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Abstract

We develop a social choice experiment to estimate public preferences on population
ethics. Our experiment poses three within-subject treatments in which participants al-
locate scarce resources to determine the health-related quality-of-life, and existence,
of two population groups. Within a flexible social welfare function, we estimate
participant-level preferences for inequality aversion, average vs total welfare maximi-
sation, and minimum ‘critical level’ thresholds. By combining random behavioural
and random utility models we also explicitly model ‘noise’ in decision making. Us-
ing a sample of UK adults (n=115, obs.=5,060), we find that 98.7% of respondents
are inequality averse, prioritising the worst-off at the expense of efficiently maximising
overall health. The modal group of participants (39.2%) maximise total welfare and
have a critical level threshold of zero, however there is extensive heterogeneity in par-
ticipants’ population preferences. We then demonstrate how these preferences can aid
policymaking, where difficult trade-offs emerge between equity and efficiency, average
and total welfare, and population size.
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1 Introduction

Population ethics, a field straddling the boundary between philosophy and economics, grap-

ples with the complex moral and economic questions surrounding issues of welfare, inequality,

and population size (Caviola et al., 2022). While authors in the field have considered a range

of alternative ‘population principles’ and their consequences for social welfare (Blackorby et

al., 2005; Arrhenius, 2012; Parfit, 2016), there remains sparse evidence on the preferences of

the public with regards to distributive justice and health. We hence design a novel experiment

containing distributional decision problems which allow us to estimate public preferences on

population ethics, within a social welfare function framework.

In our experiment, participants assume the role of a social decision maker and must

distribute a finite budget of resources to determine the health-related quality-of-life of two

hypothetical population groups. Decisions are made across three within-subject treatments.

The first two, fixed-population treatments, require participants to make distributional de-

cisions across rounds with (in)equally productive and (in)equally populous groups. This

forces them to trade-off equity, efficiency, and priority for larger populations. We estimate

participant-level preference parameters in order to quantify what trade-offs the public are

willing to make. This extends the existing experimental literature, which is limited to fixed-

population settings (Dolan and Tsuchiya, 2011; Hurley et al., 2020) where decision makers

cannot alter population size (Schokkaert and Tarroux, 2022; Cadham and Prosser, 2023).

In the final variable-population treatment, participants can change the size of the total

population. In each round one group is initially non-existent, and participants must choose

whether or not to bring them into existence when making their resource allocations. This

novel existence mechanic allows for the estimation of population preference parameters iden-

tifying whether participants prioritise total or average welfare (Blackorby et al., 2005), and

whether participants would bring additional persons into existence even if they could not

achieve a minimum (critical) level of health (Parfit, 1984). These preferences hence pro-

vide empirical evidence of the willingness of the public to sacrifice the welfare of existing

populations in favour of prospective persons (Luyten et al., 2022).

2



The use of experiments in eliciting preference parameters is well-documented. Schokkaert

and Tarroux (2022) provide an extensive review of their use in the study of income and

welfare, while Costa-Font and Cowell (2019) and Cadham and Prosser (2023) summarise

their use in health. As a primary, essential good, health is an important outcome with which

to consider public preferences (Anand, 2002), and one which lends itself to experiments

better than welfare due to relative ease of measurement (Gaertner and Schokkaert, 2012).

Indeed several aspects of health, including its interactions with income and aversion to health

inequality, have been well explored experimentally (Ali et al., 2017; Hurley et al., 2020;

Robson et al., 2024). A shared feature of these works however is their limitation to fixed-

population scenarios.1 By allowing for a dichotomous choice over existence and thus total

population size, our variable-population treatment can relax this constraint.

Beyond the bounds of economics, philosophers have also devoted extensive thought to

the questions surrounding health, distributional justice, and population size. While Blacko-

rby et al. (2005) provide a comprehensive overview of these contributions, most relevant to

our exercise is those works proposing population principles, decision rules which dictate how

resources should be deployed to maximise social welfare (Arrhenius, 2012). Of particular

interest are three forms of (generalised) utilitarianism - total, average, and critical level -

which all provide intuitive alternatives for the prioritisation of resource allocation in society

(Parfit, 2016). However as Parfit (1984) addresses, these principles can lead to undesirable

outcomes like the ‘Repugnant Conclusion’, which creates an ethical dilemma when consider-

ing which is preferable. Experiments can provide us with the public perspective as to which

principle aligns best with their preferences, an important contribution as much of the philo-

sophical work in population ethics lacks an empirical basis (Thomson, 2001).2 Accordingly,

we exploit experimental methods to provide policy-relevant preference parameters towards

the principles of population ethics.

1While authors in other fields have previously utilised incentivised laboratory experiments to investigate
how preferences respond to changing group sizes across rounds (Charness and Rabin, 2002; Andreoni, 2007;
Fisman et al., 2007; Macro and Weesie, 2016), participants cannot change the groups sizes within rounds.

2Recent authors such as Caviola et al. (2022) and Schönegger and Grodeck (2022) have begun incor-
porating experiments to answer these questions, but their works do not go as far as to estimate preference
parameters.
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In order to estimate these parameters, we designed an interactive online experiment

populated by a sample (n=115) of the UK adult population recruited via Prolific. Across 22

rounds of decision problems and three within-subject treatments, participants distributed

resources between two population groups, producing a rich dataset of 5,060 (115x22x2)

observations. This dataset enables us to estimate participant-level preference parameters

within a Social Welfare Function (SWF), provided we first specify a functional form for our

SWFs. To this end we select a flexible functional form that stems from Atkinson (1970)

and Blackorby et al. (2005), and incorporates parameters for health inequality aversion, ε,

alongside our population principles: total vs average, β, and critical level thresholds, τ . Our

specified form allows for flexibility in estimation, quantification of difficult trade-offs, and the

evaluation of social welfare under alternative policies, all of which are key when contributing

policy relevant evidence on the questions of population ethics.3

Importantly, we assume that participants in all rounds make the valuations upon which

they base their optimal allocations with some degree of random noise, undoing a common

simplifying constraint that participants allocate perfectly in line with their preferences (Rob-

son et al., 2017; Cookson et al., 2018; McNamara et al., 2021). Noise is explicitly modelled

with a random behavioural model, which assumes that allocations are drawn from an error-

prone distribution unique to each participant, which returns the optimal allocation only on

average (Conte and Moffatt, 2014; Robson, 2021). As current works often restrict the use

of noise to pooled estimates (Edlin et al., 2012; Hurley et al., 2020), this work represents

an extension to the use of noise in experimental health economics. We additionally employ

a random utility model (McFadden, 1973; McFadden, 1981) in the latter half of the experi-

ment to account for evaluation error in the existence decision due to noise in the respective

welfare valuations. Our estimates hence acknowledge that participants likely make mistakes

in both their valuation of allocations and in their subsequent decision making, an additional

advancement of the current implementation of estimation noise within the field.

3Note that while the axioms and assumptions underpinning SWFs can be debated theoretically, such
theoretical arguments are less convincing for identifying specific parameter values. An experiment like ours
is thus important in providing empirical estimates of public preferences.
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Our results reveal that a large majority of participants are willing to sacrifice overall

population health in order to reduce health inequalities by prioritising the worse-off. We

find a median health inequality aversion parameter of 31.10, with the majority (74.68%)

of participants classified as prioritarian (1 ≤ ε < 500); smaller minorities are classified as

efficiency-seeking (1.27%, ε < 1) or maximin (24.05%, ε ≥ 500). Regarding population

principles, a majority of participants (63.3%) are found to maximise total welfare (β = 1),

compared to 21.5% who alternatively maximise average welfare (β = 0). Furthermore, 45.6%

of participants are estimated to have a critical threshold of zero (τ = 0), whilst the remaining

54.4% have positive thresholds (τ > 0). Importantly however, the distributions of β and

τ are found to be non-independent: 94.1% of average welfare maximisers have a positive

critical level threshold, compared to only 38.0% of those who maximise total health.

