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Abstract: This study implements the permutation Jensen–Shannon distance as a metric for discerning
ordinal patterns and similarities across multiple temporal scales in time series data. Initially, we
present a numerically controlled analysis to validate the multiscale capabilities of this method.
Subsequently, we apply our methodology to a complex photonic system, showcasing its practical
utility in a real-world scenario. Our findings suggest that this approach is a powerful tool for
identifying the precise temporal scales at which two distinct time series exhibit ordinal similarity.
Given its robustness, we anticipate that this method could be widely applicable across various
scientific disciplines, offering a new lens through which to analyze time series data.
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1. Introduction

It is widely known that quantifying the similarity (or dissimilarity) between two time
series is an essential task for clustering and classification purposes [1]. Because of this main
reason, a lot of methodologies have been developed to determine how much an arbitrary
time series resembles another one. Actually, this issue can be addressed from very different
perspectives: there are shape-, edit-, feature-, and structure-based measures [2]. Some
of them are more computationally inspired, while others are based on physical notions.
To the best of our knowledge, up to now, there is no optimal algorithm for estimating
this concept in practice. It has also been demonstrated that the performance of similarity
quantifiers can be highly reduced when time series with different sampling frequencies are
contrasted [3,4], when there exist nonlinear dependencies between them [5] and/or in the
presence of outliers [6]. Hence, a measure able to deal robustly with different types of data
is sought.

The permutation Jensen-Shannon distance (PJSD) has recently been proposed within
this realm [7]. It is a versatile and conceptually simple ordinal metric tool that, thanks
to its noise robustness and invariance under scaling of the data, is particularly suited for
the analysis of real-world signals [8]. The PJSD takes advantage of the Jensen-Shannon
divergence (JSD) [9], a widely accepted method for assessing the dissimilarity between
two probability distributions, and of the ordinal coarse-grained representation introduced
more than 20 years ago by Bandt and Pompe (BP) [10]. The flexibility of the JSD to
different distributional data types, together with the proven efficiency of the ordinal
patterns for identifying equivalent dynamics [11] and for time series clustering [12], allow
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us to conjecture that the proposed fusion represents a useful addition to the repertoire of
approaches intended to estimate the degree of similarity between two arbitrary time series.

In this work, we put special focus on the PJSD’s ability to test similarity between two
time series at different time scales. Numerical and experimental analyses are included
to illustrate this fact. The results obtained confirm that the PJSD robustly identifies the
time scales that maximize the similarity between two arbitrary signals. Consequently, this
ordinal metric, implemented through a multiscale scheme, offers an efficient alternative
to characterize how similar two signals recorded at different sampling rates are. Taking
into account that widely implemented similarity measures, like dynamic time warping, are
strongly affected when facing this challenge [3,4], we consider our finding relevant enough
and of potential interest for the time series analysis community.

The rest of this paper is structured as follows. A brief presentation of the PJSD is first
given in Section 2. Then, in Section 3, a numerically controlled analysis is developed to
illustrate how the multiscale PJSD approach works. After that, a more complex practical
application comparing time series of semiconductor laser experiments is performed in
Section 4. The main conclusions obtained from this study are finally summarized in the
last Section 5.

2. Permutation Jensen–Shannon Distance

The PJSD can be estimated by calculating the square root of the normalized JSD
between the ordinal probability distributions associated with the two time series under
comparison [7]. Defined in such a way, it is a metric able to quantify the degree of discern-
ability between two arbitrary time series from an ordinal perspective.

The JSD is a measure of the distance between two arbitrary probability distributions,
P = {p1, . . . , pn} and Q = {q1, . . . , qn}, given by

JSD(P, Q) = S
(

P + Q
2

)
− 1

2
S(P)− 1

2
S(Q) , (1)

where S is the Shannon entropy function S(P) = −∑n
i=1 pi ln pi, and, as usual, the conven-

tion 0 ln 0 = 0 is assumed in accordance with its mathematical limit. The JSD is always a
well-defined and bounded quantity [9] that achieves its minimum possible value, i.e., 0,
when identical probability distributions are compared, while its maximum potential value,
i.e., ln 2, is obtained whenever the supports of P and Q are disjoints (that is, piqi = 0 for
i = 1, . . . , n). It has also been shown that [JSD(P, Q)]1/2 satisfies all the formal properties
needed to be a metric [13]. Further statistical properties and theoretical interpretations of
the JSD can be found in Ref. [14].

