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Abstract: The resistance of 16 Rhodococcus strains to diesel fuel was studied. The minimal inhibitory
concentrations of diesel fuel against Rhodococcus were 4.0–64.0 vol. % and 0.5–16.0 vol. % after 7 days
of incubation in Luria–Bertani broth and a mineral “Rhodococcus-surfactant” medium, respectively.
The three most resistant strains (R. ruber IEGM 231, IEGM 442 and Rhodococcus sp. IEGM 1276)
capable of overcoming the toxicity of diesel fuel at a high (8.0 vol. %) concentration and at a low
(4 ◦C) temperature were selected. Respiration activities, growth kinetics, and changes in the diesel
fuel composition during the biodegradation process were elucidated using gas chromatography
with mass spectrometry, respirometry, and Bradford analysis. Growth conditions were optimised
for the improved biodegradation of diesel fuel by Rhodococcus cells using multifactor analysis. They
included the simultaneous addition of 1.3 g·L−1 of granular sugar and 0.25 g·L−1 of yeast extract. The
twofold stimulation of the biodegradation of individual hydrocarbons in diesel fuel (n-pentadecane,
n-hexadecane and n-heptadecane) was demonstrated when glycolipid Rhodococcus-biosurfactants
were added at a concentration of 1.4 g·L−1. A total removal of 71–91% of diesel fuel was achieved in
this work.

Keywords: diesel fuel; biodegradation; Rhodococcus; resistance; heavy contamination; low
temperatures; biosurfactants; respirometry; growth kinetics; no catabolite repression

1. Introduction

Diesel fuel is a widely used product of oil refinery. Accidental spills occur regularly
during its production, transportation, storage, and exploitation, resulting in environmental
contamination [1–5]. Although the dominant components of diesel fuel are medium and
long chain alkanes [6–8], which are low or non-toxic and are considered to be the most avail-
able for microbial degradation [6,9,10], it remains one of the highly toxic petroleum products
due to the presence of aromatic hydrocarbons and additives in its composition [11–14]. The
contamination of soils with diesel fuel can lead to the inhibition of plant growth, reduction
in soil respiration, increased mortality of soil invertebrates (e.g., nematodes), changes in
the physical and mechanical properties of soils, and risks to human health [12,14–18].

Microorganisms play a key role in the degradation of petroleum hydrocarbons in
the environment [13,19–21]. Actinomycetes of the genus Rhodococcus are among the most
efficient biodegraders of hydrocarbons. They can utilise various petroleum components,
including linear and branched C2–C31 alkanes, mono and polycyclic (both light and heavy)
hydrocarbons and benzothiophenes, successfully degrade complex hydrocarbon mixtures
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(crude oil, gasoline, and diesel fuel), are tolerant to various stresses (low and high tempera-
ture and pH, high salinity, elevated concentrations of heavy metals and solvents, drought,
starvation, and oxidative stress), and are easy to maintain [22–27].

The biodegradation of diesel fuel by Rhodococcus strains has been described in the
literature. These bacteria have been shown to degrade 33% to 94% of diesel fuel in soil
and water as monocultures or as part of consortia, to maintain high degradation activities
at salinities up to 6% NaCl, and to have potential for diesel fuel desulphurisation [28–33].
However, the ability of Rhodococcus bacteria to degrade diesel fuel is not fully understood.
Most biodegradation experiments with Rhodococcus cells have been carried out at low (0.1–
2.0%) concentrations of diesel fuel and mesophilic (25–30 ◦C) temperatures [28–30,32,34].
The authors of [31] used diesel fuel concentrations of 3.0% and 4.0% and temperatures
between 10 ◦C and 20 ◦C. Diesel fuel at concentrations < 3% has rather microbial promoting
effects, stimulating the growth of heterotrophic prokaryotes, and leading to an increase
in the metabolic activities of microorganisms. The negative effects of diesel fuel on mi-
croorganisms are more pronounced at higher concentrations [17]. At low temperatures, the
toxicity of diesel fuel increased. This is related to the reduced evaporation of toxic volatile
components, increased viscosity of diesel fuel, and prevented photovolatilisation of hydro-
carbons due to the high surface albedo from snow cover [35]. As a result, hydrocarbons
persist in the environment for long periods of time, particularly in cold climates such as
the Arctic, Siberia, or Antarctica [14,17,35–37]. Therefore, the discovery of new strains of
Rhodococcus capable of the biodegradation of diesel under such conditions may be useful
for bioremediation.

The effect of nitrogen sources on this process has been carefully assessed [31]. A less
well understood effect is the influence of additional carbon sources on the biodegradation
of diesel fuel. Supplementation with NH4Cl, urea, poultry manure, or soluble organic
matter facilitated 1.5–4.0 times the removal of diesel fuel [29,31,35–38]. It has been shown
that more available carbon sources (yeast extract and glucose) accelerated the bioconver-
sion of less available hydrophobic substrates ((–)-isopulegol, diclofenac, and drotaverine
hydrochloride) by Rhodococcus cells, although these substrates could be used as the sole
carbon sources [39–41].

The effects of externally added biosurfactants (the secondary metabolites, which are
produced by bacteria in the presence of hydrophobic compounds to facilitate their utilisa-
tion) on diesel fuel biodegradation by Rhodococcus has not been studied. However, other
diesel-fuel-degrading bacteria have been exposed to biosurfactants and the influence of
these biomolecules on their degradation capabilities has been demonstrated. In partic-
ular, the supplementation of Achromobacter sp. 4(2010) and Rahnella sp. EK12 cells with
rhamnolipids and saponins resulted in an up to twofold increase in diesel fuel biodegrada-
tion [42,43]. Positive, neutral, and negative effects of externally added rhamnolipids have
been shown on the biodegradation of diesel fuel and its blends with biodiesel by a bacterial
consortium, depending on the blend composition [44].

The aims of this study were as follows: to evaluate the resistance characteristics of
Rhodococcus actinomycetes to diesel fuel; to study the biodegradation activities of Rhodococ-
cus towards diesel fuel as the sole growth substrate and in the presence of additional carbon
sources (specifically glucose and yeast extract); to identify new, promising biodegraders of
diesel fuel, active at high (≥3%) concentrations of this pollutant and at a low (4 ◦C) temper-
ature; and to assess externally added biosurfactants (glycolipids produced by Rhodococcus
cells) in facilitating the diesel fuel biodegradation by these bacteria.

