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A B S T R A C T

In the ongoing energy transition, characterized by increased reliance on distributed renewable sources
and smart grid technologies, the need for advanced and trustworthy artificial intelligence (AI) in energy
management systems is crucial. Non-intrusive load monitoring (NILM), a method for inferring individual
appliance energy consumption from aggregate smart meter data, has gained prominence for enhancing
energy efficiency. However, advanced deep neural network models used in NILM, while effective, raise
transparency and trust concerns due to their complexity. This paper introduces a novel explainability-
informed NILM training framework, specifically designed for low-frequency NILM. Our approach aligns with
principles for trustworthy AI, focusing on human agency and oversight, technical robustness, and transparency,
incorporating explainability directly into the training phase of a NILM model. We propose a novel iterative,
explainability-informed NILM training algorithm that uses attribution priors to guide model optimization,
including implementation and evaluation of the framework across multiple state-of-the-art NILM architectures,
namely, convolutional, recurrent, and dilated causal layers. We introduce a novel Robustness-Trust metric
to measure joint improvement in predictive and explainability performance, utilizing explainability metrics
of faithfulness, robustness and effective complexity while analyzing model predictive performance against
NILM-specific regression and classification metrics. Results broadly show that robust models achieve better
explainability, while explainability-enhanced models can lead to improved model robustness. Together, our
results demonstrate significant improvements in robustness and transparency of NILM systems across various
appliances, model architectures, measurement scales, types of buildings, and energy usage patterns. This work
paves the way for more transparent and trustworthy deployments in AI-driven energy systems.
1. Introduction

Modern energy systems rely on the capacity to gather and dis-
cover insights from real-time consumption data, facilitating enhanced
monitoring of energy distribution and consumption, reducing opera-
tional costs, and improving energy efficiency (Hossain et al., 2016).
Smart meters can be used to extract useful information about en-
ergy consumption, which is relayed to utility companies, consumers,
prosumers, and other parties focused on achieving energy efficiency
objectives (Kabalci, 2016). Smart meters enable accurate billing and
increased awareness of energy usage patterns on the user side, pro-
moting energy-efficient behavior. On the other hand, smart meters can
facilitate the integration of demand response measures through variable
tariffs, as well as an increased understanding of customer needs on
the utility side (Siano, 2014). To extract energy consumption data
of individual loads, Non-intrusive load monitoring (NILM) has shown
promising results compared to intrusive submetering of energy usage
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of individual devices. NILM aims to algorithmically infer the energy
consumption of individual electrical appliances from the aggregate me-
tered power consumption collected by a smart metering device (Huber
et al., 2021). In recent years, NILM has experienced rapid development
due to advancements in artificial intelligence (AI) techniques such as
deep neural network (DNNs); see recent review papers (Huber et al.,
2021; Angelis et al., 2022). Although DNN-based NILM algorithms
demonstrate good disaggregation performance, there are still major
challenges to address before large-scale deployment and adoption.
One of the core challenges is related to high complexity of DNN
models, often called ‘‘black-box’’ models, which leads to diminished
understanding of the decisions that the model makes. As ‘‘black-box’’
DNN-based NILM systems are deployed at scale, it is of high importance
to ensure that there is a procedure for explaining the outputs of these
systems (Batic et al., 2023b).

There are many reasons why explainability in DNN-based NILM
systems is desirable: explainability can lead to user confidence that the
https://doi.org/10.1016/j.engappai.2024.109766
Received 5 April 2024; Received in revised form 24 October 2024; Accepted 27 No
952-1976/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar
vember 2024
ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
mailto:djordje.batic@strath.ac.uk
https://doi.org/10.1016/j.engappai.2024.109766
https://doi.org/10.1016/j.engappai.2024.109766
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2024.109766&domain=pdf
http://creativecommons.org/licenses/by/4.0/


D. Batic et al.

t

r

T
p
r
b
t
m

w
t
c
i
d

o
b
e
o

m
p
r
d
e
q

c

m
b
a

t
r
t
f

E

t
a
b
p
t

f
a
b

p
t

,

Engineering Applications of Artiϧcial Intelligence 141 (2025) 109766 
AI algorithms reliably infer their energy consumption; helps reveal po-
ential biases; enables developers to better understand how the systems

behave in various conditions; helps in the assessment of vulnerabilities;
and enables alignment with policy requirements and legal standards.
This is particularly important for a system such as NILM that leverages
on processing sensitive user data that can reveal various household
activities and has implications on the financial security of the users.
As a result, designing explainable NILM systems is key to facilitating
trust and wider adoption of NILM (Kaselimi et al., 2022; Batic et al.,
2023b).

To facilitate trust in AI, the European Commission has established a
egulatory framework (Commission and Directorate-General for Com-

munications Networks, and Technology, 2019) that emphasizes the
7 core principles of Trustworthy AI: Human agency and oversight,

echnical robustness and safety, Privacy and data governance, Trans-
arency, Diversity, Non-discrimination and fairness, Societal and envi-
onmental well-being, and Accountability. NILM should benefit people
y enabling them to track their personal energy usage data, increasing
he accessibility of education about consumption habits, and helping to
ake more informed choices about demand flexibility, choice of tariffs,

energy saving and climate goals. At the same time, proper oversight
mechanisms need to be ensured by enabling humans to shape the
behavior of the AI by encoding prior beliefs about how the model
should behave, all of which is encompassed in the principle of Human
agency and oversight. Next, AI-based NILM should ensure the principle
of technical robustness and safety through accurate and reliable results,
by providing correct predictions that are meticulously evaluated in a

ide range of input scenarios. Furthermore, NILM systems should be
ransparent and provide traceability and documentation of the data
ollection and generation process, communication about the capabil-
ties and limitations of the system, as well as explainability of the AI
ecision-making process.

Previous studies in the field of Explainable AI (XAI) primarily focus
n the development of techniques that increase the model transparency
y quantifying the importance of individual input features through
xplanations. These methods, also known as feature-attribution meth-
ds, are effective in revealing problems in a model, understanding the

model decisions, or revealing dataset bias. However, feature attribution
ethods may place too much importance on undesirable features,
rovide unstable explanations under the presence of input noise, or
ely on too many features when low complexity of explanations is
esired (Bhatt et al., 2020). As a result, more recent literature has
mphasized the need for a mathematical definition of explanation
uality and evaluation of feature attribution methods (Alvarez-Melis

and Jaakkola, 2018; Ancona et al., 2017; Bhatt et al., 2020).
XAI approaches for NILM are still in their infancy, with limited

literature available (Murray et al., 2021; Mollel et al., 2023; Batic et al.,
2023b,a). As XAI-based solutions for NILM continue to grow, it is of
rucial importance to properly account for transparency property out-

lined in the EU requirements for Trustworthy AI. As such, explainability
evaluation is one of the core components that enables an overview of
the real-world performance of feature attribution methods. In addition,
it remains unclear how existing NILM architectures, with demonstrated
high accuracy, can be made more explainable, for example, by con-
sidering model explainability during the training process. Notably, to
the best of our knowledge, combining the use of explainability during
the training phase with a comprehensive quantitative evaluation of
explainability in the context of NILM, has not been attempted before.
This gap in the literature presents a significant opportunity to enhance
both the interpretability and performance of NILM models.

Building upon recent advances in AI research, recent work has
ade significant strides in various aspects of Trustworthy NILM. AI-

ased NILM has leveraged on various architectures to provide accuracy
nd reliability of predictions (Murray et al., 2019), embedding human

oversight through inclusion of user or expert knowledge in the learning
process (Todic et al., 2023), or XAI methods for transparency (Mollel
2 
et al., 2023; Batic et al., 2023b,a). However, there has been no work
hat aims to unite the three aforementioned principles of technical
obustness, transparency, and human oversight in a single system. In
his work, we propose the first explainability-informed NILM training
ramework for low-frequency NILM. The proposed framework aims to

directly mitigate shortcomings of existing NILM approaches in line with
U guidelines for Trustworthy AI, by prioritizing robustness, trans-

parency, and human oversight during the learning process, leveraging
on prior human intuition about the behavior of explanations of AI
outputs to constrain the model explanations during training and help
he model be more accurate and reliable. The vital benefit of our
pproach is the ability to directly train the NILM neural network to
e more explainable, by manipulating the gradients during the training
rocess. In addition, we show that such enhancement can improve the
echnical robustness of the system by improving the predictive perfor-

mance across multiple real-world scenarios. Lastly, we generalize our
indings by evaluating the predictive and explainability performance
cross multiple and distinct model architectures and show the link
etween architectural choices and explainability performance.

In summary, the contributions of this study are as follows:

• We propose the first explainability-informed learning framework
for load disaggregation/NILM systems that jointly promotes Trust-
worthy AI principles of Human agency and oversight, Trans-
parency, and Technical robustness and reliability.

• We present attribution prior NILM training, an iterative algorithm
that leverages on human intuition to constrain the NILM model
towards better explainability by preventing incorrect assignment
of feature attributions.

• We demonstrate how the proposed explainability-informed learn-
ing framework can improve the robustness of NILM models by
improving their predictive performance.

• We demonstrate how the proposed explainability-informed learn-
ing framework can improve the transparency of NILM models by
improving their explainability performance across various NILM-
specific explainability evaluation metrics.

• We present a comprehensive evaluation of explainability and
predictive performance across three state-of-the-art NILM archi-
tectures: convolutional, recurrent, and causal networks, as well
as four distinct XAI methods by utilizing three publicly available
datasets comprising real-world measurements from households in
the UK, USA, and Greece.

The rest of the paper is organized as follows. Section 2 discusses
rior work in explainable NILM. The proposed explainability-informed
raining methodology is described in Section 3, while the experimental

results and key findings are presented in Section 4. Finally, Section 5
provides concluding remarks, as well as directions for future work.

2. Problem statement and literature review

2.1. NILM problem statement and low-frequency NILM algorithms

Given a sequence of aggregated power consumption 𝐲 = (𝑦1, 𝑦2,…
 𝑦𝑇 ), captured at time 𝑡 = {1, 2,… , 𝑇 }, the goal of a NILM algorithm
is to determine the individual power contribution 𝑥𝑖𝑡 of appliance
𝑖 ∈ {1, 2,… , 𝑀}, such that the aggregate can be represented as a
combination of individual power consumption of 𝑀 appliances and a
term 𝜖𝑡, which denotes noise from unknown appliances contributing to
the aggregate signal and measurement noise:

𝑦𝑡=1...𝑇 =
𝑀
∑

𝑖=1
𝑥𝑖𝑡 + 𝜖𝑡 (1)

To extract the power consumption of a selected appliance 𝑖 ∈
{1, 2,… , 𝑀}, the majority of NILM approaches are focused on filtering
the noise term 𝜖 as well as all other appliance signals, which is a non-
trivial problem due to statistical differences in activation length, time
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of use, frequency, and peak power usage. To detect an appliance of
interest, NILM can be treated as either a classification or regression
problem. Classification-based NILM infers the on/off state of an appli-
ance 𝑖 at time 𝑡, based on the aggregate signal 𝑦𝑡. On the other hand,
egression-based NILM aims to directly infer 𝑥𝑖𝑡.

Very early NILM research primarily utilized high-frequency power
measurements, using sampling frequencies in the order of kHz or
higher. However, the landscape has shifted significantly with national
rollouts worldwide of standard smart meters, for which data stored
is in the order of 1 s to 30 min. This transition to lower-frequency
measurements was driven by several practical factors: reduced privacy
concerns, more manageable data storage requirements, and simpler
data handling processes. Additionally, previous research has shown that
appliance recognition capability varies with sampling frequency, with
long-duration activations actually benefiting from reduced sampling
rates compared to high-frequency (sub-second measurements) (Armel
et al., 2013; Huchtkoetter and Reinhardt, 2020). Furthermore, high-
requency NILM, has already demonstrated very good disaggregation

accuracy, leveraging on ability to identify transient features and har-
onic content, with little room for further improvement unlike low-

frequency NILM. As a result, the challenges of low-frequency NILM
has been the main focus of research in recent years due to the abun-
dance of smart meter measurement data and advancements in machine
learning (Angelis et al., 2022).

