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ABSTRACT

Diffusion flame streets, observed in non-premixed micro-combustion devices, align parallel to a shear
flow. They are observed to occur in mixtures with high Lewis number (Le) fuels, provided that the flow
Reynolds number, or the Peclet number Pe, exceeds a critical value. The underlying mechanisms behind
these observations have not yet been fully understood. In the present paper, we identify the coupling
between diffusive-thermal instabilities and Taylor dispersion as a mechanism which is able to explain
the experimental observations above. The explanation is largely based on the fact that Taylor dispersion
enhances all diffusion processes in the flow direction, leading effectively to anisotropic diffusion with an
effective (flow-dependent) Lewis number in the flow direction which is proportional to 1/Le for Pe > 1.
Validation of the identified mechanism is demonstrated within a simple model by investigating the sta-
bility of a planar diffusion flame established parallel to a plane Poiseuille flow in a narrow channel. A
linear stability analysis, leading to an eigenvalue problem solved numerically, shows that cellular (or fi-
nite wavelength) instabilities emerge for high Lewis number fuels when the Peclet number exceeds a
critical value. Furthermore, for Peclet numbers below this critical value, longwave instabilities with or
without time oscillations are obtained. Stability regime diagrams are presented for illustrative cases in
a Le — Pe plane where various instability domains are identified. Finally, the linear analysis is supported
and complemented by time dependent numerical simulations, describing the evolution of unstable dif-
fusion flames. The simulations demonstrate the existence of stable cellular structures and show that the
longwave instabilities are conducive to flame extinction.

© 2023 The Author(s). Published by Elsevier Inc. on behalf of The Combustion Institute.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Formation of diffusion flame streets in non-premixed micro-
combustion channels, first reported in [1-3], has been shown to
exhibit peculiar features that are not observed in large scale burn-
ers. First of all, they are found to occur readily when using heavier
fuels but not lighter fuels such as hydrogen. In the latter case, a
continuous diffusion flame is observed [1,3] unless the inlet mix-
ture is sufficiently diluted with helium which is known to increase
the effective Lewis number. In summary, flame streets are found
to occur in non-premixed combustion when the effective Lewis
number is sufficiently large [3]. Moreover, they are observed only
if the flow Reynolds number (or, the flow rate) exceeds a criti-
cal value [1-5]; sufficiently above this critical value the streets are
found to be stable. When the Reynolds number is lower than the
critical Reynolds number, typically the quenched state is observed.
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However, depending on the conditions prevailing at the channel
exit, sometimes repetitive extinction-ignition events starting from
the exit region and involving edge flame propagation are observed.
Computational studies investigating these flame streets [6-9] have
qualitatively reproduced the experimental observations.

The critical Reynolds number can depend on a number of rele-
vant controlling parameters such as the mixture strength, heat loss
mechanism, type of the channel cross-section, etc; for example, the
critical Reynolds number is found to decrease with increasing wall
temperature [5]. Regardless, the important point to note is that the
existence of a critical Reynolds number provides strong evidence
for a flow-induced effect causing the formation of a flame street.
However, the underlying physical mechanisms behind the experi-
mental observations have not been yet fully identified. In partic-
ular, despite numerous efforts, the following two issues still lack
clear explanations:

1. Why planar diffusion flames aligned with the shear flow do not
exist for heavier fuels when effective Lewis number of the inlet
mixtures is large?
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2. What justifies the existence of a critical Reynolds number (or,
equivalently a critical Peclet number) above which stable diffu-
sion flame streets are encountered?

The suggestion in [2,3]| that the observed patterns are the re-
sult of an instability appears not to have been pursued yet. In the
present contribution, we shall show that the two aforementioned
issues may be explained as being caused by well-known diffusive-
thermal flame instabilities, provided account is made of Taylor’s
dispersion mechanism [10].

Although Taylor dispersion played a fundamental role in a wide
range of practical applications involving unidirectional flows, its
importance in combustion systems has not been recognized until
recently. Its influence on the structure and stability of premixed
flames are investigated in [11-15] and the structure of Burke-
Schumann diffusion flame is studied in [16,17]. An important re-
sult revealed by the analyses of [12,16] is the presence of aflow-
dependent effective Lewis number in the flow direction, say the x-
direction, given by

_ Le(1 + yPez)

Le .
T 14 yPeLe?

(1)
Here Le is the fuel Lewis number, Pe the Peclet number and y a
constant which is determined by the velocity profile. The signifi-
cance of this formula is clearly elucidated by evaluating it for the
following three values of Pe:

Pe =0 = Ley =Le, Pe=1/\/yle = Lex =1,
Pe > 1 = Ley = 1/Le. (2)

Thus, the flow-dependent effective Lewis number, Ley, varies from
being purely determined by molecular diffusion and equal to Le
in the absence of flow to being equal to 1/Le when Pe > 1. In
other words, the effect of a shear flow is such that a weakly dif-
fusing scalar appears effectively as a strongly diffusing scalar and
a strongly diffusing scalar appears effectively as a weakly diffus-
ing one if Pe > 1/,/yLe. This peculiar feature of Taylor dispersion
is expected to produce interesting effects on flame characteristics.
For instance, when the diffusion flame lies perpendicular to the
fluid stream [16], subadiabatic flame temperatures are predicted
for low Lewis number fuels and superadiabatic flame tempera-
tures for large Lewis number fuels if Pe > 1/,/yLe. Although for-
mula (1) is not strictly valid when thermal expansion effects are
taken into account, the two limiting forms in (2) for Pe =0 and
Pe > 1 are still correct as shown in [17]. Finally, we can note from
formula (1) that Lex = 1 for all values of Pe if Le = 1.