2. Materials and Methods
2.1. Chemicals

Mineral salts, solvents, Luria–Bertani broth (LB), LB agar (LBA), iodonitrotetrazolium
violet (INT), hydrocarbons (n-alkanes), NaOH, and the Bradford reagent were >97% pure
and were purchased from Sigma-Aldrich, Inc. (St. Louis, MO, USA). Winter diesel fuel
ECTO grade (Lukoil-Permnefteorgsintez, Perm, Russia), granular sugar (Agrocompany
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VESNA LLC, Sergach, Russia), and yeast extract (Microgen, Moscow, Russia) were used as
carbon sources. Crude glycolipid Rhodococcus-biosurfactants were obtained from Rhodococ-
cus ruber IEGM 231 cells grown in the presence of 3 vol. % of n-hexadecane as previously
described [45,46]. For this, the upper hydrophobic layer of a bacterial culture was treated
with ultrasound at 44 kHz, 0.7 A, and 4 ◦C for 30 min. The glycolipids were then extracted
using methyl tertiary-butyl ether (MTBE).

2.2. Bacterial Strains

A total of 18 strains of Rhodococcus, isolated from different clean and polluted environ-
ments and maintained in the Regional Specialised Collection of Alkanotrophic Microor-
ganisms (acronym IEGM, WDCM number 768, http://www.iegmcol.ru/, accessed on 15
November 2024) were used in this study (Table 1). The IEGM collection maintains more
than 3000 pure, identified, non-pathogenic, and well-described hydrocarbon-oxidising
actinomycetes, and this is a valuable resource for the targeted selection of strains based
on their isolation sites, tolerances, and desired functional activities, followed by further
biodegradation experiments [25,27,47]. Rhodococcus cells, pre-grown on LBA and then sus-
pended in 0.5% (w/w) NaCl at a concentration of 1×108 colony forming units (CFU)·mL−1

were used as inocula.

Table 1. Rhodococcus strains used in this study.

Strain Isolation Source

R. erythropolis IEGM 251 Snow, Yakutia, Saha Republic, Russia
R. erythropolis IEGM 275 Oil-polluted soil, oil-extracting enterprise, Perm region, Russia
R. erythropolis IEGM 587 Tussilago farfara rhizosphere, techogenically polluted soils, Gubakha, Perm region, Russia

R. erythropolis IEGM 1189 Water, Tyumen region, Russia
R. jostii IEGM 60 Oil-polluted soil, oilfield, Ukraine

R. opacus IEGM 249 Soil, lavsan (polyester fibre) production, Belarus
R. opacus IEGM 717 Soil
R. opacus IEGM 1157 Plantago rhizosphere, soil, former landfill area, Perm, Perm region, Russia

R. qingshengii IEGM 267 Oil-polluted soil, oil-extracting enterprise, Perm region, Russia

R. qingshengii IEGM 1359 Bottom sediment from lake systems, Li Smita Island, Franz Josef Land,
Arkhangel’sk region, Russia

R. rhodochrous IEGM 639 Snow, oilfield, Perm region, Russia
R. rhodochrous IEGM 1137 Oil-polluted soil, Solikamsk, Perm region, Russia
R. rhodochrous IEGM 1138 Oil-polluted soil, Solikamsk, Perm region, Russia

R. ruber IEGM 231 Water, spring, Olkhovski oil-extracting enterprise, Perm region, Russia
R. ruber IEGM 234 Snow, Polazna oil-extracting enterprise, Perm region, Russia
R. ruber IEGM 442 Snow, oilfield, Perm region, Russia
R. ruber IEGM 1263 Oil-polluted waste, Sosnogorsk, Komi Republic, Russia

Rhodococcus sp. IEGM 1276 Oil slime, Udmurt Republic, Russia

2.3. Toxicity Tests

Toxicity tests were performed in polystyrene 96-well microplates (Medpolymer, St.
Petersburg, Russia) with the LB or a mineral “Rhodococcus-surfactant” medium (RS) sup-
plemented with diesel fuel at concentrations of 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, or
64.0 vol. %. The composition of the RS was as follows (http://www.iegmcol.ru/medium/
med11.html, accessed 15 November 2024): KH2PO4—2.0 g·L−1, K2HPO4—2.0 g·L−1,
KNO3—1.0 g·L−1, (NH4)2SO4—2.0 g·L−1, NaCl—1.0 g·L−1, MgSO4·7H2O—0.2 g·L−1,
CaCl2—0.02 g·L−1, yeast extract—1.00 g·L−1, and the trace element solution [FeCl3·7H2O—
1.5 g·L−1,H3BO3—0.1 g·L−1, ZnSO4·7H2O—0.01 g·L−1, Co(NO3)2·6H2O—0.05 g·L−1,
CuSO4·5H2O—0.005 g·L−1, MnCl2·4H2O—0.005 g·L−1]—1 mL·L−1, pH 6.8–7.0. A 15
µL cell suspension with a concentration of 1×108 CFU·mL−1 was added to the microplates.
The total volume of liquid in the wells was 150 µL, and the initial cell concentration was
1×107 CFU·mL−1. The inoculated microplates were incubated in a Titramax 1000 incubator
(Heidolph Instruments, Schwabach, Germany) at 600 min−1 and 28 ◦C for 3 or 7 days. Cell
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viability was estimated by staining with INT. For this, 45 µL of 0.2% (w/w) INT solution in
water was added to the microplates. INT is a strong oxidiser. It competes with molecular
oxygen in respiratory chains. INT reduction produces insoluble red-violet formazan. The
appearance of a red-violet colour after 2 h of staining indicated the presence of viable,
respirating cells [48]. The lowest concentration at which no red-violet colour appeared
after 3 days of incubation was the minimal inhibitory concentration (MIC). If no colour
appeared after 7 days, this concentration was considered bactericidal. Inoculated LB and
RS supplemented with 3 vol. % of n-hexadecane were biotic controls. Uninoculated LB and
RS supplemented with 0.5 vol. % of diesel fuel were abiotic controls.

2.4. Biodegradation of Diesel Fuel and Other Growth Conditions

Biodegradation experiments were performed in 100 mL Erlenmeyer flasks with 20 mL
of the RS medium supplemented with 0.5, 1.0, 2.0, or 8.0 vol. % diesel fuel at 160 rpm and
4 ◦C or 28 ◦C for 3–8 days. Inocula were added at 1 vol. % and the initial cell concentration
was 1×106 CFU·mL−1. The visual monitoring of the cultures was performed during and
at the end of biodegradation using an Axiostar Plus microscope (Carl Zeiss, Oberkochen,
Germany) at ×1000 magnification to verify microbiological purity. Uninoculated flasks
containing diesel fuel were abiotic controls. In some variants, Rhodococcus-biosurfactants
were added to all trials at a concentration of 1.4 g·L−1, corresponding to 2× critical micelle
concentrations (CMC) [46]. To estimate the effects of other carbon sources on the biodegra-
dation process, Rhodococcus cells were cultured simultaneously in the presence of diesel
fuel, sugar, and yeast extract. Sugar concentrations were 1.3, 2.5, 5.0, and 10.0 g·L−1. Yeast
extract concentrations were 0.25, 0.50, and 1.00 g·L−1. For relevant comparisons, cells were
also cultured in the simultaneous presence of two substrates. The number of cells after
biodegradation was determined by plating the cultures on LBA, incubating at 28 ◦C for
2 days, and calculating as CFU·mL−1.

