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ABSTRACT This paper introduces a novel FPGA-based Convolutional Neural Network (CNN) archi-
tecture for continuous radio data processing, specifically targeting modulation classification on the Zynq
UltraScale+ Radio Frequency System on Chip (RFSoC) operating in real-time. Evaluated on AMD’s
RFSoC2x2 development board, the design integrates General Matrix Multiplication (GEMM) optimisations
and fixed-point arithmetic. We also present a method for creating Deep Learning (DL) data sets for
wireless communications, incorporating the RFSoC into the data generation loop. Furthermore, we explore
quantised-aware training, producing three modulation classification models with different fixed-point
weight precisions (16-bit, 8-bit, and 4-bit). We interface with the implemented hardware through the
open-source PYNQ project, which combines Python with programmable logic interaction, enabling real-
time modulation prediction via a PYNQ-enabled Jupyter app. The three models, operating at a 128 MHz
sampling rate prior to the decimation stage, were evaluated for accuracy and resource consumption. The
16-bit model achieved the highest accuracy with minimal additional resource usage compared to the 8-bit
and 4-bit models, making it the optimal choice for deploying a modulation classifier at the receiver.

INDEX TERMS Deep learning (DL), wireless communications, AMD, FPGA, RFSoC, PYNQ, modulation
classification, convolutional neural network (CNN), inference, data-flow, general matrix multiplication
(GEMM) transform, data set generation, artificial intelligence (AI), quantized-aware training.

I. INTRODUCTION

DEEP Learning (DL) has emerged as a powerful tool
for improving Physical Layer (PHY) wireless com-

munications. As new technologies such as 6G emerge, DL
will play a crucial role in all layers of the communication
stack. Previous research has shown impressive results in
various DL applications for wireless communications such
as channel estimation [1], [2], [3], signal identification [4],
decoding [5], and synchronization [6]. In other fields that
make use of Artificial Intelligence (AI), the typical sizes of
DL models can vary depending on the task that is being
addressed. For the field of computer vision, applications like
object recognition can use models such as the Tiny-YOLO
model with 8-million parameters to achieve good results. A
model of this size could be run on most desktop graphics

cards. Much bigger models are used for Large Language
Models (LLMs) such as GPT-3.5 where its 173-billion
parameters are distributed amongst 10’s of thousands of high
end graphics cards. In comparison, DL models used for PHY-
layer wireless communications tasks, such as RadioML’s
modulation recognition model [4], only have ∼260 thousand
parameters, making it feasible for them to be deployed
on an edge device like a System-on-Chip (SoC) or Field
Programmable Gate Array (FPGA).
DL in the realm of communications is rapidly evolving,

frequently yielding impressive results. Realizing the full
potential of these algorithms requires their integration into
both existing and emerging radio transceivers. Many of these
transceivers harness FPGA and SoC architectures, used for
their reconfigurability and capacity for parallel processing.
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These Radio Frequency System on Chip (RFSoC) devices
combine high-precision analog-to-digital converters (ADCs)
and digital-to-analog converters (DACs), functioning at Giga-
samples per second (Gsps), alongside programmable logic
for implementation of custom algorithms [7]. This work
targets the AMD RFSoC2x2 development board [8] and the
hardware designs were built with MathWorks HDL Coder [9]
and AMD Vivado.
Our paper builds upon the foundation laid by previous

research in modulation classification, drawing upon the
seminal work of O’Shea et al. [4] and the innova-
tive low-precision data flow DL models introduced by
Umuroglu et al. [10]. Prior studies, such as those by
Hou et al. [11] and Jung et al. [12], have explored CNN
architectures and Short Time Fourier Transforms (STFT)
for modulation classification on FPGAs. However, these
investigations primarily focused on simulated or pre-recorded
data and did not encompass real-time received signals. In
contrast, Horne et al. [13] demonstrated the classification
of radio signals in real-time by employing the Line Hough
Transform with spectrograms on the ZCU111 RFSoC.
Similarly, Tridgell et al. [14] developed a modulation scheme
classifier for real-time received signals, leveraging both the
RadioML data set [15] and their own recorded signals.
Jentzsch et al. [16] introduced a proof of concept paper
applying FINN [10] to modulation classification tasks using
the RadioML data set [15]. While previous studies have
implemented CNN architectures for modulation classifica-
tion, only Horne et al. [13] and Tridgell et al. [14] have
successfully deployed DL models with real-time received
signals. It is worth noting that Horne et al. [13] utilized image
processing of spectrograms for their classifications, whereas
Tridgell et al. [14] focused on classification of samples from
the RFSoC ADCs, limiting their scope to 4 modulation
schemes with no added noise.
This paper is a continuation from our previous paper [17]

where we introduced our streaming-based architecture and
deployed a trained DL model. The network was trained using
Tensorflow and the floating-point weights were converted
into 18-bit fixed point weights and deployed into an RFSoC
device, classifying samples at 30dB SNR. It processes
samples without interruption live on the board. In this
paper, we will detail our process of creating the custom
data set used to train the neural network, which takes
into consideration any degrading effects introduced by the
transceiver and which classifies signals that have passed
through a multipath fading channel with AWGN noise of
−20 to 30dB SNR. Additionally, we trained three separate
DL models at varying weight quantisations, using quantised-
aware training with Brevitas [18]. Each model is deployed
on the RFSoC and tested with live signals to evaluate its
performance. Our novel hardware-friendly CNN architecture
includes on-chip storage of weights and preserves the data
flow structure of wireless communications pipelines by
stream processing of every sample without interruption. In
contrast to [14], we use the same neural network dimensions

proposed in [4] and utilize quantised-aware training to
achieve good classification accuracy on the fixed-point
weights. We believe that a method for translating theoretical
deep learning models onto hardware without altering the
initial network dimensions is crucial for accelerating the
transition from theory to production. In this work, we
present results obtained from the live classification of signals
received at the ADC of the RFSoC. This approach provides
a more realistic expectation of performance once a trained
network is deployed in hardware.
The contributions of this paper are:
• A novel streaming-based CNN implementation for
RFSoC receivers where every sample is processed with
no interruptions to the received data stream.

• A method for generating a data set specifically opti-
mized for training RFSoC applications in deployment.