In order to infer individual appliance consumption, various machine
learning approaches have been proposed in the recent literature, where
DNN approaches form the basis of state-of-the-art implementations
according to the recent review of Angelis et al. (2022). Convolu-
ional Neural Networks (CNNs) form the majority of implementations
Zhang et al. (2018) propose a sequence-to-point (seq2point) learning
pproach using a CNN; Pan et al. (2020) address the high computa-

tional complexity of seq2point and propose a CNN architecture for
sequence-to-subsequence learning; Chen et al. (2019) use a two sub-
etworks that are connected in order to infer both regression and
lassification outputs; Murray et al. (2019) propose a CNN model

that provides generalizability to new domains; Massidda et al. (2020)
erform multilabel classification using a CNN architecture with pooling
ayers at different time scales. Another common DNN approach to
ILM are Recurrent Neural Networks (RNNs); Zhang et al. (2022) use a
ulti-quantile RNN to disaggregate the loads and improve the demand

ide management of solar energy; Krystalakos et al. (2018) propose
a Gated Recurrent Units (GRU) approach that reduces memory usage
and computational complexity while achieving good disaggregation
performance, while Tanoni et al. (2022) proposes a Convolutional RNN
pproach for multi-label classification of appliances. Lastly, other litera-
ure attempts to introduce new learning mechanisms include generative
dversarial networks (GANs) (Pan et al., 2020), temporal-causal net-

works (Harell et al., 2019) and attention mechanisms (Yue et al., 2020).
A DNN-focused review for low-frequency NILM (Huber et al., 2021)
rovides a detailed review of current DNN NILM approaches, where
RU and CNN architectures and their variants, including WaveNet with
ilated convolutions (Harell et al., 2019), have been shown to achieve

good performance over a range of appliances with well documented
publicly available code for reproducibility, and therefore inform the
architectures we consider in our proposed work.

2.2. Explainable AI for low-frequency NILM

Explainability refers to the ability to explain both the technical
processes of an AI system and the related human decisions (e.g., appli-
cation areas of a system). Technical explainability requires that the de-
cisions made by an AI system can be understood and traced by human
beings. The use of DNNs generally negatively impacts our understand-
ing of how the decisions are made by the system. In NILM, previous
studies have used explainability tools to determine local and global

feature importance of decision tree approaches to design a methodology

3 
that informs feature selection for each appliance class (Mollel et al.,
2023). However, when translating to a regression-based task where the
usage of DNNs is more common, explainability presents a larger prob-
lem due to the naturally less interpretable nature of DNNs compared
to decision tree algorithms. Authors in Murray et al. (2021) propose
the first XAI methodology for NILM by using occlusion sensitivity to
offer a visual understanding of significant features for the prediction
of DNN-based NILM model. This method involves occluding random
regions of a signal and analyzing the impact it has on prediction perfor-
mance. However, this method poses sizeable computational challenges,
rimarily because of its sliding window mechanism. Moreover, this

approach occludes parts of the signal by setting the consumption power
values to zero, which is not a realistic scenario and might represent an
out-of-distribution scenario where the model can struggle to produce
intelligent outputs. A recent study (Machlev et al., 2022) compares
the success of using the GradCAM XAI technique against occlusion
sensitivity for visualizing significant input features of a NILM classifier.
However, authors define a significantly simpler problem statement
where a multi-class CNN is used to determine solely the existence of an
appliance in the input time-series, without inferring the on/off state or
the sample-by-sample energy consumption values typical for regression
approaches. Furthermore, they focus solely on a single XAI method,
which is a major concern, as XAI methods can generate unreliable
explanations, contributing to a diminished understanding and oppor-
tunities to exploit the vulnerabilities of the NILM system. In order to
promote the adoption of XAI in NILM, Batic et al. (2023a) propose
 visualization procedure that explains the outputs of a seq2point
lgorithm on multiple levels of time granularity. The sequence-level

explanations highlight the areas of the signal most responsible for the
rediction, while the point-level explanations display the reasoning
ehind a prediction of a particular point in time. Lastly, the authors
n Batic et al. (2023b) show that explainability can be used to im-

prove the performance of knowledge distillation in NILM. However,
his approach limits the assessment of explainability improvement to
ubjective evaluation, lacking a more rigorous evaluation approach.

2.3. Explainability evaluation for NILM

In recent years, researchers and policy makers have warned about
the use of explainable AI in medium to high-risk scenarios as there are
pitfalls associated with the use of different XAI methods due to their
ometimes unreliable outputs which might lead to incorrect assump-
ions about model behavior or opportunities to exploit the vulnerabili-
ies of the system. As a result, there has been a drive for more rigorous
nd objective evaluation strategies of XAI methodologies that assess
heir quality and promote higher transparency of the AI system.

Recent work in NILM (Batic et al., 2023a) has proposed three core
properties that facilitate the evaluation of explainability of NILM-like
methods: faithfulness, robustness, and low complexity. First, faithful-
ness represents a property that ensures that the provided explanations
accurately correspond to model performance, based on the notion that
emoving or obscuring important input features discovered by an XAI

method should have a significant negative effect on the predictive
performance or model confidence. In other words, faithfulness enables
understanding of how feature importance scores influence the predic-
tion — a high faithfulness score suggests that the explainability method
is able to correctly identify the important features of the input signal,
indicated by a large drop in prediction accuracy after obfuscation
f important features. Second, to determine the reliability of an XAI

method, robustness evaluates how the XAI method performs under
slight changes of the input. Recent XAI research suggests (see Batic
et al. (2023a) and references therein) that slight changes in the input,
similar to adversarial noise, can lead to significant changes in the
enerated explanation outputs, while retaining the same or similar
redictions. To define the relationship between the input data and

reliability of XAI methods for NILM, Batic et al. (2023a) estimate
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Fig. 1. Overview of the proposed explainability-informed NILM training framework.
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the value of Lipschitz constant, where methods with low Lipschitz
alue scores display more stable behavior under the presence of input
oise, leading to higher reliability of XAI system. Finally, explanation
omplexity indicates the degree of quality w.r.t. human understanding
f the produced explanation, as it quantifies the entropy of the XAI

output. A highly undesirable scenario is an explanation that does not
provide an adequate level of clarity and conciseness. Thus, Batic et al.
(2023a) evaluate the complexity of an XAI NILM system by quantifying
the relationship between the entropy of explanation, defined by the
Gini index, and the level of dataset ‘‘noise’’ in the input, defined by a

easure of noise-to-aggregate ratio proposed in Makonin and Popowich
(2015).

2.4. Summary

From the above literature review, it is evident that explainability
is still a new concept in NILM. Still, there has been work aimed
to formalize the concept of explainability in the context of NILM.

owever, to the best of our knowledge, there is very limited work
n joint improvement of predictive performance and explanability of
ILM architectures. We address this gap by proposing XNILMBoost,
 framework for explainability-informed NILM training enhancement
sing attribution priors. We show that optimizing for explanability is
ossible and that it can also lead to improved predictive performance.
oreover, the whole procedure is performed during the training of the
odel. We propose an iterative training method that can be used to

elect an optimal prior and fine-tune any NILM model using XNILM-
oost, by optimizing for both predictive and explainability performance
ithout a need for labeled data. We generalize our findings by using
NILMBoost on three distinct architectures – GRU, CNN, and WaveNet
 for which publicly available code was available for reproducibility,
nd three real-world NILM datasets – REDD and UK-DALE – that are
he most popular datasets on which various NILM DNN architectures

were demonstrated (Huber et al., 2021). Additionally, to extend the
empirical results of our study, we includeed results from additional
legma dataset from Greece, which contains appliances rarely shown
n NILM datasets, such as AC and Boiler appliances. Lastly, we show

the explainability improvement using various NILM-specific explain-
ability metrics (Batic et al., 2023a) — faithfulness, robustness, and
complexity.
 a

4 
3. Methodology

Our explainability-informed learning framework for low-frequency
NILM is shown in Fig. 1. The backbone of our approach is the
explainability-informed optimization engine, which is responsible for
the optimization of explainability performance depending on the train-
ing requirements. The proposed framework iteratively trains a NILM
eural network by proposing an explainability-informed training en-
ancement strategy by first receiving the information related to dataset
tatistics, as well as explainability evaluation results for the prop-
rties of robustness and complexity, which can be inferred without
ny labeled data. The training is performed incrementally until the
xplainability improvement requirements are met.

To diversify the experimental evaluation and generalizability of our
roposed approach, we train on three different state-of-the-art architec-
ures, with the aim of incorporating a broad set of techniques including
onvolutional, recurrent, and dilated causal layers. Lastly, we perform

a rigorous experimental evaluation of explainability performance under
various real-world scenario datasets, including an ablation study. The
following subsections provide a detailed overview of the proposed
echniques, as well as the explainability-informed training workflow.

3.1. Explainability evaluation dataset

The explainability evaluation dataset is sampled per appliance.
irst, to gather the appliance activations, we gather dataset characteris-
ics and define the power-on threshold of appliance activation, as well
s minimum on and off duration. Next, after applying the threshold
nd computing the on/off events, we calculate the distance between
he subsequent on and off events to obtain the appliance activation
uration. Finally, we select 𝑛 = 30 random samples of activations
hat are longer than a predefined appliance-specific length and select
 window of size 𝜔 centered around the appliance activation window.
iven a dataset with a granularity of 8 s, 𝜔 is determined from the

ypical operation time of the appliance of interest. For appliances with
engthy duration, i.e., Washing Machine (WM) and Dishwasher (DW),
ctivation length 𝜔 = 1024 is chosen, which represents roughly 2 h
nd 15 min of measurements, in line with the average length of a
uty cycle of most WM and DW devices. For the Microwave (MW),
ctivation length 𝜔 = 80 samples was chosen, which corresponds to
round 10 min. Finally, if the total length of the activation length of
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interest is larger than 𝜔, the first 𝜔 data samples are selected. In the
case of Plegma dataset, which contains 10 s granularity measurements,
activation length of WM appliance is set to 𝜔 = 820, while Boiler and
AC appliances have activation length set to 𝜔 = 700 and 𝜔 = 1000,
respectively.

3.2. Low-frequency NILM algorithms

For the purpose of demonstrating the adaptability and generalizabil-
ity of our proposed methodology across diverse contexts, we employ
three distinct DNN architectures. To best exemplify the variety of algo-
rithmic approaches for NILM, we use CNN-based (Zhang et al., 2018),
GRU-based (Rafiq et al., 2021), and WaveNet-based (Harell et al., 2019)

ILM networks, as seen in Fig. 2. One of the most cited CNN-based
pproaches for NILM is seq2point architecture (Zhang et al., 2018).

The seq2point algorithm slides a window across the input aggregate
signal to predict the energy consumption at the central point of the
sliding window. Previous studies show that this produces a favorable
approximation of the target distribution compared to previous NILM
pproaches (Jiang et al., 2021). On the other hand, RNN-based ap-

proaches have been consistently popular in the NILM literature. In this
paper, we use a GRU architecture, a variant of the Long Short Term
Memory (LSTM) network, that is designed for time series data. Com-
pared to LSTMs, GRU networks deal better with the vanishing gradient
problem and are designed to be more computationally efficient. Lastly,
given varying activation periods and lengths of appliances, WaveNet-
based networks that employ dilated causal convolutions have proven
to achieve good disaggregation performance (Harell et al., 2019). To
capture various input time steps, dilated causal layers have various
ilation factors that grow in depth and allow the network to capture

very long-range dependencies. For more details on the selected NILM
architectures, readers are referred to Zhang et al. (2018), Rafiq et al.
(2021), and Harell et al. (2019).