2.5. Analysis of Diesel Fuel

Residual diesel fuel was extracted from cultures with chloroform. The sample (20 mL) and
solvent (20 mL) were thoroughly mixed for 20–30 s and then allowed to stand for 2 min. The
bottom phase was collected, the extraction was repeated 2 more times, and the chloroform
fractions were combined. Water was removed from the extracts with anhydrous Na2SO4,
and extracts were filtered and processed for solvent evaporation in pre-weighed Soxhlet
glasses using a Büchi Extraction System B-811 (Buchi, Flawil, Switzerland). The glasses
were allowed to weather in a fume cupboard for 24 h and weighed again. The difference
between the weights of glasses before and after extraction was the weight of the residual fuel.

For GC-MS, residual diesel fuel samples were dissolved in 10 mL of chloroform
and the analysis was performed using an Agilent 6890N gas chromatograph (Agilent
Technologies, Santa Clara, CA, USA) equipped with a 30 m HP-5MS column with an
internal diameter of 0.25 mm, a film thickness of 0.25 µm, and an Agilent MSD 5973N
quadrupole mass spectrometer (Agilent Technologies, Santa Clara, CA, USA). The 1 µL
sample was injected into the injection port, which was held at 250 ◦C. The initial oven
temperature was 80 ◦C and was held for 2 min; then, the oven was heated to 300 ◦C at
10 ◦C·min−1. The helium flow was 1 mL·min−1. The mass spectrometer was operated in
electron ionisation mode in the m/z range of 40–600 and data acquisition were performed in
selective ion mode. The acquisition rate was 1.36 scans per second with a detector voltage
of 1200 V. Hydrocarbon identification and quantification were based on ion fragmentation
and retention times compared to the model mixture of n-alkanes C10–C19 at equimolar
concentrations. Calibration curves between peak squares and concentrations of individual
n-alkanes in the mixture were constructed and used to calculate concentrations of these
hydrocarbons in the residual diesel fuel. Only data from peaks of quality ≥90 were
extracted for the calculations.
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2.6. Determination of Glucose

The concentration of glucose was determined using a “Photoglucose”glucose oxidase
kit (LLC “Impact”, Moscow, Russia). The working solution containing glucose oxidase,
peroxidase, and 4-aminoantipyrine was prepared according to the manufacturer’s instruc-
tions. In addition, 2 mL of the working solution was thoroughly mixed with 25 µL of
cell-free culture medium and incubated at room temperature for 25 min. The absorbance at
500 nm was then measured using a Lambda EZ201 spectrophotometer (Perkin Elmer,
Shelton, CO, USA) in comparison with calibration and control samples prepared in the
same way. The calibration sample contained 2 mL of the working solution and 25 µL of
the calibrator (10 mmol·L−1 glucose in 0.15% benzoic acid). The control sample contained
2 mL of the working solution and 25 µL of distilled water. The concentration of glucose
was calculated using the following formula:

C =
E0

Ex
× 10, (1)

where C—concentration of glucose, mmol·L−1; E0—A500 nm of the experimental sample
(culture medium); Ex—A500 nm of the calibration sample; and 10—concentration of glucose
in the calibrator, mmol·L−1.

2.7. Bradford Analysis

Total protein was measured daily in growing cultures during the biodegradation of
diesel fuel. First, diesel fuel was washed out of the cells. For this, 20 mL of isopropanol
was added to 20 mL of culture, the mixture was centrifuged at 3000× g rpm for 10 min,
and the supernatant was discarded. The 100 µL of 0.05 M NaOH was added to the cell
pellet, and 3 cycles of heating in a water bath at 96 ◦C for 15 min and freezing at –20 ◦C for
15 min were performed to disrupt the cells. Then, 1 mL of milliQ water was added, and
the 50 µL suspension obtained was mixed with the 500 µL Bradford reagent. The mixture
was incubated at room temperature for 10 min, the absorbance at 595 nm was measured (if
necessary, the sample was diluted), and the protein concentration was calculated using a
calibration curve (Figure 1). The abiotic control (RS with diesel fuel, without cells), which
was treated in the same way, was used as a blank sample.
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Kinetic growth parameters were calculated using the following formulae:

Y =
X
S

, (2)

X = Xmax − X0, (3)
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µ =
Xmax

t × X0
(4)

where Y—economic coefficient; X—biomass yield, g proteins·L−1; S—amounts of substrate
consumed, g·L−1; Xmax—maximum amounts of proteins, g·L−1; X0—initial amounts of
proteins, g·L−1; µ—specific growth rate, h−1; and t—exponential phase time interval, h.

2.8. Respirometry

The dynamics of Rhodococcus cell respiratory activity during diesel fuel biodegradation
was monitored using a Micro-Oxymax 10-channel respirometer equipped with O2 and
CO2 sensors (Columbus Instruments, Columbus, OH, USA). The analysis was performed
in 250 mL bottles containing 100 mL RS supplemented with 1.0, 2.0, or 3.0 vol. % diesel
fuel under magnetic stirring (300 rpm) at 28 ◦C for 3 days. The initial cell concentration
was 1·106 CFU·mL−1. Non-inoculated bottles were used as abiotic controls. Rates of O2
consumption and CO2 production were calculated as measures of respiratory activity.

2.9. Statistics and Multifactor Analysis

All experiments were performed in 3–8 replicates. Statistica version 13.5.0.17 (TIBCO
Software Inc., Palo Alto, CA, USA) was used to calculate basic statistics and perform
multifactor analysis. Multifactor analysis was used to estimate the effects of carbon sources
on the biodegradation of diesel fuel by Rhodococcus cells. The conditions were standardized
as follows: the central and two boundary parameters were designated as levels 0, +1, and
−1, respectively (Table 2); and all combinations of carbon source concentrations (27 in total)
were indexed (Table S1). Pareto diagrams were constructed to show the apparent effects
and their statistical significance.

Table 2. Levels for carbon sources in multifactor analysis.

