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Abstract: Instead of modelling an economic agent by a hysteron, we suggest a fluid–mechanical
notion of rate-dependent hysteretic agents based on the theory of Poisson counters. It leads to a
simple representation of assemblies of such agents. We discuss the properties of the new version of
hysteresis and its advantages over classical models of hysteresis in economics.
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1. Introduction

We start with a brief discussion of concepts connected with the notion of hysteresis;
for a general treatment of systems with hysteresis please see [1–3] for a more mathematical
approach. A detailed discussion of hysteresis in economics can be found in the review [4].

By hysteresis, one usually means some type of memory capacity in a system; there
are many definitions and approaches to hysteresis in different areas, and even in any one
particular area, as for example, in economics, there is no one accepted definition. The
concept that is most often invoked when speaking about hysteresis is a (static) hysteresis
loop, such as an S- or a Z-curve.

In engineering and control, the starting point of discussions of hysteresis is a hysteron,
which is a two-state agent/black box, for which there exist two values, α and β, α < β, of a
control parameter s, such that if s > β, the hysteron is in state 1 and if s < α, it is in state 0.
For s ∈ (α, β), the state of the hysteron depends on its history: one says that the hysteron
remembers (some of) the past history of the values s has gone through. One can denote
a hysteron by Fα,β(s), which outputs 0 and 1 according to the rules explained above; see
Figure 1 for illustration (note that the motion on horizontal segments is bi-directional). The
state of the hysteron Fα,β(s) is uniquely determined by the history of change of the control
parameter s. Note that adjustment of the hysteron to the control parameter is instantaneous
and synchronous. In such a case, we say that hysteresis is rate-independent: it is not
important how fast s changes. If s stops changing, so does the state of the hysteron.

The hysteron also provides a simple model of an economic agent. For example, in the
theory of the firm [5], it may represent a firm that enters the market (goes into state 1) when
the price for its product rises above β and exits the markets when the price falls below α
(goes into state 0). Here, it is assumed that the behaviour of single firm does not affect
the price of the product. An important question that has to be addressed is why would
an economic agent be hysteretic. A frequently mentioned reason is sunk costs, which is
particularly obvious in the case of a firm. When the price determined by the market at
large is high enough, it makes economic sense for an inactive firm to enter the market; this
corresponds to s = β, but if then the price slips below β, it makes no sense for the firm to
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exit immediately as it has invested in plant, workforce, taxes—costs that cannot be easily
recovered if at all. So, the firm will only exit the market when the price falls below the
lower threshold value α, when remaining in the market becomes unsustainable.

s

Fαβ(s)

α β
Figure 1. A hysteron.

Another example from finance rather than economics is provided by the motivation
underlying decisions to switch large investment portfolios. As has been noted, as in [6],
there can be considerable pressure on fund managers who have been under-performing
compared to their peers to ‘chase the average’ and shift their portfolio to better match their
competitors. This also involves sunk costs, and such herding/imitation effects will be both
hysteretic and rate-dependent.

By an assembly of hysterons, we mean a set of hysterons Fα,β(·), where α, β belong
to some set; Γ is the region β > α in the (α, β) plane distributed according to a density
function g(α, β).

An assembly of hysterons in economics would represent, e.g., the entire market for a
product. This has proved to be a very fruitful idea. An extensive theory (see, e.g., [2]) has
been developed by defining an aggregate quantity:

A(s) =
∫

Γ
Fα,β(s)g(α, β) dα dβ.

As s courses adiabatically beyond the support of g, A(s) describes a “hysteresis” loop. So,
not only are the constituents of the assembly Fα,β hysteretic (they only “remember” whether
the last time s went beyond their particular values of α or β), but the whole assembly has
memory that has been described by the staircase construction of Mayergoyz [2].

Hence, in the Mayergoyz picture of hysteresis (which in economics has been called strong
hysteresis), there are hysteretic micro-agents that give rise to a hysteretic macro-assembly.

It is the heterogeneity of the agents expressed through the density function g(α, β)
that makes the behaviour of the assemblage interesting and suggestive in the explanation
of economic phenomena. The adjustment of the system to the control parameter is instanta-
neous and synchronous. So, a property of the strong (Mayergoyz) hysteresis is that, just
like a hysteron, it is rate-independent.

