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a b s t r a c t 

Propagation of premixed flames having thick reaction zones in rapidly-varying, small-scale, zero-mean, 

spatio-temporal periodic flows is considered. Techniques of large activation energy asymptotics and ho- 

mogenization theory are used to determine the effective Lewis number Le eff and the effective burning 

speed ratio S T /S L , which are influenced by the flow through flow-enhanced diffusion. The resultant ef- 

fective diffusivity matrix is, in general, neither a scalar nor a diagonal matrix and therefore induces 

anisotropic effects on the propagation of multi-dimensional flames. As the flow Peclet number Pe be- 

comes large, the flow-enhanced fuel diffusion coefficient and the thermal diffusivity behave respectively 

like ( Pe Le ) σ and Pe σ , where Le is the Lewis number and σ ≤ 2 is a constant which depends on the flow 

and the direction of flame propagation. The maximal value σ = 2 is achieved for steady, unidirectional, 

spatially periodic shear flows, while for steady two-dimensional square vortices, we have σ = 1 / 2 . In 

general, the constant σ is determined by solving a linear partial differential equation. The scaling laws 

for the diffusion coefficients lead to corresponding scaling laws for the effective Lewis number and the 

effective burning speed ratio of the form Le eff � Le 1 −σ and S T /S L ∼ ( Pe / Le ) σ/ 2 . Effects of thermal expan- 

sion and volumetric heat loss on the flame are also briefly discussed. In particular, it is shown that the 

quenching limit is enlarged by a factor 1 / Le σ for Le < 1 and diminished by the same factor for Le > 1 , 

due to the flow-enhanced diffusion. The potential implications of the results to better understand turbu- 

lent combustion are discussed. A special emphasis is placed on the dependence of the flame on Le in the 

presence of high-intensity, small-scale flows. In particular, it is shown that this dependence is intimately 

linked to the flow through Taylor-dispersion like enhanced diffusion, rather than through the traditional 

molecular diffusion coupled with curvature effects. The flow-dependent effective Lewis number identi- 

fied may also provide an explanation to the peculiar experimental observation that turbulence appears 

to facilitate ignition in Le > 1 mixtures and to inhibit it in Le < 1 mixtures. 

Novelty and significance statement 

An original study, combining asymptotic analysis and homogenization theory, is applied to describe flame 

propagation in small-scale, spatio-temporal periodic flow fields. Scaling laws are derived for the effective 

burning speed and the effective Lewis number for high-intensity small-scale flows, which are useful to 

better understand the behaviour of turbulent premixed flames in the distributed reaction zone regime. 

The formula for the flow-dependent effective Lewis number identified herein may explain the peculiar 

experimental observation that turbulence appears to facilitate ignition in Le > 1 mixtures and to inhibit 

it in Le < 1 mixtures. The high-intensity small-scale flows are shown to increase the quenching limit due 

to volumetric heat losses in Le < 1 mixtures and decrease it in Le > 1 mixtures 
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Fig. 1. Schematic illustration of the flame structure in the thick reaction-zone limit, 

δL /β ∼ l cell [19] . The flame is assumed to be periodic (or independent of) directions 

perpendicular to n . Here, we shall consider the ultra-thick reaction-zone regime 

wherein δL /β � l cell . 
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. Introduction 

In this paper, we study the problem of flame propagation in 

patially or more generally spatio-temporally periodic flows hav- 

ng single length and time scales. A number of theoretical [1–

] and computational [5–10] investigations have been devoted to 

his problem in the past and more recently in [11,12] . Experimental 

tudies have also addressed this problem, notably in order to gain 

nsight into flame propagation in the presence of Taylor-Couette 

ortices [13–15] . One of the main motivations of these and similar 

tudies has been to improve our understanding of premixed turbu- 

ent combustion. The reader is referred to specialized reviews such 

s [16,17] for an overview of the main issues in the vast field of 

urbulent combustion. Here, we simply note that most theoretical 

orks have focused primarily on the thin flame or thin reaction 

one regimes, describing flame propagation in a large-scale flow 

eld. On the other hand, the effect of small-scale flows is ubiqui- 

ous in turbulent combustion, notably in the distributed reaction 

one regime [16,18] where some flow scales can become smaller 

han the size of the reaction zone. 

The current paper focuses on the thick reaction-zone 

imit [19] to elucidate the influence of small-scale periodic 

ows on flame propagation. Particular attention is devoted to 

haracterising the effective Lewis number and burning speed in 

uch flows. The focus of the study is partly motivated by appar- 

nt disagreement revived recently regarding the effective Lewis 

umber, Le eff in strongly turbulent flows. Specifically, whereas 

ccording to common views [16,20–22] , Le eff should be unity in 

uch conditions, recent studies [23–26] suggest otherwise. Notably, 

t is argued in [23] that the molecular Lewis number effects are 

till important in strongly turbulent flows and are most active at 

cales small compared with the flame thickness. Although our 

aminar periodic flow model cannot fully settle the disagreement 

egarding Le eff in turbulent combustion, it can provide a helpful 

nsight by determining Le eff for the small-scale laminar flows 

onsidered. This problem is treated analytically in the limit of 

arge activation energy, with the reaction zone thickness being 

arger than the flow length scale. 