The estimation of the Jensen–Shannon distance, [JSD(P, Q)]1/2, between two time
series requires us first to know the corresponding probability distributions, P and Q,
associated with the two time series under analysis. This task is not straightforward nor
simple, and it deserves careful attention [15]. We address it by implementing the BP
mapping method. BP propose mapping a continuous-valued time series into a discrete
series of ordinal symbols or ordinal patterns. Perhaps the most relevant property related to
this symbolization scheme is the fact that, as stated by Amigó et al. [16], “ordinal patterns
are not symbols ad hoc but they actually encapsulate qualitative information about the
temporal structure of the underlying data”. That is, the presence of underlying temporal
correlations in the dynamics of the process that generates the time series is naturally
considered in the BP recipe. Next, we will briefly summarize the discretization of time
series via ordinal patterns. For further technical details interested readers are referred to
the reviews [16–20]. Given a real-valued time series X = {xt ∈ R, t = 1, . . . , L}, vectors of
equally spaced D values of the form (xs, xs+τ , . . . , xs+(D−1)τ) with s = 1, . . . , L∗ = L −
(D − 1)τ are mapped to one of the D! possible ordinal permutations of the same size that
describe the order relation between these elements. For example, the vector (2.5, 4.7, 0.6) is
mapped to the ordinal or permutation pattern (2, 3, 1), replacing each element in the original
vector with its respective ranking in the subset. Assigning a symbol πi to each ordinal
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pattern, the original time series is mapped to the coarse-graining sequence Y = {ys ∈
ΠD, s = 1, . . . , L∗}, with ΠD = {π1, π2, . . . , πD!} representing the set of permutations of
length D. Just for illustrative purposes, Π2 = {π1 = (1, 2), π2 = (2, 1)}, and Π3 = {π1 =
(1, 2, 3), π2 = (1, 3, 2), π3 = (2, 1, 3), π4 = (2, 3, 1), π5 = (3, 1, 2), π6 = (3, 2, 1)}. Estimating
the probability of each ordinal pattern p(πi) based on its relative frequency of occurrence
in the symbolized sequence, an associated ordinal probability distribution (OPD) can be
then obtained as follows:

PD,τ
π = {p(πi), i = 1, . . . , D!}. (2)

Two parameters have to be fixed: the number of elements in the permutation patterns D
(called the order or embedding dimension, D ≥ 2 with D ∈ N) and the time separation τ
between the elements in the subsequence (called lag or embedding delay, τ ∈ N). Consecu-
tive data are considered if τ = 1, while τ−spaced data samples are analyzed if τ ≥ 2. A toy
example is included below to illustrate the role played by the lag τ. Given the short time
series X = {1.1, 2.1, 4.3, 3.2, 6.7, 0.5, 10.4, 8.9} and fixing D = 3 and τ = 2, the first vector
(x1, x3, x5) = (1.1, 4.3, 6.7) is mapped to the ordinal pattern π1 = (1, 2, 3). The second three-
dimensional vector is (x2, x4, x6) = (2.1, 3.2, 0.5), and π4 = (2, 3, 1) is its associated ordinal
pattern. Finally, the following two remaining vectors, (x3, x5, x7) = (4.3, 6.7, 10.4) and
(x4, x6, x8) = (3.2, 0.5, 8.9), are mapped to the permutations π1 = (1, 2, 3) and π3 = (2, 1, 3),
respectively. Consequently, the symbolic sequence Y = {π1, π4, π1, π3} is obtained when
applying the BP coarse-graining procedure with parameters D = 3 and τ = 2, and the OPD
turns out to be P3,2

π = {p(π1) = 0.5, p(π2) = 0, p(π3) = 0.25, p(π4) = 0.25, p(π5) = 0,
p(π6) = 0} for this simple numerical example.