It is important to emphasize that the enhancement of diffusion
is in the longitudinal (or, flow direction) only and not in the trans-
verse direction. This leads to anisotropic diffusion characterised by
Ley in the x-direction and by Le in the transverse direction. It fol-
lows that the flame alignment with respect to the flow is an essen-
tial aspect to consider when attempting to explain the observations
in nonpremixed micro-combustion devices.

In the present paper, we shall show that the issues mentioned
above can be explained as being the consequence of diffusional-
thermal instabilities occurring in a medium where diffusion is ef-
fectively anisotropic due to Taylor dispersion. This is demonstrated
by investigating the stability of a planar diffusion flame aligned
with the shear flow accounting for the presence of effectively two
distinct Lewis numbers, Ley and Le, in the longitudinal and trans-
verse directions respectively. It is important to emphasize that this
problem, which addresses the stability of the diffusion flame under
the influence of shear-enhanced diffusion, is both novel and fun-
damental and therefore deserves investigation on its own right. To
this end, and in order to highlight the new instability mechanism
involved, we shall purposely adopt suitable simplifying assump-
tions. These include ignoring complications related to entrance
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Fig. 1. Model configuration showing a diffusion flame aligned parallel to a shear
(Poiseuille) flow. The fuel and oxidizer reach the flame by transverse diffusion.

and exit conditions by focusing on the fully-developed flow re-
gion as well as ignoring other effects such as the presence of heat
losses and density variations. The model configuration is sketched
in Fig. 1 which depicts a diffusion flame aligned parallel to a two-
dimensional Poiseuille flow. The instabilities of the underlying one-
dimensional diffusion flames have been studied previously, in the
absence of longitudinal flows, in [7,18-22].

The paper is structured as follows. The problem is formulated
in Section 2. The linear stability of the planar diffusion flame is
characterized by an eigenvalue problem derived in Section 3. The
solution of the eigenvalue problem is presented in Section 4, where
the emerging instabilities are discussed and delineated in a Le —
Pe plane. Numerical simulations complementing the linear stability
findings are presented in Section 5 for selected cases, illustrating
the nonlinear time evolution of unstable flames.

2. Governing equations and boundary conditions

We consider a simple constant-density model to investigate the
stability of a planar flame aligned with the direction of a shear
flow, as sketched in Fig. 1. Thermal expansion and heat loss ef-
fects are ignored so as to demonstrate that account of Taylor dis-
persion is sufficient to obtain the instabilities under consideration.
The chemistry is modeled by a single step irreversible Arrhenius
reaction for which the mass of fuel burnt per unit volume per unit
time is given by

Bp2Y; Y5 exp(—E/RT*).

Here B is the preexponential factor, o is the constant density, Y;*
is the mass fraction of species i, T* is the temperature, E is the
activation energy and R is the universal gas constant.

The temperatures at both sides y = +L are assumed equal and
denoted by T,. It is also assumed that the concentrations of fuel
and oxidizer are maintained fixed at y = <L, namely, Y7 =YrF,
Y5 =0 at the fuel side y=—L and Y7 =0, Yj=Ypo at the ox-
idizer side y = +L. Although such conditions may be delicate to
fully achieve experimentally [23,24], they are adopted herein for
sake of simplicity, as it is done in many other theoretical investi-
gations involving diffusion flames such as [7,19-22,25-30].

The Zeldovich number B, the heat release parameter «, the sto-
ichiometry parameter S and the Damkoéhler number Da are defined
by

E(Toa — Tu)

p = o=

Toa — T S— SYp F
RT? ’
ad

Toa " Yoo’

_ L?/Dr
~ B3[BpYo,0exp(—E/RTyq)] !

where T,y = Ty + qYrp/cp(S+ 1) is the adiabatic flame temperature
at the stoichiometric location. Further, s and q denote the mass
of oxygen consumed and the amount of heat released per unit
mass of fuel burnt, ¢, the constant-pressure specific heat and Dr
the constant thermal diffusivity. The oxidizer Lewis number Leg is

Da

3)
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taken equal to unity and the fuel Lewis number Leg is simply de-
noted as Le.

The problem is analyzed in a frame of reference moving with
the flow mean velocity U. In this frame, the velocity components
are given by

U 3z+2
vX=2<1—hz), vy =1,=0.