Together, our estimated health inequality aversion and population principle parameters

can be used to evaluate a range of real world policies. We demonstrate this with an illus-

trative example featuring four hypothetical alternative policies, which each affect both the

distribution of health and population size. In addition, we provide our estimates and code

in an online repository to enable others to evaluate policies in their own settings.

In sum, we make two main contributions to collective understanding of public preferences

towards population ethics. The first, our novel experimental design, extends current work

in fixed-population settings (Dolan and Tsuchiya, 2011; Cookson et al., 2018; Hurley et

al., 2020; Robson, 2021) to those with variable-populations. This allows for our estimation

of public preferences towards varying population size, and analysis of how these preferences

compare and interact with those regarding group resource-productivity. Our third treatment

then grants the further ability to estimate whether total or average utilitarianism is preferred

by participants, and whether participants require it achievable that prospective persons can

reach certain critical levels of health before bringing them into existence. These features

expand upon mainstream study of health inequality aversion and the equity-efficiency trade-

off (Costa-Font and Cowell, 2019; Cadham and Prosser, 2023; Robson et al., 2024). By

offering the ability to consider variable-population settings, our design may also prove useful
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when studying other preferences that cannot be captured by a fixed-population experiment,

such as those in environmental or sociological contexts.

Second, we contribute policy-relevant parameter estimates of public preferences towards

the questions of population ethics. While previous authors have estimated public preferences

for inequality aversion and the equity-efficiency trade-off (Dolan and Tsuchiya, 2011; Robson

et al., 2017; Cookson et al., 2018), our experiment allows for the evaluation of a wider range

of important parameters within this field. We therefore take an important step towards the

alignment of the philosophical foundations of population health ethics with the empirical

evidence provided by experimental economics. As such, the novel experimental evidence our

exercise provides can be used to aid difficult policy decisions concerning trade-offs between

equity, efficiency and population size.

The rest of this work is structured as follows. Section 2 presents and justifies our ex-

perimental design, while Section 3 outlines the theoretical foundations of this work. After

Section 4 describes our dataset, Section 5 provides a complete presentation of the results

of the experiment. Section 6 then provides discussion, before Section 7 concludes, together

considering the relevancy of this work to policymaking and the wider literature. Additional

supplementary material provided with this work contains further experimental resources,

sensitivity tests, and some supporting information.

2 Experimental Design

We design an experiment to identify the trade-offs the public are willing to make between

efficiency, equity, and population size. In the experiment, participants distribute scarce

resources between two population groups to determine the health of hypothetical individu-

als in society. The experiment begins with an interactive tutorial, concludes with a short

questionnaire, and consists of three within-subject treatments: Treatments A and B have

five scenarios each, while Treatment C has twelve.4 The experiment was programmed in R

4A short tutorial is also provided before Treatments B and C.
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Shiny, and populated using a representative sample of the UK adult population recruited

from Prolific. Participants completed the experiment in a single session and were required

to answer all questions. While the complete script of the experiment tutorials is provided

in Appendix A, this section presents an overview of the experimental setup, and details the

specifics of the three treatments.

2.1 Experimental Overview

In each scenario, participants assume the role of a social decision maker (SDM) and must

allocate resources to determine the health of hypothetical individuals (i) across two popula-

tion groups (j). In each group, of population size nj, all individuals share a common baseline

health level yj and multiplier pj. Participants then allocate resources xj, drawn from a budget

m, to each group in order to determine the health-related quality-of-life (qij = qj = yj+pjxj)

of the individuals they contain. Health-related quality-of-life is explained to participants us-

ing a Visual Analogue Scale (VAS) and is bounded between the best (100) and worst (0)

health that participants can imagine.5 Across 22 scenarios and three within-subject treat-

ments, the budget, multipliers, baseline health, population size, and group existence are

exogenously varied, while the length of life for each individual remains constant at 80 years.6

Our design thus presents participants with a series of constrained optimisation problems,

wherein preferences are inferred from the allocations participants make.

Participants completed the experiment using the user interface shown in Figure 1. The

top table provides scenario-specific information about the two groups, including their pop-

ulation size, multiplier, and health-related quality-of-life. Population size is represented by

the bar width, and after allocating resources to the groups using the sliders at the bottom,

the resulting health-related quality-of-life outcomes are visualised by the bar height. More

specifically, the baseline health of a group is represented in light grey, while the additional

5We focus on health-related quality-of-life, rather than quality-of-life more generally (Parfit, 1984;
Parfit, 2016), as there is a) an extensive experimental literature concerned with eliciting health-related
quality-of-life, using Visual Analogue Scales, and b) an extensive applied literature concerned with evaluat-
ing alternative health policies using Distributional Cost-Effectiveness Analysis (Cookson et al., 2020).

6Participants are told to that health-related quality-of-life is an individual’s average across their life.
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health they receive from resources is shown in dark grey. The total and remaining budgets

are then emboldened on the left, with the total, average, and minimum levels of health across

the whole population emboldened on the right. Finally, a minimum timer of 20 seconds per

scenario was included to encourage participants to sufficiently consider their choices.

Figure 1: Experiment User Interface

2.2 Treatments

Participants faced 22 scenarios across three within-subject treatments; Treatments A and B

have fixed-population scenarios, whilst Treatment C has variable-population scenarios. Table

1 provides a complete set of example scenarios one participant might see, demonstrating how

the multipliers, budget, baseline health, population size, and group existence differ across

scenarios and treatments.7 Each treatment introduces an additional level of complexity,

meaning that randomisation of treatment order across participants was infeasible, and hence

each participant completed Treatments A, then B, then C. The order of scenarios within

each treatment was, however, randomised. Details of the three treatments are below.

7Note that by design, the multipliers are orthogonal to the budget, baseline health, population size, the
screen position of a group (left or right), and group existence.
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Table 1: Example Experimental Factors

Multiplier, pi Baseline Health, yi Pop. Size (M)

Treatment Scenario Left Right Budget Left Right Left Right Exist

A 1 1 0.50 90 10 10 3 3 Yes
A 2 1 1 60 40 40 3 3 Yes
A 3 0.25 1 30 40 40 3 3 Yes
A 4 0.50 1 30 70 70 3 3 Yes
A 5 1 0.25 90 10 10 3 3 Yes

B 6 1 1 30 10 10 5 3 Yes
B 7 1 0.50 60 40 40 2 4 Yes
B 8 1 0.25 30 40 40 3 1 Yes
B 9 0.25 1 60 10 10 4 5 Yes
B 10 0.50 1 30 70 70 5 1 Yes

C 11 1 1 30 70 0 3 2 No
C 12 0.25 1 90 10 0 2 5 No
C 13 1 0.50 60 40 0 1 4 No
C 14 1 1 90 10 0 2 4 No
C 15 0.50 1 30 70 0 5 3 No
C 16 1 1 30 10 0 3 1 No
C 17 1 0.50 60 10 0 1 2 No
C 18 1 0.25 60 40 0 5 4 No
C 19 0.50 1 90 10 0 4 1 No
C 20 1 1 30 40 0 2 3 No
C 21 1 0.25 30 70 0 1 5 No
C 22 0.25 1 60 10 0 4 2 No

Mean 0.77 0.77 53.18 33.18 15.45 3 2.91

Notes: Left and Right refer to the groups on the left and right of the user interface respectively. Exist
denotes whether both groups initially exist.