• Results and insights from quantised-aware training of
the modulation classification model across different
quantisation parameters.

• Demonstration and evaluation of the modulation clas-
sification model through live operation on the RFSoC
board.

The remainder of this paper is organized as fol-
lows: Section II outlines the motivation for the work,
Section III introduces the AMD RFSoC development
platform, Section IV is an overview of the modulation
classification application, Section V details creation of
the data set used in this work, Section VI shows the
quantised-aware training process, Section VII details the
design of the streaming CNN architecture, Section VIII
outlines the overall CNN architecture as a whole, and
Section IX discusses the infrastructure for testing, validating
and visualizing the system. Sections X and XI discuss
the resource utilization and accuracy performances of each
model. Finally, Section XII concludes and discusses the
findings of the paper.

II. MOTIVATION
As 5G and the upcoming 6G technologies unfold, radio
transceivers are set to encounter a growing array of chal-
lenges beyond the scope of conventional human-designed
methods. These challenges can include: channel estima-
tions at higher velocities, sustainable cognitive radios, and
smart signal decoding [19]. In response to these emerging
complexities, DL emerges as a valuable tool for radio
communications engineers. Integrated into existing radio
communications pipelines, DL can effectively address these
challenges.
Many radio transceiver architectures operate on SoCs or

FPGAs. To seamlessly integrate DL into established radio
setups, the neural network architecture must maintain a
data flow-like structure akin to a wireless communications
pipeline. The data-flow model is where signal processing
operations are represented as nodes in a graph, with data
flowing between them, enabling efficient parallel processing
and resource utilization. This flow of data guarantees
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FIGURE 1. Motivation for replacing traditional radio pipeline functionality with
deployed deep learning models.

deterministic latency for the neural network, which facilitates
seamless alignment and integration with other areas of the
radio system. Figure 1 illustrates the potential of DL to
augment or replace certain functionalities within an existing
data-flow communications pipeline, demonstrating how DL
can be integrated while maintaining the flow of data through
the design.
The application demonstrated in this paper illustrates that

a DL model can be deployed after an ADC to process data
without dropping samples. The objective is to establish that
DL can be practically and effectively utilised for Physical
Layer (PHY) communication systems. We encourage the
exploration of other challenging implementations for other
DL tasks in wireless communications, such as channel
estimation, Dynamic Spectrum Access (DSA), signal decod-
ing, and synchronization. We invite researchers to use our
proposed architecture as a reference model to enable DL for
these other wireless communication challenges.

III. AMD RFSOC
This study targets AMD’s Zynq UltraScale+ Radio
Frequency System on Chip (RFSoC) family, specifically
the XCZU28DR on the RFSoC2x2 development board [7]
(hereafter referred to simply as ‘RFSoC’). The XCZU28DR
is a Gen1 RFSoC chip that integrates high-precision ADCs
and DACs. Its ADCs can achieve a maximum sampling rate
of 4.096 Gsps, while the DACs can attain a sampling rate
of 6.554 Gsps. Featuring two DACs and two ADCs, the
RFSoC2x2’s elevated sample rate capabilities open avenues
for sophisticated applications across the frequency spectrum,
including but not limited to spectrum monitoring and DSA.
While this study primarily showcases the utilization of DL
for signal identification off the air, the potential extends to
fully harness the RFSoC’s capabilities in a DSA setup.
The RFSoC facilitates communication between the

Processing System (PS), which includes a quad-core Arm
Cortex A53 processor, and the Programmable Logic (PL),
where custom algorithms can be deployed and accelerated.
This work leverages the PYNQ framework for communica-
tion between the Arm processor and PL [20]. Developed and
maintained by AMD, PYNQ is an open-source framework
designed to simplify interactions with SoCs. Employing

the Python language, PYNQ seamlessly integrates widely
used libraries such as numpy [21], scipy [22], plotly [23],
and ipywidgets [24]. Furthermore, PYNQ adopts Jupyter
notebooks as an interactive programming environment, a
format that is ideal for experimentation and learning [24].

IV. APPLICATION - MODULATION CLASSIFICATION
The focus of this study centers on the task of modulation
classification. Modulation classification entails the identi-
fication of the modulation scheme employed in a radio
signal. In wireless communications, modulation involves
encoding information onto a carrier signal for transmission.
Modulation classification is a type of signal identification
that can aid cognitive radios in spectrum sensing and
identifying the primary users of the spectrum. The choice
to focus on modulation classification as the application for
this work is driven by its prevalence in prior research within
the field of DL for wireless communications. Additionally, it
offers a foundational benchmark against which other research
outputs can be compared, as established in [4].

Within our modulation classifier, the objective is to iden-
tify one out of eight possible modulation schemes present in a
signal: Quadrature Phase Shift Keying (QPSK), Binary Phase
Shift Keying (BPSK), Quadrature Amplitude Modulation
(QAM16 & QAM64), 8 Phase Shift Keying (8PSK), Pulse
Amplitude Modulation with four levels (PAM4), Gaussian
Frequency Shift Keying (GFSK), and Continuous Phase
Frequency Shift Keying (CPFSK).

V. DATA SET CREATION - DEEPRFSOC
DeepSig’s RadioML data set [15] quickly established itself
as a benchmark for evaluating DL architectures within the
realm of wireless communications. However, there exists a
disparity between the RadioML data set and the actual input
received by the ADC of the RFSoC. This difference arises
from the absence of additional factors that can deteriorate
the signals impacted by the transceiver itself, such as the
effects of applying realistic filters that do not have an
ideal ‘brick wall’ response, spurs and harmonics introduced
by the data converter, the influence of ADC quantisation,
and the possible artifacts associated with the stitching of
the interleaved ADCs. Additionally, the RadioML data is
provided in fixed length frames of 128 complex samples,
yet for real-time classification a continuous data stream is
required so that it can be output from the DAC. To address
this challenge, it was decided to generate our own data set
while utilizing the RFSoC within the generation loop. This
is a pivotal step towards creating a data set that closely
represents how data passes through the RFSoC, including
the analogue and Radio Frequency (RF) processing stages,
and ultimately developing a DL network trained with this
context in mind.