In terms of the non-dimensional variables
t* 1 Y

= b, (x,y,z):z(x,y,z/e), YF_YF,F
Y T —T,
Yo = 0 , 6= u
°~ Yoo Ta—Tu

the governing equations read

BYF Pe 8Yp . 1 82YF 82YF 1 82Y1:
B 21735 (axz+ayz oz ) ~haw

8YO Pe BYO 82Yo BZYO 1 82Yo

W + E(] — ) 8x2 + ayz + 67 922 —SDa w (5)

39 Pe 2 00 0?0 0?0 1 9%0

8[’ (1— )ﬁ_w-i_aiyz 62 2 + S+ 1)Daw,
(6)

where € = h/L, Pe = Uh/Dt and

_ g3 B©O—1)
w=p YFYOexp|:l+a(9_1) . (7)

In the limit € — 0, the dependent variables tend to be uniform
in the z direction and the convective terms on the left-side of (4)-
(6) lead upon depth averaging of the equations to enhanced longi-
tudinal diffusion as derived in [11,12,16,17]. The resulting problem
is two dimensional and is given by

oY , 32Y;

8[ |:(l +p Le )7+ ayzi| —Daw (8)
aYo 8 YO BZYO

T =1+ p? )—+ ¥ —SDaw (9)
96 ,. %0 329

where p=,/yPe and y = 2/105. The corresponding lateral bound-
ary conditions are

Yy=1, Yp=0 6=0 at y=-1, (11)

Ye=0, Yp=1, 6=0 at y=+1 (12)

As for the boundary condition in the x-direction, we shall adopt,
for simplicity, periodic conditions, which will allow us in particu-
lar to avoid complications associated with entrance and exit con-
ditions. This is sufficient for our main purpose, which is to identify
the coupling between shear-enhanced diffusion and the instability
of the planar diffusion flame, the focus being on the region where
the flow is fully developed. For investigations that incorporate the
entrance region conditions and other effects such as heat loss, the
reader is referred to [6], where a two-dimensional depth-averaged
model is derived and solved numerically, and to [7-9], which are
based on three-dimensional computations.
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Because Lej is taken to be unity, a simplified formulation of the
above system of equations can be obtained [31] by introducing the
mixture fraction Z and the excess enthalpy variable H,

SYr —Yo+1
S+1 °
which are normalized such that Z—-1=H=0aty=-1and Z=

H =0 at y = +1. A linear combination of (8)-(10) yields the chem-
istry free equation

Z= H=Yr+Yo—1+86, (13)

ad 02 92
|: (l+p)—8zi|[SH S+1)2]=
which upon integration leads to
SH 1
Z—Zozﬁ, where ZO=§(1—y). (14)

Consequently the problem can be described in terms of two de-
pendent variables only, which are selected here to be H and Y.
These are governed by

OH 327”+327” ~ [de—1) % (e-1) 3%
ot \ox2 " 9y2 ) T | Ley 0X2 Le 0y
(15)
oYr 1 0% | 102Y )
- (LeXaXZ oy )= —Daw(H, Yr), (16)

where the scaled variable X = x/,/1 + p? is introduced for conve-
nience and where w(H, Yr) is obtained by substituting the equa-
tions

Yo=1-SH-Yr) — S+ 1)Z (17)

0= (S+1)(H-Yr+2p), (18)

which follow from (13) and (14) into the expression of w given
by (7). It is worth noting in (15)-(16) the presence of the longi-
tudinal Lewis number Ley defined in (1). When Le = 1, we have
Lex =1 and H = 0 and one needs to solve only for Y.

3. The linear stability problem for the planar diffusion flame
3.1. The base solution

The base solution whose stability is under investigation cor-
responds to the steady planar diffusion flame aligned with the
flow direction. Since this solution, denoted by an overbar, depends
only on the y coordinate, it is governed by (15)-(16) with d/0t =
d/0X = 0, that is by equations

@ _ Le—1 dZYF
dy2 —  Le dy?

1 d%*Y; —
Ie gyt = DaoE. o),
subject to the boundary conditions H(-1)=Yp(-1)—-1=

H(+1) =Yp(+1) = 0. The first equation is integrated to obtain

H— (Le 1)

(Yr —Zp)

whereas the second equation is integrated numerically. Specifi-
cally, the nonlinear differential equation is solved numerically us-
ing COMSOL Muliphysics software, which determines Da as an un-
known parameter along with the solution for values of the tem-
perature prescribed at a given location, sat at y = 0.
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Fig. 2. Maximum temperature and flame location of the unperturbed planar diffusion flame as functions of Da for selected values of Le; here and elsewhere o = 0.85, 8 = 10
and S=1.

A sample of the numerical results is given in Fig. 2. Shown are This eigenvalue problem possesses a discrete spectrum of eigen-
plots of the maximum of the temperature field, &max, and its lo- values oy, indexed by an integer n. For example, when § — oo, the
cation, ¥qame, versus the Damkéhler number Da for selected values eigenvalues are given by a simple formula, derived in Appendix A.
of Le. In the limit Da — oo, these quantities are seen to approach In general, the eigenvalue with the largest real part (real growth

their Burke-Schumann values rate), mnax[Re{on}], determines the stability characteristics. Hence-
S—1Le - S+1 forth, o shall refer to this eigenvalue and not to the entire spec-
Viame = §5Te' UM T 5hTe trum.