Level Diesel Fuel Concentration, vol. % Sugar Concentration, g·L−1 Yeast Extract Concentration, g·L−1

+1 2.0 5.0 1.00
0 1.0 2.5 0.50
−1 0.5 1.3 0.25

3. Results
3.1. Toxicity of Diesel Fuel

The results of the toxicity studies are presented in Table 3. The inhibitory concentra-
tions of diesel fuel in the LB (MICs) for the Rhodococcus strains tested varied in a wide range
from 0.5 to 64.0 vol. %. For 50% of the strains, these concentrations were bactericidal, and no
growth was detected after 7 days of exposure. Meanwhile, the other 50% of the Rhodococcus
strains grew in LB supplemented with diesel fuel at a concentration equal to the MIC after
7 days. For these strains, diesel fuel had a bacteriostatic effect. This effect was particularly
typical for strains with MICs ≤ 4.0 vol. %. After 7 days, the inhibitory concentrations
increased by eight to sixty-four-fold; this result was probably related to the adaptation of
the cells and their subsequent growth (Table 3). Nevertheless, based on the MIC values,
R. rhodochrous IEGM 639, R. ruber IEGM 231, IEGM 442, IEGM 1263, and Rhodococcus sp.
IEGM 1276 were the strains most resistant to diesel fuel (MICs = 32.0–64.0 vol. %). R.
jostii IEGM 60 and R. ruber IEGM 234 were the strains most susceptible to diesel fuel
(MIC = 0.5 vol. %) (Table 3).

The toxicity of diesel fuel was mainly higher in a mineral RS medium compared to
the LB. In the RS medium, where diesel fuel was the sole carbon source, most Rhodococcus
strains were two to sixty-four times less resistant to its action than in LB (Table 3). The
inhibitory concentrations of diesel fuel in the RS medium were no higher than 16.0 vol. %,
and a bactericidal effect of diesel fuel was demonstrated against all strains. Two strains, R.
erythropolis IEGM 251 and R. ruber IEGM 234, were exceptions. The toxicity of diesel fuel
against R. erythropolis IEGM 251 was the same in both media, and R. ruber IEGM 234 was
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twice as resistant in the RS medium than in the LB (Table 3). R. ruber IEGM 442 was the
most resistant strain, with inhibitory concentrations of diesel fuel of 32.0 and 16.0 vol. % in
the LB and RS medium, respectively.

Table 3. Toxicity of diesel fuel to Rhodococcus cells.

Strain

Inhibitory Concentration of Diesel Fuel, vol. %

LB RS

3 Days * 7 Days 3 Days 7 Days

R. erythropolis IEGM 251 8.0 8.0 8.0 8.0
R. erythropolis IEGM 1189 8.0 16.0 0.5 0.5

R. jostii IEGM 60 0.5 32.0 0.5 0.5
R. opacus IEGM 249 4.0 32.0 4.0 4.0
R. opacus IEGM 717 8.0 8.0 0.5 0.5

R. opacus IEGM 1157 8.0 16.0 0.5 1.0
R. qinshengii IEGM 267 16.0 16.0 4.0 4.0

R. qinshengii IEGM 1359 4.0 32.0 0.5 0.5
R. rhodochrous IEGM 639 32.0 32.0 4.0 16.0

R. rhodochrous IEGM 1137 16.0 64.0 4.0 4.0
R. rhodochrous IEGM 1138 8.0 8.0 0.5 0.5

R. ruber IEGM 231 64.0 64.0 8.0 8.0
R. ruber IEGM 234 0.5 4.0 8.0 8.0
R. ruber IEGM 442 32.0 32.0 16.0 16.0

R. ruber IEGM 1263 32.0 32.0 8.0 8.0
Rhodococcus sp. IEGM 1276 64.0 64.0 4.0 4.0

* MIC—minimal inhibitory concentration.

3.2. Biodegradation of Diesel Fuel by Resistant Rhodococcus Strains

For the biodegradation experiments, three strains consisting of R. ruber IEGM 231,
IEGM 442, and Rhodococcus sp. IEGM 1276 were selected based on their resistance to diesel
fuel. The growth of all three strains in the presence of diesel fuel was detected at both 4 ◦C
and 28 ◦C. All three were able to use diesel fuel as a growth substrate at a concentration of
2 vol. %. However, the percentage of diesel fuel degradation depended on the temperature
(Table 4). The highest (59%) percentage of the biodegradation after 8 days was found for
Rhodococcus sp. IEGM 1276 at 4 ◦C. This strain was apparently psychrophilic, since its
degradation activity towards diesel fuel at 28 ◦C was two times lower than at 4 ◦C and was
only 33% (Table 4). In contrast, R. ruber strains were mesophilic. Their oxidation activities
towards diesel fuel were three to four times lower at 4 ◦C than at 28 ◦C, corresponding to
10–15% and 42–44%, respectively (Table 4).

As seen from Table 4, microbial degradation was not the only contributor to the total
removal of diesel fuel. Significant amounts of diesel fuel were lost abiotically due to the
evaporation of volatile components such as alkanes with a chain length of ≤10 carbon
atoms, monoaromatic hydrocarbons, and naphthalene [11]. Abiotic losses were three
times lower at 4 ◦C than at 28 ◦C, at 14% and 42–43%, respectively (Table 4). At 28 ◦C,
evaporation was important, and the total removal of diesel fuel was 75–86% (Table 4). At
4 ◦C, the participation of an actively degrading strain such as Rhodococcus sp. IEGM 1276
was more important than evaporation, and the total removal of diesel fuel was similar (73%).
In contrast, the total removal of diesel fuel at 4 ◦C in the presence of mesophilic strains
(R. ruber IEGM 231 and IEGM 442) was only 28–29%.

The most resistant strain, R. ruber IEGM 442, efficiently degraded diesel fuel at a high
concentration (8.0 vol. %), while maintaining the same oxidising activity as at 2.0 vol. %. The
percentages of diesel fuel biodegradation by R. ruber IEGM 442 cells were 42% and 40%
at concentrations of 2.0 vol. % and 8.0 vol. %, respectively (Table 4). At the maximum
(8.0 vol. %) concentration, the biodegradation process showed three distinct phases. A
significant decrease in the diesel fuel concentration to 41% was observed after 1 day of
degradation. Apparently, this was related to the abiotic losses of the fuel, which reached
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their maximum after 1 day. For the next 5 days, the concentration of diesel fuel did not
change, and it was probably the adaptation phase for the cells. On the 7th–8th day, the
removal of diesel fuel was intensified, apparently due to degradation by the adapted
R. ruber IEGM 442 cells (Figure 2).

Table 4. Total removal and microbial degradation of diesel fuel using Rhodococcus cells after 8 days.