A. GENERATE TRAINING SAMPLES IN MATLAB
The first step in creating our data set was to generate
the desired set of modulated signals and simulate environ-
mental channel effects using MATLAB’s Communications
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FIGURE 2. Overview of the data set generation process, illustrating the transmission of pre-generated signals using the RFSoC’s loop-back path to record the data set.

Toolbox [25]. This approach mirrors the methodology
detailed in RadioML [4], where different channel model
parameters, frame sizes, and data set sizes were utilised. For
each of the eight modulation schemes, 1000 frames of data
were generated with 1024 random symbols created for each
frame. The symbols were passed through a Raised Cosine
pulse-shaping filter with roll-off factor α = 0.5, filter length
10, and output samples per symbol equal to 8, resulting in
an output length per frame of 8192. The resulting pulse-
shaped signal was then passed through a Rician channel
model simulating an indoor scenario with two additional
reflected paths adding an additional 4.2m and 7.97m to the
signal path, respectively. The channel was simulated using
the Communications Toolbox with a sampling rate fs of
128 MHz, three path delays: 0

fs ,
1.8
fs , and

3.4
fs seconds with

average path gains: 0, −2, −10, respectively. The K-factor
value was set to a scalar of 4 and the maximum Doppler
shift equal to 4 Hz while assuming a carrier frequency
of 700MHz, simulating a maximum transmitter velocity of
1.7m/s. Subsequently, the channel altered signal has a clock
offset simulated, where a random frequency offset between
−5 and 5 MHz is applied along with a resulting time offset
due to the shifted sampling frequency. Finally, the signal is
passed through an Additive White Gaussian Noise (AWGN)
channel with varying signal-to-noise ratios (SNR) from the
list: [−20,−16,−12,−8,−4, 0, 4, 8, 12, 16, 20, 24, 28, 30]
dB. The resulting window is cropped at a random interval
to a frame length of 4096, I and Q separated, and
the final frame size for each modulation scheme is
1000 × 2 × 4096.

B. TRANSMIT, RECEIVE, AND RECORD
In order to include the RFSoC’s signal path as part of the
channel the training data passes through, the next step in
data set generation was to pass the generated MATLAB data
through the RFSoC’s DAC and ADC loop-back path. To
facilitate the transmission and reception of the pre-generated
signals, a bit-stream was designed to transmit the data.
An overview of the complete data set generation process,
utilizing the RFSoC used for both transmitting and recording
the new data set, is depicted in Figure 2.
The data generated in Section V-A was packetised and

accessed from within PYNQ with Python [20].

A singular frame from the data set has dimensions
2 × 4096, and when ready to send, it is stored in PS Double
Data Rate (DDR) memory in a pre-allocated contiguous
portion of memory. The data is then ready for the Direct
Memory Access (DMA) to move it to the PL. In the PL,
a buffer waits to receive the data from the DMA. When
instructed to, the data is sent to the buffer where the data is
stored and read cyclically indefinitely until instructed to stop.
This action mimics the transmission of the modulated signal
where the data has been altered by a channel. The transmitted
signal is then passed through the Digital Up-Conversion
(DUC) stages and interpolated to a sampling rate of 128
MHz and passed to the DAC where it is modulated to a
desired carrier frequency and sent out of the device. The
DAC is connected to the ADC through a loopback cable
and the signal is received into the ADC which is tuned to
demodulate the signal from the same carrier frequency as
applied at the transmit side.
The received signal is passed to the Digital Down

Converter (DDC) stages where the sample rate is transformed
from 128 MHz to 4 MHz and the resulting signal then
enters the Frame Capture Intellectual Property (IP) block.
The Frame Capture IP waits for an AXI4-Lite signal from the
PS to instruct it to capture the current 128 samples entering
the IP. Once the frame has been captured, it is sent to the
DMA to be transferred to the PS DDR for storage.
The full data set is created by iterating over all modulation

schemes and, for each modulation scheme, iterating over all
of the saved SNR noise levels. For each 4096 sample long
transmitted signal, the received data is captured 32 times
and stored in a new Python dictionary. Figure 2 illustrates
this recording process. Once saved, the model is ready to be
trained with the data set.

VI. QUANTISED-AWARE TRAINING
Our created data set contains 2.6 million frames across all
eight modulation schemes and SNRs, where each frame has
2 channels that are 128 samples long. Each modulation
scheme holds 330,000 frames at the varying SNRs. To
prepare the data set for training, we first separate the set into
training, validation, and testing portions at a 80:10:10 split,
respectively. The goal in the training portion of this work is to
achieve a DL model that classifies each modulation scheme
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TABLE 1. Neural network dimensions.

in varying SNR environments and to investigate how the
performance of the neural network varies with the number
of quantisation levels used for the model weights.
The neural network dimensions in this work remain

constant and can be seen in Table 1.
Our neural network structure is similar to the neural

network proposed in the original O’Shea paper [4]. We chose
to keep the network dimensions similar to demonstrate that
no extra neurons were allocated to the quantised networks in
comparison to the original floating-point network from [4].
In our previous work [17], we demonstrated the same
neural network dimensions with a floating point model and
evaluated its performance when the weights and activa-
tions were quantised to 18-bits after training. The training
framework used in this work is Brevitas [18], a PyTorch
fork [26], which is a framework designed for implementing
reduced precision hardware data-paths during the training
of neural networks. Brevitas extends PyTorch’s capabili-
ties by incorporating various options such as quantisation
techniques, adjustable bit-widths, and customisable hardware
configurations. During training, the quantised networks apply
a limitation on the dynamic range of each weight/activation
depending on the user’s configuration. Quantised-aware
training allows for the network to factor in the noise incurred
from the quantised weights/activations themselves as part of
the training loop, as well as apply a form of regularization
through quantisation noise. This results in much better
performance in accuracy than quantizing post-training [27],
[28], [29], [30].
Three sets of quantisation parameters are evaluated for

this paper: 16-bit weights with 16-bit activations, 8-bit
weights with 16-bit activations, and 4-bit weights with 16-bit
activations. In Brevitas, each model is configured to represent
the dimensions shown in Table 1 using a mixture of PyTorch
layers and Brevitas layers.
Figure 3 plots the loss for each network quantisation

against the number of epochs during training. For the
training sequence the loss was calculated using cross entropy
loss [31] with an Adam optimizer [32] with parameters:
learning rate = 1e−4. The batch size was set to 128 and
the training sequence was run for 70 epochs unless early
stopping was triggered. Early stopping was triggered if the
loss did not improve over 8 epochs, as can be seen in the loss
plots in Figure 3. For the duration of training, the validation
loss was also logged as an indicator of whether the training
was overfitting to the data set.