The solid curves correspond to near-equilibrium diffusion flames
and the dashed curves to flames in the so-called partial burning
regime [32] which are typically unstable. For each Le, the turning
point Da = Daey: corresponds to extinction. Since Daex; varies sig-
nificantly with Le as evident from the figure, it is convenient for
later reference to use

4. Flame stability and bifurcation diagrams
4.1. Preliminary remarks and notations

The main object of our stability analysis is to describe the rela-

tionship
5 Da — Daex; 19)
= D ( o =0 (k;Le p.8) (23)
as the relative measure of the Damkéhler number. between o (the eigenvalue with the largest real part), the
wavenumber k and the parameters Le, p and &. All eigenvalues are
3.2. Perturbed state computed by solving the eigenvalue problem (20)-(22) numerically

with a tolerance of 106 using the Chebfun package [33], which is
To investigate the stability of the planar diffusion flame, we based on a spectral collocation method using Chebyshev polyno-

consider infinitesimal normal-mode perturbations superimposed mials. , ) i )
on the base solution such that In doing so, computations are restricted to the strongly burning,
_ - ) - _ near-equilibrium diffusion flames, the top branches in the left plot
Yr = Yp(y) + Yr(y)e* X+t Y| < |YE] of Fig. 2. As the scaled Damkéhler number § defined in (19) tends
H=H(y) +ITI(y)ei"X+“t, “T” < |H| to inﬁnity,.t.he corresponding Burl(e-Schumaqn flame i§ known.to
be unconditionally stable when p = 0 [19]. This conclusion remains
where o is the complex growth rate and « is the real wave num-  true for p # 0 as shown in Appendix A. As § is decreased the flame
ber. Similarly, one may define the perturbations Yo(y) and 6(y),  becomes unstable for values of § smaller than a critical value &,
which according to_(17)-(18) are related to Yr(y) and H(y) by  determined by the marginal stability condition Re{o'} = 0. Planar
Yo =S(Yr —H) and 0 = (S+ 1)(H - Yp). adiabatic near-equilibrium diffusion flames are thus unstable in the

Substituting the perturbed dependent variables in (15)-(16) and range 0 < § < §c.

linearizing, we obtain the eigenvalue problem The flame stability for p=0 has been investigated

a2 . (Le—1) (Lex — 1)ic? | - in [19] and [20] through asymptotic analyses in the so-called
( Z)H |:Ledy2 - XLeiIYF =0oH (20) slowly varying flame and near-equidiffusional flame limits [34],
X

respectively. In particular, it has been shown in [20,30] that dif-

fusion flames are unstable for Le > Le., where Le. > 1 is a critical

1 d? K2 e~ ~ ~ value depending on §. The ensuing instability was found to be a
( f ) Ye—gH = 0¥, 1) longwave instability with or without pulsations in time.

In our problem allowing for non-zero values of p, we also find

where that no instability occurs for Le < Le. where Le. =Lec(6, p) > 1.

F) — ﬂ3Da |:SYF P B(S+1YYo :| |: 5(9 1) :| However, unlike in the p = 0 case, the instability need not always

be a longwave instability, i.e., an instability for which the most un-

-a(1-0)p T+a@-1) stable mode corresponds to x = 0. Indeed, we also find for a cer-
- S+ 1YY 6-1 tain parametric range, finite wavelength instability for which the
2(y) = B3Da| —SYr + PGS+ DYYo | pO-1 | P & & y i
1—a(1-0)p T+a@—-1) most unstable mode corresponds to k =k, # 0, as we shall con
_ _ firm below.

The quantities H and Yr satisfy homogeneous Dirichlet boundary To facilitate the discussion, it is convenient to introduce the no-

conditions, namely, tation
H=0, Y:=0 at y==+1. (22) op=0(kk =0) and om=0(k =km) with km#0, (24)
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Fig. 3. Maximum growth rate, Re{o’}, versus the wave number « for selected values of §. The left plot is calculated for Le =2 and p = 0.5 and the right plot for Le =2
and p = 0.5. Solid lines represent real branches (indicating that Im{o'} = 0) and dashed lines complex branches (Im{o} # 0). All computations are carried out with § = 10,

o =0.85and S=1.

where the values oy and oy, correspond to the condition do /dk =
0." In fact, we may regard oy as the growth rate (possibly com-
plex) characterising the development of the longwave instability.
In this case, the instability will be appropriately referred to as a
non-oscillatory longwave instability if o is real and as an oscilla-
tory longwave instability otherwise. Similarly, o, may be regarded
as the growth rate (found always to be real) characterising the de-
velopment of the finite wavelength (cellular) instability.

4.2. Results for cases with § varying and fixed values of p and Le

The effect of varying § on flame stability for the top-branches in
the left subfigure of Fig. 2 is illustrated in Fig. 3 pertaining to Le =
2 and p =0.5 (left subfigure) and p = 3 (right subfigure). Plotted
is the real part of o versus the wave number « for selected values
of §. The corresponding curves (dispersion curves) are drawn with
solid lines when o (k) is real and dashed lines when o (x) has a
non-zero imaginary part.

The left subfigure corresponding to p=0.5 is found to be
qualitatively similar to the p=0 case (not shown); here the
most unstable mode always corresponds to x = 0, indicating the
presence of a longwave instability. This longwave instability is
non-oscillatory when 0 < § < §, and oscillatory when 6, <6 < &,
where §, is some critical value (8, ~ 0.0168 when Le = 2 irrespec-
tive of the value of p; see below).