On the one hand, the condition L ≫ D!, with L representing the number of data in the
original time series, is required for a robust estimation of PD,τ

π . It is also clear that larger
values of D offer improved characterization of the system dynamics. Actually, the order
D has to exceed a lower bound Dmin to successfully resolve the underlying temporal
structures for data from high-dimensional systems [21]. On the other hand, a value of the
lag τ = 1 is often used in discrete systems, and also when the chosen sampling frequency
is the optimal one to characterize the underlying dynamics of continuous systems [18].
However, this arbitrary choice can lead to erroneous conclusions, especially for systems
with scale-dependent dynamics [22]. A multiscale analysis, by analyzing how descriptors
of the OPD change with τ, gives a more complete picture in these instances [23–25], also
providing a practical and efficient alternative for identifying time delays from stochastic
and chaotic models [26,27].

Among the different statistics that can be computed from the resulting OPD given
by Equation (2), the permutation entropy [10] is undoubtedly the most representative
and widely implemented quantifier. Defined as the Shannon entropy of this ordinal
distribution, S

(
PD,τ

π

)
= −∑D!

i=1 p(πi) log p(πi), it quantifies the variety of permutation
patterns in the ordinal sequence obtained from a time series. However, many other much
more complex descriptors of the OPD, which try to characterize some particular aspect of
it, have been proposed. Without being exhaustive, we can mention permutation statistical
complexity [28], Rényi permutation entropy [29] and permutation Fisher’s information
measure [30].

The PJSD is defined as the normalized Jensen–Shannon distance between the OPDs,
PD,τ1

π and QD,τ2
π , associated with two arbitrary time series, i.e.,[

JSD
(

PD,τ1
π , QD,τ2

π

)
/ ln(2)

]1/2
. (3)

The ordinal mapping of different time series is compared using the PJSD. It is worthy to
highlight here that, when estimating the PJSD, the order D chosen to implement the BP
symbolization recipe should be the same for both time series in order to have the same
number of possible permutation patterns in the OPDs to be compared. However, different
lags, τ1 and τ2, can be selected, opening the possibility of contrasting the ordinal similarity
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of only one or two time series at two different temporal scales. The potentialities of this
multiscale approach are explored in this article.

3. An Illustrative Numerical Example

We focus our analysis on nonlinear systems in the chaotic regime, where the dynamics
involve multiple time scales. In particular, we use the chaotic Mackey–Glass (MG) system
as an example, which is a paradigmatic case of a high-dimensional (strange) chaotic
attractor [31,32]. The evolution of the MG system, denoted by x(t), is described by the
following delay differential equation:

ẋ(t) = −ax(t) +
bx(t − τS)

1 + x(t − τS)c , (4)

where a = 0.1, b = 0.2 and c = 10 are standard parameters [32], and the delay τS = 30 sets
the system into the chaotic regime [32,33].

We numerically integrate Equation (4) with an integration step of ∆t = 0.01, generating
long time series, which are subsequently sampled for our analysis. Figure 1a presents a
time series of the MG system in the chaotic regime, where we indicate different sampling
intervals with either crosses or empty circles. The corresponding subsampled time series are
shown in Figures 1b,c, where two different sampling intervals, tb = 18 · 102∆t (crosses, xb)
and tc = 24 · 102∆t (circles, xc), are chosen for illustrative purposes. As shown in Figure 1,
the time series generated with different sampling intervals maintain the oscillatory behavior
of the original MG dynamics, but the similarity between Figure 1b,c cannot be readily
observed by the naked eye.

Figure 1. (a) Time series of MG system. Red crosses indicate sampling of tb = 18 · 102∆t and blue
empty circles sampling of tc = 24 · 102∆t. (b) Example of sequence extracted with sampling tb.
(c) Example of sequence extracted with sampling tc.

To visualize the properties of the PJSD, we apply this measure to the MG time series
presented in Figure 1. For this purpose, the PJSD is computed for the sampled time series
xb and xc using varying symbolization lags, τ1 and τ2. The PJSD is expected to capture
the similarity between xb and xc for certain ratios of the symbolization lags and sampling
intervals. We present the evaluation of the PJSD for the sampled MG time series in Figure 2,
computed for several embedding dimensions, D, ranging from 3 to 6. In this representation,
larger similarities between the analyzed time series correspond to blue colors (PJSD values
close to zero, shown on a logarithmic scale). As demonstrated in Figure 2, the PJSD
measure successfully recovers the similarity between the MG time series xb and xc for
several values of the symbolization lags. The similarity of the time series becomes evident
when τ1/τ2 = 4/3, a ratio that precisely compensates for the difference in sampling times,
tb/tc = 3/4, from the original MG time series. In other words, the minima of the computed
PJSD occur when τ1 · tb = τ2 · tc. Consequently, smaller estimated PJSD values are observed
not only for τ1 = 4 and τ2 = 3, but also for multiples of them: τ1 = 8 and τ2 = 6, τ1 = 12
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and τ2 = 9, and so on. This behavior acts as a double check for identifying the temporal
scales under which the time series under analysis are truly similar.