3.3. Explainability enhancement using attribution priors

The proposed explainability-informed training using attribution pri-
rs refers to the process where the model’s gradients are altered during
he model training process to optimize the explainability performance
f attribution methods used for visualization of important features of

the model. Rather than considering explainability as a post-processing
step of model development, this approach enables learning of correct
ssignment of input feature attributions. Since it is often unknown
hich input features will contribute highly to the prediction of a
odel, we define an attribution prior that captures human oversight

nd guides model towards correct attribution assignment.
In the context of training a typical DNN model, the primary ob-

jective is to learn a non-linear function 𝑓 characterized by a set of
arameters 𝜃. This learning process utilizes a dataset comprising 𝑛
amples, each represented as a pair (𝑥, 𝑦). The goal is to minimize a
oss function , which can be formally expressed as:

𝑓 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝜃 1𝑛(𝜃; 𝑥, 𝑦) + 𝛼(𝜃), (2)

In this formulation, 𝛼 represents a scalar value that modulates the
nfluence of the regularization function . This approach is commonly

employed in supervised learning scenarios, where the regularization
term helps prevent overfitting and improves the model’s generalization
capabilities.

The concept of attribution prior can be formalized for a given fea-
ture attribution method 𝑚(𝜃 , 𝑥) as a function 𝑝 ∶  → . This function
assigns a scalar weight to the attribution features of the function 𝑓 with
input 𝑥. Incorporating this notion, the attribution prior-based training
can be expressed mathematically as:

1
𝑓 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝜃 𝑛(𝜃; 𝑥, 𝑦) + 𝛼(𝜃) + 𝛽 𝑝(𝑚(𝜃 , 𝑥)), (3)

5 
In this formulation, 𝛽 serves as a scalar value that modulates the
mpact of the attribution prior 𝑝. To optimize computational efficiency

and reduce training time, the function 𝑚 is calculated using the stan-
dard approach of multiplying the input with the gradient. Within the
scope of this research, we explore and implement two distinct types of
attribution priors 𝑝, each offering unique characteristics and potential
benefits to the training process.

Our first approach is motivated by the observation that explainabil-
ity methods become less effective and human-interpretable when they
deem most input features as important. To address this, we introduce
a low-complexity prior that encourages models to assign importance
to a limited number of input features during training of a model. This
approach improves the clarity and interpretability of explanations by
highlighting only the most crucial features. To quantify the conciseness
of the explanation output, we employ a differentiable function that cal-
culates the Gini coefficient, measuring the statistical dispersion of the
generated attribution values. This choice is supported by previous re-
search (Chalasani et al., 2020) indicating that the Gini coefficient serves
as a reliable indicator of model explanation complexity. Formally, given
a feature attribution method 𝑚, we define a low complexity attribution
prior that promotes more focused and interpretable explanations while
maintaining model performance:

𝑝(𝑚(𝜃 , 𝑥)) =
∑𝜔

𝑎=1(2𝑎 − 𝜔 − 1)𝑚(𝜃 , 𝑥)
𝑘 +

∑𝜔
𝑎=1 𝑚(𝜃 , 𝑥)

, (4)

where 𝑘 is a small value added for numerical stability. This complexity
rior penalizes neural networks for creating complex attributions that
ssign high importance to numerous input features.

Additionally, we propose an alternative method focused on gradi-
ent smoothness to reduce incorrect feature attribution. This approach,
which we term the robustness prior, applies a total variation denoising
algorithm to feature attribution maps. It is defined as:

𝑝(𝑚(𝜃 , 𝑥)) =
∑

𝑖
|𝑚𝑖+1(𝜃 , 𝑥) − 𝑚𝑖(𝜃 , 𝑥)|. (5)

The robustness prior aims to minimize unstable attributions and
romote gradient smoothness, encouraging attribution maps that are
aithful to model outputs and predictive performance. The complexity
nd robustness priors, though distinct in their immediate objectives,
unction as complementary approaches to enhance the interpretability
nd reliability of feature attributions in neural network models. The
omplexity prior aims to reduce the number of important features,
romoting concise explanations, while the robustness prior focuses on
moothing the gradient to ensure stable and consistent attributions.
ogether, they guide the model towards simpler, more stable decision
oundaries. This synergy can lead to models that are both more inter-
retable and more robust to input variations. Both priors can be viewed
s regularization techniques in the attribution space, contributing to
he broader goal of regularizing explanations in interpretable machine
earning.

3.4. Explainability-informed training

Finding the optimal attribution prior that represents the best trade-
ff between explainability and predictive performance can be a tedious
ask. To address this, we propose an explainability-informed selection
rocess using a novel metric: the Robustness-Trust (ROTR) metric. This

approach enables us to iteratively determine the optimal prior for a
given NILM model while considering multiple performance aspects si-

ultaneously. Instead of evaluating metrics independently, we consider
ultiple metrics within a single term that exemplifies the improvement

in transparency of a trained model. ROTR metric can be defined as:

𝑅𝑂 𝑇 𝑅 =
𝑋 𝐹𝑝𝑟𝑖𝑜𝑟 𝑋 𝑅𝑏𝑎𝑠𝑒 𝑋 𝐶𝑝𝑟𝑖𝑜𝑟 , (6)

𝑋 𝐹𝑏𝑎𝑠𝑒 𝑋 𝑅𝑝𝑟𝑖𝑜𝑟 𝑋 𝐶𝑏𝑎𝑠𝑒
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Fig. 2. Model architecture for the four NILM models used in this study. The upper subfigure describes a CNN network (Zhang et al., 2018), whereas the middle and bottom
subfigures indicate GRU (Rafiq et al., 2021) and WaveNet (Harell et al., 2019) architectures, respectively.
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where 𝑋 𝐹 , 𝑋 𝑅, and 𝑋 𝐶 represent the faithfulness, robustness, and
ffective complexity metric scores, respectively.

This metric quantifies the improvement in explainability perfor-
ance, with scores above 1 indicating beneficial improvement. For
ore information related to considered explainability metrics, readers

re referred to Batic et al. (2023b). To thoroughly explore the trade-
ffs between the smoothness and low complexity priors, we employ

an iterative optimization process. This process involves systematically
varying the influence of both priors through their 𝛽 hyperparameters
and analyzing their combined impact on model performance. We have
bserved that while the smoothness prior enhances gradient stability,
t may occasionally conflict with identifying sharp feature boundaries.
onversely, the low-complexity prior promotes concise explanations
ut might oversimplify complex data relationships. The optimal bal-
nce between these priors often yields the best ROTR scores, though
his balance can vary depending on the specific NILM task and the
haracteristics of the data set.

To gather data for 𝑅𝑂 𝑇 𝑅 computation, the procedure described
in Section 3.1 is used with a distinction that activation samples are
collected from the trained base model instead of the ground truth,

hich allows evaluation without ground truth labels. This is beneficial
ecause, under such a framework, any existing NILM architecture that
heoretically supports explainability-informed training can be retrained
r fine-tuned.
𝑅𝑂 𝑇 𝑅 is a metric that determines the overall improvement of

explaianbility performance of a NILM model trained in our proposed
framework. For each metric contained in 𝑅𝑂 𝑇 𝑅, the values are cal-
culated before and after applying the prior. 𝑅𝑂 𝑇 𝑅 combines multiple
metrics in a multiplicative way to indicate the overall improvement of
the model. This is achieved by computing the relative change of indi-
vidual metrics of explainability and aggregating them under a single
term that balances all contributing metrics. 𝑅𝑂 𝑇 𝑅 score greater than
1, indicates that the proposed prior achieves a beneficial improvement.
In such a case, the model is considered ‘‘explainability enhanced’’
and can be passed to the evaluation module. On the other hand,
scores below 1 indicate no change, or degradation of performance, thus
triggering a new iteration of the optimization engine. Therefore, 𝑅𝑂 𝑇 𝑅
indicates the relative change in the improvement of explainability-
informed training, which considers both predictive and explainability
performance as an indication of performance quality.
6 
𝑅𝑂 𝑇 𝑅 formulation enables iterative training of an explainability-
nformed NILM model. To frame the problem, an expert needs to

define the optimal starting priors, given the real-world scenario. For
he purpose of this work, we utilize the aforementioned smoothness
nd low complexity priors. Then, iterative training is performed by
electing a range of 𝛽 hyperparameter values that indicate the relative
mportance of the prior during training. Recognizing the interdepen-
ency of these parameters, we adopt a grid search optimization strategy
ithin a predefined parameter space, guided by the computed 𝑅𝑂 𝑇 𝑅
alues. The metric is defined such that values exceeding 1 signify a net
mprovement in accuracy-explainability trade-off, providing a unified
riterion for model optimization. This iterative process begins with
n initial set of 𝛽 hyperparameters, which are incrementally adjusted
ased on their impact on 𝑅𝑂 𝑇 𝑅. During each iteration, the model
ndergoes training and evaluation, after which 𝑅𝑂 𝑇 𝑅 is calculated
o assess the joint improvement. If 𝑅𝑂 𝑇 𝑅 > 1, the adjustments are
onsidered to have contributed positively, and the hyperparameters are
urther fine-tuned in the direction that maximizes 𝑅𝑂 𝑇 𝑅. In contrast,
f 𝑅𝑂 𝑇 𝑅 < 1, it indicates stagnation or deterioration in explainabil-
ty, prompting a reevaluation of hyperparameter adjustments. This
eedback loop creates a mechanism in which the model self-adjusts,
eeking hyperparameter configurations that elevate 𝑅𝑂 𝑇 𝑅 above the
hreshold of 1. To ensure a thorough exploration of the hyperparameter
pace while avoiding local optima, we employ adaptive hyperparameter
election. This method not only facilitates a granular optimization
ut also embeds a learning paradigm where the model iteratively
onverges towards an optimal balance between explainability and pre-
ictive accuracy, improving the design of DL-based NILM systems. By
ystematically varying the influence of the two priors on the training
rocess, we identify the optimal combination that minimizes the objec-
ive function, a composite measure of performance accuracy, gradient
moothness, and explanation complexity, thereby demonstrating the
ffectiveness of our dual-hyperparameter regularization framework that
ims to improve the explainability performance without comprising the
redictive performance.

3.5. Explainability methods

To quantify the explainability performance of the networks used
in this work, we adapt the explainability methods and evaluation
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methodology described in Batic et al. (2023a). To accommodate to
different architectures used in this work, the visualization procedure
s modified for GRU and WaveNet networks. GRU network performs
rediction of the last point of the input signal. Thus, to compile the

sequence-level explanation, a triangular weighting function gives the
highest importance to the end of the window. On the other hand, the
WaveNet architecture computes sequential output of the same length
as the input, thus sequence-level explanation is inherently provided.
In this work, we utilize 4 popular XAI methods: GradCAM (Selvaraju
t al., 2017), GradCAM++ (Chattopadhay et al., 2018), IntegratedGra-

dients (Sundararajan et al., 2017), and SmoothGrad (Smilkov et al.,
2017). The created sequence-level explanations are subjected to a quan-
itative evaluation of quality. Considering a diverse set of needs and
ossible deployment scenarios, the explainability evaluation is defined
s alignment with three desirable properties of explanations presented
n Section 2.3 -faithfulness, robustness, and low complexity.

4. Experimental results

This section provides descriptions of the datasets used to conduct
experiments, metrics used to evaluate the proposed methodology, as
well as parameters to enable reproducibility of results.