We turn now to the right subfigure which corresponds to p = 3.
Here the notable feature is that the most unstable mode corre-
sponds to a non-zero value kp, of x. Therefore we are in the
presence of a finite wavelength (cellular) instability. Furthermore,
it is worth pointing out that the dispersion curve is associated
with non-oscillatory modes characterized by real growth rates for
0 < § < &, (solid lines in the subfigure), but that unstable oscilla-
tory modes also exist when §, < § < 8. (dashed lines).

Before closing this section, we note that the parameter &,
introduced above corresponds to oy defined in (24) changing, as §
is increased, from being a real number to being a complex number
with nonzero imaginary part. Since oy is independent of p (see
footnote 1), §,, a function of Le, is also independent of p. This
function is plotted in Fig. 4 and the curve thus computed charac-
terizes the transition from oscillatory to non-oscillatory longwave
instabilities.

1 Since the function o (k) involves k2 only (see (20)-(21)), it is an even function
of x and thus do /dk is always zero at xk = 0. Therefore, oy always exists and cor-
responds either to an extremum or a saddle point. Furthermore, as k — 0, Le, and
consequently p disappear from Eqgs. (20)-(21). Therefore oy depends on Le and 4§,
but not on p. In contrast, the existence of oy, is not always warranted and depends
on p.

10-1 [ 7

1 1.5 2 25 3
Le

Fig. 4. The parameter §, versus Le, computed for f = 10, &« = 0.85 and S = 1. This
parameter characterizes the transition from a non-oscillatory longwave instability
(obtained when 0 < § < §,) to an oscillatory longwave instability (obtained when
8§, <8 <8c).

4.3. Results for cases with p varying and fixed values of § and Le

In this section, we investigate the effects of varying p for a fixed
value of 4. Variations in p can in fact be achieved conceptually by
adjusting the flow rate as done in experiments [2,3]. An illustrative
case is shown in Fig. 5 corresponding to § = 0.01 and Le = 1.6 (left
subfigure) and Le = 2 (right subfigure). Plotted is the real part of
o versus the wave number « for selected values of p. As in Fig. 3,
the sections of the dispersion curves drawn with solid lines cor-
respond to o (k) being real and dashed sections to o (k) having a
non-zero imaginary part. It can be seen that oy = o (k = 0) (as de-
fined in (24)) is independent of p, in line with the remark made in
footnote 1.

Focusing first on the left subfigure, pertaining to Le = 1.6, we
note that the dispersion curve for p =0 is entirely complex (plot-
ted as a dashed line) and as its maximum occurs at k = 0, it in-
dicates the presence of an oscillatory longwave instability. On the
other hand, for p =1, the dispersion curve consists of a complex
branch (dashed line) which meets a real branch (solid line) at a
finite value of x where a cusp is encountered. Although for this
value of p, the real branch is still in the stable region, it gradu-
ally crawls up on the complex branch as p is increased, thus nar-
rowing the range of oscillatory modes. The maximum of the real
branch («m, om) enters the unstable region as p exceeds a certain
value of p corresponding to o, = 0. When p is increased further,
a critical value p = p, is encountered for which o, = Re{oy}. For
D > Pa, om > Re{og} and therefore the most unstable mode occurs
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Continuous
transition at
pP=prB

Re{o}

Fig. 5. Dispersion curves representing the maximum growth rate, Re{c'}, versus the wave number « for selected values of p. The left subfigure summarizes calculations for
Le =1.6 and § = 0.01 and the right subfigure for Le = 2 and & = 0.01. All computations are carried out with 8 =10, « = 0.85 and S = 1. Solid lines represent real branches
(Re{o'} = o) and dashed lines complex branches (Im{o'} # 0). The values of critical Peclet numbers are p, ~ 1.56 and pp ~ 1.00.

at k = km # 0. This indicates the presence of a finite wavelength
(cellular) instability. The transition between the oscillatory long-
wave instability (occurring for p < p4) and the finite wavelength
instability (occurring for p > p,) may be viewed as a jump transi-
tion, in the sense that a cellular pattern is predicted to suddenly
emerge as soon as p exceeds py.

We turn now to the right subfigure to examine how the find-
ings above are affected by adopting a higher value of the Lewis
number, Le = 2. Here, the dispersion curve for p = 0 implies a non-
oscillatory longwave instability, unlike the corresponding curve in
the left subfigure where an oscillatory longwave instability occurs
when p=0. As can be seen, an increase in p leads the concavity
of the dispersion curve at x =0 to change from being negative to
positive as p crosses a critical value p = pg, corresponding to the
condition d%o /dk?|,_o = 0. For p > pg, the dispersion curve has a
maximum at kp; # 0, implying the presence of a finite wavelength
instability. For p < pg, the dispersion curve peaks at x = 0 and no
maximum occurs at a finite values of ¥ and the instability is a
non-oscillatory longwave one. Note however that the transition at
p = pg between the non-oscillatory longwave instability and the fi-
nite wavelength instability is continuous in the sense that kyn — 0
as p decreases towards pg.

4.4. Stability regime diagram

Based on our discussion above of the various types of instabili-
ties and transitions, we can synthesize the findings in the form of a
regime diagram in the Le — p plane. This is computed and shown
in Fig. 6 in the illustrative case § = 0.01. Solid lines in this dia-
gram separate regions possessing different stability characteristics,
whereas the dash-dotted curve represents the equation p = 1/vLe
which is equivalent, according to (2), to the condition Lex = 1. We
note that in the domain above this dash-dotted curve, we have
Lex <1 if Le > 1 and Lex > 1 if Le < 1. Four regions can be identi-
fied in the diagram: a stable region on the left (white region) and
three unstable regions on the right (shaded regions), correspond-
ing to the three types of instabilities encountered.