Figure 2. PJSD estimations in logarithmic base 10 scale from two numerical realizations of Mackey–
Glass oscillator operating in chaotic regime (τS = 30) at different sampling intervals tb = 18 · 102∆t
and tc = 24 · 102∆t. Order D increases from 3 to 6 (from upper left to lower right plots), and lags τ1

and τ2 vary from 1 to 20. Time series of length L = 12,500 data points are considered in analysis.

In addition to recovering the similarity between the MG time series, the PJSD values
shown in Figure 2 exhibit other trends worth discussing. The PJSD values systematically
decrease as τ1 and τ2 increase, corresponding to the yellow colors in the top left corners
and blue colors in the bottom right corners of the different panels in Figure 2. This trend
can be explained by examining the underlying ordinal pattern probabilities upon which
the PJSD is computed. For instance, Figure 3 shows the ordinal pattern probabilities for the
analyzed MG time series at selected values of τ1 and τ2. When τ1/τ2 = 4/3, the measured
ordinal pattern probabilities for xb and xc are equal, resulting in PJSD values close to zero.
Otherwise, two scenarios arise: either different probabilities are measured when τ1 or τ2 is
small, or distributions approaching equiprobability are observed when τ1 and τ2 are both
large. This analysis is further supported by examining the ordinal pattern probabilities
for higher embedding dimensions D, as shown, for example, in Figure 4 for D = 4, where
the probabilities for xb and xc are equal when τ1/τ2 = 4/3. Finally, it can also be observed
that the ordinal pattern probabilities for both signals are clearly different if the original
sampling intervals are considered, i.e., when τ1 = τ2 = 1.

As additional and more robust confirmation of the similarity between the OPDs for
τ1 = 4 and τ2 = 3, a surrogate analysis is performed. More precisely, the PJSD of the
original time series is compared against the distributions of the estimated PJSD values
for 1000 independent shuffled realizations of the original records when the same lags
are considered. Just for the sake of comparison, the same analysis is repeated for large
values of the lag (τ1 = 20 and τ2 = 20). The results obtained are briefly summarized
in Figures 5 and 6. On the one hand, when τ1 = 4 and τ2 = 3 (Figure 5), it can be
concluded that the estimated PJSD value for the original MG time series is significantly
lower than those obtained for their shuffled counterparts if larger values of the order
D are considered (D = 5 and D = 6). On the other hand, when τ1 = 20 and τ2 = 20
(Figure 6), the estimated PJSD value is significantly higher than those associated with
shuffled realizations, independently of the order D. Based on these findings, the similarity
and dissimilarity between the original MG signals can be robustly concluded in the former
and latter cases, respectively.
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Figure 3. Ordinal pattern probabilities with D = 3 for the two numerical realizations of the Mackey–
Glass oscillator operating in a chaotic regime (τS = 30) at different sampling intervals tb = 18 · 102∆t
and tc = 24 · 102∆t. Particular choices of the symbolization lags τ1 and τ2 associated with these two
signals are considered in each subplot.

Figure 4. The same as in Figure 3 but with D = 4.

It is worth remarking here that the running time to estimate the PJSD between the MG
signals (L = 12,500) for the 400 considered combinations of the lags τ1 and τ2 is around a
second. Thus, the proposed multiscale scheme is fast enough, paving the way for real-time
analysis. Obviously, the time complexity increases for larger values of the order D and for
longer time series. Please see Appendix A for further details.