The paper is organized is as follows. The characteristic scales 

nvolved in thick reaction-zone flames propagating in small-scale 

eriodic flows are introduced in Section 2 . The problem govern- 

ng equations and boundary conditions are then formulated in 

ection 3 , and these are the basis of an asymptotic analysis carried 

ut in Section 4 . The scaling laws for the effective burning speed 

nd the effective Lewis number are obtained in Section 5 for large 

alues of the Peclet number. The results are illustrated for two 

lasses of prototypical flow fields, namely for unsteady unidirec- 

ional flows and for the so-called Childress-Soward flows which are 

teady and two dimensional. Potential implications for premixed 

urbulent combustion are discussed in Section 5.3 . The results of 

ection 5 are complemented by selected illustrative results for ar- 

itrary Peclet numbers in Section 6 . Further extensions of the work 

ncluding the effect of thermal expansion, heat loss are briefly dis- 

ussed in Section 7 and Section 8 and followed by conclusions 

n Section 9 . 

. Scalings for thick reaction-zone flames 

Consider in a reactive mixture a spatio-temporal periodic flow 

eld v (x , t) , where x is the dimensional position vector and t the

imensional time. Let the characteristic flow amplitude, spatial pe- 

iod and temporal period be, U , l cell and t cell , respectively. Further, 

et us also assume that the mean value of v (x , t) is zero in a suit-

ble frame of reference. Then, the heat transport process may be 

haracterised by two dimensionless numbers, namely, the Peclet 
2 
umber Pe and the Stokes number St , defined by 

 e = 

Ul cell 

D T 

, St = 

l 2 
cell 

/D T 

t cell 

, 

here D T denotes the thermal diffusivity of the gas mixture. 

The thermal and chemical properties of the reactive mix- 

ure define a laminar burning speed S L and a laminar flame 

hickness δL = D T /S L . The thickness of the reaction zone is then 

iven by δL /β , where β is the Zeldovich number; these quanti- 

ies are defined below in (3) . By comparing the flow scale with 

he reaction-zone thickness, combustion modes can be classified 

nto three regimes [19] , namely a thin reaction-zone ( δL /β � l cell ), 

 thick reaction-zone ( δL /β ∼ l cell ) and an ultra-thick reaction- 

one ( δL /β � l cell ) regimes. The thin reaction-zone regime includes 

oth thin flames ( δL � l cell ) and moderately thick flames ( δL ∼
 cell ) [27] . A schematic illustration of the flame structure in the 

hick reaction-zone limit is shown in Fig. 1 . In the current pa- 

er, we shall focus on the ultra-thick reaction-zone regime where 

L � δL /β � l cell . 

Assume that the flame structure propagates in the periodic flow 

eld in a definite direction, say −n , with some propagation speed. 

his is justified if the structure is periodic in (or, independent of) 

irections perpendicular to n , as we shall assume. Furthermore, 

ince we consider zero-mean flows, the flame propagation speed 

s also the effective burning speed S T (t) , in the first approxima- 

ion. Specifically, the function S T (t) (in general, periodic in t) can 

e defined as the total instantaneous burning rate per unit cross- 

ectional area normal to n of the infinite strip depicted in Fig. 1 .

umerical computations of flame propagation are typically per- 

ormed only for such infinitely long strips [5,7–9] . 

As mentioned above, the present study deals with the limit 

L � δL /β � l cell . This requirement implies that for fixed Peclet 

umber 

S T 
U 

∼ S L 
U 

= 

ε

P e 
� 1 since ε ≡ l cell 

δL 

� 1 . 

hat is to say, the burning speed is small when compared to the 

ow amplitude, as it is the case for sufficiently thick flames. In 

ddition, in the case of time-dependent flows, the homogenization 

nalysis below requires that δL /βS L � t cell , where δL /βS L is the res- 

dence time in the reaction zone. 
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Under the assumptions above, the flame can be regarded in 

he first approximation as being planar on the flame (large) scale 

 ∼ δL , whereas it will be non-planar on the flow (small) scale 

 ∼ l cell . The burning speed S T will be a time-independent constant 

n the first approximation and involve corrections of order ε in the 

ollowing approximation. 

The effect of a rapidly-varying small-scale motion is known to 

anifest as a diffusion process on the large scale. The homoge- 

ization theory can be used to quantify the flow-enhanced diffu- 

ion analytically by taking advantage of the separation of scales 

etween the flame and the flow. An excellent review of this tech- 

ique, applied to a non-reactive scalar field, has been provided by 

ajda and Kramer [28] . We shall employ this technique to our 

ame propagation problem, following [28] closely. 

. Governing equations 

It is advantageous to adopt a reference frame that is mov- 

ng with the flame. The time and space coordinates are non- 

imensionalized using the flow scales, 

= 

tU 

l cell 

, ξ = 

1 

l cell 

(
x + n 

∫ t 

0 

S T dt 

)
= 

x 

l cell 

+ 

εn 

P e 

∫ τ

0 

S dτ, (1) 

here S ≡ S T /S L is the ratio of effective burning speed to the lami-

ar flame speed. Therefore (ξ, τ ) are appropriate independent vari- 

bles for the small-scale flow field, but not for the thick flame. 

rom a small-scale viewpoint, the coordinate shift ξ − x /l cell be- 

ween the laboratory frame and the flame-fixed frame is negligible 

t leading order according to (1) since ε � 1 . In the frame attached 

o the flame, the laboratory-frame vector field v (x /l cell , t/t cell ) 

ransforms into 

 (ξ, τ ) ≡ 1 

U 

v 

(
x 

l cell 

(ξ, τ ) , 
τSt 

P e 

)

fter scaling with U . In the limit ε → 0 , the right-hand side of this

quation may be expanded in a Taylor series as 

 (ξ, τ ) = 

v 

U 

− εS 0 τ

U P e 
n · ∇ ξ v + · · · (2) 

here v , ∇ ξ v , . . . are evaluated at (ξ, τ ) and S 0 denotes the

eading-order value of S. 