FIGURE 3. Loss over epochs during training sequence for all DL models.

VII. REAL-TIME STREAMING CNN ARCHITECTURE
Our proposed architecture is designed to perform DL modu-
lation classification continuously on the received decimated
RF data with no pauses. In our PyTorch/Brevitas training,
we provided finite frames of data to the model and trained
it to identify signals based on this buffer of data. While
the implementation of the DL model on hardware also
makes a decision based on a finite frame of data, we
have adapted the layers (see Section VII-A) to allow for
samples to flow through uninterrupted. This means that
the implemented DL model’s latency is deterministic and
therefore can be synchronized with other parts of a receiver
design. Additionally, applications such as decoding, channel
estimation, or anomaly detection where dropping samples
can negatively affect the performance of the receiver system,
can benefit from this streaming-based CNN architecture.
The design philosophy of our streaming architecture is

centred on the data-flow model, treating incoming data as a
continuous stream of infinite samples and processing them
in real-time. One significant challenge with this approach
is the repeated reading of input feature map samples by
the convolutional layers, which can result in a potential
loss of samples due to processing lag. Given an input
feature map with dimensions: channels c, height h, and
width w, and a filter with dimensions: number of filters
n, matching input channels c, height j, width k, and the
number of strides s used during convolution (as defined
in Equation (1)), Equation (2) shows the minimum clock
rate increase factor R required for each convolutional layer.
For instance, the first convolutional layer processes an input
with dimensions (c, h,w) = (1, 2, 128) and a filter with
dimensions (n, c, j, k) = (64, 1, 1, 3). The clock rate increase
factor for this layer, denoted as Rconv1, is given by

s = (h− j+ 1) ∗ (w− k + 1) (1)

Rconv1 =
⌈
scjk

chw

⌉
=

⌈
252 ∗ 1 ∗ 1 ∗ 3

1 ∗ 2 ∗ 128

⌉
=

⌈
756

256

⌉
= 3 (2)

The relationship given in (2) can be applied to all
convolutional layers in the network, two in our case, and
an additional factor of 2 is added due to the upsampling
and interleaving stage before data enters the implemented
DL model. The overall upsampling ratio required for the
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FIGURE 4. CNN input data pre-processing.

network, assuming a fully parallel matrix-vector multiplica-
tion is implemented, is given by

Rtotal = Rconv1 + Rconv2 + 2 (3)

where Rconv1 and Rconv2 are both equal to 3. The system
necessitates a minimum clock increase by a factor of 8.
In this research, we elevated the clock rate by a factor
of 32 to enable effective hardware resource sharing in the
fully connected layers. The proposed DL model follows a
DDC, reducing the incoming signal’s sampling rate by a
factor of 32 from the ADC fabric clock of 128 MHz. The
ADC samples at 1.024 Gsps with a PLL clock frequency of
409.6 MHz and an internal decimation rate of 8.
The following sections will describe the design choices

and methodologies employed in implementing our CNN
architecture on the RFSoC.

A. INPUT DATA PRE-PROCESSING
The received IQ signal from the antenna in Figure 4 is
digitized in the ADC and modulated to baseband before
entering the FPGA at a rate of 128 Msps. To minimize
computational requirements while adhering to the Nyquist
sampling theorem, the signal is passed through a filter
decimation chain that reduces the sampling rate by a factor
of 32, to 4 Msps. The decimation chain implements two low-
pass decimation filters with combined stopband frequency
equal to: fstop = 1

32 × fs
2 , to eliminate any aliased components

while maintaining the 1MHz bandwidth of the modulated
signals. Since the received signal is complex, it is split
into two paths and each path is decimated with identical
filters. Once decimated, the I and Q samples are interleaved
to form a one-dimensional input before entering the first
convolutional layer.
After the decimation stage, the data is fed into the DL

model at a lower sample rate than the model’s clock rate.
To prevent the CNN from waiting extra clock cycles to
receive subsequent samples, we buffer the incoming data into
Block RAM (BRAM) and output the data in 256-sample long
bursts, clocked at the DL model’s clock rate. This bursting
operation acts as a ping-pong buffer and it is used to prevent
any data loss during conversion. While one buffer fills, the
other outputs the previously collected samples. The incoming
I and Q samples are quantised to int16 precision.

B. CONVOLUTIONAL LAYERS
Convolutional layers are the core building blocks of CNNs,
pivotal in extracting feature maps from input data. They do

this by sliding filters (or kernels) across the input, and com-
puting the dot product between filter weights and overlapping
input values. This process yields a feature map where local-
ized features within the input can be identified. However,
convolutional layers pose a computational challenge due to
the their inherent complexity of passing filters over the input
multiple times. For a streaming-based CNN architecture, this
repeated operation can greatly slow down the throughput
of the deployed model. To circumvent this, our architecture
incorporates the General Matrix Multiplication (GEMM)
Transform, where it streamlines convolutional operations
by condensing the computation into a simple large matrix-
matrix multiplication [33].
Within our architecture, convolutional layers are divided

into two stages: the input data buffer and sliding window
generator, and the matrix-to-vector multiplier. The input
data buffer receives and stores samples in a 1-dimensional
on-chip RAM. The sliding window generator executes the
GEMM transform on the input samples, retrieving them from
the buffer in a transformed order for multiplication with
pre-processed layer filters stored in BRAM. This generator
outputs the resulting matrix incrementally, sample by sample
or row by row, and conducts multiplication with the GEMM
transformed filter weights to generate the layer output.
The following subsections describe the two stages within

the convolutional layers in more detail.

