start of operation until the kth repair, the repairs are better-than-minimal (EGPP). After the

kth repair and until the mth repair, where m ≥ k, the repairs are minimal (NHPP). Just after the mth

repair, the repairs start to be worse-than-minimal (GPP). The described combined repair process can be

de�ned as follows.

De�nition 4. Combined Repair Process II

i. N (0) = 0;

ii. λt = (l0 −N (t−))λ (t) , N (t−) = 0, 1, . . . k;

iii. λt = (l0 − k)λ (t) , N (t−) = k + 1, k + 2, . . . ,m;

iv. λt = (α (N (t−)−m) + 1) (l0 − k)λ (t) , N (t−) = m+ 1,m+ 2, . . . .

As a practical example of this model in application, we can think of a mechanical system containing

multiple components, where l0 of the components have some major defects. A technician may only be

able to repair the major defects in k of these components due to his technical skills, availability of spare

parts, the ability to access the components, etc. Therefore, although the system is operational, there are

still l0 − k components with major defects.

We will now characterize the process probabilistically. Therefore, let us derive P (N (t) = n).

1. First let n = 0, 1, . . . , k.

Let sn denote the arrival time of the nth failure/repair. Therefore, when we consider the event

{N (t) = n} for n = 1, 2, . . . , k−1, we have that sn ≤ t < sn+1 ≤ sk. That is, the time instant t would

be before the change point sk and the process is the EGPP. Obviously, in this case P (N (t) = n) is
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given by (2) for n = 1, 2, . . . , k − 1. Now, when n = k, for the event {N (t) = k} the time instant

t satis�es sk ≤ t < sk+1. In the interval [sk, t), the process is already the NHPP. However, from

property (iii) in De�nition 4, it follows that the stochastic intensity is still given by λt = (l0 − k)λ (t)

in the interval [sk, t), which also results in

P (N (t) = k) =

(
l0

k

)
(1− exp {−Λ (t)})k (exp {−Λ (t)})l0−k ,

as from (2).

2. Now consider n = k + 1, k + 2, . . . ,m.

When we consider the event {N (t) = n} for n = k + 1, k + 2, . . . ,m − 1, we have that sk < sn ≤
t < sn+1 ≤ sm, where once again sn is the time of the nth failure/repair. Thus the time instant t is

after the �rst change point sk but before the next change point sm, and the process between these

change points is the NHPP. Observe then that

P (N (t) = n) =

∫ t

0
P (N (t) = n | Sk = u) fSk

(u) du,

where fSk
(u) is the pdf of Sk. Consider

P (N (t) = n | Sk = u) = P (N (t) = n | N (s) < k for 0 ≤ s < u,N (u) = k)

= P (N (t)−N (u) = n− k | N (s) < k for 0 ≤ s < u,N (u) = k)

= P (N (t)−N (u) = n− k) .

Note that the last equality holds due to the independent increment property of the NHPP. That is

in the interval [u, t), the process is the NHPP with rate (l0 − k)λ (t). It then follows that

P (N (t) = n | Sk = u) = P (N (t)−N (u) = n− k)

=
(W (t, u))n−k

(n− k)!
exp {−W (t, u)} ,

where W (t, u) = (l0 − k) Λ (t, u). On the other hand,

fSk
(u)∆u ≃ P (u ≤ Sk ≤ u+∆u)

= P (u ≤ Sk ≤ u+∆u,N (u−) = k − 1)

= P (u ≤ Sk ≤ u+∆u | N (u−) = k − 1)P (N (u−) = k − 1)

= (l0 − k + 1)λ (u)∆u

(
l0

k − 1

)
(1− exp {−Λ (u)})k−1 (exp {−Λ (u)})l0−k+1 .

Therefore,

fSk
(u) =

l0!

(k − 1)! (l0 − k)!
λ (u) exp {−l0Λ (u)} (exp {Λ (u)} − 1)k−1 .

10



Note that the pdf of Sk could also be derived using the fact that

fSk
(t) = −

k−1∑
j=0

d

dt
P (N (t) = j) .

This alternative proof is deferred to Appendix II.

Finally,

P (N (t) = n) =

∫ t

0

P (N (t) = n | Sk = u) fSk
(u) du

=

∫ t

0

(W (t, u))
n−k

(n− k)!
exp {−W (t, u)} l0!