The unburnt reacting mixture is assumed to be fuel lean, whose 

ombustion chemistry is modeled by a single-step irreversible Ar- 

henius reaction with the fuel burning rate (in mass units) per unit 

olume given by ρBY F e 
−E/RT , that involves the pre-exponential fac- 

or B , the gas density ρ , the fuel mass fraction Y F , the tempera-

ure T , the activation energy E and the universal gas constant R . 

urther, for simplicity, we shall adopt the thermo-diffusive approx- 

mation in which density and molecular diffusivities are constant 

nd briefly discuss the effect of variable density later. Also, we in- 

roduce the Zeldovich number β , heat release parameter α and the 

aminar flame speed S L (for β � 1 ) by 

= 

E(T ad − T u ) 

RT 2 
ad 

, α = 

T ad − T u 

T ad 

, S L = 

(
2 Le β−2 BD T e 

−E/RT ad 

)1 / 2 
. 

(3) 

n these expressions, Le denotes the Lewis number, T u the unburnt 

as temperature and T ad = T u + qY F,u /c p the adiabatic flame tem- 

erature, where q is the heat release rate per unit mass of fuel 

urnt, Y F,u is the fuel mass fraction in the unburnt mixture and c p 
s the constant-pressure specific heat. 

The scaled fuel mass fraction and temperature are defined by 

 F = 

Y F 
Y F,u 

, θ = 

T − T u 

T ad − T u 
. 
3 
he non-dimensional governing equations in a frame attached to 

he flame are given by 

 e 
∂y F 
∂τ

+ (εSn + P e u ) · ∇ ξ y F = 

1 

Le 
∇ 

2 
ξ y F − ε2 ω(y F , θ ) , (4) 

 e 
∂θ

∂τ
+ (εSn + P e u ) · ∇ ξ θ = ∇ 

2 
ξ θ + ε2 ω(y F , θ ) (5) 

here 

(y F , θ ) = 

β2 y F 
2 Le 

exp 

[
β(θ − 1) 

1 + α(θ − 1) 

]
. 

he boundary conditions for y F and θ need to be prescribed in 

erms of the large scale variable x /δL , i.e., εξ. They are given by 

ξ · n → −∞ : y F = 1 , θ = 0 , (6) 

ξ · n → + ∞ : y F = 0 , ε−1 ∇ ξ θ · n = 0 (7) 

n the direction of n . Periodicity conditions are imposed in other 

patial directions and in time. 

. Asymptotic analysis in the double limit ε → 0 , βε → 0 

In this section, we carry out an asymptotic analysis of the prob- 

em (4) –(7) in the double limit ε → 0 , βε → 0 . At leading order,

he flame structure is steady and one dimensional on the large 

cale X ≡ εξ ∼ 1 . To describe this structure on this scale, we use 

he multiple-scale technique, involving the small-scale coordinates 

ξ, τ ) and the large-scale coordinate X . Consequently, derivatives 

ransform according to 

 ξ → ∇ ξ + ε∇ X 

here ∇ ξ and ∇ X are the gradient operators in the small-scale and 

arge-scale coordinates. The appropriate expansion for the solution 

an be written as 

 F = F 0 (X ) + εF 1 (X , ξ, τ ) + ε2 F 2 (X , ξ, τ ) + · · · , 

θ = 
0 (X ) + ε
1 (X , ξ, τ ) + ε2 
2 (X , ξ, τ ) + · · · , 

S = S 0 + εS 1 (τ ) + ε2 S 2 (τ ) + · · · . 

Substituting these expansions into (4) –(7) and collecting terms 

f different orders of ε, we obtain a series of equations for F i , 
i 

nd S i . The equations that arise at leading order are identically sat- 

sfied as we have already anticipated that F 0 and 
0 are indepen- 

ent of small-scale variables. The equations at the next two orders 

re found to be 

 F F 1 = − P e Le v · ∇ X F 0 , (8) 

 T 
1 = − P e v · ∇ X 
0 , (9) 

 F F 2 = − S 0 Le 
[
n − τn · ∇ ξ v 

]
· (∇ X F 0 + ∇ ξ F 1 ) − P e Le v · ∇ X F 1 

+ ∇ 

2 
X F 0 + 2 ∇ ξ · ∇ X F 1 − Le ω(F 0 , 
0 ) , (10) 

 T 
2 = − S 0 
[
n − τn · ∇ ξ v 

]
· (∇ X 
0 + ∇ ξ
1 ) − P e v · ∇ X 
1 

+ ∇ 

2 
X 
0 + 2 ∇ ξ · ∇ X 
1 + ω(F 0 , 
0 ) (11) 

here 

 F ≡ P e Le 
∂ 

∂τ
+ P e Le v · ∇ ξ − ∇ 

2 
ξ , L T ≡ P e 

∂ 

∂τ
+ P e v · ∇ ξ − ∇ 

2 
ξ

(12) 

re differential operators that act on small-scale variables. 
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Solutions for the first-order Eqs. (8) - (9) are obtained by assum- 

ng 

 1 = F 1 a (X ) + P e Le K F · ∇ X F 0 , (13) 

1 = 
1 a (X ) + P e K T · ∇ X 
0 (14) 

here the vectors K F (ξ, τ ) and K T (ξ, τ ) are the periodic solutions

f 

 F K F = −v , L T K T = −v . (15) 

ince v is of the form v = v (ξ, τSt / Pe ) , the function K F depends

nly on the two parameters Pe Le and St Le while, similarly, K T only 

epends on Pe and St . 