Strain
Concentration of

Diesel Fuel, vol. %

Temperature

4 ◦C 28 ◦C

Total Removal, % Microbial
Degradation, % Total Removal, % Microbial

Degradation, %

R. ruber IEGM 231 2.0 24 * 10 86 * 44
R. ruber IEGM 442 2.0 29 * 15 84 * 42
R. ruber IEGM 442 8.0 Not analysed Not analysed 82 * 40

Rhodococcus sp.
IEGM 1276 2.0 73 * 59 ** 75 * 33 **

Abiotic control
(no cells) 2.0 14 Not applicable 43 Not applicable

Abiotic control
(no cells) 8.0 Not analysed Not analysed 42 Not applicable

* Statistically significant from abiotic control at p < 0.05. ** Statistically significant from other strains at p < 0.05.
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3.3. GC-MS Analysis of Residual Diesel Fuel and Influence of Rhodococcus-Biosurfactants

As shown by GC-MS analysis, the residual diesel fuel consisted mainly of alkanes
C9–C19 (Figure 3). Unseparated peaks on the chromatograms were evidence of large
amounts of different hydrocarbon isomers, which are typical for diesel fuels [6–8,11].
However, linear alkanes predominated among the hydrocarbons detected, as they were
represented by the highest peaks (Figure 3). The lightest and most volatile components
(retention time < 8.45 min) disappeared in the residual fuel and, apparently due to their
volatilisation and partial degradation, the residual diesel fuel was better separated than the
original product (Figure 3).
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Figure 3. GC-MS chromatograms of original (a) and residual diesel fuel after 8 days of biodegradation
using R. ruber IEGM 442 cells at 28 ◦C (b).

Three n-alkanes, n-pentadecane (retention time 14.19 min), n-hexadecane (retention
time 15.35 min), and n-heptadecane (retention time 16.47 min), were detected in all residual
diesel fuel samples. By analysing the dynamics of the concentration changes of these
representative n-alkanes, the influence of Rhodococcus-biosurfactants was revealed. Supple-
mentation with Rhodococcus-biosurfactants facilitated the biodegradation of n-alkanes, and
this effect was particularly evident at high diesel fuel concentrations. Without biosurfac-
tants, the concentrations of n-pentadecane and n-heptadecane did not change significantly
after 8 days of biodegradation of 8.0 vol. % diesel fuel by the R. ruber IEGM 442 cells.
Their degradation under the same conditions but in the presence of biosurfactants was
52% and 47%, respectively (Figure 4). The biodegradation of n-hexadecane differed by 7%
between the experiments and was 79% and 86% without and in the presence of Rhodococcus-
biosurfactants, respectively. Furthermore, n-hexadecane was removed more rapidly in
the presence of Rhodococcus-biosurfactants, with the process completed in 1 day. Without
biosurfactants, no further removal of n-hexadecane was registered after 2 days (Figure 4).
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3.4. Respiration and Growth Kinetics of Rhodococcus Cells at Biodegradation of Diesel Fuel

In order to better assess the effects of the diesel fuel concentration on the biodegrada-
tion process, the respiratory activities of Rhodococcus cells were analysed. Concentrations of
1.0, 2.0, and 3.0 vol. % diesel fuel were used in these experiments. In terms of respiratory
activities, the biodegradation of diesel fuel by Rhodococcus cells could be divided into
three phases: a lag phase with barely detectable respiration, a short phase of intense and
dramatically increasing respiratory activity, and a relatively stable phase with one or more
peaks of respiratory activity (Figure 5). The concentration of diesel fuel did not significantly
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affect the duration of a lag phase (it rather depended on the strain specificity), but it did
affect the respiratory rates, O2 consumption/CO2 production, the duration of the second
phase, and the dynamics (e.g., the number and the time of appearance of the respiratory
activity peaks) of the third phase (Figure 5).
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Among the strains studied, R. ruber IEGM 231 had the highest respiratory rates (up to
8.923 µL O2·min−1 and 1600 µL CO2·min−1). The maximum values of the rates depended
on the diesel fuel concentration and were reached at different times: 17 h, 30 h, and 50 h at
1.0 vol. %, 2.0 vol. %, and 3.0 vol. % diesel fuel, respectively (Figure 5). Two other strains,
R. ruber IEGM 442 and Rhodococcus sp. IEGM 1276, were 42–115 times less active than
R. ruber IEGM 231. The maximum rates of O2 consumption and CO2 production for these
strains were only 0.074–0.150 µL·min−1 and 13–38 µL·min−1, respectively (Figure 5).

However, the greatest changes in O2 and CO2 were observed at the biodegradation of
1.0 vol. % (381 µL O2 and 67,581 µL CO2) and 2.0 vol. % (339 µL O2 and 59,248 µL CO2) of
diesel fuel by the R. ruber IEGM 442 cells. This strain also exhibited the shortest lag phase,
which did not exceed 13 h, whereas the lag phases of R. ruber IEGM 231 and Rhodococcus sp.
IEGM 1276 were 13–17 h and 22–24 h, respectively (Figure 5).
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The lowest changes in respiratory gases (99–105 µL O2 and 16,516–17,597 µL CO2)
were observed during the biodegradation of diesel fuel by the Rhodococcus sp. strain
IEGM 1276. Interestingly, the amounts of O2 consumed and CO2 released, as well as the
respiratory rates, were two and three times higher for this strain at the biodegradation of
3.0 vol. % diesel fuel than at its lower concentrations (Figure 5). The dependence of
respiratory activities on diesel fuel concentration was more typical for the R. ruber IEGM
231 and IEGM 442 cells. The O2 consumption and the CO2 emission in the presence of
these strains decreased proportionally with increasing diesel fuel concentrations. The
consumption of O2 and production of CO2 by R. ruber IEGM 442 at 3 vol. % diesel fuel
and IEGM 231 at all three diesel fuel concentrations were similar and varied within narrow
ranges of 250–307 µL and 43,785–54,351 µL, respectively (Figure 5).

At 4 ◦C, the kinetics of the growth of Rhodococcus sp. IEGM 1276 in the presence
of diesel fuel was determined by measuring the total amount of protein. The observed
changes in the protein concentration corresponded to the growth phases and confirmed
that the concentration of diesel fuel at 3 vol. % was too high and did not favour the growth
of Rhodococcus sp. IEGM 1276 (Figure 6), in contrast to the respirometry data (Figure 5).
Growth kinetic parameters for Rhodococcus sp. IEGM 1276 cells at 3 vol. % diesel fuel were
as follows: economic coefficient (showing the conversion rate of substrate to protein) of
0.005, specific growth rate of 0.312 h−1, and yield of 0.039 g·L−1. At 2 vol. % diesel fuel, the
economic coefficient was twelve times higher, the specific growth rate was two times lower,
and the yield was two times higher than at 3 vol. % with corresponding values of 0.069,
0.138 h−1, and 0.070 g·L−1 (Table 5).
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Diesel Fuel Concentration, vol. % Y µ, h−1 X, g·L−1

2.0 0.069 0.138 0.070
3.0 0.005 0.312 0.039

3.5. Influence of Additional Carbon Sources on Biodegradation of Diesel Fuel by Rhodococcus Cells

Rhodococci metabolised carbohydrates in the form of granular sugar in the presence
of diesel fuel (Table 6). In addition, the simultaneous presence of sugar and diesel fuel
stimulated the growth of Rhodococcus cells. The number of cells after 7 days of cultivation
in the presence of sugar or diesel fuel as sole growth substrates was 0.12·107 CFU·mL−1

and 1.65·107 CFU·mL−1, respectively. The cell number increased 1.5–20.0 times when both
substrates were used simultaneously (Table 7). Since the percentage of sugar removal
was almost the same in the presence and absence of diesel fuel, this was evidence that
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both substrates were used simultaneously, and both contributed to the growth and cell
number of Rhodococcus cells. The effect of the yeast extract was initially unclear and a
further multifactor analysis was performed to better estimate the effect of each carbon
source on Rhodococcus cell growth.