(k − 1)! (l0 − k)!
λ (u) exp {−l0Λ (u)} (exp {Λ (u)} − 1)

k−1
du,

where W (t, u) = (l0 − k) Λ (t, u).

Now, when n = m, for the event {N (t) = m} the time instant of interest t satis�es sm ≤ t < sm+1.

Thus, in the interval [sm, t), the process is already the GPP. However, due to property (iv) of

De�nition 4, the stochastic intensity in the interval [sm, t) is λt = (l0 − k)λ (t) which also results in

P (N (t) = m) =

∫ t

0

(W (t, u))
m−k

(m− k)!
exp {−W (t, u)} l0!

(k − 1)! (l0 − k)!
λ (u) exp {−l0Λ (u)} (exp {Λ (u)} − 1)

k−1
du,

where W (t, u) = (l0 − k) Λ (t, u).

3. Finally, consider n = m+ 1,m+ 2, . . .

Once again letting sn denote the arrival time of the nth failure/repair, we have that sm < sn ≤ t

when we consider the event {N (t) = n} for n = m+ 1,m+ 2, . . . . Observe that,

P (N (t) = n) =

∫ t

0

∫ s

0
P (N (t) = n | Sm = s, Sk = u) fSm,Sk

(s, u) duds,

where fSm,Sk
(s, u) is the joint pdf of (Sm, Sk). Consider

P (N (t) = n | Sm = s, Sk = u) = P (N (t) = n | N (s) = m, k ≤ N (c) < m for u ≤ c < s, Sk = u)

= P (N (t)−N (s) = n−m | N (s) = m, k ≤ N (c) < m for u ≤ c < s, Sk = u) .

Note that, given N (s) = m, k ≤ N (c) < m for u ≤ c < s, Sk = u, {N (c+ s)−N (s) , c ≥ 0} is

the GPP with parameter set (w (s+ c) , α), where w (t) = (l0 − k)λ (t). Therefore, from Cha [8] we

have that

P (N (t)−N (s) = n−m | N (s) = m, k ≤ N (c) < m for u ≤ c < s, Sk = u)

=
Γ
(
1
α + n−m

)
Γ
(
1
α

)
(n−m)!

exp {−W (t, s)} (1− exp {−αW (t, s)})n−m ,

where W (t, s) = (l0 − k) Λ (t, s). Now, consider that

fSm,Sk
(s, u) = lim

∆s→0
lim

∆u→0

1

∆s∆u
P (s ≤ Sm ≤ s+∆s, u ≤ Sk ≤ u+∆u) ,

11



where,

P (s ≤ Sm ≤ s+∆s, u ≤ Sk ≤ u+∆u)

=P (s ≤ Sm ≤ s+∆s | u ≤ Sk ≤ u+∆u)P (u ≤ Sk ≤ u+∆u) .

As from above,

P (u ≤ Sk ≤ u+∆u) =
l0!

(k − 1)! (l0 − k)!
λ (u)∆u (1− exp {−Λ (u)})k−1 (exp {−Λ (u)})l0−k+1 .

On the other hand,

P (s ≤ Sm ≤ s+∆s | u ≤ Sk ≤ u+∆u)

=P (s ≤ Sm ≤ s+∆s,N (s−) = m− 1 | N (u−) = k − 1, N (u+∆u) = k)

=P (s ≤ Sm ≤ s+∆s,N (s−)−N (u+∆u) = m− k − 1 | N (u−) = k − 1, N (u+∆u) = k)

=P (s ≤ Sm ≤ s+∆s | N (s−)−N (u+∆u) = m− k − 1, N (u−) = k − 1, N (u+∆u) = k)

× P (N (s−)−N (u+∆u) = m− k − 1 | N (u−) = k − 1, N (u+∆u) = k)

= (l0 − k)λ (s)∆s
(W (s, u+∆u))m−k−1

(m− k − 1)!
exp {−W (s, u+∆u)} .

Therefore,

fSm,Sk
(s, u) =

l0!

(k − 1)! (l0 − k − 1)! (m− k − 1)!
λ (u)λ (s) (W (s, u))m−k−1 exp {−W (s, u)}

× exp {−l0Λ (u)} (exp {Λ (u)} − 1)k−1 ,

where W (s, u) = (l0 − k) Λ (s, u).