1) GEMM TRANSFORM AND SLIDING WINDOW

After the samples are buffered, the Sliding Window
Controller (SWC) proceeds to read the GEMM-transformed
samples.
a) Filter/Kernel Transformation: The quantised fil-

ter/kernel weights undergo transformation into a matrix
representation. Initially, the interleaving of C channels for
each filter N takes place. Subsequently, the unrolling and
concatenation of each filter N results in a single matrix,
denoted as �̃conv, with dimensions N × CKJ (where N
represents the number of filters, C denotes the number of
channels, and J and K denote the number of columns and
rows of the filter weights, respectively). This transformation
is conducted offline in MATLAB, and the filter weights are
stored on-chip for efficient access.
b) Input Data Transformation: The GEMM transform of

input samples into a convolutional layer comprises three
steps:

• Initially, the input is reshaped into a 2-dimensional
matrix, with C interleaved channels. Typically, the input
to a layer is a 3-dimensional tensor.

• Striding and replication functions are applied (see
Figure 5).

• Unrolling. For each stride step, the input samples
under the filter window are unrolled and concatenated,
resulting in the matrix X̃conv.

In contrast to filter weights, the input transformation
must be performed during live operation. The drawback of
this approach is the necessity to replicate input samples to
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FIGURE 5. GEMM Transform algorithm for the input samples.

achieve the same output as a sliding window convolution. To
address this, we implemented a SWC capable of performing
the transform in real-time on a continuous stream of input
samples.
The Buffer & SWC (depicted in the wider model

architecture in Figure 6), manages the reading and writing
of samples to on-chip RAM. It incorporates a state machine
responsible for executing the sliding window transformation
(as illustrated in Figure 5), by reading samples from the
buffer memory according to the GEMM transform.
Initially, the columns (K) of each input channel (C) are

interleaved to create a single 2-dimensional matrix. Next,
the flattened sliding window passes over the 2-dimensional
input, dividing it into smaller matrices based on the number
of strides (S) performed by the sliding window. The
split matrices are then unrolled and concatenated to yield
the resulting GEMM-transformed input matrix, X̃conv, with
dimensions CJK × S. The SWC directs storage addresses
to the on-chip RAM to retrieve the resulting matrix.

2) MATRIX TO VECTOR MULTIPLICATION

After the input undergoes transformation into a matrix, it
proceeds to the matrix-vector multiplier stage where it is
multiplied with the transformed filter weights to generate
the convolution output.
Within this proposed architecture, we introduce various

implementations of the matrix-vector multiplier. The first
type of implementation entails parallel processing of vector-
vector multiplications, utilizing input vectors from the
SWC. The second option executes the matrix-vector calcula-
tion sample-by-sample employing N Multiply-ACcumulate
(MAC) units, where N represents the number of filters in
the convolutional layer. This latter design is particularly
optimized for larger multiplications. Lastly, an alternative
option involves a serialized implementation of the matrix-
vector multiplier, time-sharing one (or a limited number of)
MAC units, provided that sufficient spare clock cycles exist.
All implementations maintain 16-bit fixed-point precision

at the outputs of each layer, and carefully minimize the
wordlength growth through the MAC operations. All of the
previously described multiplication optimisations necessitate
a higher sampling rate than the input rate of the model, driven
by the need to replicate samples in the GEMM transform
stage and the increased number of samples output in certain
convolutional layers. The clock rate is further increased if
any time-sharing of MAC units is possible to save on FPGA

resources. The convolutional filters are stored on-chip using
one of the three quantisation formats explored in this paper:
16, 8, or 4 bits.

C. DENSE LAYERS
A dense layer in DL models is a fully-connected layer
where every neuron is intrinsically linked to each neuron
in the preceding layer. The dense layer executes a matrix
multiplication operation between the inputs and weights.
Since the dense layer can be calculated as a multiplication

of two matrices, the implementation approach can be similar
to that described in Section VII-B2 for the convolutional
layers. The matrix-vector multiplication can be implemented
in a number of ways for resource saving and throughput
optimisations, while keeping a 16-bit fixed-point precision
at the output. Like the filters in the convolutional layer, the
weights for the dense layers are stored on-chip in one of the
three quantisation formats investigated in this paper (16, 8,
and 4-bits). Unlike the convolutional layers, the weights and
the inputs do not require any transformations.

D. ACTIVATIONS
In this work, we focus solely on the effects of quantizing
the weights of each layer, deliberately excluding biases to
isolate this effect.
The activation function employed in the first three layers

of our proposed network is the Rectified Linear Unit (ReLU)
function [34]. For the final layer, a Softmax function [35] was
used to transform the classification outputs into a probability
distribution.

VIII. OVERALL ARCHITECTURE
Figure 6 provides an overview of our hardware data flow
CNN architecture. Point ‘A’ serves as the input for the
signal originating from the ADC, decimation filter chain,
and interleaver, all passing into the first convolutional layer.
A buffer stores 256 samples before the SWC reads the
samples back out while applying the GEMM transform.
The samples then enter the matrix-vector multiplier block,
an assembly of 64 MAC units, each producing an output
every 3 clock cycles. Each MAC unit multiplies incoming
samples with their corresponding weights, stored in the
BRAM. The output dimensions exiting from this multiplier
stage are formed into a vector containing 64 samples. At
point ‘B’ the vector then enters the second convolutional
layer and is stored in an array of buffers. The SWC
performs the GEMM transform, extracting 16 sample long
vectors from the array of buffers. The GEMM-transformed
input, with dimensions 124 × 384, undergoes multiplication
with transformed weights (384 × 16). The matrix-vector
multiplier anticipates a 16 sample vector from the buffer,
requiring 2, 976 vectors to complete one input frame.
The second convolutional layer matrix-vector multiplier

adopts a configuration featuring 16 groups of 16 MAC units
(256 in total), each operating for 24 clock cycles to produce
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FIGURE 6. Overall CNN architecture for modulation classification.

FIGURE 7. High-level system showing PS-PL communications.

TABLE 2. Parallelism of MACs in each layer.

an output. At point ‘C’, the vectors from the second layer
are stored in another vector buffer, with the SWC extracting
samples one at a time. These samples are passed through
128 parallel MAC units, operating over 1, 984 samples to
generate the third layer output.
Up to this stage, samples pass through a ReLU function

between layers, zeroing negative values. The final Fully-
Connected (FC) layer computes the outputs using 8 MACs,
without a transform or associated buffers. The layer’s
outputs, representing class predictions, are serialized and sent
to a DMA IP for PS visualization. The parallelism of MAC
units is summarized in Table 2.