The second-order non-homogeneous Eqs. (10) - (11) governing F 2 
nd 
2 are solvable only if the right-hand sides satisfy a solv- 

bility condition. Specifically, following [28] , the solvability con- 

ition states that given a periodic function f (ξ, τ ) , the equa- 

ion L F g(ξ, τ ) = f (ξ, τ ) has a smooth periodic solution if and only

f f (ξ, τ ) has zero mean. Imposing this condition on Eq. (11) , for

nstance, we obtain 

〈−S 0 
[
n − τn · ∇ ξ v 

]
·
(∇ X 
0 + ∇ ξ
1 

)
− Pe v · ∇ X 
1 

+ ∇ 

2 
X 
0 + 2 ∇ ξ · ∇ X 
1 + ω〉 = 0 

here 〈 · 〉 denotes an average 1 over the small scale variables ξ and 

. 

Clearly, terms such as −S 0 n · ∇ X 
0 + ∇ 

2 
X 
0 + ω that do not de-

end on the small-scale variables are unaffected by the averaging 

peration. On the other hand, all terms that contain ∇ ξ can be 

hown, using the divergence theorem and the periodicity boundary 

ondition, to vanish identically. The only remaining contribution 

s due to Pe v · ∇ X 
1 in which only the second term in (14) sur-

ives upon averaging. This particular contribution Pe 〈 v · ∇ X 
1 〉 = 

e 2 〈 v · ∇ X (K T · ∇ X 
0 ) 〉 can be written as Pe 2 ∇ X · (〈 vK T 〉 · ∇ X 
0 )

r, equivalently Pe 2 〈 vK T 〉 : ∇ X ∇ X 
0 since v is independent of X

nd the averaging operation affects only the small-scale variables. 

urthermore since the Hessian matrix ∇ X ∇ X which represents the 

ensor ∂ 2 / ∂ X i ∂ X j is clearly symmetric, we may symmetrise the 

roduct vK T . 

Now, on applying the solvability conditions for both dependent 

ariables and simplifying the results, we obtain 

 0 n · ∇ X F 0 = 

1 

Le 
∇ X · ( D F · ∇ X F 0 ) − ω(F 0 , 
0 ) , (16) 

 0 n · ∇ X 
0 = ∇ X · ( D T · ∇ X 
0 ) + ω(F 0 , 
0 ) (17) 

here the effective diffusion matrices D F = D F ( Pe Le , St Le ) and 

 T = D F ( Pe , St ) are given 

2 by 

 F = I − 1 

2 

P e 2 Le 2 
〈
vK F + (vK F ) 

T 
〉
= I + P e 2 Le 2 

〈∇ ξ K F ◦ (∇ ξ K F ) 
T 
〉

(18) 

 T = I − 1 

2 

P e 2 
〈
vK T + (vK T ) 

T 
〉
= I + P e 2 

〈∇ ξ K T ◦ (∇ ξ K T ) 
T 
〉

(19) 

n which I denotes the identity matrix and the symbol ◦ represents 

lement-wise matrix multiplication such that, for example, D T,i j = 

i j + Pe 2 〈∇ ξ K T,i · ∇ ξ K T, j 〉 . 
While formulas (18) - (19) for the effective diffusion matrices are 

f general use in a variety of problems such as problems involving 
1 The average is defined by 〈 ϕ〉 ≡ St 
Pe 

∫ Pe / St 

0 

∫ 1 
0 

∫ 1 
0 

∫ 1 
0 ϕ d ξ1 d ξ2 d ξ3 d τ . 

2 The equality of the second relation to the first is shown readily in in- 

ex notation [28] : substitute v i = L F K F,i to obtain 1 
2 
〈 v i K F, j + v j K F,i 〉 = 

1 
2 
〈 K F, j L F K F,i + 

 F,i L F K F, j 〉 , which can be re-written, using (12) , as 1 
2 
〈L F (K F,i K F, j ) + 2 ∇ ξ K F,i · ∇ ξ K F, j 〉 

nd then impose the solvability condition for the first term 〈L F (K F,i K F, j ) 〉 = 0 . 

i

s

a

n

c

C

4 
ropagation and stability, they are more transparent if an axis of 

he coordinate system is chosen to be along n . Let R be the rota- 

ion matrix which transforms the original coordinate vector X into 

 new coordinate vector X 

′ = R X such that the X ′ 
1 
-axis is directed 

long n . In the rotated coordinate system, F 0 (X ′ 1 ) and 
0 (X ′ 1 ) are

unction only of X ′ 
1 

and therefore Eqs. (16) - (17) simplify to 

 0 
dF 0 
dX 

′ 
1 

= 

D 

′ 
F, 11 

Le 

d 2 F 0 

dX 

′ 2 
1 

− ω(F 0 , 
0 ) , (20) 

 0 
d
0 

dX 

′ 
1 

= D 

′ 
T, 11 

d 2 
0 

dX 

′ 2 
1 

+ ω(F 0 , 
0 ) (21) 

here D 

′ 
F = R D F R 

T and D 

′ 
T = R D T R 

T . Also, the boundary con- 

itions (6) - (7) reduce to 

 

′ 
1 → −∞ : F 0 − 1 = 
0 = 0 and X 

′ 
1 → + ∞ : F 0 = 

d
0 

dX 

′ 
1 

= 0 . 

(22) 

The solution of problem (20) - (22) for large β , as done e.g. 

n [29] , provides the following formulas for the effective burning 

peed and the effective Lewis number 

S T 
S L 

� S 0 = 

D 

′ 
T, 11 √ 

D 

′ 
F, 11 

= 

√ 

Le eff 

Le 
D 

′ 
T, 11 

and Le eff = Le 
D 

′ 
T, 11 

D 

′ 
F, 11 

. 