4.1. Datasets and appliances

To evaluate our approach, we conducted experiments on appliances
rom UK-DALE (Kelly and Knottenbelt, 2015), REDD (Kolter and John-

son, 2011) and Plegma (Athanasoulias et al., 2024) datasets. All three
atasets contain aggregate and appliance level energy consumption,
here UK-DALE contains measurements from five houses in the UK

with up to 4.3 years of data, REDD contains measurements from six
different houses in the United States with up to 6 weeks of data, while
Plegma contains measurements from 13 different houses in Greece over
a period of 12 months. Energy consumption was sampled at a 6 s, 1 s,
and 10 s intervals for UK-DALE, REDD, and Plegma, respectively. For
the purpose of this study, the data for UK-DALE and REDD datasets
were resampled to 8 s resolution, while Plegma kept the original reso-
lution of 10 s. Detailed dataset characteristics and selection of houses
for training data is described in Table 4. We evaluate our approach
y training appliance-level models for Dishwasher, Washing Machine,

Microwave, Refrigerator, AC, and Boiler appliances. The models were
ested on unseen houses excluded from the training set. In UK-DALE,
ouses 1, 3, 4, and 5 were used for training and house 2 for testing,
hile in REDD houses 2, 3, 4, 5, and 6 were used in the training set
hile house 1 was preserved for model evaluation. For Plegma dataset,
ll houses except 10 and 2 were used for training, while house 10 was
sed for validation, and house 2 for testing. Aggregate measurements
ere normalized using z-normalization 𝑧 = 𝑥−𝜇

𝜎 , where 𝑥 represents
he recorded power measurement (in Watts), 𝜇 mean power value in
he whole training dataset, while 𝜎 represents the standard deviation
f the values in the training dataset.

4.2. Model architectures and training

To enhance the generalizability and robustness of our proposed
framework, we base our evaluation on three distinct NILM model
architectures: a convolutional network (Zhang et al., 2018), a recurrent
etwork (Rafiq et al., 2021), and a WaveNet neural network (Harell

et al., 2019) network, as illustrated in Fig. 2. Reccurent architectures
rocess sequential data by iterating through the input elements and
aintaining a hidden state. This allows them to capture temporal
ependencies in the data. However, RNNs often struggle with long-term
ependencies due to the vanishing gradient problem. More advanced
ariants like GRU networks address this issue by introducing gating
echanisms to better control information flow. CNNs, on the other

and, use convolutional layers that apply filters across the input data,

7 
typically in a sliding window fashion. This allows them to detect
local patterns regardless of their position in the input. CNNs also
often include pooling layers to reduce dimensionality and increase
robustness to small translations. Lastly, WaveNet networks use dilated
causal convolutions to create very large receptive fields to model long-
range temporal dependencies in time series data while maintaining
computational efficiency. For further details on selected NILM archi-
tectures readers are referred to Zhang et al. (2018), Rafiq et al. (2021),
nd Harell et al. (2019).

We selected model hyperparameters based on optimal validation
performance across all considered parameters. All models are trained
sing Adam optimizer with a predefined learning rate of 0.001, and a

batch size of 64 samples. Input window lengths of the three selected
networks are kept the same as in the original work. The training of
the prior model maintains the same learning rate as the initial baseline
model, with the 𝛽 parameter chosen through a grid search of values
on a logarithmic scale ranging from [10−10, 100]. To thoroughly explore
the trade-offs between the smoothness and low complexity priors, we
implemented an iterative optimization process. This approach involves
systematically varying the influence of both priors through their respec-
tive 𝛽 hyperparameters and analyzing their combined impact on model
performance. Our observations reveal that the smoothness prior, while
nhancing gradient stability, may occasionally conflict with the iden-
ification of sharp feature boundaries. In contrast, the low-complexity
rior promotes concise explanations but risks oversimplifying complex
ata relationships. In particular, we found that the optimal balance
etween these priors often yields the best ROTR scores, although this
quilibrium can vary significantly depending on the specific NILM task
nd the characteristics of the dataset.

4.3. Computational complexity

For the purpose of performing the experiments, a PC with the
ollowing specifications is used: Intel(R) Core(TM) i9-10980XE CPU
 3.00 GHz, 258 GB RAM, and two NVIDIA GeForce RTX 3080
PUs. In analyzing the computational complexity of our framework
cross different architectures, we observed that the incorporation of
riors affects the training speed across all architectures. The recurrent
rchitecture experiences the most significant impact, with training
ime increasing by 50% when using priors compared to the baseline
odel without priors. The convolutional architecture shows a 39%

ncrease in training time, while the dilated causal network exhibits
 32% increase. These variations in computational overhead can be
ttributed to the additional calculations required for prior computation
nd their interaction with each architecture’s unique structure. The
ecurrent network’s higher computational cost may be due to the
omplex interplay between its sequential processing nature and the
rior calculations. The convolutional architecture’s moderate increase
ikely stems from the integration of priors with its feature extraction
rocess, while the dilated causal network’s smaller overhead might
esult from its inherent ability to handle temporal dependencies more
fficiently when combined with priors. These findings underscore the
rade-off between improved explainability and increased computational
ost, highlighting the importance of considering both model architec-
ure and prior implementation when optimizing for NILM applications,
specially in scenarios where training time and resources are limited.

4.4. Evaluation metrics

Finding the optimal model requires an objective metric that quanti-
fies the predictive performance. Since the models used in this work are
primarily developed for a regression task, we quantify the regression
erformance using the Mean Absolute Error (MAE) measure. 𝑀 𝐴𝐸

between the true (𝐸𝑖) and predicted (�̂�𝑖) consumed energy of the
appliance of interest is calculated as:

𝑀 𝐴𝐸 = 1
⋅

𝑇
∑

|�̂�𝑖 − 𝐸𝑖|. (7)

𝑇 𝑖=1
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Table 1
Comparison of XNILMBoost performance for REDD.

Appliance AI Model MAE F1-Score

Dishwasher

GRU 24.20 0.427
GRU + Prior 20.74 0.538

CNN 19.55 0.696
CNN + Prior 17.23 0.775

WaveNet 24.91 0.408
WaveNet + Prior 24.42 0.477

Microwave

GRU 16.87 0.538
GRU + Prior 17.11 0.523

CNN 19.18 0.362
CNN + Prior 17.12 0.516

WaveNet 16.54 0.603
WaveNet + Prior 16.97 0.619

Refrigerator

GRU 33.35 0.805
GRU + Prior 33.35 0.806

CNN 28.47 0.84
CNN + Prior 27.53 0.843

WaveNet 38.31 0.758
WaveNet + Prior 36.69 0.765

Table 2
Comparison of XNILMBoost performance for UKDALE.

Appliance AI Model MAE F1-Score

Washing Machine

GRU 6.39 0.77
GRU + Prior 5.68 0.78

CNN 6.82 0.63
CNN + Prior 8.55 0.62

WaveNet 7.00 0.65
WaveNet + Prior 6.61 0.69

Dishwasher

GRU 30.78 0.67
GRU + Prior 25.15 0.73

CNN 35.4 0.7
CNN + Prior 34 0.74

WaveNet 30.38 0.66
WaveNet + Prior 30.12 0.68

Microwave

GRU 6.63 0.18
GRU + Prior 6.38 0.28

CNN 5.85 0.51
CNN + Prior 5.30 0.63

WaveNet 6.36 0.44
WaveNet + Prior 6.36 0.45

Whilst MAE is the most common measure for evaluating regres-
ion or disaggregation performance (Huber et al., 2021), the F1-score

measure is typically used in the NILM literature to evaluate the classifi-
cation performance (Angelis et al., 2022). To generate events from the
egression output, we apply a threshold, as explained in Section 3.1.

Specifically, as a way of capturing the classification performance, we
convert the regression output to a step function and calculate the 𝐹1
score as:

𝐹1 =
𝑇 𝑃

𝑇 𝑃 + 1
2 (𝐹 𝑃 + 𝐹 𝑁)

, (8)

where 𝑇 𝑃 stands for True Positives, 𝐹 𝑃 for False Positives, and 𝐹 𝑁 for
alse Negatives.

In terms of explainability evaluation, we quantify the relation-
ship between attribution quality and predictive performance using a
faithfulness algorithm defined in Batic et al. (2023a), where the perfor-

ance degradation after iterative removal of most important features
is measured for both the regression and classification scenarios.

To measure the (in)stability of assigned attributions with slight
modifications of the input signal, we use a Lipschit metric defined
in Batic et al. (2023a). Given an explanation function 𝑚(⋅) and input
 m

8 
Table 3
Comparison of XNILMBoost performance for Plegma Dataset.

Appliance AI Model MAE F1-Score

AC

GRU 38.41 0.773
GRU + Prior 38.20 0.792

CNN 42.49 0.745
CNN + Prior 39.64 0.772

WaveNet 58.15 0.662
WaveNet + Prior 53.68 0.699

Boiler

GRU 4.42 0.970
GRU + Prior 7.48 0.929

CNN 4.44 0.939
CNN + Prior 4.04 0.929

WaveNet 18.27 0.837
WaveNet + Prior 18.98 0.867

Washing Machine

GRU 2.63 0.543
GRU + Prior 1.96 0.590

CNN 3.23 0.481
CNN + Prior 2.97 0.560

WaveNet 3.42 0.586
WaveNet + Prior 3.17 0.620

aggregate signal 𝑥, we expose the signal to zero-mean Gaussian noise
with standard deviation 𝜎 to create modified aggregate signal, �̂�. We
define local Lipschitz constant estimate as Alvarez-Melis and Jaakkola
(2018):

�̂� =
‖𝑚(𝜃 , 𝑥) − 𝑚(𝜃 , �̂�)‖

‖𝑥 − �̂�‖ + 𝜇
, (9)

where 𝜇 represents a small value added for numerical stability (𝜇 =
1𝑒−6). For validity, the procedure is repeated 𝑛 times. Methods with low
Lipschitz value scores display a characteristic of being stable under the
presence of noise and should be favored.

Lastly, to measure the overall ease of understanding the produced
explanation, an effective complexity measure is used (Batic et al.,
2023a). To quantify the complexity of explanation in the context of
NILM, we define the ‘‘effective complexity’’ measure as a combination
of the attribution conciseness measure – Gini index, and the dataset
omplexity measure – NAR (Makonin and Popowich, 2015):

𝐸 𝐶 (𝑖) = 𝐺 𝑖𝑛𝑖
1 −𝑁 𝐴𝑅(𝑖)

. (10)

4.5. Experimental results and discussion

4.5.1. Does training for better explanations lead to improved predictive
performance?

The first experimental analysis is designed to examine if explain
ability-informed training can lead to improved model performance,
nstead of the often argued conjecture of trading-off between explain-

ablity and accuracy (Commission and Directorate-General for Com-
munications Networks, and Technology, 2019). As can be seen in
Tables 1 and 2, training with attribution priors can generally lead
to significant regression and classification performance improvement
compared to the case when no priors are used. Note that, explainability-
informed training leads to varying degrees of improvement across
different architectures and appliances. To better illustrate this, Fig. 3
showcases relative change in F1 and MAE score after training with the
roposed method. For the UK-DALE scenario, applying an attribution

prior to a GRU architecture leads to a slight regression performance
mprovement for Microwave appliance. However, regression perfor-
ance improvement in appliances with long and sparse activations