IX. VALIDATION AND VISUALIZATION INFRASTRUCTURE
A validation and visualization infrastructure (Figure 7) was
created in order to test the performance of the CNN models
deployed on the PL. The CNN models were connected to
the ADC of the Radio Frequency Data Converter (RFDC)
through a decimation filter chain with the classification
outputs of the models connected to DMA IPs to transfer to
the classifications to the PS for visualization. We configured
the RFDC to transmit modulation schemes at a center

frequency (fc) of 400 MHz. On the receiver side, the signal
is received to the ADC via the RF loopback cable.
Figure 8 is a screenshot from the Jupyter Labs environ-

ment where a user interface was created to inspect the
implementation through ipywidgets [24]. All three models
were implemented into one FPGA bitstream to permit direct
comparison of the performance of the quantised models
(amc_16w16a, amc_8w16a, and amc_4w16a) which all
operate on the same received signal. When a test signal is
sent to the ADC and decimated through the DDC, the signal
is split into three paths before it is passed into each model.
The full system setup can be seen in Figure 7 showing the
connections between the PS and PL. The models calculate
their classification answers and output an 8-sample stream
to a DMA IP block that passes data to the PS for plotting
and analysis. The plots implemented in the user interface
app are confusion matrices and classification confidence bar
graphs. The confusion matrices compare the predicted label
generated by the CNN models to the true label of the signal,
and the confidence bar graphs illustrate the softmax result
of each prediction.
The app in Figure 8 requires the user to choose the desired

modulation scheme from a drop-down menu followed by
a choice of SNR. Lastly a phase offset can be applied
to the signal that is configured from within the RFDC.
The 4,096-sample long transmitted signal is plotted on the
top left. When the ADC receives the signal and captures
the 128 complex samples, the time-series received signal
is plotted on the top right of the app (this is the signal
that is passed into each of the DL models). The models
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FIGURE 8. ipywidgets app in Jupyter Labs for testing three models live on the RFSoC.

automatically calculate the classification of the signal and
show the prediction and confidence values in each of the
plots. In the example shown in Figure 8 a QPSK modulated
signal with a noise level of 12dB is sent to the receiver
where all three models show a prediction. The models with
16-bit and 8-bit weights successfully predict the modulation
scheme correctly, however, the 4-bit model predicts the signal
incorrectly with high confidence. The ipywidgets app also
provides a ‘play’ button that enables continuous transmission
of the selected modulation scheme and periodically updates
the prediction plots. The frequency at which predictions are
visualized depends on how quickly data can be moved from
the PL, rather than on the latency of the DL models.

X. RESOURCE UTILIZATION
The system was evaluated on the AMD RFSoC2x2
development board which features the Zynq UltraScale+
XCZU28DR RFSoC part. Table 3 presents the resource
utilization for the DL models. Each model utilisers approx-
imately 10% of the available DSP slices and 15% of the
available BRAMs for each model. The DSP slices are used
in the matrix-vector multiplication stages for each layer and

TABLE 3. FPGA resource utilization of each quantised CNN model.

the BRAMs store the samples entering the convolutional
layers as well as storing the on-chip weights. The table
shows the resources used by each layer of each model.
The main difference lies in the utilization of BRAMs for
storing on-chip weights and using an UltraRAM to store the
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FIGURE 9. Confusion matrices of accuracies across various SNRs.

initially received samples. The 8-bit and 4-bit models have
a reduced BRAM footprint compared to the 16-bit model
due to their lower bit-width per weight. However, because
HDL Coder [9] processes data in byte increments, the 4-bit
model does not save additional memory over the 8-bit model,
resulting in the same resource usage for both. Additionally,
a noticeable difference arises in the consumption of LUTs
across models, reducing as the weight bit-width decreases.
This reduction stems from the diminished necessity for
logical operations in accessing smaller weights from the
BRAMs.

XI. PERFORMANCE RESULTS
The system’s performance is evaluated by each quantised
model’s ability to predict modulation schemes across various
noise levels, as shown in Figure 9 through a series of
confusion matrices across different noise levels. Signals with
SNR levels of 0dB, 8dB, 16dB, 20dB, 24dB, and 30dB
were passed into the model and the overall accuracy for
each noise level was recorded. The 16-bit model shows poor
performance at low SNR but achieves 80-100% accuracy for
each modulation scheme at the higher SNR levels, though it
struggles to differentiate QAM16 and QAM64 due to their
similarity. At 0dB, it quickly learns identify GFSK before all
other modulation schemes. On average, the model achieves
an accuracy of 76% at the highest SNRs.
In the 8-bit weight model, a similar performance to the

16-bit case can be seen, though with an overall decrease in
accuracy. At lower SNRs (0dB) the model again identifies
GFSK before the other modulation schemes, and at the

FIGURE 10. Accuracy plots for quantised models across SNRs, comparing real-time
signals, a floating-point model tested with DeepRFSoC, and the 16w16a model tested
on hardware with DeepRFSoC and RadioML data sets.

highest SNR levels of 20dB and above, the model maintains
an average 70% accuracy, approximately 7% reduction to the
16-bit model due to the reduction is dynamic range of the
model weights. In the 4-bit model we can see further effects
of the limited dynamic range, where the accuracy of the
model plateaus at around 63% from 20dB SNR and onwards.
Despite quantised-aware training, the 8-bit and 4-bit models
do not achieve equal accuracy performance to the 16-bit
weight model.
Figure 10 shows the average accuracy across SNRs for a

series of trained and deployed models. Firstly, the average
accuracy across all modulation schemes for each SNR point
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TABLE 4. Comparison with CNN accelerators for modulation classification.