The boundary curve separating the stable region from the un-
stable ones translates the critical condition Le = Le.(§, p) for 6 =
0.01 with Le; being as introduced in Section 4.1. This boundary
curve consists of two sections. The lower section, consisting of the
vertical line Le. ~ 1.47 for p € [0, 2.68], corresponds to a bifurca-
tion associated with an oscillatory longwave instability; this is of-
ten referred to in the literature as a type-Ill, instability [35]. The
upper section, occurring for p € [2.68,00) and Le. € [1.43,1.47],
exhibits a weak dependence of Le. on p. This section corresponds
to a bifurcation associated with a non-oscillatory (or stationary) fi-
nite wavelength instability, often referred to as a type-Is instabil-
ity [35].
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Fig. 6. Stability regime diagram of a planar diffusion flame aligned with the direc-
tion of a shear flow, computed for § = 0.01, « =0.85, 8 =10 and S =1.

We now briefly comment on the boundaries between the three
unstable regions aforementioned, which are seen to intersect at a
cusp point (Le, p) = (1.85,0.76). First, the vertical line at Le ~ 1.85
for p €[0,0.76] is obtained from Fig. 4 using the condition §, =
0.01. The curve, labeled py4, corresponding to the critical condition
P = pa introduced in the previous subsection, separates the regions
of oscillatory longwave instability and finite wavelength instability.
Similarly, the curve, labeled pg, corresponds to the critical condi-
tion p = pp and separates the regions of non-oscillatory longwave
instability and finite wavelength instability. An important observa-
tion related to this figure is that the finite wavelength instability
region lies entirely in the region Ley <1 (above the dash-dotted
curve). This demonstrates that a necessary condition for the oc-
currence of the finite wavelength (or cellular) instability is that
Lex < 1 provided the fuel Lewis number Le > 1.

It is also interesting to examine how a change in § affects the
stability regime diagram of Fig. 6, by carrying out similar com-
putations for § = 10-4. The results are summarized in Fig. 7. The
figure shows that the four regions identified earlier persist in this
case, except that the unstable regions are extended now further
to the left (Le. ~ 1.17), thereby narrowing the stable region. More-
over, the extent of the oscillatory longwave instability region is
found now to be narrower in comparison with that of Fig. 6.

To close this section, we note that our results have been com-
puted for the stoichiometrically balanced case, S = 1. However, it
is possible to provide qualitative comments relevant to other val-
ues of S, since the controlling Lewis number pertains to the de-
ficient reactant which corresponds to the fuel when S« 1 and
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Fig. 7. Stability regime diagram of a planar diffusion flame aligned with the direc-
tion of a shear flow, computed for § = 0.0001, @ = 0.85, § =10 and S =1.

to the oxidizer when S>> 1. Furthermore, since the influence of
Taylor dispersion on the flame instability is stronger when the
Lewis number is further from unity, this influence is more appar-
ent when S « 1 than when S>> 1 because Leg ~ 1. In particular,
we can infer that cellular instabilities are easier to realize in mix-
tures with Lep =Le > 1 and S « 1 and more difficult in mixtures
with Ler = Le <1 and S « 1, a fact which is consistent with exper-
iments [3].

5. Time dependent numerical simulations

The stability regime diagram of Section 4.4, based on the com-
putations of the eigenvalues of the linear stability problem (20)-
(22), summarizes the main conclusions that one could infer from
the linear analysis. To describe the eventual fate of infinitesimal
disturbances, we need to solve the full nonlinear problem (15)-
(16). This will allow, in particular, to answer the important ques-
tion about the existence of cellular structures and their stability.
The solution of Eqs. (15)-(16) is carried out numerically and se-
lected cases in each of the three unstable regions of diagram 6 are
presented herein. The computations are performed using COMSOL
Multiphysics, a package which has been extensively tested in com-
bustion applications, see e.g., [11-15]. The computational domain,
taken to be (-15,15) x (-1, 1), is covered by a grid consisting of
approximately 400,000 triangular elements and includes local re-
finement in the reaction zone. Solutions have been tested to be
independent of the mesh and of the time step At (whose maxi-
mum value is set to be At =0.005). Dirichlet boundary conditions
corresponding to (11) and (12) are applied in the y-direction. As far
as the X-direction, we adopt periodic boundary conditions. These
boundary conditions are suitable for our idealized simple model,
given that our main concern is to study the stability of a planar
diffusion flame aligned with the direction of the flow. In particu-
lar, we disregard complicating effects associated with heat loss and
with special inlet/outlet conditions in finite domains which are en-
countered in practice.