Note that the joint pdf of (Sm, Sk) could also be derived using the fact that

fSm,Sk
(t, u) = fSm|Sk

(t | u) fSk
(u)

where,

fSm|Sk
(t | u) = −

m−1∑
j=k

d

dt
P (N (t) = j | Sk = u) .

This alternative proof is deferred to Appendix III.
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Finally,

P (N (t) = n)

=

∫ t

0

∫ s

0
P (N (t) = n | Sm = s, Sk = u) fSm,Sk

(s, u) duds

=

∫ t

0

∫ s

0

[
Γ
(
1
α + n−m

)
Γ
(
1
α

)
(n−m)!

exp {−W (t, s)} (1− exp {−αW (t, s)})n−m l0!

(k − 1)! (l0 − k − 1)! (m− k − 1)!

×λ (u)λ (s) (W (s, u))m−k−1 exp {−W (s, u)} exp {−l0Λ (u)} (exp {Λ (u)} − 1)k−1
]
duds,

where W (s, u) = (l0 − k) Λ (s, u).

Given the above, we can de�ne the mean number of repairs in [0, t).

Theorem 2. The mean number of repairs in [0, t) is given by

E [N (t)] =
k∑

n=0

n

(
l0

n

)
(1− exp {−Λ (t)})n (exp {−Λ (t)})l0−n

+
m∑

n=k+1

n

∫ t

0

(W (t, u))n−k

(n− k)!
exp {−W (t, u)} l0!

(k − 1)! (l0 − k)!
λ (u) exp {−l0Λ (u)} (exp {Λ (u)} − 1)k−1 du

+

∫ t

0

∫ s

0

[(
1

α
(exp {αW (t, s)} − 1) +m (1− exp {W (t, s)})

)
l0!

(k − 1)! (l0 − k − 1)! (m− k − 1)!

×λ (u)λ (s) (W (s, u))m−k−1 exp {−W (s, u)} exp {−l0Λ (u)} (exp {Λ (u)} − 1)k−1
]
duds.

For brevity, the proof of this has been deferred to Appendix IV.

3 Optimal age replacement policies

In what follows we will investigate the application of the new combined repair process to the optimal age

replacement problem. Therefore, let {N (t) , t ≥ 0} be the stochastic repair process with baseline function

(underlying failure rate of the system) λ (t), α > 0, and l0 as some positive integer.

Assume that the system is replaced when it reaches age T (periodic replacement policy). That is, after each

replacement, a new cycle begins and so on. Between these successive replacements, the repairs/failures

occur in accordance with one of the described models above.

3.1 Model 1

Recall that for Model 1, the repair is better-than-minimal (EGPP) for t ≤ s, the repair is minimal (NHPP)

for s < t ≤ u, and then the repair is worse-than-minimal (GPP) for t > u.

Let cb, cm, cw, and cr be the cost of better-than-minimal repair, minimal repair, worse-than-minimal

repair, and replacement, respectively, such that cw ≤ cm < cb < cr. The corresponding long-run expected

13



cost rate, C (T ), for this periodic setting is given by

C (T ) =
cbE [N (T )] + cr

T
,

for T ≤ s, where E [N (T )] is given by (3),

C (T ) =
cbE [N (s)] + cm (E [N (T )]− E [N (s)]) + cr

T
,

for s < T ≤ u, where E [N (T )] is now given by (4), and

C (T ) =
cbE [N (s)] + cm (E [N (u)]− E [N (s)]) + cw (E [N (T )]− E [N (u)]) + cr

T
, (6)

for T > u, where E [N (T )] is now given by (5).

Assume that a system's lifetime is described by the baseline failure rate λ (t) before the �rst failure/repair.

Methodologically, it is important to consider the cases when this baseline failure rate is either constant

or is increasing such that limt→∞ λ (t) = ∞. The latter describes the natural aging (or degradation) of a

system with time (see Nakagawa [23]) and is a common assumption in optimal age replacement problems

in reliability literature. Under both of these baseline failure rates it can be shown that

lim
T→0

C (T ) = ∞, lim
T→∞

C (T ) = ∞,

and C (T ) is decreasing in the vicinity of T = 0. Therefore, there exists an optimal replacement time T ∗

that satis�es

C (T ∗) = min
0<T<∞

C (T ) .