(Washing Machine and Dishwasher) is significant, reaching over 15%.
n the other hand CNN, whilst significantly improving results for the
icrowave, underperformed for the case of Washing Machine, where

he MAE value increased, suggesting a nuanced relationship between
odel architecture, attribution priors, and appliance characteristics.
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Fig. 3. Comparison of relative F1 and MAE performance improvement after explainability-informed training for GRU, CNN, and WaveNet architectures for (a) REDD dataset (b)
UK-DALE dataset, and (c) Plegma dataset.
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Generally, we observe that the improvement in one predictive metric
ollows the improvement in other, indicating that the trained models
roduce more robust predictions in both classification and regres-
ion domain. However, there are also cases where F1 improvement
s drastically higher than MAE improvement, as is the case for Mi-

crowave trained with GRU model. This phenomenon is probably due to
poor initial classification performance of the Microwave GRU model,
eading to a higher relative increase. The effects of explainability-
nformed training are very similar for the REDD dataset. We note
reat improvement for the case of Dishwasher appliance, where F1
mprovement surpassed 25%. On the other hand, Refrigerator appli-
nce showed minimal relative improvement over all models, which
an be explained by excellent initial predictive performance of the
aseline models. Important fining is that WaveNet architecture only

led to slight improvements in F1 and MAE scores, except for the case
of Dishwasher appliance in REDD dataset. Possible cause for such
behavior is added complexity of introducing explainability due to large
number of dilated causal convolutions. Analyzing the Plegma dataset
results (Table 3), we observe trends in performance improvement with
explainability-informed training similar to REDD and UK-DALE, but
with some notable differences. For the AC appliance, all models show
improvements with attribution priors, with WaveNet demonstrating the
largest relative gains. The Boiler appliance presents mixed results —

RU and CNN models without priors perform better in terms of MAE,
hough CNN+Prior achieves the best overall MAE while maintaining a
igh F1-Score. WaveNet shows significant improvement with priors for
he Boiler. For the Washing Machine, all models consistently benefit
rom attribution priors in both MAE and F1-Score. Notably, WaveNet
odels show consistent improvement with attribution priors across

ll appliances in the Plegma dataset, contrasting with the minimal

mprovements observed in REDD and UK-DALE.

9 
The impact of attribution priors on model training can be attributed
o multiple interconnected mechanisms. When attribution priors are
ntroduced, they appear to synergize differently with various model
rchitectures (GRU, CNN, WaveNet), potentially enhancing the in-
erent ability of each model to capture appliance-specific behavioral

patterns. Attribution priors serve a dual purpose: they act as an ef-
fective regularization mechanism that guards against overfitting, while
simultaneously strengthening the model’s capacity to generalize from
training data. This relationship is particularly evident in the WaveNet
rchitecture, where the inherent complexity-performance trade-off sug-
ests that attribution priors help strike an optimal balance, resulting in

more robust performance on new data, while improving explainability.
Since WaveNet processes complete sequences rather than individual
samples, this behavior could indicate that, when the proposed ap-
proach is utilized, optimal trade-off might be achieved with either
a larger model input window or lower sampling rates. Each appli-
nce exhibits distinctive operational signatures and power consumption

patterns, which fundamentally affect how much improvement can be
chieved across different devices. Thus, the varying degrees of im-
rovement might be influenced by the baseline performance of each
odel-appliance combination, with initially poor-performing models

howing more dramatic improvements. For example, for the REDD
ataset, largest improvements in F1 score are observed for the GRU-
ishwasher pair (26%) and CNN-Microwave pair (42.5%). However,

hey also hold the lowest baseline F1 scores — 0.427 and 0.362,
espectively. A similar trend is seen in the case of UKDALE and Plegma
atasets, where the highest improvement in F1 performance is held
y UKDALE-GRU-Microwave (55%) and Plegma-CNN-Washing Machine
16.1%) — where both cases correspond to poor performing baseline
odels which were improved.
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Fig. 4. Performance evaluation of the proposed XNILMBoost method for training of (a) UK-DALE Dishwasher, (b) UK-DALE Washing Machine, (c) UK-DALE Microwave. The radar
plot axes are scaled based on the maximum values of the respective category. The arrows indicate if higher or lower value is better.
Table 4
Appliance characteristics for UK-DALE and REDD datasets.

Dataset Appliance Training houses On threshold [W] Min On [s] Min Off [s]

UK-DALE
Washing Machine 1, 3, 4, 5 20 1800 150
Dishwasher 1, 3, 4, 5 10 1800 1500
Microwave 2, 3, 5 200 12 30

REDD
Dishwasher 2, 3, 4, 5, 6 10 1800 1500
Microwave 2, 3, 5 200 12 30
Refrigerator 2, 3, 5, 6 50 60 15

Plegma
AC 1, 3, 4, 5, 7, 8, 11, 12, 13 50 100 2100
Boiler 1, 3, 4, 5, 6, 7, 9, 11, 12, 13 50 30 300
Washing Machine 1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13 50 30 112
4.5.2. Does training for better explanations lead to improved explainability
erformance?

Next, we evaluate how the models are affected by measuring
heir explainability performance. Applying the proposed explainability-
nformed training algorithm, we report several findings averaged across
he selected explainability methods. Tables 5–13 showcase the perfor-
ance across various NILM-specific explainability metrics. Focusing

n the results of IntegratedGradients (IG) method, the average C.
10 
Faithfulness can be increased by 25.89% in REDD and by 80.61% in
UK-DALE dataset. By comparing the obtained results, we observe that
higher improvement in the UK-DALE dataset is largely due to poor
baseline performance, i.e., in cases where the baseline metric indicates
sub-optimal Faithfulness, the proposed explainability-informed training
leads to largest improvements, suggesting that our training method
particularly benefits models struggling in explainability. Notably, im-
provements in C. Faithfulness often mirrored those in R. Faithfulness,
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Table 5
Comparison of XNILMBoost explainability performance improvement for CNN trained on REDD dataset.

Appliance Model R. Faithf.↑ C. Faith.↑ Robustness ↓ Eff. Complexity↑

Dishwasher

GradCAM (Baseline) 2370.588 3.122 4.838 ± 0.782 0.900
GradCAM (Prior) 2331.422 3.441 5.489 ± 1.407 1.105

GradCAM++ (Baseline) 1143.810 1.565 3.722 ± 0.662 0.570
GradCAM++ (Prior) 2154.310 2.614 4.483 ± 0.881 0.741

IG (Baseline) 2367.930 4.594 1.267 ± 0.284 1.039
IG (Prior) 3231.460 4.877 1.287 ± 0.319 1.067

SG (Baseline) 2166.520 3.830 2.235 ± 0.442 0.745
SG (Prior) 2343.960 2.531 1.852 ± 0.287 0.869

Microwave

GradCAM (Baseline) 97.923 0.474 0.190 ± 0.285 0.477
GradCAM (Prior) 81.905 0.761 0.203 ± 0.181 0.405

GradCAM++ (Baseline) 134.440 0.689 0.192 ± 0.123 0.502
GradCAM++ (Prior) 74.320 0.605 0.279 ± 0.147 0.429

IG (Baseline) 86.190 1.468 0.190 ± 0.106 0.739
IG (Prior) 238.280 1.409 0.253 ± 0.131 0.723

SG (Baseline) 106.320 1.534 0.224 ± 0.167 0.735
SG (Prior) 242.720 1.263 0.298 ± 0.172 0.687

Refrigerator

GradCAM (Baseline) 45.915 0.350 1.559 ± 0.886 0.558
GradCAM (Prior) 155.915 0.684 1.684 ± 0.939 0.999

GradCAM++ (Baseline) 30.081 0.281 1.418 ± 0.749 0.521
GradCAM++ (Prior) 140.081 0.572 1.761 ± 1.302 0.616

IG (Baseline) 147.179 4.111 1.147 ± 0.275 1.210
IG (Prior) 386.144 4.445 1.400 ± 0.275 1.206

SG (Baseline) 173.086 2.454 1.105 ± 0.377 0.920
SG (Prior) 283.086 2.788 1.330 ± 0.721 1.373
Table 6
Comparison of explainability performance for WaveNet trained on REDD dataset.

Appliance Model R. Faithf. ↑ C. Faith. ↑ Robustness ↓ Eff. Complexity ↑

Dishwasher

GradCAM (Baseline) 1251.456 1.636 4.417 ± 2.830 0.161
GradCAM (Prior) 1285.666 2.056 3.297 ± 2.707 0.411

GradCAM++ (Baseline) 1644.69 3.185 15.091 ± 3.709 0.687
GradCAM++ (Prior) 1695.69 2.445 14.851 ± 3.709 0.872

IG (Baseline) 403.440 4.311 9.188 ± 2.567 0.982
IG (Prior) 638.560 4.401 9.508 ± 2.027 1.322

SG (Baseline) 1724.060 3.068 1.040 ± 0.037 1.574
SG (Prior) 1856.620 3.189 1.030 ± 0.061 1.804

Microwave

GradCAM (Baseline) 340.729 0.646 3.203 ± 2.830 1.391
GradCAM (Prior) 572.829 1.066 2.976 ± 2.707 2.056

GradCAM++ (Baseline) 599.720 2.195 13.876 ± 1.709 1.117
GradCAM++ (Prior) 982.850 1.455 14.728 ± 3.709 2.092

IG (Baseline) 280.440 3.321 8.860 ± 2.567 1.512
IG (Prior) 638.560 3.411 8.278 ± 2.027 2.362

SG (Baseline) 850.790 2.078 6.205 ± 0.037 1.814
SG (Prior) 1143.780 2.199 6.030 ± 0.061 1.912

Refrigerator

GradCAM (Baseline) 52.900 0.835 5.632 ± 1.600 1.843
GradCAM (Prior) 75.828 1.496 2.057 ± 1.277 1.951

GradCAM++ (Baseline) 446.130 2.384 6.966 ± 2.839 2.447
GradCAM++ (Prior) 485.850 1.885 13.31 ± 1.586 2.092

IG (Baseline) 403.440 3.510 9.066 ± 0.607 2.082
IG (Prior) 638.560 3.841 9.496 ± 1.273 2.552

SG (Baseline) 525.500 2.267 5.164 ± 0.507 1.927
SG (Prior) 646.780 2.529 4.275 ± 0.291 2.827
a

which can be explained by the fact that artifacts in the predicted
ppliance signature are no longer being produced due to improved
radient smoothness and explanation complexity after explainability-
nformed training. Observing the results, we corroborate previous
indings that some explainability methods lead to unstable perfor-
ance (Batic et al., 2023b; Alvarez-Melis and Jaakkola, 2018; Ancona
11 
et al., 2018). This is particularly evident in the case of GradCAM, while
other methods provide more stable results. Furthermore, IG provides
an overall satisfactory faithfulness performance across most appliances
nd architectures, reaffirming the previous hypothesis that that a

zero signal is an appropriate choice for the baseline value for NILM
data (Batic et al., 2023b). In terms of Robustness metric, we observe
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Table 7
Comparison of explainability performance for GRU trained on REDD dataset.