2.2.1 Treatment A

In each scenario of Treatment A, the population size and baseline health of the two groups are

identical while the budget and multipliers vary. The former varies between scenarios, and the

latter between groups and scenarios. In each scenario, group multipliers pj are pairs drawn

randomly from the set G ∈ {(0.25, 1), (0.5, 1), (1, 1), (1, 0.5), (1, 0.25)}, with the budget and

baseline health of the two groups similarly drawn randomly from the sets E ∈ {30, 60, 90}

and D ∈ {10, 40, 70}, respectively. These latter two factors are however constrained such

that the groups cannot achieve a health-related quality-of-life outcome greater than the
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upper limit of 100.8 The group population size meanwhile is drawn randomly from the

set T ∈ {1, 2, 3, 4, 5}; participants are faced with values of T in either exclusively millions

or exclusively tens of millions. Overall, these scenarios force participants to make trade-

offs between efficiency and equity, as participants must choose between efficiently allocating

resources to groups with higher multipliers to maximise total/average health, and reducing

health inequality by allocating (some) resources to groups with lower multipliers. The choices

participants make hence reveal their degree of health inequality aversion.

2.2.2 Treatment B

Treatment B departs from Treatment A by mandating that the groups be unequally-sized

within each scenario.9 By posing problems between unequally-sized groups, Treatment B

presents more complex allocation decisions which amplify the trade-off between total/average

and minimum health in scenarios where larger (smaller) groups also possess a higher (lower)

multiplier. We thus employ the results of Treatment B in concert with those of Treatment

A to assess participant preferences for inequality aversion, alongside study of participants

preferences towards allocating resources to larger or smaller populations.

2.2.3 Treatment C

Treatment C consists of variable-population scenarios, where participants can choose to

change the population size. In each scenario, one group does not exist initially: participants

must, therefore, choose whether or not to bring them into existence and how to subsequently

allocate resources.10 Participants hence have three options: bring the second group into exis-

tence and give them resources, bring them into existence but give them nothing,11 or prevent

8I.e. a group cannot have a baseline health of 70 and a multiplier of 1 while the budget is 90, as they
could then achieve 160 health-related quality-of-life, exceeding the maximum; accordingly, the budget is
always 30 when the groups start with 70 baseline health.

9Remark that Treatments A and B only have fixed-population scenarios as whilst populations sizes may
differ, participants cannot choose to vary the population size.

10Figure A1 illustrates this aspect of the user interface.
11Theoretically undesirable as minimum and average health decrease while total health is unchanged.
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their existence and give all resources to the pre-existent group.12 Across Treatment C there

are twelve scenarios, which use a block randomisation design (see Appendix A.4) to ensure

that the budget, multipliers, population size and baseline health of the pre-existent group are

orthogonal from one another. This forces participants to make trade-offs not only between

efficiency and equity, but between average and total welfare, and as to the minimum accept-

able level of welfare. In sum, these scenarios enable us to observe the circumstances under

which participants will increase population size, and to identify which population principles

participants adhere to.

2.3 Experiment Particulars

Prolific, an online sampling platform, was used to recruit and pay participants. The ex-

periment ran as a single session between August 18th-21st 2022, taking 30.34 minutes on

average per participant.13 Participants were each paid £5 for completing the experiment. In

total, the sample consists of 115 participants, whose characteristics are described in Table

2 of Section 4. While 144 began the experiment, 6 did not fully complete it, resulting in a

4.16% attrition rate. Furthermore, 23 participants did not answer at least 3 of the 5 tuto-

rial assessment questions (see Appendix A.2.2) correctly, and hence were excluded from the

main sample to help ensure those included sufficiently understood the exercise. To explore

if this has any effect on our results, Appendix C.4 conducts sensitivity analysis by providing

structural estimates by exclusion criteria.

Before the main experiment, a pilot was conducted between July 25th-August 5th 2022.14

Consisting of 12 volunteers, the pilot collected feedback used to gauge which areas of the

experiment needed refinement. While this feedback was largely positive, several resultant

changes were indeed made: notably, Treatment C was assigned 12 rather than 10 questions,

and the information on each side of the interface was emboldened.

12For each participant the pre-existent group always inhabits one side of the interface: left or right.
13Participants took 0.4 minutes longer per year of age to complete the experiment on average, significant

at the 1% level; no other demographic variable significantly influenced completion time.
14More information is provided in Appendix A.3.
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3 Theory

3.1 Social Welfare

We assume social decision makers (SDM) aim to maximise social welfare, which is itself

assumed to be a function of the weighted sum of transformed health, hi, of individuals, i,

within a population of size N , with population preference parameters β and τ . Accordingly,

the SWF takes the following general reduced form:

W = Nβ [hEDE − τh] , (1)

where

hEDE = U−1

(
N∑
i

1

N
U(hi)

)
. (2)

The health outcome of individual i, hi = qili, results from the product of health-related

quality-of-life, qi, and length of life, li. The equally distributed equivalent level of health,

hEDE,
15 is determined by the evaluation function of the SDM which transforms each indi-

vidual’s health outcome into a corresponding value of well-being, U(.). β then distinguishes

between population principles relating to average (β = 0) or total (β = 1) welfare, while the

critical level parameter, τ , determines the minimum desirable health threshold τh = τ l.16

The evaluation function U(.) allows for alternative parametric functional forms. These

functional forms are assumed to be concave, wherein the greater the degree of concavity,

the higher the aversion to inequalities in health outcomes. If U(.) is linear (and τ = 0), eq.

(1) represents a Utilitarian SWF wherein the SDM evaluates each individual equivalently.

Conversely, if U(.) is strictly concave, it represents a Prioritarian SWF which draws dimin-

ishing marginal welfare from the health of each successive individual. Taken together, our

15This variable denotes the level of health such that the social decision maker is indifferent between the
current distribution of health and the equal distribution of hEDE across the entire population:

∑N
i ωiU(hi) =∑N

i ωiU(hEDE).
16The inclusion of τ ensures that the addition of any individuals for whom hi < τh contributes negatively

to social welfare.
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framework for measuring social welfare allows us to capture SDM preferences relating to: a)

health inequality aversion, b) total vs. average welfare, and c) critical levels.

In order to estimate preference parameters using our experimental data, two further

elements must be specified in this framework. The first is the parametric functional form of

U(.), to which we select the iso-elastic functional form assumed in the Atkinson index, namely

U(hi) =
h1−ε
i +1

1−ε
, where ε ≥ 0, ̸= 1 (Atkinson, 1970).17 The second is to define the number

and nature of the groups j ∈ K within the population. We specify groups of population

size, nj, within which individuals share identical levels of health, hij = hj,∀i ∈ [1 : nj]. This

simplifies the above SWF to the group level, accounting for the relative size of each group,

nj/N , where hEDE is defined as:

hEDE =

(
K∑
j

nj

N
h1−ε
j

) 1
1−ε

(3)

3.2 Optimal Choices

Experimental participants, acting as the SDM, must exhaust a budget m of resources xj by

distributing them between two groups of individuals such to determine the health outcome

of each individual in these groups. Health, which results from the resources afforded to each

group, is given in terms of quality-adjusted life expectancy hj = qjlj = (yj +xjpj)lj, wherein

qj is a function of baseline health-related quality of life yj, the resources allocated to the

group xj, and the health productivity of individuals within the group pj. The SDM, subject

to the binding budget constraint m =
∑K

j=1 xj, thus selects the following optimal allocations

that result in health levels h∗
j = (yj + x∗

jpj)lj which maximise social welfare W :18

17We choose the iso-elastic functional form as Robson et al. (2024) finds it to fit participant’s choices
better than an exponential functional form (Kolm, 1976).