An explicit expression to determine the optimal replacement time T ∗, found by di�erentiating (6) and

equating to 0, is too cumbersome to provide an analytical solution. Therefore, in the next section, for the

given values of parameters, we obtain it numerically by plotting the corresponding expected long-run cost

rate function for the considered examples. This is done using R.

3.2 Model 2

Recall that for Model 2, from the start of operation until the kth repair, the repairs are better-than-minimal

(EGPP). Just after repair k and until repair m, where m ≥ k, the repairs are minimal (NHPP). Just after

repair m, the repairs are worse-than-minimal (GPP). Below, we only brie�y describe the calculations for

the long-run expected cost rate. The procedure for analyzing an optimal solution is similar to that for

Model 1.

Once again, let cb, cm, cw, and cr be the cost of better-than-minimal repair, minimal repair, worse-than-

minimal repair, and replacement, respectively, such that cw ≤ cm < cb < cr. The corresponding long-run
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expected cost rate, C (T ), for this periodic setting is given by

C (T ) =
1

T

cb k∑
j=0

jP (N (T ) = j) + cb

∞∑
j=k+1

kP (N (T ) = j) + cm

m∑
j=k+1

(j − k)P (N (T ) = j)

+cm

∞∑
j=m+1

mP (N (T ) = j) + cw

∞∑
j=m+1

(j −m)P (N (T ) = j) + cr

 .

4 Numerical illustrations and discussion

Here, we will only present numerical examples for the optimal replacement results under Model 1. The

results and conclusions for Model 2 follow similarly. For demonstration purposes, we will consider the

constant baseline failure rate, λ (t) = λ, and an increasing baseline failure rate, λ (t) = λt + 1. Other

increasing baseline failure rates were considered. However, these numerical illustrations demonstrated

similar properties for the considered optimal model and have been omitted for brevity. Further, the latter

baseline failure rate is in line with the discussions in Section 3 and the failure rates used in similar reliability

literature (see, for example, Badía et al. [9], Cha et al. [16], Langston et al. [17], Cha and Finkelstein

[18], to name a few recent considerations).

Let cb = 20, cm = 15, and cw = 10, and assume that the time at which the repair type changes from

minimal to worse-than-minimal is �xed at u = 4. The corresponding long-run expected cost rate for

di�erent values of λ under the two baseline failure rates for l0 = 10, s = 1, α = 1, and cr = 35 are given

in Figure 1. We also conducted numerical experiments for other parameter values, which show a similar

general 'picture'. It is clear from this �gure, and all subsequent �gures, that an optimal replacement

time T ∗ exists. Further, for �xed values of λ the optimal replacement time T ∗ is smaller in the case

of the increasing baseline failure rate compared to the constant baseline failure rate. For example, in

Figure 1 when λ = 1, the optimal replacement time T ∗ is 4.17 and 2.89 for λ (t) = λ and λ (t) = λt + 1,

respectively. This follows rather intuitively (see, for example, Finkelstein et al. [24]) as increasing the

baseline failure rate would increase the amount of overall aging (or deterioration) of the system over time.

This would lead to more frequent system failures, and as such, more frequent repair actions would need

to occur. Therefore, to reduce the long-run expected cost rate, replacement of the system would need to

be implemented sooner. From Figure 1 speci�cally, it can be also seen that as λ increases, the optimal

replacement time T ∗ decreases. For example, in the case of the increasing baseline failure rate, T ∗ is 3.40

and 2.89 for λ = 0.5 and λ = 1, respectively. This follows a similar reasoning: increasing λ results in more

failures, and as such, replacement should be carried out sooner.
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Figure 1: The long-run expected cost rates for l0 = 10, s = 1, u = 4, α = 1, cb = 20, cm = 15, cw = 10,
cr = 35, and varying λ for λ (t) = λ (left) and λ (t) = λt+ 1 (right).

The corresponding long-run expected cost rate for di�erent values of α under the two baseline failure

rates for l0 = 10, s = 1, λ = 0.1, and cr = 35 are given in Figure 2. It follows from De�nition 3 that

changes in α would only impact the worse-than-minimal (GPP) repair stage of the process. This is clearly

illustrated in the �gure where di�erences in the long-run expected cost rate only occur after T = u = 4.