(23) 

ote that the dependence of S 0 on D 

′ 
T, 11 

and D 

′ 
F, 11 

is intuitively 

orrect as it extends the dependence of the laminar speed S L on 

 T and D F in (3) , namely S L ∝ D T / 
√ 

D F , by replacing D T and D F 

ith corresponding flow-enhanced values. 

. Scaling laws for large Peclet numbers 

The dependence of the effective burning speed ratio S T /S L and 

he effective Lewis number Le eff on Pe is determined by the en- 

anced diffusion coefficients, as indicated in (23) . For large values 

f Pe , we may assume that the asymptotic behaviour of the effec- 

ive diffusion coefficients is of the form 

 

′ 
F, 11 − 1 ∼ ( P e Le ) σ , D 

′ 
T, 11 − 1 ∼ P e σ for P e � 1 , (24) 

nd similar behaviours (with different exponents σ ) for other ele- 

ents of the matrix D F − I . Then (23) implies that 

e eff � Le 1 −σ
, 

S T 
S L 

∼
(

P e 

Le 

)σ/ 2 

, (25) 

rovided the exponent σ , which needs to be computed as done 

elow, is positive. Negative values of σ indicate that there is no 

nhancement of diffusion with respect to molecular diffusion for 

e � 1 and therefore 

e eff = Le , 
S T 
S L 

= 1 . 

n fact, as demonstrated in [28] , σ is bounded from above, namely 

≤ 2 . This upper bound indicates that maximal enhancement 

f diffusion is achieved when σ = 2 . The maximal enhancement 

n fact occurs for steady, unidirectional periodic (or confined) 

hear flows and is associated with the Taylor’s dispersion mech- 

nism [29] . It is instructive to consider two classes of flow fields, 

amely, unsteady unidirectional flows for which the exponent σ
an be determined explicitly and the two-dimensional so-called 

hildress-Soward flows for which σ will be computed numerically. 
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Fig. 2. Streamline plots for the Childress-Soward flows (27) for selected values of δ. The colours describe the scalar vorticity field (normalized by its maximum value with 

red indicating a positive or counter-clockwise vorticity and blue a negative or clockwise vorticity). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

5

s

p

T

s

o

o

v

U

i

o

D

a

a

w

r

a

e

O

o

fl

m

h

5

fl

fl

A

0

t

o

g

v

A  

c

fl

δ
e

s

Fig. 3. The exponents σ in the formula D ′ T, 11 − 1 ∼ Pe σ (red line) and in the for- 

mula D ′ T, 22 − 1 ∼ Pe σ (blue line) vs. the parameter δ appearing in (27) , obtained by 

fitting numerical computations for Pe in the range [6 × 10 3 , 10 4 ] . (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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.1. Unsteady unidirectional flows 

Diffusion enhancement has been studied in the context of un- 

teady unidirectional periodic shear flows by Zeldovich [30] , who 

rovided an exact solution for the effective diffusion coefficient. 

he similar diffusion problem in confined geometries has been 

tudied by Watson [31] . The general unidirectional shear flow peri- 

dic in time and space with zero mean may be written in the form 

f a double Fourier series as 

 1 (ξ2 , τ ) = 

∑ 

(k,m ) � =(0 , 0) 

ˆ v k,m 

e 2 π i (kξ2 + mτSt/Pe ) , v 2 = v 3 = 0 . 

sing this expression in (15) to determine K F and then us- 

ng (18) to determine D 

′ 
F , we find that the only non-zero element 

f D 

′ 
F − I is D 

′ 
F, 11 

− 1 . This term is given by 

 

′ 
F, 11 − 1 = 

∑ 

(k,m ) � =(0 , 0) 

(k P e Le ) 2 | ̂ v k,m 

| 2 
4 π2 k 4 + (m St Le ) 2 

, (26) 

 result which is equivalent to formula (55) of [28] , which gener- 

lizes an earlier formula originally derived by Zeldovich [30] . It is 

orth noting that when St ∼ Pe , i.e., when the time scale t cell cor- 

esponds to l cell /U , D 

′ 
F, 11 

− 1 tends to a constant independent of Pe 

s Pe → ∞ . This indicates that the exponent σ = 0 and that the 

nhancement of diffusion remains bounded as noted by Zeldovich. 

n the other hand, when St = 0 corresponding to a steady flow, 

r more generally when St � Pe corresponding to a quasi-steady 

ow, formula (26) indicates that D 

′ 
F, 11 

− 1 ∼ ( Pe Le ) 2 , which is the 

aximal enhancement aforementioned. For St � Pe , diffusion en- 

ancement is negligible according to (26) . 

.2. Steady two-dimensional Childress-Soward flows 

In addition to the unidirectional flows, another prototypical 

ow which has been used in theoretical studies such as [1–4] on 

ame-flow interaction is the so-called vortical (or cellular flow). 

 useful class of simple steady flows depending on a parameter 

 ≤ δ ≤ 1 which encompasses both the shear and cellular flows is 

he so-called Childress-Soward flows [32] . The velocity components 

f the Childress-Soward flow in a suitable coordinate system are 

iven by 

 1 = −(1 + δ) sin (2 πξ2 ) , v 2 = −(1 − δ) sin (2 πξ1 ) , v 3 = 0 . 