In many areas of economics (as in the theory of the firm mentioned above), it makes
sense to assume that the state of the assemblage A(s) does not determine the value of
the control parameter s. The same assumption is made in micro-magnetics, where the
orientation of spins does not influence the magnetic field they are subjected to.

The motivation for the present work is that we find a number of features of the
accepted strong hysteresis framework in economics to be problematic. In particular, a
hysteron with rigidly defined thresholds and rate-independence does not seem to offer a
realistic picture of an economic agent. Furthermore, the decoupling of the control parameter
from the functioning of an assemblage of hysteretic agents seems to us unrealistic (see also
the recent preprint of Mayergoyz and Korman [7] where this point is made as well).

Hence, we pursue two goals:
(1) to construct a more sensible model of an economic agent than that afforded by

a hysteron;
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(2) to introduce feedback dynamics into the model of an assemblage of hysteretic
agents.

The most obvious way dynamics can be introduced into hysteresis models is via price
mechanisms: if a firm starts supplying a product to a market that is already served by other
competing firms, the price will come down, and hence some firms will have to reconsider
the profitability of staying in the market; in our present treatment, we prefer to deal with a
supply–demand system directly, without introducing price mechanisms.

The structure of this paper is as follows: in Section 2, we present our new picture of a
hysteretic economic agent and connect it with the hysteron; in Section 3, we show how to
incorporate feedback into the dynamics of an assembly of such agents, and we conclude
with remarks and suggestions for further work.

2. A Hysteretic Agent

We start by suggesting a different picture of a hysteretic agent, which makes proba-
bilistic decisions. Thus, for a fixed value of the control parameter s, we modify both the
hysteron picture and its interpretation.

In preparation for our definition, let us reconsider Figure 1. We can define the function

PH
01(s) =

{
0 if s < β,
1 if ≥ β

and PH
10(s) =

{
0 if s > α,
1 if ≤ α.

(1)

as probabilities, respectively, that if a hysteron finds itself in state 0 (1), to move to state 1
(0). Note that a consequence of this interpretation is that PH

01(s) + PH
10(s) = 0 for s ∈ (α, β).

Definition 1. We say that an agent is hysteretic if the probability P01(s) of an agent in state 0
to switch to state 1 is for every value of the control parameter s less than the probability P11(s) of
an agent in state 1 to stay in that state, such that P01(s) + P10(s) has a unique minimum, where
P10(s) = 1 − P11(s).

This situation shown in Figure 2.
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Figure 2. P11(s) and P01(s).

Since P00(s) + P01(s) = 1 = P10(s) + P11(s), it immediately follows that for all s,
P10(s) < P11(s) as well. We define an anti-hysteretic agent to be one for which for all s,
P01(s) > P11(s) and P01(s) + P10(s) has a unique maximum. Note that the area between
the graphs of P11(s) and P01(s) is an appropriate measure of hysteresis.

Let us compare this notion to that of a hysteron. If in Figure 2, we choose for P11(s)
and P01(s) discontinuous functions so that P11(s) = 1 − PH

10(s) for s < α and P11(s) = 1
for s ≥ α and P01(s) = PH

01(s), where PH
10(s) and PH

01(s) are defined in (1); we recover the
picture in Figure 1. The requirement for P01(s) + P10(s) is to be consistent with the property
of the hysteron that PH

01(s) + PH
10(s) = 0 for s ∈ (α, β). Therefore, our new picture of a

hysteretic agent is a true generalisation of the hysteron one.
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One can model such agents by Markov chains, as is performed in [8]; we follow the
approach suggested by Brockett [9,10], by using Poisson counters which we will now
introduce. We start by fixing the value of the control parameter s.

Consider an SDE for an unknown real-valued function x(t) of the form

dx(t) = f (x(t), t)dt + g(x(t), t)dN(t), (2)

where N(t) is a Poisson counter. Of the function f (x, t), we require Lipshitz continuity and
at most linear growth in x, so that the existence and uniqueness of global solutions of the
initial value problem x′ = f (x, t), x(t0) = x0 are ensured, while of g(x, t), we just require
continuity in the first variable. Below, we omit the explicit dependence of x and counters
on t.