In summary, we have validated the PJSD methodology for identifying similarities
between different time series in a controlled numerical example generated from a single
parameter set with varying sampling intervals. In the next section, we extend the applica-
tion of the PJSD methodology to a numerical setting where time series are generated from
different parameter sets, as well as to experimental data from a laser system.
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Figure 5. Distribution of 1000 estimated PJSD values from shuffled realizations of original MG time
series for different orders D when lags τ1 and τ2 are equal to 4 and 3, respectively. Red vertical dashed
line indicates estimated PJSD value for the original MG signals.

Figure 6. The same as in Figure 5 but for lags τ1 = 20 and τ2 = 20.

4. Practical Application: Semiconductor Lasers Subject to Optical Feedback

Semiconductor lasers can exhibit rich dynamical behavior when they are subjected
to external perturbations such as optical feedback or optical injection [34]. In particular,
semiconductor lasers with optical feedback are typically considered a paradigmatic physical
system to observe complex dynamical behavior experimentally [35]. Several time scales are
involved in the resulting complex dynamics, and often, the precise characterization is not
straightforward due to the nonlinear interactions that occur in the semiconductor laser [26].

The complexity of the intensity emitted by the semiconductor laser subject to optical
feedback makes it an ideal case to analyze the validity of the PJSD metric. In the following,
we first proceed to describe the system under study, both theoretically and experimentally.
We then present the results of the PJSD metric applied to numerical and experimental time
series of the laser subject to feedback.
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4.1. Theoretical Model

A single-mode semiconductor laser subject to moderate optical feedback can typically
be described by the following Lang–Kobayashi (LK) equations [36,37],

Ė(t) =
1 + i α

2
GN n(t) E(t) + κE(t − Λ)e−iω0Λ , (5)

ṅ(t) = pexc Jth − γ n(t)− [Γ + GN n(t)]|E(t)|2 , (6)

where E and n are the complex electric field amplitude and the carrier number above
the threshold, respectively. The equations are normalized such that P(t) = |E(t)|2 is
the number of photons. The optical feedback term in the field equation includes the
delay time Λ and the feedback rate κ. The other parameters in Equation (5) are the
linewidth enhancement factor (α), the differential optical gain (GN = 2.142 · 104 s−1) and
the laser solitary frequency (ω0). In Equation (6), pexc is the excess pump current over the
threshold ( J

Jth
− 1), Jth = 1.552 · 1017 s−1 denotes the pump threshold current in units of the

electron charge, γ = 0.909 · 109 s−1 is the carrier decay rate, and Γ = 0.357 · 1012 s−1 is the
cavity decay rate. The parameter values were chosen according to Refs. [34,37], except for
α = 3, Λ = 10 ns−1, in order to obtain dynamical behavior similar to the experimental
behavior [38].

The relaxation oscillation (RO) frequency is the natural resonance of the semiconductor
laser, which results from light–matter interactions. In this model, the RO is given by
fRO = 1

2π

√
GN pexc Jth. In turn, the optical feedback induces a frequency shift in the emitted

optical frequency, where the maximum feedback-induced frequency shift is ∆ f f b ∼ ακ/2π.
As shown in Ref. [38], similar dynamics can be observed for different laser and feedback
conditions as long as the ratio between fRO and ∆ f f b is kept constant. Here, similarity refers
to the phenomenon of observing laser time series with equivalent statistical properties
but with different time scales. We control the ratio between fRO and ∆ f f b by changing
the values of pexc and κ, which are readily accessible to the experimentalist. To be precise,
the time scale of the delay time Λ will also need to be adjusted by a factor of

√
pexc to

achieve similar laser dynamics.

4.2. Description of Experimental Setup

Figure 7 depicts the scheme of the experimental setup, achieved by employing stan-
dard fiber-based telecommunication components. The semiconductor laser diode in the
experimental setup has an emission wavelength around 1550 nm. This laser emits in a
single longitudinal mode, with side-mode suppression ratios larger than 40 dB, and has
a threshold current of Ith = 12.08 mA at a working temperature of 22 ◦C. The dashed red
line in Figure 7 encloses the external cavity of round-trip time Λ, which depends on the
length of the fiber components of the external cavity feedback loop. Such a fiber-optic
external cavity has characteristic round-trip times of 10 to 100 ns. In the external cavity
loop, a maximum feedback rate of κmax ≃ 70 ns−1 was estimated [38]. Time series were
acquired using a photodiode with a 12.5 GHz bandwidth and a 16 GHz analog bandwidth
oscilloscope with a sampling rate of 40 Gigasamples/s.
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Figure 7. Scheme of experimental setup to study feedback dynamics. LD: laser diode; Circ: optical
circulator; PC: polarization controller; Att: optical attenuator; Spl: one-by-two intensity splitter with
ℜ = 0.95 and (1 −ℜ) = 0.05 splitting ratios; →: optical isolator; and PD: photodiode.