18We additionally impose non-negativity conditions on this optimal allocation, to ensure the optimal
allocations are feasible within our experimental setup. If x∗

j < 0 then we force x∗
j = 0 and x∗

k = m, ∀j ∈
(1, 2), ̸= k.
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x∗
j =

m− yj
pk

lj
lk

(
nkpklk
njpj lj

) 1
ε
+ yk

pk

1 +
pj
pk

lj
lk

(
nkpklk
njpj lj

) 1
ε

, ∀j ∈ (1, 2), ̸= k. (4)

Note that for a fixed-population of size N , neither β nor τ affect the optimal allocations.

Moreover, the optimal allocations for W are the same as for hEDE. In other words, it is only

when a decision will affect population size that β and τ must be accounted for.

In Treatment C, participants are given the choice of whether or not to bring a second

group into existence before they allocate resources. If they choose to not bring in the second

group, they must exhaust their budget such that x∗∗
j = m, and thus h∗∗

1 = (y1 + mp1)l1;

if they do bring in the second group the optimal allocations are as in eq.(4) except with a

second optimal allocation x∗
j ,∀j ∈ (1, 2) required. The choice, D, of whether to bring the

second group into existence (D = 1) or not (D = 0), depends therefore on which delivers

the highest welfare, given the optimal allocations above. Participants identify the difference

between these welfare levels as V ∗:

V ∗ = W ∗
1 −W ∗

2 = nβ
1 (h

∗∗
1 − τh)−Nβ

( K∑
j

nj

N
h∗
j
1−ε

) 1
1−ε

− τh

 . (5)

Thus, D = 0 if V > 0 and D = 1 if V < 0. In sum, the choice of whether to bring

another group into existence depends not only on the optimal health levels - themselves a

function of m, yj, pj, lj, nj, and ε - but also on population preferences β and τ .

3.3 Estimation

The data gathered from Treatments A and B are used to estimate the health inequality

aversion parameter, ε. Given ε̂, data from Treatment C are then used to estimate β and τ .

We perform this process by combining the optimal allocations from A and B with a random

behavioural model, and the choice to bring a group into existence or not from C with a

random utility model. Estimating by this procedure allows for the modelling of observed
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behaviour as a function of the predicted optimal behaviour, whilst accounting for noise in

decision making. Parameters are then estimated using maximum likelihood estimation.

3.3.1 Random Behavioural Model

Observed allocation decisions in Treatment A and B are modelled using a random behavioural

model. We assume that the resource share to the first group, x̃1 = x1/(x1 + x2), is drawn

from a two-limit Tobit distribution X̃1 ∼ TOB(x̃∗
1, σ1), following Andreoni and Miller (2002),

where x̃∗
1 is the optimal allocation (eq.(4)) and σ1 is a noise parameter. For observations

between the limits (0 and 1) the likelihood function for a Tobit draws from a normal proba-

bility density function, but for those at the limits, a cumulative density function is employed

instead. In our two group allocation problems the resource share allocated to the first group

is assumed to be drawn from the Tobit, which ensures all allocations participants could make

with non-zero probability are feasible in our estimation.

For each participant, r, we hence find the parameter values that maximise the log-

likelihood function defined over the number of rounds t ∈ T in Treatments A and B:

LLTOB
r =

T∑
t=1

[ ∑
0<x̃1rt<1

log

(
1

σ1r

φ

(
x̃1rt − x̃∗

1rt

σ1r

))

+
∑

x̃1rt≤0

log

(
Φ

(
x̃1rt − x̃∗

1rt

σ1r

))
+
∑

x̃1rt≥1

log

(
1− Φ

(
x̃1rt − x̃∗

1rt

σ1r

))]
,

(6)

where Φ is the standard normal cumulative distribution function and φ is the standard

normal probability density function.

3.3.2 Random Utility Model

In Treatment C, participants first decide whether or not to bring the second group into

existence. Making this decision optimally will depend on V ∗, the difference between the

highest social welfare that could be achieved when only the first group exists minus the

highest social welfare that could be achieved if both groups existed (V ∗ = W ∗
1 − W ∗

2 ). If
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V ∗ > 0, the SDM would not bring the second group into existence (D = 0), but if V ∗ < 0,

then they would (D = 1). As we assume that participants evaluation of welfare is subject to

noise, then the difference between the two options must itself also be noisy. The probability

of bringing the second group into existence, P (D = 1), thus depends on the degree of noise,

σ2, as well as the optimal welfare levels. In sum, the participant is assumed to evaluate the

welfare of each group as:19

W1 = W ∗
1 + ϵ1 , W2 = W ∗

2 + ϵ2. (7)

Which gives:

P (D = 1) = Pr(W2 ≥ W1)

= Pr(W ∗
2 + ϵ2 ≥ W ∗

1 + ϵ1)

= Pr(ϵ1 − ϵ2 ≤ W ∗
2 −W ∗

1 ).

(8)

We assume that ϵ1 and ϵ2 are i.i.d. errors which follow a Gumbel (or Type 1 Generalized

Extreme Value) distribution, with mean zero and scale parameter, σ2: ϵ1, ϵ2 ∼ Gumbel(0, σ2).

Given this assumption, the difference between ϵ1 and ϵ2 follows a logistic distribution, with

mean zero and scale parameter σ2: ϵ1 − ϵ2 ∼ Logistic(0, σ2). This allows us to evaluate a

logistic cumulative distribution function, F (W ∗
2 −W ∗

1 ; 0, σ2), to estimate P (D = 1).

For each participant, r, we then estimate population preferences βr and τr and the scale

parameter σ2r using the previously estimated preference parameters, ε̂r, and maximise the

following log-likelihood function given the observed choices Drt:

LLU
r =

T∑
t=1

log

(
(1−Drt)

(
1− 1

1 + e(W
∗
1rt−W ∗

2rt)/σ2r)

)
+Drt

(
1

1 + e(W
∗
1rt−W ∗

2rt)/σ2r)

))
(9)

3.3.3 Exclusion Criteria

In order to measure the goodness-of-fit of the structural model, after our main estimation

we calculate Mean Proportional Likelihood (MPL) values for each participant from LLTOB
r

19Note that in our estimation we normalise welfare levels by a constant, which does not affect welfare
orderings but aids comparability of σ2 parameters between participants.
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and LLU
r . More specifically, define PLt = Lt/(Lt + LUNI

t ), where Lt is the likelihood in

round t for the data and estimates, and LUNI
t is a likelihood for a uniform distribution draw.

MPL = 1/T
∑T

t (PLt). As MPL → 1, data fit improves; if MPL = 0.5, the fit of the

model to the data is no better than fit uniform distribution draws. Accordingly, we hence

exclude participants with anMPL ≤ 0.5 for either the random behavioural or random utility

model from our main structural analysis. For more details, and the distribution of MPL for

included and excluded pariticpants, see Appendix C.4.