5.1. Longwave instability
The two types of longwave instability, namely oscillatory and

non-oscillatory, identified through our linear stability analysis, are
always found in our computations to ultimately result in flame
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quenching.? The only difference between these two types is found
to lie in their transient evolution to extinction. This is illustrated in
Fig. 8 for two cases corresponding to Le = 1.6 (left subfigure) and
Le = 2 (right subfigure) with selected values of p. Shown in this
figure is the maximum temperature fpnax versus time t. We note
that the solid curves correspond to two-dimensional computations,
while the dashed curves, pertaining to x = 0, are computed as so-
lutions of the one-dimensional problem obtained from (15)-(16) by
dropping the X-derivatives. The two-dimensional computations are
carried out with the horizontal domain size equal to 30, as men-
tioned above, and therefore the minimum wavenumber allowed
numerically is « = 2w /30 = 0.2094. We note that once Omax(t)
drops below the steady-state temperature Omax corresponding to
the static extinction condition § = 0 (the turning points in Fig. 2),
Omax cannot recover and decays monotonically to zero.

5.2. Finite wavelength instability

In this section, we present computations for parameter val-
ues which fall in the region labelled ‘finite wavelength instabil-
ity’ in Fig. 6. The computations starting from the initial condi-
tion corresponding to a planar diffusion flame are performed in
a large number of cases, but we shall in our presentation focus on
four illustrative cases. Two of these cases correspond to the points
(Le=1.6,p=2) and (Le = 1.6, p=3) in Fig. 6; the first point is
selected to be close to the boundary p = p, in Fig. 6 and the sec-
ond further from this boundary. The two other cases correspond to
the points (Le=2,p=1.5) and (Le =2, p=2) in Fig. 6; the first
point is selected to be close to the boundary p = pp in Fig. 6 and
the second further from this boundary. The time evolution of the
flame in these four cases are described in Figs. 9-12, showing the
fields of the reaction rate w for selected values of time. Note that
in these figures, the coordinate x (which measures the horizontal
distance scaled by the mixing layer thickness L) is used instead of
X =x/4/1+ p? in order to better appreciate the size of the emerg-
ing cells.

We begin by commenting on the development of the insta-
bility in the simplest case which corresponds to (Le =2, p=2),
shown in Fig. 9. Here we observe that the planar diffusion flame
initially splits into a series of strongly burning regions, separated
by locally quenched gaps. The strongly burning regions, each of
which terminates at two edge-flames, are found to readily adjust
the gaps among themselves and settle into an apparently stable
steady state. At the onset of instability occurring at t ~ 3.9, we
note the emergence of 8 cells or strongly burning regions. This
number of cells, which is observed to persist in time, is in good
agreement with that predicted by the linear stability analysis of
Section 4. Indeed the maximum growth rate according to the lin-
ear analysis correspond to k¥ = k; = 1.65, which for our horizontal
domain x = 30,/1 + p? ~ 67 yields 7.86 ~ 8 cells. Similar observa-
tions can be made for unstable flames when p > ps and p>> pg
as our extensive set of computations (not shown herein) confirm.
In particular, it is observed that unstable diffusion flames evolve
into apparently stable steady cells and the number of these cells is
rather correctly predicted by the linear stability analysis.

We now comment on the other three cases under considera-
tion where a more complex dynamics is obtained. Figure 10 illus-
trates the flame evolution when (Le = 1.6, p = 3). Here after the
initial splitting of the planar flame, the strongly burning regions
continue to shrink to form flame spots at t ~ 15.8. Some of these

2 In this paper we are not concerned with the problem of stability to finite-
amplitude perturbations. The dynamics of the diffusion flame under such pertur-
bations is studied in [21,22,36]. These studies show that finite-amplitude perturba-
tions can lead a linearly stable flame either into a permanently oscillating state (a
limit cycle) or to a quenched state depending on the amplitude of the perturbation.
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Fig. 8. Maximum temperature fp.x as a function of time t, calculated for Le = 1.6 (left) and Le = 2 (right) with § = 0.01. The dashed lines pertain to one-dimensional
computations (independent of p), whereas the solid lines pertain to two-dimensional computations for selected values of p. All computations are carried out with 8 = 10,
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Fig. 9. Reaction rate (w) fields at selected values of time t for Le=2, p=2,8 =0.01, 8 =10, « =0.85 and S = 1.

spots eventually quench, leaving a wide gap of fresh unburnt reac-
tant mixture (t ~ 16.7). This wide gap is invaded by propagating
edge-flames from opposite ends and gradually shrinks to disap-
pear at t ~ 21.5. The resulting nearly planar flame, replacing the
wide gap, becomes itself unstable and splits into a series of cells,
which are found to settle into an apparently stable stationary cel-
lular structure.

Turning now to Fig. 11 pertaining to the case (Le =1.6, p =2),
we observe that the development of the flame instability is roughly
similar in its initial and final stages to that in the previous figure.
In particular, an apparently stable steady structure is ultimately
obtained, as in Fig. 10, despite peculiar dynamics in intermediate
stages.

We now discuss the case (Le =2, p = 1.5) which is represented
in Fig. 12. Here the most notable new feature is that the unsta-
ble diffusion flame does not evolve into a steady state. It evolves
instead into an irregular, apparently chaotic state, where several
physical mechanisms are at play including edge flame propagation
and merging, flame splitting, etc. The full dynamics of the flame is
best appreciated by examining the animated time evolution which
is included as a supplementary material. Note that the chaotic be-
haviour observed seems to occur when p is close to pg, corre-
sponding to the continuous transitions discussed in Section 4.3.