Appliance Model R. Faithf. ↑ C. Faith. ↑ Robustness ↓ Eff. Complexity ↑

Dishwasher

GradCAM (Baseline) 223.006 0.883 0.39 ± 0.174 1.348
GradCAM (Prior) 696.664 1.753 0.048 ± 0.024 1.025

GradCAM++ (Baseline) 220.897 3.745 0.669 ± 0.758 0.956
GradCAM++ (Prior) 646.830 1.812 0.131 ± 0.041 1.321

IG (Baseline) 139.350 4.884 0.544 ± 0.283 1.311
IG (Prior) 762.740 1.633 0.132 ± 0.163 1.365

SG (Baseline) 63.089 4.012 0.381 ± 0.231 1.294
SG (Prior) 727.400 1.818 0.062 ± 0.058 1.043

Microwave

GradCAM (Baseline) 33.042 0.372 0.095 ± 0.071 0.570
GradCAM (Prior) 60.477 0.622 0.077 ± 0.372 0.513

GradCAM++ (Baseline) 136.350 1.276 0.076 ± 0.068 1.032
GradCAM++ (Prior) 73.660 0.366 0.126 ± 0.624 0.861

IG (Baseline) 74.100 0.884 0.011 ± 0.660 0.910
IG (Prior) 215.690 2.280 0.064 ± 0.057 1.112

SG (Baseline) 211.100 2.156 0.054 ± 0.035 1.127
SG (Prior) 166.050 1.814 0.033 ± 0.802 1.106

Refrigerator

GradCAM (Baseline) 14.373 0.243 0.402 ± 0.216 0.995
GradCAM (Prior) 18.811 0.040 0.478 ± 0.295 0.896

GradCAM++ (Baseline) 38.778 0.455 1.356 ± 0.85 0.695
GradCAM++ (Prior) 24.392 0.191 1.351 ± 0.73 0.825

IG (Baseline) 12.732 0.137 1.895 ± 1.113 1.039
IG (Prior) 29.447 0.250 1.918 ± 1.108 0.843

SG (Baseline) 20.765 0.240 0.386 ± 0.193 0.777
SG (Prior) 60.503 0.474 0.414 ± 0.177 0.759
Table 8
Comparison of XNILMBoost explainability performance improvement for CNN trained on UK-DALE dataset.

Appliance Model R. Faithf. ↑ C. Faith. ↑ Robustness ↓ Eff. Complexity ↑

Dishwasher

GradCAM (Baseline) 122.465 0.301 1.547 ± 0.825 1.080
GradCAM (Prior) 38.162 0.399 0.931 ± 0.255 1.353

GradCAM++ (Baseline) 62.629 0.102 1.740 ± 0.800 0.556
GradCAM++ (Prior) 96.980 0.799 1.223 ± 0.474 0.871

IG (Baseline) 386.797 0.845 0.623 ± 0.238 1.200
IG (Prior) 823.590 2.309 0.627 ± 0.190 1.191

SG (Baseline) 425.304 0.783 0.364 ± 0.154 1.082
SG (Prior) 672.290 1.754 0.441 ± 0.141 1.074

Washing Machine

GradCAM (Baseline) 1969.986 13.165 1.734 ± 0.822 1.616
GradCAM (Prior) 1987.535 13.191 3.046 ± 1.076 1.066

GradCAM++ (Baseline) 1971.088 13.231 4.067 ± 1.740 0.954
GradCAM++ (Prior) 2095.426 13.284 4.211 ± 1.348 0.824

IG (Baseline) 1987.030 13.236 0.811 ± 0.271 1.428
IG (Prior) 2057.740 13.174 0.978 ± 0.320 0.778

SG (Baseline) 1943.557 13.167 0.580 ± 0.305 1.034
SG (Prior) 1992.919 13.117 0.934 ± 0.513 0.820

Microwave

GradCAM (Baseline) 134.827 2.021 0.223 ± 0.165 0.401
GradCAM (Prior) 142.935 2.058 0.193 ± 0.158 0.507

GradCAM++ (Baseline) 138.070 2.044 0.352 ± 0.180 0.355
GradCAM++ (Prior) 146.050 2.071 0.396 ± 0.265 0.383

IG (Baseline) 138.700 2.069 0.230 ± 0.119 0.831
IG (Prior) 143.090 2.094 0.200 ± 0.109 0.870

SG (Baseline) 129.650 2.004 0.193 ± 0.080 0.839
SG (Prior) 143.460 2.087 0.176 ± 0.105 0.866
w
t

p
D

that WaveNet models lead to highest relative decrease of 16.64%.
However, even with a significant improvement, WaveNet models still
exhibit poor robustness performance, possibly due to their architectural
design that is based on causal, dilated convolutional layers, which
prevents robust explanations. In the case of CNNs, we observe that
Robustness improvements correspond to lower MAE and increased
1 scores, as shown in Microwave model for UK-DALE dataset. Eff.
12 
Complexity has achieved highest improvement for the REDD dataset,
here the relative increase achieves 89.26%, with WaveNet showing

he highest relative and absolute increases. Additionally, we observe
a link between Faithfulness improvement and Eff. Complexity im-
rovement, in particular in cases of long running appliances such as
iswhasher trained on GRU with UK-DALE data. This finding suggests

that the explainability metrics are interdependent, and that improved
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Table 9
Comparison of explainability performance for WaveNet trained on UK-DALE dataset.

Appliance Model R. Faithf. ↑ C. Faith. ↑ Robustness ↓ Eff. Complexity ↑

Dishwasher

GradCAM (Baseline) 1044.074 2.314 88.782 ± 47.135 0.897
GradCAM (Prior) 1158.106 3.406 44.120 ± 12.400 0.913

GradCAM++ (Baseline) 77.794 0.270 12.967 ± 8.725 1.237
GradCAM++ (Prior) 490.15 1.102 3.769 ± 1.823 1.435

IG (Baseline) 74.801 0.829 9.854 ± 3.316 1.238
IG (Prior) 385.56 1.118 8.925 ± 2.350 1.312

SG (Baseline) 661.983 1.652 0.179 ± 0.213 1.472
SG (Prior) 1279.98 3.314 0.260 ± 0.194 1.513

Washing Machine

GradCAM (Baseline) 974.101 0.835 204.055 ± 57.858 1.234
GradCAM (Prior) 1946.377 2.367 118.583 ± 27.907 1.300

GradCAM++ (Baseline) 1212.77 1.242 22.100 ± 5.100 1.330
GradCAM++ (Prior) 1042.89 1.529 28.685 ± 7.333 1.429

IG (Baseline) 1666.70 1.577 22.030 ± 6.618 1.713
IG (Prior) 1878.02 3.261 28.524 ± 11.33 1.709

SG (Baseline) 1108.20 1.200 0.029 ± 0.050 1.913
SG (Prior) 482.810 0.740 0.277 ± 0.122 1.941

Microwave

GradCAM (Baseline) 56.567 0.504 21.416 ± 6.017 0.110
GradCAM (Prior) 109.918 0.486 19.519 ± 6.415 0.110

GradCAM++ (Baseline) 68.626 0.567 0.256 ± 0.644 0.068
GradCAM++ (Prior) 75.018 0.553 0.651 ± 1.465 0.087

IG (Baseline) 263.044 3.584 0.164 ± 0.744 0.878
IG (Prior) 378.743 4.880 0.213 ± 0.905 0.892

SG (Baseline) 83.429 0.666 0.241 ± 0.100 0.940
SG (Prior) 86.459 0.678 0.144 ± 0.144 0.542
Table 10
Comparison of explainability performance for GRU trained on UK-DALE dataset.

Appliance Model R. Faithf. ↑ C. Faith. ↑ Robustness ↓ Eff. Complexity ↑

Dishwasher

GradCAM (Baseline) 300.885 1.250 0.346 ± 0.233 0.625
GradCAM (Prior) 354.444 1.273 0.414 ± 0.329 0.901

GradCAM++ (Baseline) 172.887 0.458 0.395 ± 0.662 0.449
GradCAM++ (Prior) 487.953 2.190 0.248 ± 0.631 0.567

IG (Baseline) 399.699 1.441 0.298 ± 0.446 0.526
IG (Prior) 757.573 3.146 0.249 ± 0.304 0.796

SG (Baseline) 436.021 2.005 0.185 ± 0.198 1.090
SG (Prior) 788.257 2.980 0.185 ± 0.153 1.162

Washing Machine

GradCAM (Baseline) 2004.603 11.255 0.487 ± 0.300 1.663
GradCAM (Prior) 2140.319 11.440 0.53 ± 0.316 1.669

GradCAM++ (Baseline) 2362.02 12.391 0.96 ± 1.105 1.642
GradCAM++ (Prior) 1960.83 10.782 1.036 ± 0.557 1.514

IG (Baseline) 2017.31 12.384 0.426 ± 0.314 1.674
IG (Prior) 1944.02 11.014 0.256 ± 0.211 1.614

SG (Baseline) 1080.61 5.342 0.361 ± 0.233 0.772
SG (Prior) 1486.52 6.482 0.466 ± 0.335 0.600

Microwave

GradCAM (Baseline) 65.804 0.388 0.115 ± 0.168 0.738
GradCAM (Prior) 41.809 0.176 0.082 ± 0.055 0.761

GradCAM++ (Baseline) 20.458 0.018 0.200 ± 0.171 0.618
GradCAM++ (Prior) 85.312 0.358 0.382 ± 0.335 0.767

IG (Baseline) 89.247 0.453 0.021 ± 0.012 0.795
IG (Prior) 201.395 1.660 0.031 ± 0.035 0.845

SG (Baseline) 149.567 0.759 0.018 ± 0.010 0.779
SG (Prior) 170.971 1.153 0.025 ± 0.044 0.794
p

gradient smoothness and complexity leads to better overall explain-
bility of the NILM system. The Plegma dataset results, as shown in

Tables 11–13, further corroborate and extend the findings observed
n the REDD and UK-DALE datasets, while also revealing some unique
atterns. Across CNN, WaveNet, and GRU models, we see substantial
mprovements in both R. Faithfulness and C. Faithfulness for many
ppliances when using priors, particularly for the AC appliance. For
nstance, CNN models show significant gains in R. Faithfulness for AC
13 
and Washing Machine, while WaveNet models demonstrate even more
ronounced improvements across all appliances. GRU models present a

more mixed picture, with some appliances showing improvements and
others slight decreases. Robustness generally improves with the use of
priors across all architectures, although the magnitude of improvement
varies. Overall, it can be concluded that the utilization of explainability-
informed NILM mode training can lead to explainability improvement
across various architectural approaches, which is validated through
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Table 11
Comparison of explainability performance for CNN trained on Plegma dataset.

Appliance Model R. Faithf. ↑ C. Faith. ↑ Robustness ↓ Eff. Complexity ↑

AC

GradCAM (Baseline) 508.908 0.120 0.752 ± 0.402 0.438
GradCAM (Prior) 883.792 1.141 0.269 ± 0.210 0.370

GradCAM++ (Baseline) 153.922 0.359 0.937 ± 0.593 0.836
GradCAM++ (Prior) 540.328 0.816 0.976 ± 0.800 0.791

IG (Baseline) 1530.439 2.657 0.984 ± 0.460 0.936
IG (Prior) 2147.258 3.737 0.812 ± 0.327 1.027

SG (Baseline) 918.024 0.766 1.321 ± 0.638 0.794
SG (Prior) 1042.599 0.867 1.685 ± 1.310 0.757

Boiler

GradCAM (Baseline) 3197.939 0.695 0.068 ± 0.125 0.614
GradCAM (Prior) 956.829 0.103 0.056 ± 0.035 0.613

GradCAM++ (Baseline) 408.272 0.097 0.420 ± 0.354 0.321
GradCAM++ (Prior) 524.275 0.090 0.188 ± 0.276 0.540

IG (Baseline) 3920.85 0.275 0.098 ± 0.085 0.970
IG (Prior) 4404.764 0.640 0.128 ± 0.101 0.931

SG (Baseline) 3561.111 0.608 0.079 ± 0.046 0.905
SG (Prior) 3110.081 0.336 0.079 ± 0.038 0.841

Washing Machine

GradCAM (Baseline) 58.216 0.180 1.240 ± 0.701 0.441
GradCAM (Prior) 152.773 0.301 0.971 ± 0.611 0.469

GradCAM++ (Baseline) 84.957 0.139 1.627 ± 1.233 0.268
GradCAM++ (Prior) 313.451 0.312 1.430 ± 0.814 0.356

IG (Baseline) 263.044 0.307 1.240 ± 0.489 0.727
IG (Prior) 282.065 0.237 1.218 ± 0.549 0.824

SG (Baseline) 83.429 0.666 1.229 ± 0.692 0.385
SG (Prior) 226.415 0.292 1.021 ± 0.645 0.405
Table 12
Comparison of explainability performance for WaveNet trained on Plegma dataset.