(27) 

s shown by the streamline plots in Fig. 2 , we have a cellular flow

onsisting of square vortices for δ = 0 and a unidirectional shear 

ow directed along ξ1 -axis for δ = 1 , with intermediate values of 

representing a series of cats-eye vortices with varying degrees of 

ddy-like/shear motion. 

For the Childress-Soward flows (in the frame of reference cho- 

en) given by (27) , D 

′ − I is a diagonal matrix. Corresponding to 
T 

5 
hese flows, we now calculate numerically the exponent σ for 

ach diagonal entry of the matrix D 

′ 
T − I . For D 

′ 
T, 11 

− 1 we first 

olve (15) for K T , then evaluate D 

′ 
T using (19) and then finally fit 

he data for large Pe to the profile 

 

′ 
T, 11 − 1 ∼ P e σ . (28) 

e proceed similarly to determine the exponent σ for D 

′ 
T, 22 − 1 . 

he numerical results are obtained by solving the inhomogeneous 

lliptic PDEs (15) using COMSOL Multiphysics software. The equa- 

ions are solved subject to periodic boundary conditions along with 

n additional condition, say K T (0 , 0) = 0 . The latter condition is

eeded since the solution is unique only within an additive con- 

tant. For the empirical fit, we have used the numerical results cor- 

esponding to Pe in the range [6 × 10 3 , 10 4 ] . It should be cautioned

hat the accuracy in determining the exponent σ depends on its 

alue; the larger the value of σ , the better is the fitting accuracy. 

The computed exponents σ corresponding to the two diagonal 

lements are plotted in Fig. 3 as a function of δ. It can be observed

rom the figure that when δ = 0 , σ = 1 / 2 in agreement with the

redictions of past investigations [33,34] on square vortices. Sim- 

larly for δ = 1 corresponding to a unidirectional shear flow, it is 

een that the enhancement of diffusion is in the ξ1 -direction only, 

n line with the conclusions of the previous subsection. 

We note that as δ is increased, the enhancement of diffusion 

ncreases in the ξ1 -direction and decreases in the other direction. 

his translates into the effective diffusion process becoming more 

nisotropic as δ is increased. For δ = 0 , there is no anisotropy in 
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Fig. 4. The effective burning speed ratio S T /S L vs. the Peclet number Pe for the Childress-Soward flows (27) with Le = 1 . The left figure corresponds to flame propagation 

along the ξ1 -axis and the right figure to the ξ2 -axis. 
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iffusion as both exponents in the figure are equal, while maxi- 

um anisotropy is achieved when δ = 1 . This latter case for which 

he maximum value of σ is achieved and corresponds to the ξ1 

irection, the diffusion enhancement is attributable to the well- 

nown Taylor dispersion mechanism [35] . The relatively smaller 

iffusion enhancement when δ = 0 may be explained by the fact 

hat although convective transport of a scalar can be quick within 

 given eddy, the transport to an adjacent eddy is still predomi- 

antly controlled by the slow molecular diffusion. 

Using in (25) the exponents computed in Fig. 3 , we can de- 

ermine the asymptotic behaviours of the effective Lewis number 

nd the effective burning speed ratio. In the case of square vortices 

 δ = 0 ), these are given by 

e eff � Le 1 / 2 , 
S T 
S L 

∼
(

P e 

Le 

)1 / 4 

= 

1 

Le 1 / 4 

(
U 

S L 

)1 / 4 (
l cell 

δL 

)1 / 4 

, 

(29) 

rrespective of the direction of flame propagation due to the 

sotropy of the effective diffusion process. As for the case of unidi- 

ectional shear ( δ = 1 ), we have 

e eff � 

1 

Le 
, 

S T 
S L 

∼ P e 

Le 
= 

1 

Le 

U 

S L 

l cell 

δL 

(30) 

hen the flame propagates in the direction of the shear flow ( ξ1 - 

irection). Of course, if we consider flame propagation in the ξ2 - 

irection where there is no diffusion enhancement, then 

e eff = Le , 
S T 
S L 

= 1 . 

he behaviours of other values of δ, lie between the above two 

imiting cases δ = 0 and δ = 1 just considered. It should be noted 

hat the 1 
4 th power dependence of S T /S L on Pe given in (29) for the

ase of square vortices was first identified by Audoly et al. [4] and 

ater confirmed in [8,36,37] ; see also [38 , pp.186 –187]. On the 

ther hand, the dependence on Pe and Le in (30) for unidirectional 

hear flows was first reported in [29] . 

.3. Potential implications for turbulent premixed combustion 

It is worth comparing the asymptotic behaviours (29) - (30) with 

he corresponding trend in premixed turbulent combustion in the 

istributed reaction zone regime. We begin by comparing our re- 

ults with the burning speed formula 

S T 
S L 

∼
√ 

Re 

Le 
∼ Re λ

Le 
(31) 

eported in the recent experimental study [26] on highly turbulent 

et flames; here Re is the turbulent Reynolds number and Re is 
λ

6 
he Taylor-scale Reynolds number. Now according to Damköhler’s 

econd hypothesis [39] , the effect of small scale turbulence is to 

nhance the effective diffusion coefficients and hence the effective 

urning speed S T , without altering the flame structure. Therefore, 

s we argued in [19] , we may write 

S T 
S L 

= 

√ 

Le tur D T , tur 

Le D T 

(32) 

hich follows from using formula (3) ; here Le tur = D T, tur /D F, tur is 

he turbulent Lewis number and D T, tur and D F, tur are the turbulent 

or effective) thermal diffusivity and fuel diffusion coefficient. 