4 Data

Our main analysis draws on the responses of 115 experiment participants. As each participant

completed 22 distribution problems posed between two population groups, there are (115 x

22 x 2) = 5,060 observations for each of the experimental factors described in Section 3. We

provide an overview of each of these variables in Table 2.

Table 2: Data Overview

Variable Notation Mean Obs Range

Budget m 50.50 5,060 [30-90]
Resources xj 25.25 5,060 [0-90]
Resource Share x̃i 0.50 5,060 [0-1]
Multiplier pj 0.77 5,060 [0.25-1]
Relative Multiplier p̃j 0.50 5,060 [0.20-0.80]
Health-Related Quality-of-Life qj 40.97 5,060 [0-100]
Health Share q̃j 0.50 5,060 [0-1]
Baseline Health yj 21.89 5,060 [0-70]
Population Size ωj 17.38 5,060 [1-50]
Relative Population Size ω̃j 0.50 5,060 [0.17-0.83]
Both Exist - 0.76 5,060 [0-1]

Note: Both Exist captures whether both groups were given existence within a scenario (trivially true in
Treatments A and B).

In addition to this experimental data, each participant also answered a short question-

naire that enquired about some ancillary issues and requested simple demographic infor-

mation; as participants could choose to not answer each questionnaire item, the number of

responses varies slightly. We detail the results of this questionnaire in Appendix B.
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5 Results

5.1 Fixed-Population Treatments

Using data from Treatment A, Figure 2 plots the distributions of resource shares (x̃j) and

health shares (q̃j) conditional on the relative multiplier (p̃j). This illustrates the equity-

efficiency trade-offs that participants are willing to make in the experiment.20

Figure 2: Resource and Health Share Distributions, by Relative Multiplier

Note: Empirical cumulative density function over all participants (n = 115) and rounds in Treatment A
(obs. = 1150) of resource shares (x̃j = xj/

∑
xj) and health shares (q̃j = qj/

∑
qj) to groups distinguished

by relative multipliers (p̃j = pj/
∑

pj).

As efficiency mandates that participants allocate resources to the more productive (i.e.

higher multiplier) group, the extent to which participants prioritise efficiency can be seen

through their (lack of) prioritisation for more productive groups. As shown by the left panel,

strong evidence is found that participants allocate against efficiency: in only 50% of rounds

did participants allocate 20%+ of resources to groups four times as productive as their

scenario counterparts (p̃i = 0.80). Conversely, groups that were four times less productive

20Where p̃j =
pj

pj+pk
. As multipliers are drawn in pairs as either (0.25, 1), (0.50, 1), (1, 1), (1, 0.50), or

(1, 0.25), p̃j is either 0.20, 0.33, 0.50, 0.67, or 0.80 respectively.
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(p̃i = 0.20) were assigned 80%+ of resources in more than half of such rounds. The majority

of participants hence allocated resources to prioritise the less productive, and hence reduced

inequalities in health rather than efficiently maximising total health.

The equalisation of health outcomes is further demonstrated by the right panel, which

presents proportional health shares by relative multiplier. Observe the highly prominent

jumps at 0.5, the point where health is equalised between the groups: most participants

strived for equitable health distributions irrespective of relative group productivity. More

productive groups were however assigned a health share above 0.5 by a significant minority

of participants (top right), which also makes intuitive sense: although these groups were

assigned significantly less resources than their counterparts on average, they use those re-

sources more efficiently. This demonstrates that in terms of health outcomes there was at

least some trade-off with distributional efficiency.

Sample averages for the influence of multipliers and population size towards allocations

can also be generated using linear regression; these estimates are contained in Table 3.

Regressions (1) and (3) confirm the results of Figure 2: groups with larger relative multipliers

are allocated significantly fewer resources by participants on average. This result is consistent

with equation (4), which for inequality-averse respondents (ε > 1) predicts a decrease in x∗
jA

when pj (and hence p̃j) increases.
21 Regressions (2) and (4) then confirm that more health

is assigned to groups with larger multipliers, though with smaller coefficients than those of

regressions (1) and (3). This follows similarly from eq.(4), which predicts a small (large)

increase in q∗jA for inequality-averse (efficiency-seeking) participants when pj increases.

Our Treatment B results also detail that larger population groups are awarded both

more resources and health than their scenario counterparts on average. As population size

functions as a second, indirect productivity factor in our experimental framework, this result

is logical as devoting resources to larger groups serves the efficient maximisation of both total

and average welfare. The estimated coefficient for relative multipliers in regression (3) is then

negative, as in (1). It thus remains true in Treatment B that the majority of participants

21Inversely, participants who prioritise efficiency (‘efficiency-seeking’, ε < 1) are predicted to increase
allocations to more productive groups.
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Table 3: Resource and Health Shares by Relative Multiplier and Population Size

Treatment A Treatment B

(1) (2) (3) (4)
Resources Health Resources Health

Coef./(S.E.) Coef./(S.E.) Coef./(S.E.) Coef./(S.E.)

Relative Multiplier -0.646*** 0.138*** -0.524*** 0.171***
(0.06) (0.02) (0.06) (0.02)

Relative Population Size 0.327*** 0.141***
(0.05) (0.02)

Constant 0.500*** 0.500*** 0.336*** 0.430***
(0.00) (0.00) (0.02) (0.01)

N 115 115 115 115
Observations 1150 1150 1150 1150
Overall R2 0.459 0.177 0.335 0.269

Notes: * = p < 0.10; ** = p < 0.05; *** = p < 0.01. Relative multipliers are re-centred around 0.50
to improve coefficient interpretation. A random-effects model with robust standard errors was employed
to counteract within-participant error clustering. Demographic control variables are omitted from these
regressions due to negligible coefficients and for presentation purposes; see A.5 for discussion.

prioritise equity by reducing the gap in health outcomes between the two groups, despite

often doing so in defiance of relative group productivity.

5.2 Variable-Population Treatment

5.2.1 Existence Decisions

Participants chose to bring the second group into existence in 769 of 1,380 Treatment C

scenarios (55.27%). Their willingness to do so can be best understood by considering how

often each participant brought them in out of the 12 rounds, as presented by Figure 3.

Only 6 participants, 5.22% of the sample, never brought the second group into existence,

while 19 participants took the inverse position to always bring in the second group.22 The

remaining 78.26% of participants brought the second group into existence in only some

rounds. To understand what motivated these choices, in Appendix C.1 we utilise a random

22The block randomisation design employed in Treatment C ensured that all participants faced scenarios
where bringing the second group into existence was efficient, both in terms of average and total health. This
choice to never bring a second group into existence is, therefore, likely a moral or heuristic position. This
was also suggested by pilot feedback (see A.3.)
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Figure 3: Participant-Level Existence Decisions

Notes: Distribution of participant-specific existence decisions, averaged across the 12 rounds of Treatment
C for each participant. Reveals the proportion of rounds each participant brought the second group into
existence. Distribution is shown as both a histogram, with density normalised to 1, and an empirical
cumulative density plot.

effects model to explore what experimental variables affected this decision most. Consistent

with our population principles, we find that relative multipliers and relative population

sizes each play an important part in how participants approach this decision, with larger

and, particularly, more resource-productive groups brought in frequently. An increasingly

generous budget, finally, had a positive but comparatively minor effect on the willingness of

our participants to grant existence to the second group.