Appliance Model R. Faithf. ↑ C. Faith. ↑ Robustness ↓ Eff. Complexity ↑

AC

GradCAM (Baseline) 385.709 0.923 133.234 ± 60.912 0.503
GradCAM (Prior) 823.906 1.535 130.22 ± 51.595 0.541

GradCAM++ (Baseline) 463.939 2.003 47.312 ± 40.933 0.798
GradCAM++ (Prior) 955.981 2.493 20.821 ± 12.211 1.170

IG (Baseline) 1842.737 3.145 26.331 ± 23.487 0.854
IG (Prior) 1671.350 3.941 13.091 ± 15.238 0.991

SG (Baseline) 1115.153 1.006 0.205 ± 0.127 1.077
SG (Prior) 1295.212 0.707 0.222 ± 0.121 1.077

Boiler

GradCAM (Baseline) 3189.995 2.384 97.028 ± 46.832 0.460
GradCAM (Prior) 3243.791 1.466 58.910 ± 48.569 0.202

GradCAM++ (Baseline) 1607.980 0.768 1.058 ± 3.527 0.200
GradCAM++ (Prior) 2405.809 0.907 1.019 ± 2.507 0.414

IG (Baseline) 3329.980 3.209 6.900 ± 4.990 0.900
IG (Prior) 3348.476 3.304 4.607 ± 3.718 0.914

SG (Baseline) 985.985 0.194 0.247 ± 0.090 0.976
SG (Prior) 1053.160 0.347 0.217 ± 0.100 1.012

Washing Machine

GradCAM (Baseline) 108.316 1.048 0.680 ± 0.472 0.868
GradCAM (Prior) 375.831 1.392 1.093 ± 0.714 1.187

GradCAM++ (Baseline) 12.015 0.652 0.618 ± 0.495 1.125
GradCAM++ (Prior) 89.671 1.255 0.462 ± 0.268 1.297

IG (Baseline) 127.221 0.575 1.051 ± 0.451 1.210
IG (Prior) 393.303 1.005 0.955 ± 0.345 1.212

SG (Baseline) 185.971 1.117 0.446 ± 0.234 0.863
IG (Prior) 454.246 1.482 0.478 ± 0.421 0.703
14 
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Table 13
Comparison of explainability performance for GRU trained on Plegma dataset.

Appliance Model R. Faithf. ↑ C. Faith. ↑ Robustness ↓ Eff. Complexity ↑

AC

GradCAM (Baseline) 2160.41 5.461 1.572 ± 1.238 0.633
GradCAM (Prior) 1486.443 3.010 1.596 ± 1.142 0.686

GradCAM++ (Baseline) 2517.897 6.393 1.139 ± 0.814 0.637
GradCAM++ (Prior) 1925.591 5.707 1.041 ± 0.640 0.751

IG (Baseline) 2046.526 4.840 0.681 ± 0.520 0.730
IG (Prior) 1818.143 5.049 0.563 ± 0.403 0.781

SG (Baseline) 1244.548 4.323 0.454 ± 0.324 0.694
SG (Prior) 1489.35 3.631 0.501 ± 0.496 0.734

Boiler

GradCAM (Baseline) 3197.939 0.695 7.028 ± 6.832 0.614
GradCAM (Prior) 3189.995 2.384 0.068 ± 0.125 0.460

GradCAM++ (Baseline) 408.272 0.097 0.420 ± 0.354 0.321
GradCAM++ (Prior) 1607.98 0.768 1.058 ± 3.527 0.200

IG (Baseline) 3329.98 3.209 6.900 ± 4.990 0.900
IG (Prior) 3038.328 2.847 4.607 ± 3.718 0.914

SG (Baseline) 1053.16 0.347 0.247 ± 0.090 1.012
SG (Prior) 985.985 0.194 0.217 ± 0.100 0.976

Washing Machine

GradCAM (Baseline) 348.845 0.685 74.287 ± 26.595 0.733
GradCAM (Prior) 588.488 1.392 41.83 ± 25.994 1.187

GradCAM++ (Baseline) 532.696 1.163 4.799 ± 5.113 1.628
GradCAM++ (Prior) 107.717 0.522 14.809 ± 9.998 1.484

IG (Baseline) 183.145 1.551 9.248 ± 7.377 1.365
IG (Prior) 473.062 1.762 12.146 ± 10.751 1.481

SG (Baseline) 85.301 0.423 0.201 ± 0.091 1.757
SG (Prior) 142.333 0.823 0.245 ± 0.091 1.694
a
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relative improvement in individual explainability metrics, as can be
further seen in Figs. 5, 4 and 6. However, while some models exhibit
ignificant gains in both explainability and predictive performance,
thers show marginal improvements, underscoring the need for a more
ailored approach in explainability-informed model training.

4.5.3. What is the relationship between the improved predictive performance
and explainability?

Finally, it becomes evident that the trade-off between explain-
bility and predictive performance, particularly within the context
f attribution priors, presents a opportunity for evaluation of overall
xplainability-informed NILM system performance. To best illustrate

the trade-off, we jointly visualize the explainability and predictive
performance metrics in Figs. 5, 4 and 6. Figures are organized as
radio plots where each axis represents one of the core metrics on
he explainability-informed NILM system, while the arrows indicate
f lower or higher values are favored. We observe that in the case
f UK-DALE, GRU models that achieve higher C. and R. Faithfulness,
enerally lead to lower MAE values, as shown in the case of Dishwasher
ppliance, where 89.54% R. Faithfulness improvement corresponded
ith 18.29% decrease in MAE score. Similarly, GRU model trained on
ishwasher in REDD dataset when improved on the R. Faithfulness

ead to improved F1 and lower MAE value. However, in the case
f Microwave, improvement in R. and C. Faithfulness did not lead
o improvement in predictive performance, albeit it did improve the
ff. Complexity result. This indicates that appliances with longer and
parser activations might benefit more from explainability-informed
raining. CNN model has also showed positive correlation between
xplainability improvement and predictive performance improvement.
n cases of increased R. Faithfulness, CNNs tend to obtain better F1
nd MAE score in both datasets, as shown in the case of Microwave for
EDD dataset where 176.7% increase in R. Faithfulness corresponded
ith 42.54% increase in F1 score. In the case of WaveNet, we observe

hat increases in R. and C. Faithfulness, despite improving MAE and
1 scores, do not lead to dramatic improvements, suggesting that the
omplexity introduced through causal convolutions might be a limiting
actor. However, for traditionally challenging-to-disaggregate appli-
nces, such as the Washing Machine in the Plegma dataset (Fig. 6(c)),
15 
our proposed approach demonstrates simultaneous improvements in
both explainability and predictive performance. The GRU model’s re-
sults are particularly noteworthy, showing a significant decrease in
MAE that correlates strongly with enhanced faithfulness metrics. This
suggests that improvements in regression performance (MAE) may have
a more substantial impact on explainability compared to classification
performance gains (F1 score).

These findings emphasize the importance of carefully tailored ap-
proaches in machine learning applications, where model architectures
nd additional model inputs, such as priors, must be thoughtfully

matched to specific tasks and datasets. The observed improvement in
predictive and explainability performance validates our initial hypoth-
sis that training explicitly for explainability can produce more robust
nd transparent NILM models. Furthermore, our proposed training pro-
edure effectively quantifies the trade-off between model performance
nd explainability. More broadly, these results reveal a symbiotic re-
ationship: more robust models naturally lead to better explainability,
nd conversely, enhanced explainability can contribute to increased
odel robustness (see Table 10).

5. Conclusions and future work

In this work, we proposed a framework for enhancement of state-
of-the-art NILM models that takes into account characteristics of Trust-
worthy AI systems. The experimental results from our study high-
light the significant impact of explainability-informed training on the
performance of energy disaggregation models. This approach, which
integrates attribution priors into the training process, demonstrates
substantial improvements in both regression and classification perfor-
mance. Additionally, we proposed an iterative optimization procedure
that along with a novel explainability metric enables explainability-
informed training of NILM models. Experimental results validate that
our approach binds improved predictive performance with improved
explainability results across various architectures and appliances. Three
different research questions were addressed — First, we show that
training for better explanations can lead to improved predictive per-

formance of a NILM system and provide increased robustness; second,
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Fig. 5. Performance evaluation of the proposed XNILMBoost method for training of (a) REDD Microwave, (b) REDD Washing Machine, (c) REDD Refrigerator. The radar plot axes
are scaled based on the maximum values of the respective category. The arrows indicate if higher or lower value is better.
we show that the proposed explainability-informed training can en-
hance the explainability performance of various state-of-the-art archi-
tectures across multiple explainability metrics; and third, we provide
new insights into the relationship between the improved predictive
performance and explainability for various NILM architectures. The
proposed framework was applied across different architectural ap-
roaches, including convolutional (CNN), recurrent (GRU), and dilated
ausal (WaveNet) architectures. Worth noting is that although WaveNet
odels have achieved enhanced performance, the relative improve-
ent achieved is much greater for CNN and GRU, suggesting that such

rchitectures can benefit more from explainability-informed training.
arious explainability methods were explored, including GradCAM,
radCAM++, IntegratedGradients, and SmoothGrad. Experimental re-

ults suggest that in the context of NILM, explainability methods that
re design to deal with noise, such as IntegratedGradients and Smooth-
rad, can generally obtain better ability to produce explanations that
re faithful to the performance of the model, robust to slight changes of
nput, and more easily interpretable due to low complexity of outputs.
verall, the proposed methodology suggests that the incorporation
f explainability considerations into the training process can substan-
ially enhance the transparency of a model, as well as the ability
o more accurately predict energy consumption of high-consumption
ppliances.
16 
In future work, it is worth investigating how different emerging
architectures, such as Transformer models or hybrid models, respond
to the proposed training approach, and provide deeper insights into
the generalizability and scalability of these techniques. Conducting
user studies to understand how non-experts interpret the explanations
provided by these models could also be beneficial in making NILM
technologies more accessible and trustworthy. Future work could in-
vestigate methods to incorporate direct human feedback or domain
knowledge into the attribution prior formulation through active learn-
ing and similar approaches, further strengthening the human agency
and oversight principle. Integrating advanced NILM models into smart
energy management systems could lead to more efficient and user-
friendly energy consumption monitoring and management. Research in
this direction could focus on creating holistic systems that leverage the
strengths of explainable AI for better energy optimization and user en-
gagement. Additionally, integration of XAI-informed NILM with other
emerging technologies such as demand response programs and digital
twin technology represents a promising opportunity in industrial en-
ergy management. Detailed and trustworthy load disaggregation could
enhance the effectiveness of demand response strategies by identifying
flexible loads that can be adjusted during peak demand periods without
compromising critical operations. Simultaneously, digital twin tech-
nologies, which have showed success in healthcare (Feng et al., 2023a)
and transportation sector (Feng et al., 2023b), could be integrated with
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Fig. 6. Performance evaluation of the proposed XNILMBoost method for training of (a) Plegma AC, (b) Plegma Boiler, (c) Plegma Washing Machine. The radar plot axes are scaled
ased on the maximum values of the respective category. The arrows indicate if higher or lower value is better.
NILM outputs into digital twin models of industrial facilities to create
a dynamic, real-time representation of energy usage and equipment
erformance, reducing operational costs, and improving equipment
ongevity.

CRediT authorship contribution statement

Djordje Batic: Writing – original draft, Visualization, Valida-
ion, Software, Methodology, Investigation, Formal analysis. Vladimir
Stankovic: Writing – review & editing, Validation, Supervision,
Project administration, Funding acquisition, Conceptualization. Lina
Stankovic: Writing – review & editing, Supervision, Project adminis-
tration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Acknowledgments

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 955422.
17 
Data availability

Data will be made available on request.