Table 6. Metabolism of sugar by Rhodococcus cells in the presence of diesel fuel at 28 ◦C in 7 days.

Strain Diesel Fuel
Concentration, vol. % Sugar Concentration, g·L−1 Growth Removal of Sugar, %

R. erythropolis IEGM 587 2.0 5.0 ++ 56
2.0 10.0 +++ 73 *

R. erythropolis IEGM
275

2.0 5.0 ++ 33
2.0 10.0 +++ 61 *

“++/+++”—Relative intensity of the cell growth from weak to strong. * Statistically significant from the sugar
concentration of 5 g·L−1 at p < 0.05.

Table 7. Growth of R. erythropolis IEGM 587 cells in RS with different combinations of growth substrates.

Sugar Concentration, g·L−1 Diesel Fuel
Concentration, vol. %

Yeast Extract
Concentration, g·L−1

Number of Cells,
×107 CFU·mL−1 Removal of Sugar, %

2.5 0.0 0.25 0.12 ± 0.01 * 64
0.0 2.0 0.25 1.65 ± 0.11 * Not applicable
2.5 2.0 0.00 2.40 ± 0.16 * 55

Time of cultivation was 7 days. Temperature of cultivation was 28 ◦C. * Statistically significant from other trials at
p < 0.05.

As seen from the Pareto diagrams, the sugar concentration had a strong effect on the
number of Rhodococcus cells and the biodegradation of diesel fuel. Sugar stimulated the cell
growth but interfered with diesel fuel degradation, and its effect on diesel fuel biodegra-
dation was greater than on growth (Figure 7). The highest (3.15·107–4.60·107 CFU·mL−1)
cell numbers were obtained at a sugar concentration of 5.0 g·L−1. And the lowest (16–65%)
percentages of diesel fuel removal were also obtained at this sugar concentration (Table 8).
Sugar at concentrations > 2.5 g·L−1 inhibited the biodegradation process by 9–60%. Diesel
fuel at concentrations of 0.5–2.0 vol. % and yeast extract had minor, statistically insignifi-
cant effects on growth and biodegradation efficiency (Figure 7, Table 8). The highest (91%)
percentage of diesel fuel biodegradation was achieved at sugar, yeast extract, and diesel fuel
concentrations of 2.5 g·L−1, 1.00 g·L−1, and 0.5 vol. %, respectively. Similar biodegradation
efficiencies of 88% were obtained when sugar and yeast concentrations were two to four
times lower (to reduce economic costs) and the diesel fuel concentration was 2.0 vol. %
(Table 8). Optimal growth conditions were 1.3–2.5 g·L−1 of granular sugar and 0.25 g·L−1

(the minimum value) of yeast extract, which allowed the biodegradation of 57–91% of
diesel fuel at its concentration of 0.5–2.0 vol. %. The preferred sugar concentration was
1.3 g·L−1. The biodegradation of diesel fuel at this concentration was constantly high,
varying only between 71% and 88%.

Table 8. Growth and efficiency of growth substate utilisation by R. erythropolis IEGM 587 cells at
different concentrations of sugar, diesel fuel, and yeast extract used simultaneously.

Concentration of
Sugar/YE *, g·L−1

Biodegradation of Diesel Fuel, % Number of Cells, ×107 CFU·ml−1 Removal of Sugar, %

Diesel Fuel Concentration, vol. %

0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

2.5/0.25 86 79 82 3.40 ± 0.27 1.85 ± 0.33 2.50 ± 0.25 79 64 46
5.0/0.25 54 28 36 3.85 ± 0.22 3.55 ± 0.03 3.95 ± 0.19 83 61 73
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Table 8. Cont.

Concentration of
Sugar/YE *, g·L−1

Biodegradation of Diesel Fuel, % Number of Cells, ×107 CFU·ml−1 Removal of Sugar, %

Diesel Fuel Concentration, vol. %

0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

2.5/0.50 87 69 64 3.85 ± 0.11 4.25 ± 0.27 3.45 ± 0.21 77 20 58
5.0/0.50 27 16 21 4.45 ± 0.16 3.15 ± 0.06 3.25 ± 0.07 70 39 49
2.5/1.00 91 80 57 3.20 ± 0.39 3.40 ± 0.09 3.95 ± 0.04 32 46 48
5.0/1.00 53 65 48 4.60 ± 0.17 4.20 ± 0.11 3.80 ± 0.14 46 54 62
1.3/0.25 84 82 88 1.90 ± 0.07 2.05 ± 0.08 0.65 ± 0.08 70 36 77
1.3/0.50 73 87 88 0.45 ± 0.02 0.80 ± 0.11 0.50 ± 0.09 58 27 60
1.3/1.00 71 76 86 1.95 ± 0.04 1.80 ± 0.13 1.35 ± 0.06 68 49 66

Time of cultivation was 7 days. Temperature of cultivation was 28 ◦C. * YE—yeast extract.
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5.0/1.00 53 65 48 4.60 ± 0.17 4.20 ± 0.11 3.80 ± 0.14 46 54 62 

Figure 7. Pareto diagrams showing the effects of sugar, diesel fuel, and yeast extract concentrations
on the number of R. erythropolis IEGM 587 cells (a) and the biodegradation of diesel fuel (b).

4. Discussion

The toxicity of diesel fuel to 16 Rhodococcus strains was determined in this study.
Two strains, R. erythropolis IEGM 275 and 587, were not included in this analysis because
they were already used by our team as degraders of diesel fuel and were known to grow
at 2 vol. % of this petroleum product (unpublished data). No species dependency of the
resistance of the Rhodococcus strains studied was observed, making predictions of strain
resistance based on biological characteristics of species inapplicable. For example, the most
sensitive (IEGM 234, MIC = 0.5 vol. % diesel fuel) and the most resistant (IEGM 231, IEGM
442 and IEGM 1263, MICs = 32.0–64.0 vol. % diesel fuel) strains were found among the
representatives of the R. ruber species with a 128-fold difference between the least and
the highest toxic concentrations. Extreme levels of resistance were also found in other
species (see Table 3). However, for sensitive strains, MICs were typically bacteriostatic
concentrations and the inhibitory effects of diesel fuel in 3 days should be considered as
underestimated. More relevant toxic effects of diesel fuel towards Rhodococcus cells were
registered after 7 days. Comparing the resistance of strains to diesel fuel in the LB after one
week, no species specificity was revealed again, but the differences between sensitive and
resistant strains were less contrasting. They were no more than eight-fold and looked more
like normal variations. Only R. ruber strain IEGM 234 was 32 times more sensitive to diesel
fuel than strain IEGM 231 (see Table 3), which could be related to the biological specificity
of R. ruber IEGM 234. The theoretical bases for the differences in strain resistance could be
the different permeability of the cell wall due to its hydrophobicity or thickness, different
time to respond to the toxicant, and specificity of regulatory mechanisms.