Finally, to complement our discussion of Figs. 9-12, we plot
the function Omax(t) for the cases of these figures in Fig. 13. The
figure confirms the asymptotic evolution of the unstable diffusion
flame into a steady state, except for the case (Le =2, p=1.5) of
Fig. 12, where an irregular time dependent behaviour is obtained.

5.3. Additional comments on unstable flames when p < pa

Consideration of the left subfigure of Fig. 5 shows that the
planar diffusion flame is expected to disintegrate near instabil-
ity onset into a cellular structure if p > ps, as confirmed in our
two-dimensional computations just presented. In fact, such cellu-
lar structures once formed can persist if p is decreased to a certain
extent below p,, which may have some implications on the forma-
tion of diffusion flame streets in experiments. This statement can
be confirmed by numerical computations (not shown) adopting as
initial conditions cellular structures or an array of hot spots, as
done in [37,38]. For example, we have performed computations for
the case Le =1.6 and p = 1.5, for which the most unstable mode
corresponds to the oscillatory longwave mode (x = 0), according
to Fig. 5 (left), although the finite wavelength mode is also unsta-
ble in this case. It is found that if the initial condition is taken to
be a cellular structure (say, the steady solution corresponding to
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Le = 1.6 and p = 3), then this structure evolves into another stable
cellular structure. In contrast, if the initial condition is taken to be
the planar diffusion flame solution, then an oscillatory longwave
instability leading to flame quenching is observed.

6. Concluding remarks

In this paper, we have examined the stability of a planar dif-
fusion flame aligned with the direction of a shear flow within a

10

simple narrow channel model. Particular attention has been fo-
cused on the effect of the flow Peclet number on flame stability.
A linear stability analysis, supported by time dependent numerical
simulations, confirms that the diffusion flame can be unstable for
Le sufficiently larger than one and that the nature of the emerg-
ing instability depends critically on the (scaled) Peclet number p.
Specifically, it is shown that a longwave instability with or without
time oscillations is obtained for small values of p, while a finite
wavelength (cellular) instability is obtained for p above a critical
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value p.. The instability domains are clearly delimited for the il-
lustrative examples of Figs. 6 and 7, where p. corresponds to the
curves labelled p, (jump transition) and pg (continuous transition).
The longwave instability is found to typically lead to flame quench-
ing. The more crucial finding is however that a critical value p. of
the Peclet number is shown to exist, above which the instability
is cellular; this is consistent with the experimental observations
made in the original studies [2,3]. Our findings provide an origi-
nal explanation to the issues related to the two questions raised in
the introduction, namely, the existence of a critical Peclet number
and the disintegration of the planar flame when Le > 1. Our ex-
planation is largely based on Taylor’s dispersion mechanism which
leads to the presence of effectively two distinct Lewis numbers, Ley
and Le, in the longitudinal and transverse directions respectively,
as discussed in the introduction. The necessary condition for the
occurrence of the finite wavelength (or cellular) instability is found
to be Lex < 1 provided the fuel Lewis number Le > 1.

To close this section, we make a few remarks regarding possible
extensions of the current study. The first useful extension is to ac-
count for heat losses which were deliberately neglected herein in
order to isolate the effect of Taylor dispersion as being on its own
a driving mechanism of the cellular flame instability. Heat loss ef-
fects can be significant, however, in experiments such as those in-
volving methane diffusion flames [2,3]. Such diffusion flames, char-
acterised by a (fuel) Lewis number close to unity, are expected to
be stable according to our adiabatic investigation, but are found to
disintegrate into flame streets in practice, which may be explained
by accounting for heat losses [6]. Another useful extension of this
study is to account for the influences of stoichiometry by consid-
ering values of S# 1 since flammability limits can be greatly ex-
tended due to the formation of stable cellular structures in the
range § <0 when S « 1 [37,38]. It would also be interesting to
have experimental verification of some key findings of the current
investigation such as the existence of cellular structures near the
jump transition at p, identified above, both for p < p, and p > pa.
Finally, it is worth investigating whether the cellular instability for
large Lewis numbers induced by Taylor dispersion identified herein
for diffusion flames can also be found for premixed flames aligned
with the direction of a shear flow. Such investigations would en-
rich our appreciation of premixed flame instabilities in confined
systems considered in recent studies [39-42].
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Appendix A. Stability of the Burke-Schumann flame

In this appendix, we solve the linear eigenvalue problem (20)-
(22) in the Burke-Schumann limit § — oc. In this limit, reactants
leakage across the reaction sheet is zero, so that the perturba-
tions are only associated with the diffusion process in the outer
zones, which are in chemical equilibrium, characterised by f =g =
0. Then, Eq. (21) can be solved to yield

—(4m?n?/Le + k% /Ley),
sin(2rny) where n=1,2,3,...

On
Yen = (A1)

indicating that o, < 0 and hence the flame is unconditionally sta-
ble for all wavelengths (see also [19], p. 238). The function H, can

1
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be obtained explicitly by solving

dz ) 47-[2“2 KZ ~
(dyz—l( + Ie +E Hy

| e=1), 5, (Lex—1) 5.

__|:Le47r n -k sin(2wny) (A2)

subject to Hy(=1) = Hy(+1) = 0.
Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.combustflame.2023.
113003.
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