Comparing the last two relations, we find 

e tur = 

1 

Le 
and 

D T, tur 

D T 

∼ Re . (33) 

he Lewis number dependence of the turbulent burning 

peed (31) and the turbulent Lewis number (33) appear to be 

n better agreement with the predictions of unidirectional shear 

ow (30) than the square vortices (29) . This observation is some- 

hat surprising as the shear flow lacks more the isotropic aspect 

f turbulent diffusion coefficients than the cellular flows. Further- 

ore, we note that it is difficult to reconcile the dependence on 

he Reynolds number between the turbulent and the laminar flow 

ases. Yet, it is interesting to note that formulas (31) with (30) are 

n good agreement if Pe is identified with the Reynolds number 

e λ based on the Taylor microscale (rather than Re ) . 

It is also instructive to examine the dependence of the effective 

urning speed S T , rather than S T /S L , on the Lewis number Le . In

articular, since S L ∝ 

√ 

Le , we have 

 T ∝ Le (1 −σ ) / 2 (34) 

r equivalently S T ∝ 

√ 

Le eff . From the above relation, we can con- 

lude that the effective burning speed S T decreases with increasing 

ewis number only when σ > 1 . This trend for S T is also observed

n turbulent cases, see e.g. Fig. 3 in [17] , which can therefore be 

xplained, in part, by flow-enhanced diffusion. 

Irrespective of the complications associated with turbulent 

ombustion, our study highlights a physically important result. 

pecifically, the study shows that the flow plays a crucial part in 

etermining the effective Lewis number, leading to surprising re- 

ults such as Le eff � 1 / Le for parallel flows (30) and Le eff � Le 1 / 2 

or square vortices (29) at large values of Pe . Such results can pro- 

ide explanations for unexpected flame behaviours in turbulent or 

omplex flow fields. An example of such unexpected behaviours is 

he experimental observation reported in [40,41] that turbulence 

ppears to facilitate ignition in Le > 1 mixtures and to inhibit it 

n Le < 1 mixtures. Partial explanation to this observation may be 
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Fig. 5. The factor 
√ 

Le eff / Le (36) as a function of Pe for selected values of Le . The left figure corresponds to the cellular flow ( δ = 0 ) and the right figure to the shear flow 

( δ = 1 ). In both cases, flame is assumed to propagate in the ξ1 -direction. 
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rovided by the dependence of Le eff on the flow field emphasized 

erein. 

. Results for Childress-Soward flows with arbitrary Peclet 

umbers 

In the previous section, we have explored the asymptotic be- 

aviours of the burning speed for large values of the Peclet num- 

er. Here we shall present illustrative results for arbitrary values of 

e in the case of Childress-Soward flows (27) . We first consider the 

nity Lewis number case for which formula (23) implies that 

S T 
S L 

� 

√ 

D 

′ 
T, 11 

or 
S T 
S L 

� 

√ 

D 

′ 
T, 22 

(35) 

epending on whether the flame propagates in the ξ1 -direction or 

he ξ2 -direction. 

Figure 4 is generated by computing the effective diffusion co- 

fficients in (18) - (19) for different values of Pe and substituting 

nto (35) . The curves of S T /S L reveal a quadratic dependence on 

e for small values of Pe , whereas at large values they approach 

he asymptotic behaviour identified in the previous section. In par- 

icular, it is worth noting at large values of Pe the linear behaviour 

or δ = 1 and the sublinear behaviour when δ < 1 which exhibits a 

ending effect of the curve S T /S L vs. Pe . 

It is also worth noting that the curve for the periodic shear flow 

 δ = 1 ) with flame propagation along ξ1 -direction may be com- 

ared with the corresponding curves reported for Poiseuille flows. 

pecifically, our findings are consistent with the curves in Figs. 5 

nd 6 of [42] and figure 8 of [43] . In the case of cellular flows

 δ = 0 ), the findings are found to be consistent with the result ex-

ibited in Fig. 4.32 of [44] . 

We now examine the influence of non-unity Lewis numbers. 

o this end, we note that the burning speed ratio S T /S L for non-

nity Lewis numbers can be obtained according to formula (23) by 

ultiplying the corresponding ratio S T /S L for unity Lewis numbers 

lotted in Fig. 4 by the factor 
√ 

Le eff / Le . In other words, the factor 

 

Le eff 

Le 
= 

S T /S L 
(S T /S L ) | Le =1 

(36) 

s a convenient way to quantity the departure of the scaled burn- 

ng speed from its unit Lewis number value. This factor is com- 

uted using (18) - (19) and (23) and is plotted as a function of Pe in

ig. 5 for selected values of Le . All curves in this figure are found

o exhibit a quadratic behaviour near Pe = 0 and asymptote to the 

alue 1 / Le σ/ 2 for large Pe . 
7 
. Effects of thermal expansion and heat loss 

Influence of thermal expansion and heat loss can be taken into 

ccount in a straightforward manner because the primary change 

hat encountered here is the enhancement of diffusion coefficients. 

irst, let us address thermal expansion effects. It is clear that den- 

ity variations associated with thermal expansion due to heat re- 

ease must be in the first approximation a function of X given 

y ρ0 (X ) , as has been shown in the related confined geome- 

ry problems [19,29,45,46] . This means that density is practically 

onstant on the small-scale variables (ξ , τ ) . On account of the 

ensity variation on the large scale, the effective diffusion coeffi- 

ients (18) and (19) will depend on ρ0 (X ) ; see e.g. formulas (21) -

22) in [29] . It follows that the required change in our asymptotic 

ormulas (23) is that the diffusion coefficients need simply to be 

valuated at the burnt gas temperature. This implies, for example, 

hat formula (24) need to be replaced with 

 

′ 
F, 11 − 1 ∼ (P Le ) σ where P = P e (1 − α) (37) 

s the Peclet number involving the gas expansion parameter α de- 

ned in (3) . The reader is referred to [19] for an analysis that in-

orporates the thermal expansion in a related simpler problem. 