Further, in this stage of the process, we note that for increasing α, the optimal replacement time T ∗ is

decreasing. For example, in the case of a constant baseline failure rate, T ∗ is 10.67 and 4.96 for α = 0.1

and α = 1, respectively. This follows from the foregoing discussion and is in line with the reasoning

for increasing λ. That is, if previous failures (and their subsequent repairs) have more in�uence on the

system's susceptibility to future failure, this would suggest that replacement of the system should happen

sooner.
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Figure 2: The long-run expected cost rates for l0 = 10, s = 1, u = 4, λ = 0.1, cb = 20, cm = 15, cw = 10,
cr = 35, and varying α for λ (t) = λ (left) and λ (t) = λt+ 1 (right).

The corresponding long-run expected cost rate for di�erent values of cr under the two baseline failure rates

for l0 = 10, s = 1, λ = 0.1, and α = 1 are given in Figure 3. From this �gure it can be noted that as the

cost of replacement cr increases, so does the optimal replacement time T ∗. For example, in the case of the

increasing baseline failure rate, T ∗ is 4.10 and 4.12 for cr = 35 and cr = 100, respectively. Although the

change is not signi�cant for the given values of other parameters, it illustrates a general, intuitively clear

result: the higher replacement cost delays replacement.

Figure 3: The long-run expected cost rates for l0 = 10, s = 1, u = 4, λ = 0.1, α = 1, cb = 20, cm = 15,
cw = 10, and varying cr for λ (t) = λ (left) and λ (t) = λt+ 1 (right).

The corresponding long-run expected cost rate for di�erent values of s under the two baseline failure rates
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for l0 = 10, λ = 0.1, α = 1, and cr = 35 are given in Figure 4. From this �gure, we see that as s is increasing,

the optimal replacement time T ∗ is also increasing. For example, in the case of a constant baseline failure

rate, T ∗ is 5.15 and 5.38 for s = 2 and s = 3, respectively. Recall here that s is the time at which the

type of repair changes from better-than-minimal repair to minimal repair. Therefore, by increasing s,

the expected number of better-than-minimal repairs is also increasing (for example, E [N (2)] = 1.81 and

E [N (3)] = 2.59 for the constant baseline failure rate case). As per De�nition 2, if a system undergoes a

higher number of better-than-minimal repairs (obviously still under the constraint that N (s) < l0), this

would decrease the system's susceptibility to future failure and would suggest that replacement of the

system should be postponed to a later time.

Figure 4: The long-run expected cost rates for l0 = 10, u = 4, λ = 0.1, α = 1, cb = 20, cm = 15, cw = 10,
cr = 35, and varying s for λ (t) = λ (left) and λ (t) = λt+ 1 (right).

The corresponding long-run expected cost rate for di�erent values of l0 under the two baseline failure rates

for s = 1, λ = 0.1, α = 1, and cr = 35 are given in Figure 5. It is clear from this �gure that the optimal

replacement time T ∗ is decreasing for increasing l0. For example, in the case of the constant baseline

failure rate, T ∗ is 6.31 and 4.40 for l0 = 5 and l0 = 20, respectively. If the number of major defects/bugs

in a system is increased, a smaller proportion of these will be repaired by the �xed time s. Therefore,

there would be a larger number of remaining major defects in the system. As evident from De�nition 3,

this would contribute to more frequent failures, and therefore, replacement should be conducted sooner.
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Figure 5: The long-run expected cost rates for s = 1, u = 4, λ = 0.1, α = 1, cb = 20, cm = 15, cw = 10,
cr = 35, and varying l0 for λ (t) = λ (left) and λ (t) = λt+ 1 (right).

5 Conclusions

In recent reliability literature, a number of combined point processes have been introduced to de�ne and

describe various repair models. In line with this, we have de�ned a new combined process using the

extended generalized Polya process (EGPP), non-homogeneous Poisson process (NHPP), and generalized

Polya process (GPP) to describe repairs that begin as better-than-minimal, then become minimal, before

�nally becoming worse-than-minimal. This, in a way, resembles the bathtub curve for the failure rate of

some items when we move from 'infant mortality' to the 'normal' operation stage and, �nally, to the stage

of degradation.

Several useful properties have been derived for this combined repair process under two settings, namely, re-

pair type changes after a speci�ed time and repair type changes after a speci�ed number of repairs/failures.