4.3. Numerical Results

Motivated by the experimental settings, we consider two numerically generated time
series that have a constant sampling rate but are generated using different laser and feed-
back parameters. Similarity of two laser time series, A and B, is expected to be found
when κA/

√
pexcA = κB/

√
pexcB and

√
pexcA · ΛA =

√
pexcB · ΛB are fulfilled [38]. In partic-

ular, we choose, for illustrative purposes, the following two parameter sets: pexcA = 0.25,
κA = 50 ns−1, ΛA = 11.2 ns, and pexcB=1, κB = 100 ns−1, ΛB = 5.6 ns, respectively. As
a result, the two numerically generated time series should be equivalent for sampling
intervals that correspond to a ratio 2 to 1, i.e.,

√
1/pexcA to

√
1/pexcB.

The estimations of the PJSD for the two numerically generated laser time series are
presented in Figure 8. Independently of the embedding dimension D, low values of the
PJSD are obtained when the symbolization lags τ1 and τ2 follow the 2-to-1 ratio. Similarity
of the compared laser time series is recovered for several combinations of the symbolization
lags, including τ1 = 4 and τ2 = 2; τ1 = 6 and τ2 = 3; and τ1 = 8 and τ2 = 4.

Figure 8. PJSD estimations in logarithmic base 10 scale from two numerical realizations of LK
equations (L = 105 data points) at different time scales but with equivalent statistical properties.
Order D increases from 3 to 6 (from upper left to lower right plots), and lags τ1 and τ2 vary from 1 to
20. Numerical laser time series are subsampled to 10/Γ ≃ 28 ps prior to analysis.

In agreement with the results presented for the MG time series in Figure 2, large PJSD
values (yellow colors) tend to appear for small values of the symbolization lags, and low
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PJSD values (blue colors) appear for large values of the symbolization lags. As shown in
Figure 9, low values of the PSJD metric can be obtained either when the ordinal pattern
probabilities are computed following a 2-to-1 ratio or when the symbolization lags are large,
obtaining quasi-equiprobable distributions.

The ordinal pattern probabilities computed using D = 3 are relatively simple. It is
also interesting to observe the probabilities obtained using a larger embedding dimension.
Figure 10 presents the ordinal pattern probabilities computed using D = 4. In this case,
the similarity of the numerical laser time series is recovered for the proper 2-to-1 ratio of the
symbolization lags, although the observed probabilities are significantly more involved.

Figure 9. Ordinal pattern probabilities with D = 3 for the two numerical simulations of the LK
equations. Particular choices of the symbolization lags τ1 and τ2 associated with these two signals
are considered in each subplot.

Figure 10. The same as in Figure 9 but with D = 4.
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4.4. Experimental Results

We now analyze two experimental time series of a semiconductor laser subject to
optical feedback. Identifying the similarity of experimental time series is a challenging
task, as the data may contain noise and other non-idealities. Considering the dynamical
study of this laser system, we can identifying similarity when the two laser time series
A and B fulfill the conditions κA/

√
pexcA = κB/

√
pexcB and

√
pexcA · ΛA =

√
pexcB · ΛB.

In this case, we analyze time series with the parameter sets pexcA=0.57 (
√

pexcA ≃ 3/4),
ΛA = 99.95 ns and pexcB = 1, ΛB = 75.18 ns (ΛB ≃ 3/4ΛA), respectively. Accordingly,
the feedback strengths are set to κB = 4/3κA such that the same ratio between fRO and
∆ f f b is maintained for the two experimental laser time series.