It is common practice to determine the toxicity of chemical compounds in rich culture
media containing sufficient amounts of nutrients and available growth substrates (e.g.,
LB, nutrient broth and tryptic soy broth). The inhibition of growth in these media is
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related to the action of a toxicant and not to a lack of nutrients/elements, a long lag phase,
auxotrophic conditions, cell efforts to utilise a difficult substrate, starvation, or any other
stress. Consequently, the resistance of Rhodococcus cells to diesel fuel in the mineral RS
medium, where diesel fuel was both a toxicant and a growth substrate, was predictably
lower than in the LB, and all inhibitory concentrations were bactericidal. Six out of sixteen
strains (R. erythropolis IEGM 1189, R. jostii IEGM 60, R. opacus IEGM 717, IEGM 1157,
R. qingshegii IEGM 1359, and R. rhodochrous IEGM 1138) almost completely lost their
tolerance to diesel fuel in the RS medium, with MIC values of only 0.5–1.0 vol. % (Table 3).
Compared to other species in the mineral medium, R. ruber seemed to be the most resistant
to diesel fuel and was inhibited by no less than 8.0 vol. % diesel fuel (see Table 3). This
was in agreement with our previous works. R. ruber was more resistant to monoaromatic
hydrocarbons and survived long storage (lyophilisation and cryopreservation) better than
other Rhodococcus species [25,27]. This species is known to produce carotenoid pigments,
and its strains have a bright orange colour. Carotenoids have been reported to protect
Rhodococcus cells from UV irradiation, cold, heat, and oxidative stress, and to be involved in
biofilm development [23,27]. We suggest that pigments may be involved in the protection
of R. ruber cells from diesel fuel.

The resistance of most Rhodococus strains to diesel fuel was impressively high and
they survived in culture media that could be one third of the hydrophobic toxic substance.
Moreover, the cells continued to grow; at least, the red-violet colour in wells with non-
inhibitory concentrations of diesel fuel was as bright as that in biotic controls (Figure S1).
Increased tolerance to toxic hydrophobic compounds is typical for Rhodococcus. Rhodococci
survive in the presence of 20–80 vol. % polar (ethanol and butan-1-ol) and non-polar
(toluene, n-hexane and n-decane) solvents. Their ability to resist the toxic effects of solvents
is associated with an increase in the relative surface area, a decrease in the cell wall rigidity
upon the contact with solvents, and the involvement of efflux pumps [49].

Three strains were selected for biodegradation experiments: R. ruber IEGM 231 and
IEGM 442, which showed a high (inhibition concentrations were 8.0–64.0 vol. %) resistance
to diesel fuel in both the LB and RS medium, and Rhodococcus sp. IEGM 1276, which was not
very resistant to diesel fuel in the RS medium but showed the highest (MIC = 64.0 vol. %)
resistance in the LB (see Table 3). These strains degraded from 33% to 44% of 2.0 vol. %
diesel fuel at 28◦C in 8 days (Table 4). Combined with the removal of diesel fuel due to
evaporation (abiotic losses), the total removal of this petroleum toxicant was between 75%
and 86% (see Table 4), which was similar to published efficiencies [6,29–33]. Particularly
promising results for ecobiotechnology were obtained with R. ruber IEGM 442, which
was able to degrade 8.0 vol. % diesel fuel with the same efficiency as at 2.0 vol. %, and
Rhodococcus sp. IEGM 1276, which was able to degrade 59% of 2.0 vol. % diesel fuel at
4 ◦C. Notably, the last strain was psychrophilic and was two times less active at 28 ◦C
(Table 4). Thus, both strains were promising for bioremediation: R. ruber IEGM 442—at a
mesophilic temperature (28 ◦C) but with high diesel fuel contamination (up to 8 vol. %), and
Rhodococcus sp. IEGM 1276—with lower contamination levels (up to 2–3 vol. %) but under
cold (4 ◦C) conditions. Although the respiratory activity of Rhodococcus sp. IEGM 1276
increased with increasing diesel fuel concentrations from 1.0 vol. % to 3.0 vol. % (Figure 5),
this activity was the lowest among the strains tested (Figure 5). However, respiration
experiments were carried out at of 28 ◦C, a non-optimal growth temperature for this strain,
which may not be relevant for assessing the biodegradation ability of psychrophilic bacteria.

Unfortunately, the complete removal of diesel fuel by selected Rhodococcus strains was
not achieved in this work. This could be due to a short period of biodegradation (8 days)
and the gradual accumulation of recalcitrant components of diesel fuel, such as isoprenoids,
dominated by phytane and pristane, polyaromatic hydrocarbons, and organosulphur
compounds in the growth medium [6,11,33]. From the respirometry and growth kinetics
data, we assumed that a stage of active metabolism of diesel fuel was relatively rapid, but
biodegradation did not stop after 8 days, when the process was no longer monitored. This
active stage, similar in duration, was observed in all experimental variants and resulted,
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for example, in the same biodegradation percentages for the R. ruber IEGM 442 cells at 2.0
and 8.0 vol. % diesel fuel (see Table 4). As shown in Figure 2, the active biodegradation of
8 vol. % diesel fuel began only after 6 days, while at lower diesel fuel concentrations, the
lag phase ranged from 13–24 h to 3 days, after which the cells started to metabolise diesel
fuel (Figures 5 and 6). It seems that rhodococci would not have enough time to degrade as
much diesel fuel at 8.0 vol. % as at 2 vol. %. Thus, assuming that active metabolism occurs
within 2–5 days, all available components of diesel fuel could be significantly degraded
in 8 days, and similar biodegradation percentages could be achieved at all studied diesel
fuel concentrations.