As such, the corresponding optimal replacement policy was de�ned under the two settings, and the exis-

tence of an optimal solution was discussed. Various numerical illustrations were provided to support our

�ndings, and a sensitivity analysis was conducted for the main parameters of the considered model.

As further research, the change points discussed under the two settings could be considered as random

variables. Naturally, appropriate distributions would need to be assumed in this case, and the stochastic

properties would need to be carefully de�ned in the context of this more complex model. Also, the setting

described here could be regularized in some way.
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Appendix I

Alternative derivations for E [N (t)] for Model 1:

For s < t ≤ u,

E [N (t)] =
∞∑
n=0

n
n∑

j=0

(Wj (t, s))
n−j

(n− j)!
exp {−Wj (t, s)}

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j

=

l0∑
j=0

∞∑
n=j

n
(Wj (t, s))

n−j

(n− j)!
exp {−Wj (t, s)}

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j

=

l0∑
j=0

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j

∞∑
n=j

n
(Wj (t, s))

n−j

(n− j)!
exp {−Wj (t, s)}

=

l0∑
j=0

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j

∞∑
n=0

(n+ j)
(Wj (t, s))

n

n!
exp {−Wj (t, s)}

=

l0∑
j=0

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j (Wj (t, s) + j)

=

l0∑
j=0

(l0 − j) Λ (t, s)

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j + l0 (1− exp {−Λ (s)})

= l0Λ (t, s)− l0Λ (t, s) (1− exp {−Λ (s)}) + l0 (1− exp {−Λ (s)})

= l0Λ (t, s) exp {−Λ (s)}+ l0 (1− exp {−Λ (s)}) .
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For t > u,

E [N (t)] =

∞∑
n=0

n

n∑
k=0

k∑
j=0

[
Γ
(

1
α
+ n− k

)
Γ
(

1
α

)
(n− k)!

exp {−Wj (t, u)} (1− exp {−αWj (t, u)})n−k (Wj (u, s))
k−j

(k − j)!
exp {−Wj (u, s)}

×

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j

]

=

l0∑
j=0

∞∑
k=j

∞∑
n=k

[
n
Γ
(

1
α
+ n− k

)
Γ
(

1
α

)
(n− k)!

exp {−Wj (t, u)} (1− exp {−αWj (t, u)})n−k (Wj (u, s))
k−j

(k − j)!
exp {−Wj (u, s)}

×

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j

]

=

l0∑
j=0

∞∑
k=j

[
(Wj (u, s))

k−j

(k − j)!
exp {−Wj (u, s)}

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j

×
∞∑

n=k

n
Γ
(

1
α
+ n− k

)
Γ
(

1
α

)
(n− k)!

exp {−Wj (t, u)} (1− exp {−αWj (t, u)})n−k

]

=

l0∑
j=0

∞∑
k=j

[
(Wj (u, s))

k−j

(k − j)!
exp {−Wj (u, s)}

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j

×
∞∑

n=0

(n+ k)
Γ
(

1
α
+ n

)
Γ
(

1
α

)
n!

exp {−Wj (t, u)} (1− exp {−αWj (t, u)})n
]

=

l0∑
j=0

∞∑
k=j

(Wj (u, s))
k−j

(k − j)!
exp {−Wj (u, s)}

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j

(
1

α
(exp {αWj (t, u)} − 1) + k

)

=

l0∑
j=0

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j

∞∑
k=j

(Wj (u, s))
k−j

(k − j)!
exp {−Wj (u, s)}

(
1

α
(exp {αWj (t, u)} − 1) + k

)

=

l0∑
j=0

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j

∞∑
k=0

(Wj (u, s))
k

k!
exp {−Wj (u, s)}

(
1

α
(exp {αWj (t, u)} − 1) + k + j

)

=

l0∑
j=0

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j

(
1

α
(exp {αWj (t, u)} − 1) +Wj (u, s) + j

)

=

l0∑
j=0

1

α
(exp {α (l0 − j) Λ (t, u)} − 1)

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j

+

l0∑
j=0

(l0 − j) Λ (u, s)

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j + l0 (1− exp {−Λ (s)})

=

l0∑
j=0

1

α
(exp {α (l0 − j) Λ (t, u)} − 1)

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j

+ l0Λ (u, s)− l0Λ (u, s) (1− exp {−Λ (s)}) + l0 (1− exp {−Λ (s)})

=

l0∑
j=0

1

α
(exp {α (l0 − j) Λ (t, u)} − 1)

(
l0

j

)
(1− exp {−Λ (s)})j (exp {−Λ (s)})l0−j

+ l0Λ (u, s) exp {−Λ (s)}+ l0 (1− exp {−Λ (s)}) .