5.2.2 Population Principles

In Treatment C, the decision to bring the second group into existence depends on the trade-

offs that participants are willing to make between maximising total, average, and minimum

welfare. This is a separately interesting question from the equity-efficiency trade-off in

Section 5.1.23 To begin, Figure 4 plots participant-level mean total, average and minimum

levels of health, alongside participant’s average existence decisions (of Figure 3).

23As proved by Blackorby et al. (2005), in fixed-population treatments like A and B the maximisation of
total welfare and average welfare is equivalent.
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Figure 4: Existence Decisions with Average, Total and Minimum Health Trade-offs

Notes: Participant markers are coloured by the proportion of times they brought the second group into
existence: blue if never (0), red if always (1). Fitted fractional polynomial line is shown in black, with
associated 95% Confidence Interval in grey.

To better gauge what portion of respondents sought to maximise either average or total

health, the left panel of Figure 4 plots the two against one another. Total and average health

are normalised at the round level, and then averaged across all rounds for each participant; a

value of 1 therefore means that a participant made allocations in each round so to maximise

either total or average health, respectively. The panel illustrates that there is a clear trade-

off between the two principles, wherein the existence decision determines which can be

maximised. More specifically, participants who never bring the second group into existence

(blue) are better able to maximise average health. In contrast, those who brought them in

only sometimes (maroon) are generally better at maximising total health, but in doing so

must sacrifice some average health. Participants who always bring the second group into

existence (red) meanwhile effectively maximise neither total nor average health.

The right panel of Figure 4 then displays how the existence decisions of participants af-

fected mean minimum health levels across the experiment, and the relation of these levels to

their stated critical-thresholds.24 Our first observation is that participants who brought the

24These are elicited from participant’s responses to the question “Imagine you could choose whether an
individual would come into existence or not [...] what is the minimum level of health that individual would
have to have in order for you to bring them into existence?”.
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second group into existence less often (blue) are better able to maximise minimum health

across experimental rounds. This is logical insofar as they chose to do so when the prospec-

tive population was significantly more resource productive than their scenario counterparts,

making it highly efficient to bring them in. Second, participants’ stated critical-thresholds

are positively correlated with the minimum level of health that participants awarded on av-

erage, and negatively correlated with their decisions to bring in the second group. For more

information and analysis on the stated critical-thresholds, see Appendix C.2.

5.3 Preference Parameter Estimates

While our non-structural results outline the heterogeneity with regards to the population

principles that participants exhibit in their choices, the proper disentanglement of which

principles participants preferred - whilst accounting for their inequality aversion - requires

the structural estimation of these parameters at the participant-level. Accordingly, we derive

estimates of health inequality aversion from the allocation problems of Treatments A and

B, ε, while our population preference parameters - average-total, β, and critical-thresholds,

τ - are estimated using existence decisions from Treatment C. All structural results are

shown for our analytical structural sample (n = 79); further details on exclusion criteria and

structural estimates for excluded participants are found in Appendix C.4.

5.3.1 Health Inequality Aversion

Figure 5 details the distribution of participant-level health inequality aversion parameters, ε.

Overall, participants exhibit substantial aversion to health inequalities, with a median ε of

31.10. There is however extensive heterogeneity in the degree of aversion: few participants

(1.27%) are classified as Efficiency Seeking (ε < 1), while the majority (74.68%) are classified

as Prioritarian (1 ≤ ε < 500); a minority (24.05%) are classified as Maximin (ε ≥ 500). The

vast majority of participants are, therefore, substantially averse to health inequalities.
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Figure 5: Distribution of Health Inequality Aversion, ε

Notes: Distribution of participant-specific (n = 79) health inequality aversion parameters, ε, estimated using
data from Treatment A and B. Distribution is shown as both a histogram, with density normalised to 1, and
an empirical cumulative density plot. The x-axis is shown on a log-scale, ε values over 500 are censored.

5.3.2 Population Parameters

Next, Figure 6 plots the participant-level distribution of average-total, β, and critical thresh-

old, τ , population preference parameters. Regarding average-total preferences, results show

that the majority of participants (63.3%) maximise total welfare (β = 1), whilst 21.5% in-

stead maximise average welfare (β = 0). The remainder, 15.2%, maximise a mixture of

average and total welfare (0 < β < 1). For critical thresholds, the majority of participants

(54.4%) have a positive critical-threshold (τ > 0), while a sizeable minority (45.6%) have a

critical threshold of zero (τ = 0). Of those with τ > 0, the mean critical threshold is 19.41.

An interesting question is then to enquire whether the distributions of β and τ are

independent. Cross-tabulating these parameters, Table 4 reveals that they are not: of those

participants who maximise average welfare (β = 0), the vast majority (94.1%) have positive

critical thresholds (τ > 0). Within the majority that instead maximised total welfare, we

find that only 38.0% have a positive critical-threshold. In sum, our findings show that while
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Figure 6: Distribution of Population Parameters, β and τ

Note: Distribution of participant-specific (n = 79) average-total parameters, β, and critical threshold pa-
rameters, τ estimated using data from Treatment C. Distribution is shown as both a histogram, with density
normalised to 1, and an empirical cumulative density plot.

the modal group of participants maximise total welfare, with no critical threshold (39.2%),

there is substantial heterogeneity in public preferences towards population ethics.

Table 4: Population Preferences Cross-Tabulation

Average-Total, β

β = 0 0 < β < 1 β = 1
21.5% 15.2% 63.3%

Threshold
τ = 0 45.6% 1.3% 5.1% 39.2%
τ > 0 54.4% 20.3% 10.1% 24.1%

Note: Percentage of participants (n = 79) classified by average-total, β, and critical threshold, τ , parameter
estimates. Presented with italics for tabulated and normal font for cross-tabulated categorisations.

5.4 Policy Choice

The public preference parameters we estimate above have direct relevance towards evalu-

ating health and demographic policy. To evidence this claim, Table 5 presents a simple
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illustrative example. Consider four alternative policies - A, B, C, and D - which impact

the health-related quality of life and existence of four prospective persons; selecting between

these policies involves difficult trade-offs between equity and efficiency, average and total

health, minimum levels of health, and population size. However by employing our estimated

preference parameters, we can predict the level of welfare that each participant in our exper-

iment would assign to each policy. By then using the respective social welfare valuations Wr

(eq. 1) made by each participant, we can identify the percentage of our sample who would

‘vote’ for each policy as their preferred option.

Table 5: Alternative Policies and their Associated Outcomes

Persons Summary

Policy 1 2 3 4 Average Total Gap

A 20 100 60 120 80
B 40 60 50 100 20
C 40 60 50 50 150 20
D 40 60 50 10 40 160 50

Note: Valuations are in terms of health-related quality-of-life, in the same fashion as the main experiment.

We predict that of 79 participants, 0%, 7.6%, 92.4%, and 0% would vote for Policies

A, B, C, and D respectively as their most preferred option. These results follow from the

mean welfare values across all participants, equal to 16.31, 43.56, 62.68, and 4.68 for our four

respective policies. We draw three immediate conclusions from these findings. Firstly, from

the general preference for Policy B over Policy A, we understand that in a fixed-population

setting participants are willing to sacrifice average (or total) health in order to improve the

health of the worst-off in society. Secondly, the relative popularity of C over B leads us to

conclude that in a variable-population setting, our participants prefer the inclusion of an

additional person provided that this person would have a health level at least as good as

the average health of the existing society. Finally from our result that no individual in our

sample would vote for policy D - despite this option having the highest total health - we

make the important note that for the majority of participants with β = 1, is is not total
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health, but total welfare which participants strive to maximise. Given high aversion to health

inequality and/or positive critical-thresholds, the inclusion of an additional individual with

very low health hence actually reduces social welfare.25

Simple illustrations such as this one can be surprisingly reflective of the real world. For

example, three prominent areas of contemporary policymaking, namely public health, family

planning, and climate change, all have the potential to affect both population size and the

distribution of health within a given population. By utilising the preferences parameters

we estimate in Section 5, policymakers may evaluate the consequences for social welfare

stemming from any policy for which the effects on the distribution of health are known. In

an online repository, we provide code for a “policy evaluation function”, which allows others

to use our estimated preference parameters to evaluate alternative health policies of their

choosing. We do remark however that these evaluations are not a prescriptive statement

of what ought to be done. Instead, the descriptive empirical evidence we provide should

be considered as an informative tool for debate and policy choice when difficult trade-offs

emerge, one which allows for public preferences to be acknowledged in decision making.