We present the PJSD estimations of the two experimental laser time series in Figure 11.
A slanted blue line, corresponding to a 4-to-3 ratio between the symbolization lags τ1 and τ2,
can be observed for all embedding dimensions. This result implies that the same dynamical
features can be reproduced at different time scales when the laser and feedback parameters
are properly adjusted. Since semiconductor lasers can be used in optical communications
for secure key distribution [39–41], similarity could be exploited, e.g., to transmit secure
keys at different rates.

Figure 11. PJSD estimations in logarithmic base 10 scale from two experimentally obtained signals
(L = 105 data points) with dynamical behaviors similar to numerical counterparts. Order D increases
from 3 to 6 (from upper left to lower right plots), and lags τ1 and τ2 vary from 1 to 20. Experimental
laser time series are acquired with sampling interval of 25 ps for analysis.

The similarity between the two experimental laser time series is further evidenced by
the ordinal pattern probabilities displayed in Figures 12 and 13. Here, given the limited
experimental precision, the 4-to-3 ratio for the similarity is not exact, and the 5-to-4 ratio
also yields similar ordinal pattern probabilities. The temporal precision of identifying
similarity is bounded by the sampling interval of 25 ps corresponding to the acquisition
oscilloscope. Nevertheless, the existence of similarity between the two experimental laser
time series can be readily identified given the results in Figure 11.
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Figure 12. Ordinal patterns probabilities with D = 3 for the two experimental signals. Particular
choices of the symbolization lags τ1 and τ2 associated with these two signals are considered in
each subplot.

Figure 13. The same as in Figure 12 but with D = 4.

5. Conclusions

The ability of the PJSD to characterize the ordinal similarity of two time series at
different temporal scales has been carefully analyzed in this work. Through numerical
and experimental analyses, it has been shown that the PJSD offers a simple and flexible
approach for identifying the sampling rates that minimize the distance between two
arbitrary sequences from an ordinal perspective. This finding stands in stark contrast to
what happens with other popular similarity measures, such as dynamic time warping,
which show reduced performance when dealing with this issue.

Given its versatility, robustness to noise and outliers, and invariance under data scaling,
it is reasonable to predict that the proposed multiscale PJSD approach could be of utility in
analyses of real-world data from heterogeneous scientific fields. We encourage interested
researchers and practitioners to implement this tool in order to confirm this hypothesis.
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Abbreviations
The following abbreviations are used in this manuscript:

PJSD Permutation Jensen–Shannon distance
JSD Jensen–Shannon divergence
BP Bandt and Pompe
OPD Ordinal probability distribution
MG Mackey–Glass
LK Lang–Kobayashi
RO Relaxation oscillation

Appendix A. Computational Time

With the aim of obtaining a better handle on the computational cost of the multiscale
scheme proposed in this work, the time necessary to perform this multiscale analysis by
running a self-made MATLAB (Version 9.5, R2018b) script was calculated. Being more
precise, a pair of arbitrary time series (Gaussian white noise in the following analysis)
of length L were generated, and then, the running time to estimate the PJSD between
these two signals for the 400 combinations of lags τ1 and τ2 with 1 ≤ τ1, τ2 ≤ 20 were
obtained. This analysis was repeated for 100 independent pairs of simulations, varying
the time series length L (L ∈ {103, 5 · 103, 104, 2 · 104, 4 · 104, 6 · 104, 8 · 104, 105}) and the
order D (D ∈ {3, 4, 5, 6}). The results obtained for the running times (in seconds) as a
function of length L for the different orders D are illustrated in Figure A1. The mean and
standard deviation (presented as error bars), from the 100 independent pairs of numerical
simulations, were plotted. The time complexity increases linearly with the time series
length L, with a slope that depends on the order D. Obviously, higher computational costs
are observed as D increases, since the number of possible ordinal patterns is larger. It is
important to highlight that even in the worst case, i.e., D = 6 and L = 105, the average
time required to estimate the PJSD for the 400 combinations of lags τ1 and τ2 is around 8
seconds. Consequently, the proposed methodology is fast enough and can be implemented
for the analysis of large databases.
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Figure A1. Running time to estimate the multiscale PJSD as a function of the time series length L
for different orders D. The mean and standard deviation (presented as error bars) of the running
time, from 100 independent estimations of the PJSD between two Gaussian white noise numerical
realizations with order D and lags τ1 and τ2 between 1 and 20 (400 combinations), are plotted.
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