The GC-MS analysis (Figures 3 and 4) showed a significant amount of undegraded
n-alkanes and no pronounced changes in representative n-alkanes (C15–C17) during the
biodegradation of 8.0 vol. % diesel fuel by R. ruber IEGM 442. This could be related
to the preferential consumption of lower molecular weight alkanes, e.g., n-decane or n-
tetradecane, which were not detected in all samples of residual diesel fuel. This finding
was partially supported by respiration curves having a zigzag character (Figure 5), which
suggested a sequential biodegradation of individual diesel fuel components by individual
Rhodococus strains. The bacterial preference of certain compounds would depend on their
abundance and availability. The latter depends on the mobility of hydrocarbons in NAPLs
(non-aqueous phase liquids, e.g., diesel fuel in our study) and their relative solubility
in water [22,24]. This is partially demonstrated in the experiments with Rhodococcus-
biosurfactants. Their presence enhanced the biodegradation of representative alkanes,
namely, they accelerated the removal of n-hexadecane and stimulated the degradation of
n-pentadecane and n-heptadecane (Figure 4). Biosurfactants, added at double the CMC
value, emulsified and dispersed NAPLs, thereby facilitating their contact with cells and
the transportation of emulsified hydrocarbons through the cell wall to the membrane for
further oxidation [22].

Another important finding of this study is the absence of catabolite repression in the
assimilation of diesel fuel, and apparently all other hydrocarbons, by Rhodococcus. As
revealed in co-substrate experiments, diesel fuel can be metabolised simultaneously with
carbohydrates (Table 8). The best growth of Rhodococcus cells (2.40 × 107 CFU·mL−1)
was obtained with the simultaneous presence of diesel fuel and sugar in the culture
medium (Table 7). The lack of catabolite repression is a useful adaptation of Rhodococ-
cus, allowing the cell population to be maintained in competition with rapidly growing
microbial species and to metabolise a great variety of organic compounds (as growth or co-
metabolic substrates, or for the neutralization of their toxic effects). However, an increased
(>2.5 g·L−1) sugar concentration inhibited the biodegradation of diesel fuel by two to
three times (Figure 7a and Table 8), probably due to the interfering mutual influence of
parallel metabolic pathways; the dominance of one of them could probably depend on the
ratio between substrate concentrations. This should be taken into account when designing
bioremediation processes, and the monitoring of carbohydrate concentrations would be
recommended for organic-rich and hydrocarbon-contaminated sites.

5. Conclusions

This study provides new data on the biology of Rhodococcus actinomycetes, biode-
graders of diesel fuel, and specific details on the microbial degradation of diesel fuel.
A high resistance of Rhodococcus cells to diesel fuel was demonstrated. The growth of
Rhodococcus cells can be significantly inhibited on first contact with this petroleum product,
but after a period of time (e.g., 6–7 days in this study), they adapt to its toxic effect and
grow in the presence of up to 32.0 vol. % diesel fuel. Although resistance is a rather specific
feature of a particular strain, R. ruber strains are the most promising in terms of their
resistance and degradation activity. According to our results, the inhibitory concentrations
of diesel fuel in the RS medium against representatives of R. ruber are 8.0–16.0 vol. %,
and some R. ruber strains (e.g., IEGM 442) are able to degrade diesel fuel at these high
concentrations. Another important point for bioremediation is the dependence of strain
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degradation activities on temperature. The strain Rhodococcus sp. IEGM 1276 was most
active in degrading diesel fuel at 4 ◦C. There was no evidence of catabolite repression in
the biodegradation of diesel fuel by Rhodococcus, which occurred in the presence of other
carbon sources, such as granular sugar and yeast extract. This feature gives Rhodococcus a
competitive advantage and they grow better in media containing both diesel fuel and sugar.
However, the high concentration of additional carbon sources has a negative effect on the
efficiency of diesel fuel biodegradation. In particular, sugar at concentrations > 2.5 g·L−1

inhibits the biodegradation process. The recommended growth conditions are 1.3 g·L−1 of
granular sugar and 0.25 g·L−1 of yeast extract, which allowed for the biodegradation of
71–88% diesel fuel.

The strains selected in this work on the basis of their resistance and degradation
activities are R. ruber IEGM 231, IEGM 442, and Rhodococccus sp. IEGM 1276. They
can be recommended for the bioremediation of diesel fuel-contaminated sites. R. ruber
IEGM 442 was best suited for heavy contamination (up to 8.0 vol. % diesel fuel) at a
standard temperature (28 ◦C) and Rhodococcus sp. IEGM 1276 for light contamination
(not more than 2.0 vol. % diesel fuel) at a low temperature (4 ◦C). R. ruber IEGM 231
is suitable for diesel fuel contamination up to 3.0 vol. % at 28 ◦C. However, it has the
highest respiratory rates under these conditions, which is its advantage over R. ruber IEGM
442. Further identification of Rhodococcus sp. IEGM 1276 is required for bioremediation
applications. Its draft genome has been sequenced and can be provisionally assigned to
Gordonia amicalis (DDBJ/ENA/GenBank acc. no JAPWIL010000001–JAPWIL010000081,
accessed 15 November 2024). We follow the polyphasic taxonomy approach and intend to
harmonise phenotypic and genotypic data before the final strain identification, which is
the subject of future research.

The use of externally added Rhodococcus-biosurfactants at a concentration of 1.4 g·L−1

has proven to be efficient for hydrocarbon biodegradation. Although no statistically signifi-
cant effects of the biosurfactants on the total removal of diesel fuel were determined, the
biodegradation of individual n-alkanes (n-pentadecane, n-hexadecane, and n-heptadecane)
was stimulated, which may accelerate the bioremediation process. No additional contami-
nation with n-hexadecane was detected when biosurfactants were added, although they
were produced by the R. ruber IEGM 231 cells grown with 3 vol. % n-hexadecane (see
Section 2.1). The total removal of more than 71% of diesel fuel in 8 days can be expected
when using selected strains and biosurfactants under the optimised growth conditions.

This work requires further investigation, focusing on field trials, the development of
consortia, and the construction of stable biocatalysts. Selected Rhodococcus strains appear to
be environmentally compatible, with no possible adverse effects on indigenous microor-
ganisms. Rhodococcus actinomycetes are ubiquitous in biotopes throughout the world, are
dominant in hydrocarbon-contaminated ecosystems, are tolerant to fluctuations in abiotic
factors, and their abundance returns to background levels after the end of the intensive
phase of bioremediation, without harmful effects on microbial communities [23,27,50].

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/microorganisms12122605/s1, Table S1: “Indexing carbon
source combinations for multifactor analysis”; Figure S1: “Example of toxicity test results. INT stain-
ing of Rhodococcus ruber IEGM 442 cells in the presence of diesel fuel after incubation at 600 min−1,
28 ◦C for 3 days. Upper wells (rows A–D) are not stained and left for the next 4 days to determine
bacteriostatic/bactericidal effect of diesel fuel at inhibitory concentrations. Abiotic control: LB or
RS with 0.5 vol. % of diesel fuel without cells. Biotic control: inoculated LB or RS with 3 vol. %
n-hexadecane”.
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