6 Discussion

At the fundamental level, we argue that there are at least three reasons why we should value

public preferences as an input towards distributive decisions. Firstly, in democratic societies

where individuals contribute towards institutions like the healthcare system, we find it nat-

ural that their preferences for how resources are deployed within those systems be a point

of consideration of policymakers. While expert opinion remains essential in designing large

institutions, we believe that public opinion can contribute by outlining guiding principles

for how such systems should operate. Our second argument follows that in fields featuring

25This framework allows us to also test the ‘repugnant conclusion’ of Parfit (1984) by considering one
final policy, Policy E, which is identical Policy D except for the inclusion of X additional persons with a
health-related quality-of-life of 1. We can then ask: is there a finite number X for which Policy E would
be preferred to any of the other policies? The answer is no for 53.16% of our 79 participants. We hence
conclude that the majority do indeed find the ‘repugnant conclusion’, repugnant.
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morally complex decisions that affect health or welfare - where there is often no objectively

best solution to be found - the integration of the preferences of those who will be subject

to said decisions is integral towards reaching fair and equitable outcomes. Otherwise, the

pursuit of efficiency may overshadow what the public would prefer as an ideal distribution

(Luyten et al., 2022). Finally, the parameters we provide here can assist philosophers in

reaching reflective equilibrium as to which population principles align most closely with true

public preferences. Insofar as works such as ours depend on such principles in their design,

providing philosophers with a robust empirical basis of parameter estimates can assist in

their creation of the theoretical platform upon which we build.

In our exercise, we find substantial heterogeneity between participants as to their pre-

ferred equity-efficiency trade-off and population principle. As illustrated by Figures 2 and

5, the majority of respondents prefer equitable distributions over efficient ones, in that re-

sources are often allocated to relatively inefficient health producing groups. This conclusion

is consistent with the wider literature. Specifically, Robson et al. (2017) find that 81.51%

of English adults would sacrifice efficiency to reduce health inequalities26 using an online

survey, while Edlin et al. (2012), Attema et al. (2015), and Ali et al. (2017) find similar

inequality-averse preferences in UK adults using various alternative methods. Participants

were then similarly divided on the total vs average welfare trade-off in Treatment C: Figure

6 shows that a minority (21.5%) prefer to maximise average welfare at the expense of to-

tal, while a large majority (63.3%) took the reverse position. This divide echoes that found

previously by Caviola et al. (2022), although there is scope for further research in this area.27

Our results also lend credence to the concerns of Luyten et al. (2022) that health policy

guidelines - often constructed to maximise total welfare - may not fully capture public pref-

erences, as evidence of a contrasting alignment with average welfarism is found in Figure

6. In concert with the supporting evidence of Section 5.1 on health inequality aversion,

we conclude that health policies that prioritise efficient deployment of healthcare resources

could better serve public desires by, at least partly, promoting equity in health outcomes.

26See also Dolan and Tsuchiya (2011) and Abásolo and Tsuchiya (2013).
27For example into other population principles such as number-dampened utilitarianism (see Ng, 1986).
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The finding of considerable willingness by participants to bring in prospective populations

via the existence mechanic of Treatment C is also policy relevant, as it raises the question

as to if policymakers sufficiently consider the welfare of future or otherwise prospective

populations (Neumann et al., 2016). The actualist and comparativist perspectives of welfare

theory (Bykvist, 1998), which incorporate the utility of future persons into valuations of

social welfare, may thus be more appropriate than the presentist perspective that does not

(Arrhenius, 2005). The choice between these approaches is important as it affects cost-

effectiveness evaluations of policies that influence population size (Blackorby et al., 2005),

or that incur future non-medical costs (see de Vries et al., 2019). As for the Repugnant

Conclusion (Parfit, 1984; 2016), as average welfarism avoids it while total welfarism does

not, mixed evidence of public aversion towards it is found.

7 Conclusion

Population ethics presents important questions for the way that policymakers evaluate the

welfare of populations both present and future. In order to provide evidence of public

opinion towards these questions, we conduct a distributional social choice experiment using

a sample of 115 British adults. The experiment challenges participants to solve distribution

problems posed between two population groups who can be (un)equally sized, (un)equally

productive, and when one of the groups does not initially exist. In doing so, we evaluate how

participants approach the equity-efficiency trade-off, whether their allocations align closest

with total, average, or critical level generalised utilitarianism, and whether they are willing

to sacrifice the welfare of a pre-existant group for that of a prospective one.

We find that 98.7% of participants are willing to sacrifice distributional efficiency by dis-

favouring more resource productive population groups in their allocations, instead preferring

to promote equity in resulting health outcomes. This conclusion aligns with much of the

existing literature (see McNamara et al., 2020), and suggests that most UK adults hold a

weighted proiritarian perspective (median ε of 31.10). A majority (63.3%) of participants
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and then found to maximise total welfare over average welfare, with less than half (45.6%)

having a critical threshold of 0. Participants were most divided in their preferences as to

whether or not to bring in the prospective populations of Treatment C, with larger and more

productive groups more likely to be brought in.

The empirical evidence presented in this work can contribute to effective policymaking

by informing decision makers how those affected by population health decisions would them-

selves prefer welfare to be allocated. Moreover, the novel existence mechanic introduced in

this work furthers existing understanding of preferences for the welfare of persons future as

well as present. We believe that these contributions could prove fruitful for authors across

the range of disciplines that engage with population ethics, and encourage the possibility of

further, multidisciplinary research into the important questions raised herein.
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APPENDICES

Appendix A Experiment Details

Within the experiment, all participants are shown the below on-screen text for the instruc-

tions, tutorial, and tutorial questions. The instructions explain the concept of health-related

quality-of-life and provide an overview of the experiment. The seven stages of the tutorial

then explain how to use the on-screen interface, and each of the scripts are followed by

an interactive on-screen tutorial. Presented next are five tutorial questions which confirm

and reinforce participant’s understanding, immediately preceding the three treatments of

the main experiment. Two single-slide tutorials are also shown in the transition between

treatments, in order to instruct the participant how the problems would change. Lastly,

the experiment concluded with a short socio-demographic questionnaire. The full script of

these elements is provided here such to provide clarity as to what participants were shown;

note that each paragraph that follows contains the information of one slide, with slide titles

(where included) highlighted in bold.

A.1 Instructions

Health. Throughout this experiment you will be asked to think about the Health-Related

Quality of Life of hypothetical people in society. We will call this “Health”. The scale to

the right hand side shows “Health”. The scale is numbered from 0 to 100. 100 means the

BEST health you can imagine. 0 means the WORST health you can imagine. Assume that

all hypothetical people in this experiment live for exactly 80 years. The “Health” of a person

is their average level of “Health” across their life. Please click Next to continue.