is shown for each of the quantised models while it is
receiving live data via RF loopback. It is shown that the best
performance is that of the 16-bit weight model (16w16a).
As a comparison, the DeepRFSoC data set, used to train
the 16-bit quantised model, was evaluated with the deployed
model by sending test frames via DMA transfer to the
model. It can be seen that the 16w16a model performs
equally when receiving data from the ADC or via DMA
transfer. A floating-point equivalent model was trained in
PyTorch, with accuracies plotted in Figure 10, to provide
a baseline accuracy for the models. The floating-model
model achieves an accuracy of 80% at the highest SNRs,
showcasing that the deployed 16w16a model achieves a
4% accuracy reduction to the baseline. Finally, the 16w16a
model trained on DeepRFSoC was sent test frames from
the RadioML data set to evaluate the model’s performance
on other data sets that it was not trained on. As shown in
Figure 10, the model reaches an average accuracy of 65%
for SNRs above 4dB on the unseen RadioML data. Notably,
model accuracy improves at lower SNRs when processing
RadioML data compared to DeepRFSoC. This difference
may be due to the additional channel effects introduced by
the RFSoC transmission and reception path. Furthermore,
the Rician channel model used in our work (as defined in
Section V-A) differs from the one in [4], which could result
in less signal disruption, making the RadioML channel easier
for the model to learn.
Table 4 compares our work with other CNN accelerators

designed for modulation scheme classification. Unlike other
studies, our results are based on real-time classification of
signals received live from the ADC. We believe it is crucial to
benchmark CNN models in their intended operational envi-
ronments. Other works have typically used test sets from the
same distribution as the training set, with only [14] partially
achieving live operation with four modulation schemes. Our
model’s throughput is lower compared to others, as it is
designed to match the speed of samples received from the
ADC+DUC stages. However, this throughput was sufficient
for our experiment, as no samples were dropped. To improve

latency, scheduling layer computations, as seen in [10], [14],
could reduce idle times and enhance MAC parallelism.

XII. CONCLUSION
In this paper, we presented a novel streaming CNN archi-
tecture designed to operate with RFSoC radio receivers. The
model processes samples received from the ADC stages
seamlessly without dropping samples, making it very suitable
for integration into wireless communications pipelines. We
also presented a method for creating a data set for modulation
classification where the AMD RFSoC was used as part
of the training data set generation process. Three models
were trained on the data set using quantised-aware training
and the results of each model were compared to show the
performance difference of storing weights with different
dynamic ranges. Experimental results showed that the 16-bit,
8-bit, and 4-bit models achieved 76%, 70% and 63%
accuracy while receiving data in real-time, respectively.
The results showcase the effectiveness of quantised-aware
training for deployment of CNNs on FPGA receivers. The
results demonstrate the practicality of the proposed CNN
architecture and provide insight into how the dynamic range
of the stored weights affects the trained network. This work
is available on GitHub1 and associated data set [36].
In summary, this paper introduced three key contribu-

tions: a novel streaming-based CNN implementation for
RFSoC receivers, a method for crafting data sets suited for
real-world RFSoC applications, and insights from quantised-
aware training of modulation classification models. These
advancements offer promising avenues for improving the
efficiency and effectiveness of RFSoC systems in PHY layer
wireless communications settings.
We would like to extend our gratitude to AMD for their

software and hardware support of the project.

REFERENCES
[1] H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for channel

estimation and signal detection in OFDM systems,” IEEE Wireless
Commun. Lett., vol. 7, no. 1, pp. 114–117, Feb. 2018.

[2] R. Q. Shaddad, E. M. Saif, H. M. Saif, Z. Y. Mohammed, and
A. H. Farhan, “Channel estimation for intelligent reflecting surface in
6G wireless network via deep learning technique,” in Proc. 1st Int.
Conf. Emerg. Smart Technol. Appl. (eSmarTA), 2021, pp. 1–5.

[3] M. H. Rahman, M. Shahjalal, M. O. Ali, S. Yoon, and
Y. M. Jang, “Deep learning based pilot assisted channel estimation
for Rician fading massive MIMO uplink communication system,” in
Proc. 12th Int. Conf. Ubiquitous Future Netw. (ICUFN), 2021,
pp. 470–472.

[4] T. J. O’Shea, J. Corgan, and T. C. Clancy, “Convolutional radio
modulation recognition networks,” 2016, arXiv:1602.04105.

[5] B. Zhang, Y. Sui, L. Huang, S. Liao, C. Deng, and B. Yuan, “Algorithm
and hardware co-design for deep learning-powered channel decoder:
A case study,” in IEEE/ACM Int. Conf. Comput.-Aided Design Tech.
Dig., 2021, pp. 1–6.

[6] H. Wu, Z. Sun, and X. Zhou, “Deep learning-based frame and timing
synchronization for end-to-end communications,” J. Phys. Conf. Ser.,
vol. 1169, Nov. 2018, Art. no. 12060.

[7] “RFSoC-PYNQ.” AMD. Accessed: May 2024. [Online]. Available:
http://www.rfsoc-pynq.io

1https://github.com/axdy/rfsoc_quant_amc

48 VOLUME 6, 2025



[8] “RFSoC 2x2 kit.” AMD. Accessed: May 2024. [Online].
Available: https://www.amd.com/en/corporate/university-program/aup-
boards/rfsoc2x2.html

[9] “HDL coder.” MathWorks. Accessed: May 2024. [Online]. Available:
https://uk.mathworks.com/products/hdl-coder.html

[10] Y. Umuroglu et al., “FINN: A framework for fast, scalable binarized
neural network inference,” in Proc. ACM/SIGDA Int. Symp. Field-
Programm. Gate Arrays (FPGA), 2016, pp. 65–74.

[11] C. Hou, C. Fang, Y. Lin, Y. Li, and J. Zhang, “Implementation
of a CNN identifing modulation signals on an embedded SoC,” in
Proc. IEEE 63rd Int. Midwest Symp. Circuits Syst. (MWSCAS), 2020,
pp. 490–493.

[12] K. Jung, J. Woo, and S. Mukhopadhyay, “On-chip acceleration of
RF signal modulation classification with short-time fourier trans-
form and convolutional neural network,” IEEE Access, vol. 11,
pp. 144051–144063, 2023.

[13] C. Horne, N. J. Peters, and M. A. Ritchie, “Classification of LoRa
signals with real-time validation using the Xilinx radio frequency
system-on-chip,” IEEE Access, vol. 11, pp. 26211–26223, 2023.