Appendix II

Alternative derivation for the pdf of Sk:
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The pdf of Sk can be derived from �rst principals using the fact that

fSk
(t) = −

k−1∑
j=0

d

dt
P (N (t) = j) ,

where
d

dt
P (N (t) = 0) = −l0λ (t) exp {−l0Λ (t)},

d

dt
P (N (t) = 1) = −l0λ (t) exp {−l0Λ (t)} [(l0 − 1) (exp {Λ (t)} − 1)− 1],

d

dt
P (N (t) = 2) = −l0λ (t) exp {−l0Λ (t)}

[
1
2!
(l0 − 1) (l0 − 2) (exp {Λ (t)} − 1)2 − (l0 − 1) (exp {Λ (t)} − 1)

]
,

d

dt
P (N (t) = 3) = −l0λ (t) exp {−l0Λ (t)}

[
1
3!
(l0 − 1) (l0 − 2) (l0 − 3) (exp {Λ (t)} − 1)3 − 1

2!
(l0 − 1) (l0 − 2) (exp {Λ (t)} − 1)2

]
,

...

such that
d

dt
P (N (t) = 0) + d

dt
P (N (t) = 1) = −l0λ (t) exp {−l0Λ (t)} [(l0 − 1) (exp {Λ (t)} − 1)],

d

dt
P (N (t) = 0) + d

dt
P (N (t) = 1) + d

dt
P (N (t) = 2) = −l0λ (t) exp {−l0Λ (t)}

[
1
2!
(l0 − 1) (l0 − 2) (exp {Λ (t)} − 1)2

]
,

...∑k−1
j=0

d

dt
P (N (t) = j) = −l0λ (t) exp {−l0Λ (t)}

[
1

(k−1)!
(l0 − 1) (l0 − 2) . . . (l0 − k + 1) (exp {Λ (t)} − 1)k−1

]
.

Therefore,

fSk
(t) = −

k−1∑
j=0

d

dt
P (N (t) = j)

=
l0!

(k − 1)! (l0 − k)!
λ (t) exp {−l0Λ (t)} (exp {Λ (t)} − 1)k−1 .

Appendix III

Alternative derivation for the joint pdf of (Sm, Sk):

The joint pdf of (Sm, Sk) can be derived from �rst principals using the fact that

fSm,Sk
(t, u) = fSm|Sk

(t | u) fSk
(u)

where,

fSm|Sk
(t | u) = −

m−1∑
j=k

d

dt
P (N (t) = j | Sk = u) .

Now,
d

dt
P (N (t) = k | Sk = u) = − (l0 − k)λ (t) exp (−W (t, u)),

d

dt
P (N (t) = k + 1 | Sk = u) = − (l0 − k)λ (t) exp (−W (t, u)) [W (t, u)− 1],

d

dt
P (N (t) = k + 2 | Sk = u) = − (l0 − k)λ (t) exp (−W (t, u))

[
1
2!
W (t, u)2 −W (t, u)

]
,

d

dt
P (N (t) = k + 3 | Sk = u) = − (l0 − k)λ (t) exp (−W (t, u))

[
1
3!
W (t, u)3 − 1

2!
W (t, u)2

]
,

...
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such that
d

dt
P (N (t) = k | Sk = u) + d

dt
P (N (t) = k + 1 | Sk = u) = − (l0 − k)λ (t) exp (−W (t, u))W (t, u),

d

dt
P (N (t) = k | Sk = u)+ d

dt
P (N (t) = k + 1 | Sk = u)+ d

dt
P (N (t) = k + 2 | Sk = u) = − (l0 − k)λ (t) exp (−W (t, u))

[
1
2!
W (t, u)2

]
,

...∑m−1
j=k

d

dt
P (N (t) = j | Sk = u) = − (l0 − k)λ (t) exp (−W (t, u))

[
1

(m−k−1)!
(W (t, u))m−k−1

]
.