References

Alvarez-Melis, D., Jaakkola, T.S., 2018. On the robustness of interpretability methods.
arXiv:1806.08049.

Alvarez-Melis, D., Jaakkola, T.S., 2018. Towards robust interpretability with
self-explaining neural networks.

Ancona, M., Ceolini, E., Öztireli, C., Gross, M., 2017. Towards better understanding of
gradient-based attribution methods for deep neural networks. arXiv:1711.06104.

Ancona, M., Ceolini, E., Öztireli, C., Gross, M., 2018. Towards better understanding of
gradient-based attribution methods for deep neural networks.

Angelis, G.F., et al., 2022. NILM applications: Literature review of learning approaches,
recent developments and challenges. Energy Build. 261, 111951.

Armel, K.C., Gupta, A., Shrimali, G., Albert, A., 2013. Is disaggregation the holy grail
of energy efficiency? The case of electricity. Energy Policy 52, 213–234.

Athanasoulias, S., Guasselli, F., Doulamis, N., Doulamis, A., Ipiotis, N., Katsari, A.,
Stankovic, L., Stankovic, V., 2024. The plegma dataset: Domestic appliance-level
and aggregate electricity demand with metadata from Greece. Sci. Data 11 (1),
376.

Batic, D., Stankovic, V., Stankovic, L., 2023a. Towards transparent load disaggregation–
a framework for quantitative evaluation of explainability using explainable AI. IEEE
Trans. Consum. Electron..

http://arxiv.org/abs/1806.08049
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb2
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb2
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb2
http://arxiv.org/abs/1711.06104
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb4
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb4
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb4
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb5
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb5
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb5
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb6
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb6
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb6
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb7
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb7
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb7
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb7
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb7
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb7
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb7
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb8
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb8
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb8
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb8
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb8


D. Batic et al. Engineering Applications of Artiϧcial Intelligence 141 (2025) 109766 
Batic, D., Tanoni, G., Stankovic, L., Stankovic, V., Principi, E., 2023b. Improving
knowledge distillation for non-intrusive load monitoring through explainability
guided learning. In: 2023 IEEE International Conference on Acoustics, Speech, and
Signal Processing. ICASSP 2023, IEEE.

Bhatt, U., Weller, A., Moura, J.M., 2020. Evaluating and aggregating feature-based
model explanations. arXiv:2005.00631.

Chalasani, P., et al., 2020. Concise explanations of neural networks using adversarial
training. In: Int. Conf. Machine Learn.. PMLR.

Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N., 2018. Grad-cam++:
Generalized gradient-based visual explanations for deep convolutional networks. In:
2018 IEEE Winter Conference on Applications of Computer Vision. WACV, IEEE,
pp. 839–847.

Chen, K., Zhang, Y., Wang, Q., Hu, J., Fan, H., He, J., 2019. Scale-and context-
aware convolutional non-intrusive load monitoring. IEEE Trans. Power Syst. 35
(3), 2362–2373.

Commission, E., Directorate-General for Communications Networks, and Technology, C.,
2019. Ethics guidelines for trustworthy AI. Publications Office.

Feng, K., Ji, J., Zhang, Y., Ni, Q., Liu, Z., Beer, M., 2023a. Digital twin-driven intelligent
assessment of gear surface degradation. Mech. Syst. Signal Process. 186, 109896.

Feng, K., Xu, Y., Wang, Y., Li, S., Jiang, Q., Sun, B., Zheng, J., Ni, Q., 2023b. Digital
twin enabled domain adversarial graph networks for bearing fault diagnosis. IEEE
Trans. Ind. Cyber-Physical Syst..

Harell, A., Makonin, S., Bajić, I.V., 2019. Wavenilm: A causal neural network for
power disaggregation from the complex power signal. In: ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing. ICASSP, IEEE,
pp. 8335–8339.

Hossain, M., Madlool, N., Rahim, N., Selvaraj, J., Pandey, A., Khan, A.F., 2016. Role
of smart grid in renewable energy: An overview. Renew. Sustain. Energy Rev. 60,
1168–1184.

Huber, P., Calatroni, A., Rumsch, A., Paice, A., 2021. Review on Deep Neural Networks
Applied to Low-Frequency NILM. Energies 14 (9), 2390.

Huchtkoetter, J., Reinhardt, A., 2020. On the impact of temporal data resolution on
the accuracy of non-intrusive load monitoring. In: Proceedings of the 7th ACM
International Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation. pp. 270–273.

Jiang, J., Kong, Q., Plumbley, M.D., Gilbert, N., Hoogendoorn, M., Roijers, D.M.,
2021. Deep learning-based energy disaggregation and on/off detection of household
appliances. ACM Trans. Knowl. Discov. Data (TKDD) 15 (3), 1–21.

Kabalci, Y., 2016. A survey on smart metering and smart grid communication. Renew.
Sustain. Energy Rev. 57, 302–318.

Kaselimi, M., et al., 2022. Towards trustworthy energy disaggregation: A review of
challenges, methods, and perspectives for non-intrusive load monitoring. Sensors
22 (15), 5872.

Kelly, J., Knottenbelt, W., 2015. The UK-DALE dataset, domestic appliance-level
electricity demand and whole-house demand from five UK homes. Sci. Data 2 (1),
1–14.

Kolter, J.Z., Johnson, M.J., 2011. REDD: A public data set for energy disaggregation
research. In: Workshop on Data Mining Applications in Sustainability (SIGKDD).
vol. 25, Citeseer, San Diego, CA, pp. 59–62.
18 
Krystalakos, O., Nalmpantis, C., Vrakas, D., 2018. Sliding window approach for online
energy disaggregation using artificial neural networks. In: Proceedings of the 10th
Hellenic Conference on Artificial Intelligence. pp. 1–6.

Machlev, R., Malka, A., Perl, M., Levron, Y., Belikov, J., 2022. Explaining the decisions
of deep learning models for load disaggregation (NILM) based on XAI. In: 2022
IEEE Power & Energy Society General Meeting. PESGM, IEEE, pp. 1–5.

Makonin, S., Popowich, F., 2015. Nonintrusive load monitoring (NILM) performance
evaluation. Energy Eff. 8 (4), 809–814.

Massidda, L., Marrocu, M., Manca, S., 2020. Non-intrusive load disaggregation by
convolutional neural network and multilabel classification. Appl. Sci. 10 (4), 1454.

Mollel, R.S., Stankovic, L., Stankovic, V., 2023. Explainability-informed feature selection
and performance prediction for nonintrusive load monitoring. Sensors 23 (10),
4845.

Murray, D., Stankovic, L., Stankovic, V., 2021. Transparent AI: explainability of deep
learning based load disaggregation. In: Proc. the 8th ACM Int. Conf. Sys. Energy-Eff.
Buildings, Cities, and Transp..

Murray, D., Stankovic, L., Stankovic, V., Lulic, S., Sladojevic, S., 2019. Transferability of
neural network approaches for low-rate energy disaggregation. In: ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and Signal Processing.
ICASSP, IEEE, pp. 8330–8334.

Pan, Y., et al., 2020. Sequence-to-subsequence learning with conditional gan for power
disaggregation. In: Proc. - ICASSP IEEE Int. Conf. Acoust. Speech Sig. Process..

Rafiq, H., Shi, X., Zhang, H., Li, H., Ochani, M.K., Shah, A.A., 2021. Generalizability
improvement of deep learning-based non-intrusive load monitoring system using
data augmentation. IEEE Trans. Smart Grid 12 (4), 3265–3277.

Selvaraju, R.R., et al., 2017. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In: Proc. IEEE Int. Conf. Comput. Vis..

Siano, P., 2014. Demand response and smart grids—A survey. Renew. Sustain. Energy
Rev. 30, 461–478.

Smilkov, D., et al., 2017. Smoothgrad: removing noise by adding noise. arXiv:1706.
03825.

Sundararajan, M., Taly, A., Yan, Q., 2017. Axiomatic attribution for deep networks. In:
Int. Conf. Machine Learn.. PMLR.

Tanoni, G., Principi, E., Squartini, S., 2022. Multilabel appliance classification with
weakly labeled data for non-intrusive load monitoring. IEEE Trans. Smart Grid 14
(1), 440–452.

Todic, T., Stankovic, V., Stankovic, L., 2023. An active learning framework for the
low-frequency non-intrusive load monitoring problem. Appl. Energy 341, 121078.

Yue, Z., Witzig, C.R., Jorde, D., Jacobsen, H.A., 2020. Bert4nilm: A bidirectional
transformer model for non-intrusive load monitoring. In: Proceedings of the 5th
International Workshop on Non-Intrusive Load Monitoring. pp. 89–93.

Zhang, X.Y., Watkins, C., Kuenzel, S., 2022. Multi-quantile recurrent neural network for
feeder-level probabilistic energy disaggregation considering roof-top solar energy.
Eng. Appl. Artif. Intell. 110, 104707.

Zhang, C., et al., 2018. Sequence-to-point learning with neural networks for
non-intrusive load monitoring. In: Proc. AAAI Conf. Artif. Intell.. AAAI, 32, (1).

http://refhub.elsevier.com/S0952-1976(24)01925-0/sb9
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb9
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb9
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb9
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb9
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb9
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb9
http://arxiv.org/abs/2005.00631
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb11
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb11
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb11
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb12
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb12
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb12
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb12
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb12
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb12
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb12
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb13
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb13
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb13
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb13
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb13
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb14
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb14
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb14
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb15
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb15
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb15
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb16
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb16
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb16
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb16
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb16
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb17
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb17
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb17
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb17
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb17
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb17
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb17
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb18
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb18
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb18
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb18
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb18
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb19
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb19
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb19
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb20
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb20
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb20
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb20
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb20
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb20
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb20
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb21
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb21
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb21
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb21
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb21
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb22
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb22
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb22
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb23
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb23
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb23
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb23
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb23
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb24
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb24
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb24
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb24
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb24
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb25
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb25
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb25
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb25
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb25
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb26
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb26
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb26
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb26
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb26
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb27
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb27
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb27
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb27
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb27
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb28
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb28
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb28
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb29
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb29
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb29
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb30
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb30
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb30
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb30
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb30
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb31
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb31
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb31
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb31
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb31
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb32
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb32
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb32
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb32
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb32
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb32
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb32
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb33
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb33
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb33
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb34
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb34
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb34
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb34
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb34
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb35
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb35
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb35
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb36
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb36
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb36
http://arxiv.org/abs/1706.03825
http://arxiv.org/abs/1706.03825
http://arxiv.org/abs/1706.03825
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb38
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb38
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb38
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb39
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb39
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb39
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb39
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb39
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb40
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb40
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb40
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb41
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb41
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb41
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb41
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb41
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb42
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb42
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb42
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb42
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb42
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb43
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb43
http://refhub.elsevier.com/S0952-1976(24)01925-0/sb43

	XNILMBoost: Explainability-informed load disaggregation training enhancement using attribution priors
	Introduction
	Problem Statement and Literature Review
	NILM Problem Statement and Low-frequency NILM Algorithms
	Explainable AI for Low-frequency NILM
	Explainability Evaluation for NILM
	Summary

	Methodology
	Explainability Evaluation Dataset
	Low-frequency NILM Algorithms
	Explainability Enhancement using Attribution Priors
	Explainability-informed Training
	Explainability Methods

	Experimental Results
	Datasets and Appliances
	Model architectures and training
	Computational Complexity
	Evaluation Metrics
	Experimental Results and Discussion
	Does training for better explanations lead to improved predictive performance?
	Does training for better explanations lead to improved explainability performance?
	What is the relationship between the improved predictive performance and explainability?


	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