[14] S. Tridgell, D. Boland, P. H. W. Leong, R. Kastner, A. Khodamoradi,
and Siddhartha, “Real-time automatic modulation classification
using RFSoC,” in Proc. IEEE 34th Int. Parallel Distrib. Process.
Symp. Workshops (IPDPSW), 2020, pp. 82–89. [Online]. Available:
https://ieeexplore.ieee.org/document/9150443

[15] “Datasets RadioML,” Dataset, DeepSig. Accessed: May 2024.
[Online]. Available: https://www.deepsig.ai/datasets

[16] F. Jentzsch, Y. Umuroglu, A. Pappalardo, M. Blott, and M. Platzner,
“RadioML meets FINN: Enabling future RF applications with FPGA
streaming architectures,” IEEE Micro, vol. 42, no. 6, pp. 125–133,
Nov./Dec. 2022.

[17] A. Maclellan, L. H. Crockett, and R. W. Stewart, “Streaming
convolutional neural network FPGA architecture for RFSoC data
converters,” in Proc. 21st IEEE Interreg. NEWCAS Conf. (NEWCAS),
2023, pp. 1–5.

[18] “Brevitas: Neural network quantization in PyTorch.” AMD. Accessed:
May 2024. [Online]. Available: https://github.com/Xilinx/brevitas

[19] T. S. Rappaport et al., “Wireless communications and applica-
tions above 100 GHz: Opportunities and challenges for 6G and
beyond,” IEEE Access, vol. 7, pp. 78729–78757, 2019.

[20] (AMD, Santa Clara, CA, USA). PYNQ—Python Productivity for Zynq.
Accessed: May 2024. [Online]. Available: http://www.pynq.io

[21] C. R. Harris et al., “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020.

[22] P. Virtanen et al., “SciPy 1.0: Fundamental algorithms for scientific
computing in python,” Nat. Methods, vol. 17, pp. 261–272, Feb. 2020.

[23] (Plotly, Montreal, QC, Canada). Plotly: Low-Code Data App
Development. Accessed: May 2024. [Online]. Available: https://plotly.
com

[24] “Jupyter widgets 8.1.2 documentation.” Jupyter. Accessed: May 2024.
[Online]. Available: https://ipywidgets.readthedocs.io/en/latest

[25] (MathWorks, Natick, MA, USA). Communications Toolbox. Accessed:
May 2024. [Online]. Available: https://uk.mathworks.com/products/
communications.html

[26] “PyTorch.” Accessed: May 2024. [Online]. Available: https://pytorch.
org

[27] B. Moons, K. Goetschalckx, N. Van Berckelaer, and M. Verhelst,
“Minimum energy quantized neural networks,” in Proc. 51st Asilomar
Conf. Signals, Syst., Comput., 2017, pp. 1921–1925.

[28] “Quantization aware training with TensorFlow model optimization
toolkit—Performance with accuracy.” TensorFlow. Accessed: May
2024. [Online]. Available: https://blog.tensorflow.org/2020/04/
quantization-aware-training-with-tensorflow-model-optimization-
toolkit.html

[29] J. Chen, Y. Gai, Z. Yao, M. W. Mahoney, and J. E. Gonzalez,
“A statistical framework for low-bitwidth training of deep neural
networks,” 2020, arXiv:2010.14298.

[30] A. Maclellan, L. McLaughlin, L. Crockett, and R. Stewart, “FPGA
accelerated deep learning radio modulation classification using
MATLAB system objects & PYNQ,” in Proc. 29th Int. Conf. Field
Programm. Logic Appl. (FPL), 2019, pp. 246–247.

[31] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, Jul. 1948.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2017, arXiv:1412.6980.

[33] J. Bottleson, S. Kim, J. Andrews, P. Bindu, D. N. Murthy, and
J. Jin, “clCaffe: OpenCL accelerated Caffe for convolutional neu-
ral networks,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.
Workshops (IPDPSW), 2016, pp. 50–57.

[34] K. Fukushima, “Cognitron: A self-organizing multilayered neural
network,” Biol. Cybern., vol. 20, no. 3, pp. 121–136, Sep. 1975.

[35] J. S. Bridle, “Training stochastic model recognition algorithms
as networks can lead to maximum mutual information estimation
of parameters,” in Proc. Adv. Neural Inf. Process. Syst., 1989,
pp. 211–217.

[36] A. MacLellan, 2023, “Training dataset for RFSoC modulation
classification,” Dataset, University of Strathclyde Glasgow. [Online].
Available: https://pureportal.strath.ac.uk/en/datasets/95f907fb-4cb2-
4365-93ac-c36165053999

ANDREW MACLELLAN received the M.Eng.
degree (Distinction) in electronic and electrical
engineering from the University of Strathclyde,
Glasgow, U.K., in 2018, where he is currently pur-
suing the Ph.D. degree with StrathSDR Research
Group, and also a Research Assistant. His research
interests include deep learning (DL) for PHY layer
wireless communications and DL inference on
FPGAs. He has interned in the Wireless HDL
Toolbox team at MathWorks Glasgow for three
separate internships. From 2020 to 2021 he also

interned with the PYNQ development team at AMD (formerly Xilinx).

LOUISE H. CROCKETT received the M.Eng.
(Distinction) and Ph.D. degrees in electronic
and electrical engineering from the University of
Strathclyde, in 2003 and 2008, respectively, where
she is currently a Senior Teaching Fellow and a
Senior Member with StrathSDR Research Team
and she supervises and manages researchers and
key sponsored projects. She has previously co-
authored three books on Xilinx/AMD Technology.
Her teaching focuses on digital systems design
targeting FPGAs and SoCs, and builds practical

skills to equip graduates for roles in industry. Her core research interests
are in the implementation of DSP systems, FPGAs and SoCs, wireless
communications, and SDR.

ROBERT W. STEWART is a Professor with the
Department of Electronic Engineering, University
of Strathclyde, where he leads the ‘StrathSDR’
team working on software defined radio and next
generation radio access networks using shared
spectrum with dynamic spectrum access. He has
led a number of 5G Testbed and Trials projects and
in recent years he has been working on solutions
for the media and broadcast industry and private
5G SA networks working alongside a number of
international broadcasters. Over a 30 year career

he has published 4 books and more than 200 papers. He is also a Director
of the University startup company Neutral Wireless Ltd.

VOLUME 6, 2025 49



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