Definition 2. By a solution of (2) in the Itô sense, we mean a function x(·), which satisfies
x′ = f (x, t) on an interval where N is constant, and if N jumps at some time t1, we have

lim
t→t+1

x(t) = lim
t→t−1

x(t) + g(lim
t→t−1

x(t), t1).

An agent that exists in states 0 and 1 can then be modelled by an SDE involving
two Poisson counters: if the state variable is x(t), then

dx = (1 − x)dN1 − xdN2, x(0) = x0 ∈ {0, 1}, (3)

where the Poisson counters N1 and N2 have intensities λ01(s) and λ10(s), respectively, and
where following Definition 1 we require λ01(s) + λ10(s) to have a unique minimum (see
Figure 3).
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Figure 3. A hysteretic agent; the yellow curve is the sum of the intensities λ01(s) and λ10(s).

The situation for an anti-hysteretic agent is shown in Figure 4.
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Figure 4. An anti-hysteretic agent; the yellow curve is the sum of the intensities λ01(s) and λ10(s).
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In such an interpretation of a hysteron, for every value of s, Es(x) is defined (and is
an increasing function of s, as it is for an anti-hysteron); so, there is no “infinite duration”
memory as in the classical hysteron. But note that

dEs(x(t))
dt

= λ01(s)− (λ01(s) + λ10(s))Es(x(t)),

so the rate of convergence to the stationary value of the expectation

Es(x) =
λ01(s)

λ01(s) + λ10(s)

is governed by (λ01(s) + λ10(s)), which can be very small in the hysteretic case.
Another remark is that the steady rate of accrual of sunk costs, given by

Cs =
λ10(s)λ01(s)

λ01(s) + λ10(s)
,

is clearly much larger in the anti-hysteretic case.

3. Feedback Dynamics

So far, we have dealt with a single agent transitioning between states 0 and 1 in
accordance with Equation (3). Now, we want to derive equations for assemblies of such
agents and introduce feedback into the dynamics.

In this work, we do not model price-making mechanisms and instead work directly
with supply and demand. A simple fluid–mechanical analogy (which belongs to the class
of “fluid queuing models” considered in other contexts by Brockett and co-authors [9,10])
for such a situation is as follows:

Assume we have a vessel that is filled with water at a constant rate α. Suppose that
the bottom of the vessel has a number M of pressure-sensitive valves that open or close
depending on the height of the water h(t). The rate at which a valve lets water through is r.
We further assume that these valves are hysteretic in the sense defined above and would
like to understand the dynamics of such a system.

More precisely, we have
dh
dt

= α − rV(t), (4)

where V(t) is the number of valves open at time t. Each valve k is defined by a variable xk,
which takes the value 1 when it is open and 0 otherwise.

We can therefore rewrite (4) as{
dh
dt = α − r ∑M

k=1 xk,
dxk = (1 − xk)dN1.k − xkdN2,k, k = 1, 2, . . . M,

(5)

and now assume that the intensities λ01,k and λ10,k of the counters are functions of h(t). (In
the simulations below, we take the intensities λ01,k(h) and λ10,k(h) to be independent of k;
we use shifted tanh functions for the intensities, such as

λ01(s) = 1 + tanh(β(s − P1))/2, λ10(s) = 1 − (1 + tanh(β(s − P2))/2),

for some values of P1 and P2).
The economics interpretation of (5) is that h(t) is the (excess) demand for a commodity

that appears at a constant rate α and is met at rate r ∑M
k=1 xk; the higher the demand, the

larger the size of the market will be (delimited a priori by M). We assume α − rM < 0.
The case M = 1 can be fully analysed; this is the Dichotomous Markovian Noise

(DMN) case considered, for example, in [11]. The trichotomous case M = 2 is also
known, but is not easy to deal with even without feedback. Analytically working out
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the Fokker–Planck equation for the M > 2 case, even for the stationary solution, seems an
open problem.

Going back to M = 1, first note that without feedback, that is if the intensities λ01
and λ10 are constant, h(t) → ∞ if α/r > λ01/(λ01 + λ10) and h(t) → 0 if the opposite
inequality holds.