Therefore,

fSm|Sk
(t | u) = −

m−1∑
j=k

d

dt
P (N (t) = j | Sk = u)

=
l0 − k

(m− k − 1)!
λ (t) exp (−W (t, u)) (W (t, u))m−k−1 .

Finally,

fSm,Sk
(t, u) =fSm|Sk

(t | u) fSk
(u)

=
l0!

(k − 1)! (l0 − k − 1)! (m− k − 1)!
λ (u)λ (s) (W (s, u))m−k−1 exp {−W (s, u)}

× exp {−l0Λ (u)} (exp {Λ (u)} − 1)k−1 .
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Appendix IV

Derivation of E [N (t)] for Model 2:

E [N (t)]

=

k∑
n=0

n

(
l0

n

)
(1− exp {−Λ (t)})n (exp {−Λ (t)})l0−n

+

m∑
n=k+1

n

∫ t

0

(W (t, u))n−k

(n− k)!
exp {−W (t, u)} l0!

(k − 1)! (l0 − k)!
λ (u) exp {−l0Λ (u)} (exp {Λ (u)} − 1)k−1

du

+

∞∑
n=m+1

n

∫ t

0

∫ s

0

[
Γ
(

1
α
+ n−m

)
Γ
(

1
α

)
(n−m)!

exp {−W (t, s)} (1− exp {−αW (t, s)})n−m l0!

(k − 1)! (l0 − k − 1)! (m− k − 1)!

×λ (u)λ (s) (W (s, u))m−k−1 exp {−W (s, u)} exp {−l0Λ (u)} (exp {Λ (u)} − 1)k−1
]
duds

=

k∑
n=0

n

(
l0

n

)
(1− exp {−Λ (t)})n (exp {−Λ (t)})l0−n

+

m∑
n=k+1

n

∫ t

0

(W (t, u))n−k

(n− k)!
exp {−W (t, u)} l0!

(k − 1)! (l0 − k)!
λ (u) exp {−l0Λ (u)} (exp {Λ (u)} − 1)k−1

du

+

∫ t

0

∫ s

0

[(
∞∑

n=m

n
Γ
(

1
α
+ n−m

)
Γ
(

1
α

)
(n−m)!

exp {−W (t, s)} (1− exp {−αW (t, s)})n−m −m exp {−W (t, s)}

)
l0!

(k − 1)! (l0 − k − 1)! (m− k − 1)!

×λ (u)λ (s) (W (s, u))m−k−1 exp {−W (s, u)} exp {−l0Λ (u)} (exp {Λ (u)} − 1)k−1
]
duds

=

k∑
n=0

n

(
l0

n

)
(1− exp {−Λ (t)})n (exp {−Λ (t)})l0−n

+

m∑
n=k+1

n

∫ t

0

(W (t, u))n−k

(n− k)!
exp {−W (t, u)} l0!

(k − 1)! (l0 − k)!
λ (u) exp {−l0Λ (u)} (exp {Λ (u)} − 1)k−1

du

+

∫ t

0

∫ s

0

[(
∞∑

n=0

(n+m)
Γ
(

1
α
+ n

)
Γ
(

1
α

)
n!

exp {−W (t, s)} (1− exp {−αW (t, s)})n −m exp {−W (t, s)}

)
l0!

(k − 1)! (l0 − k − 1)! (m− k − 1)!

×λ (u)λ (s) (W (s, u))m−k−1 exp {−W (s, u)} exp {−l0Λ (u)} (exp {Λ (u)} − 1)k−1
]
duds

=

k∑
n=0

n

(
l0

n

)
(1− exp {−Λ (t)})n (exp {−Λ (t)})l0−n

+

m∑
n=k+1

n

∫ t

0

(W (t, u))n−k

(n− k)!
exp {−W (t, u)} l0!

(k − 1)! (l0 − k)!
λ (u) exp {−l0Λ (u)} (exp {Λ (u)} − 1)k−1

du

+

∫ t

0

∫ s

0

[(
1

α
(exp {αW (t, s)} − 1) +m−m exp {−W (t, s)}

)
l0!

(k − 1)! (l0 − k − 1)! (m− k − 1)!

×λ (u)λ (s) (W (s, u))m−k−1 exp {−W (s, u)} exp {−l0Λ (u)} (exp {Λ (u)} − 1)k−1
]
duds
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