Turning now to the effect of heat loss, let us assume that the 

eat loss rate per unit volume may be written as ρc p K(T − T u ) ,

here K 

−1 is a characteristic cooling time. The scaling of K for 

ame quenching is given by Kδ2 
L /D T ∼ 1 /β . Thus, we can introduce 

he parameter κ = βKδ2 
L 
/D T , which introduces on the right-hand 

ide a term −ε2 κθ/β in (5) and correspondingly a term −κ
0 /β
n (17) . The classical asymptotic result [47] for the burning speed 

ith account taken of diffusion enhancement then becomes 

 

2 
0 ln 

S 0 
S 0 ,ad 

= −κD 

′ 
T, 11 (38) 

here S 0 ,ad is the adiabatic flame speed given by (23) . The burning 

peed S 0 exists for κ ≤ κext , where 

ext = 

S 2 
0 ,ad 

2 e D 

′ 
T, 11 

= 

Le eff 

2 e Le 
. (39) 

or large Peclet numbers with σ > 0 , this formula simplifies to 

ext = 

1 

2 e Le σ
(40) 

hich indicates that for Le < 1 , the extinction limit is enlarged by 

 factor 1 / Le σ in the presence of the periodic flow, whereas it is 

iminished by the same amount for Le > 1 . This effect of diffusion 

nhancement on flame quenching is greatest when σ = 2 , as iden- 

ified for Taylor-dispersion controlled flames in [19] . 
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. Possible extensions of the study 

Although, the results derived herein pertain to zero-mean, 

mall-scale periodic flows, they are also applicable if the flows 

ave a small non-zero mean which varies on the large scale. 

or example, the formulas for the generalized diffusion matri- 

es derived in (18) - (19) are still applicable for the flow field 

 (x /l cell , t/t cell ) /U + εV (x /δL , tS L /δL ) where V denotes the large-

cale weak mean flow. The convection velocity εSn ≈ εS 0 n in (4) - 

5) , emerging in the flame-fixed frame, is itself a weak mean flow, 

lbeit a constant one at leading order. Excluding some peculiar 

ases discussed in [28 , Section 2.1.3.1], there appears to be no the- 

retical development for the large-scale mean flow of arbitrary 

agnitude. The latter problem is also of considerable interest for 

uture investigations. 

To close this section, we note that findings of the present pa- 

er are applicable, strictly speaking, when δL /β � l cell . When the 

ow scale l cell is of the order of, or slightly larger than, the reac-

ion zone thickness δL /β , further progress can be made provided 

 cell � δL . This can be done by carrying out an asymptotic analysis 

n the distinguished limit δL /β ∼ l cell , as done in [19] for unidirec- 

ional flows. In this distinguished limit, the theoretical approach 

eveloped here can be applied to the preheat and post flame 

ones, but for the reaction zone, a convective-diffusive-reactive in- 

er problem is obtained. Specifically, consideration of this distin- 

uished limit shows that the first corrections to the leading-order 

olutions obtained here are of order βε = β l cell /δL . 

. Concluding remarks 

In this paper, we have carried out an asymptotic analysis of 

he propagation of a thick flame in small-scale, zero-mean, spatio- 

emporal periodic flows. Using activation energy asymptotics and 

omogenization theory, formulas (23) for the effective Lewis num- 

er Le eff and the effective burning speed ratio S T /S L have been de- 

ived. The formulas quantify the dependence of the propagation 

nd structure of the flame on the flow via flow enhanced diffu- 

ion. In particular, when the flow Peclet number Pe is large, the 

nhanced fuel diffusion coefficient and the enhanced thermal dif- 

usivity are found to grow like ( Pe Le ) σ and Pe σ , respectively, where 

≤ 2 is a constant that depends on the flow and the direction 

f flame propagation. Consequently, this leads to Le eff � Le 1 −σ and 

 T /S L ∼ ( Pe / Le ) σ/ 2 ; the maximal diffusion enhancement ( σ = 2 ) is

chieved for steady, unidirectional flows. The result also indicates 

hat the effective burning speed S T ∝ Le (1 −σ ) / 2 increases with de- 

reasing Lewis numbers only when σ > 1 . 

We have also briefly addressed the effect of heat loss on flame 

ropagation and quenching in a flow field in Section 7 . In particu- 

ar, it is worth noting that the quenching limit due to heat loss is 

ncreased by the factor 1 / Le σ due to the presence of the flow. That

s to say, small-scale flows increase the quenching limit of subunity 

ewis-number mixtures and decrease it for mixtures with Le > 1 . 

Finally, the potential implications of the findings to bet- 

er understand turbulent combustion have been summarized in 

ection 5.3 . A particular aspect which has been emphasised in our 

tudy is the dependence of the flame characteristics on the Lewis 

umber in the presence of high-intensity, small-scale flows. This 

ependence has been shown to intimately depend on the flow 

hrough Taylor-dispersion like flow-enhanced diffusion, rather than 

erely on the conventional molecular diffusion coupled with cur- 

ature effects. We have also argued that the flow-dependent ef- 

ective Lewis number identified herein may be useful to explain 

he peculiar feature that turbulence appears to facilitate ignition 

n Le > 1 mixtures and to inhibit it in Le < 1 mixtures, observed in

xperiments on ignition in a turbulent reactive flow [40,41] . 
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