Following the arguments of Horsthemke and Lefever [12] (Section 6,1), we can com-
pute the stationary solution of the Fokker–Planck equation associated with h(t).

Proposition 3. The steady-state probability distribution function for the height has the density

p(x) = C exp
(
−

∫ x[λ01(s)
α

+
λ10(s)
α − r

]
ds
)

,

where C is a normalisation constant.

Once that is known, we can check that

α

r
=

∫ ∞
0 p(x)λ01(x) dx∫ ∞

0 p(x)(λ01(x) + λ10(x)) dx
,

and compute, for example, the rate of sunk cost accumulation,

Cs =
α

r

∫ ∞

0
λ10(x)p(x) dx.

The same computations can be performed for the anti-hysteretic case and, as expected, the
rate of sunk costs accumulation is much higher in that case.

Note that to find Cs, we define a new variable y(t) that satisfies

dy = xdN2,

and take expectations to obtain

dE(y)
dt

= E(x)E(λ10(h)).

The outstanding open question in the case M = 1 is to analyse the time-dependent
Fokker–Planck equation, and prove the existence of solutions and their convergence to the
unique stationary solution p(x).

As mentioned, deriving a Fokker–Planck equation for M > 1 is a hard analytical
problem. On the other hand, numerical simulation in the Poisson counter set-up is easy
and the results are intuitive: the more valves there are, the smaller the variance (in fact, the
mean field limit is very easy to analyse); the bigger the area of the hysteresis loop, the bigger
the variance. In Figures 5 and 6, we show the result of simulations for M = 15 identical
suppliers. Here, time is measured in the number of timesteps taken by the simulation.

In the limit M → ∞, keeping κ := rM constant, setting p to be the fraction of active
suppliers, we have the system of ordinary differential equations (see [13] for background):{

dp
dt = −pλ10(h) + (1 − p)λ01(h),
dh
dt = α − κp,

(6)

Unlike the situation for finite M, we have

Proposition 4. System (6) has a unique globally asymptotically stable equilibrium point.



Mathematics 2024, 12, 3924 7 of 8

Proof. By our blanket assumption, κ > α; hence, any equilibrium point of (6) has to satisfy
p = p∗ := α/κ < 1 and

λ10(h)
λ01(h)

=
κ − α

α
> 0. (7)

Since λ10(h) is monotone decreasing in h and λ01(h) is monotone increasing in h, (7) has a
unique (positive) solution, which we call h∗. Linearising (6) around the point (p∗, h∗), we
see that it is locally asymptotically stable; finally, using the Bendixson negative criterion [13]
(p. 105) for (6) shows that the equilibrium point is globally asymptotically stable by the
Poincaré–Bendixson theorem [13] (p. 383).

0 200 400 600 800 1000

8

9

10

11

12

13

14

15

Time

E
x
c
e
s
s
 D

e
m

a
n
d

Excess demand h vs time

Figure 5. Excess demand vs. time for a system of 15 identical suppliers.
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4. Conclusions and Remarks

We have introduced a new model of a hysteretic agent and a simple way to incorpo-
rate feedback dynamics into an assemblage of such agents. We feel that the framework
advocated here is more realistic in the economics context than the classical Preisach-based
one; in particular, we have hysteresis without rate-independence.

The loss of rate-independence means that the behaviour of the hysteresis model now
depends on the rate of change in the control parameter. If it changes adiabatically, then
the only meaningful quantity is Es, which has no hysteresis, and “too fast” changes lead
results that are hard to interpret.

Clearly, a lot remains to be achieved. Among the possible extensions to the model, we
see the following:

• Make the rate of growth in excess demand (α) stochastic.
• Characterise an M > 1 system which is heterogeneous in intensities.
• Introduce price formation mechanisms.
• Model herding/imitation effects in financial markets.

As a final remark, note that in electrical engineering, hysteresis is not considered a
positive feature of a power generation system and much effort is expended in reducing it.
However, in economics, sunk costs necessitate the existence of hysteresis loops. Hence, in
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the exploitation of renewable natural resources, these should always be taken into account.
An important project, therefore, is to understand the implications of hysteresis (in the
framework we suggest) in cases where the dynamics without exploitation are non-linear
and self-limiting.
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