Please Read These Instructions Carefully. You will be asked to make decisions which

determine the Health of hypothetical people in society. You will be given a “Budget” that

you must divide between groups of people. The Budget is the total amount of “Resources”
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available to spend. Resources improve Health. Giving more Resources to a group increases

the Health of each person within that group. The impact of Resources on Health is deter-

mined by a number referred to as the “Multiplier”. The higher the Multiplier, the higher

the level of Health each person gains from a given number of Resources. On the screen,

you will distribute Resources between two groups of people. You will do this a number of

times. Each screen will show a different scenario. The choices you make on one screen will

not affect the scenarios that follow. There are no right or wrong answers. We are interested

in the choices you make, whatever they are. You will now go through a tutorial, which will

explain how to use the computer interface and the exact nature of the experiment. Please

click Next to continue.

A.2 Tutorial

A.2.1 Main Tutorial

Tutorial. This tutorial will show you how to use the on-screen interface. You will first

be shown the information for one “Group” of people. Groups are identified by letters (e.g.

Group S) and have a “Population” of a certain size, in millions of people (e.g. 5M People).

Each group begins with an initial level of “Health”. The people within each Group have the

same “Health”, but “Health” can vary between Groups. The Group and Population size are

shown in a table at the top of the screen. A grey bar in the middle of the screen shows the

Population size and initial Health.

The width of the grey bar indicates the Population size of each group. This is also shown as

a label at the bottom of the bar. The height of the grey bar, and the grey number to the left

of the bar, shows the initial level of Health of each person in that Group. This is measured

on a scale numbered from 0 to 100. Where 100 is the BEST health you can imagine, and

0 is the WORST health you can imagine. Please click Next to see this information. If you

need to reread this screen press Back. When you are done press Next again.
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You will first get practice in giving Resources to only one group of people. Drag the horizontal

slider at the bottom of the next screen to the right to give more Resources to people within

this group. The amount of Resources you give is shown by the number in the table at the

top of the page. Once you have dragged the slider, you can use the left and right arrow keys

to make precise changes to the amount. Press the arrow key for a change of 0.1 and hold the

arrow key for changes of 1. The Resources you give to a group are taken from the Budget,

which is shown on the left of the screen. As you increase the Resources, the Remaining

Budget will decrease. You must always use all of the Budget, so that the Remaining Budget

is zero. When there is only one Group, this means dragging the slider all the way to the

right. Later you will have to distribute the Budget between Groups. Press Next to try out

the slider. When you are done, allocate all the Budget and press Next.

The Resources you give to a Group, in addition to their initial Health, determines the

“Health” of each person within the group. Health is equal to initial Health, plus the Re-

sources multiplied by a number we call the “Multiplier”. The Multiplier is shown in the

table at the top of the screen. Initial Health is shown by the height of the grey bar and the

number to the left of the bar. When you give Resources by moving the slider, the resulting

Health is shown by the combined height of the grey and black bars. The number to the right

of this bar is the amount of Health, and this is also shown in the table at the top of the

screen. For example, imagine a group of people who each have an initial Health of 40 and a

Multiplier of 1. If you give all of a Budget of 60 resources to that Group the Health of the

people within that group will be 100. They will live in the BEST Health you can imagine.

Press Next and see how Health changes as you adjust the Resources given to the Group.

When you are done, allocate all of the Budget and press Next.

The Multipliers can vary from Group to Group. In the previous scenario, the Multiplier was

1. In the next scenario, it is 0.5. Press Next and see how Health of people with the group

changes as you give them more Resources. Notice that there is now a difference between the

Resources given and the additional Health achieved. When you are done, allocate all of the

Budget and press Next.
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In each round of the experiment, there are two groups of people. Groups are identified by

letters (e.g. Group B and Group K) and their Population size (in millions, M). On the next

screen, there are two sliders at the bottom of the screen that you can use to give Resources

to each Group and so determine the Health of the people in those groups. The Health of

each person in a Group is shown by combined height of the grey and black bars, where the

initial Health is grey and allocated Health in black. The table at the top also shows the

Resources, Multiplier and Health for each Group. Now you must allocate the Budget across

the two Groups. In doing so, you determine the Health of the people in each group. In the

example on the next screen, the Multipliers are the same both Groups. You must use all of

the Budget, so that the Remaining Budget (on the left) equals zero. Remember, if you have

used the whole Budget, you will not be able to move any slider to the right. If you want to

give more Resources to one Group, you will need to give less to another Group first. Press

Next and then give Resources to the two Groups. When you have used all of the Budget on

the next screen, press Next.

The two Groups change from round to round. On the previous screen, both Groups had a

Multiplier of 1. But the Multipliers can differ between Groups, as on the next screen. Move

the sliders to give Resources to the two Groups and notice how the Health achieved depends

on the Multiplier of each Group. If you give both Groups the same Resources, their Health

will differ. Take note of the size of the Budget, which can change from screen to screen. If

you are having difficulty seeing both the table and the graph on your screen, zoom out on

your web browser by holding “Ctrl” and pressing “-”. Hold “Ctrl” and press “+” to zoom in.

Press Next and then give Resources to the two Groups. When you the Remaining Budget

is zero, press Next.

The right of the screen shows further summary information. “Total Health” is the total

amount of Health across both groups. Intuitively, this is represented by the combined area

of the grey and black bars of both groups. “Average Health” is average level of Health per

person across the whole population (i.e. Total Health / Total Population Size). “Minimum

Health” is the minimum amount of Health for persons within either Group. This is shown by
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the height of the lowest grey/black bar. Press Next and then distribute Resources between

the two Groups. Try different allocations and notice how the Total Health, Average Health

and Minimum Health depend on your choice. When you are finished, allocate all of the

Budget and press Next.

A.2.2 Tutorial Questions

The five assessment questions included at the end of the main tutorial as a competency test

are listed below. Possible responses are listed with the correct answer(s) highlighted in bold.

After completing the five questions, participants were informed which questions they had

answered (in)correctly, and if they were incorrect, why this was.

1. On each screen, you will give Resources to how many Groups of people? - Options: 2,

3, 4, Not Sure.

2. You can make and adjust the Resources you give by (tick all that apply): - Options:

Clicking and Dragging the Sliders, Using the Arrow Keys, Moving the Vertical

Bar, Not Sure.

3. If you give 60 Resources to a Group with an initial Health of 40 and a Multiplier of 1,

what will the Health of people in that Group be? - Options: 40, 70, 100, Not Sure.

4. If you give 60 Resources to a Group with an initial Health of 40 and a Multiplier of 0.5,

what will the Health of people in that Group be? - Options: 40, 70, 100, Not Sure.

5. Once you have finished giving the Resources, you proceed to the next screen by: -

Options: Clicking Next, Ensuring the Remaining Budget = 0, then Clicking

Next, Waiting, Not Sure.

A.2.3 Treatment B Tutorial

Experiment. You have completed the first part of the experiment. Now you will begin

the second part. In the second part the Population Size of the two groups will vary in each
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scenario. The Population Size of each group is shown in the table at the top of the screen,

by the width of each bar and by the label at the bottom of the bars. You will be given one

practice round to explore how differing Population Sizes change the consequences of your

allocations. Try allocating different amounts of Resources to the different sized Groups to

see these consequences. Press Next to Begin.

A.2.4 Treatment C Tutorial

Experiment. You have completed the second part of the experiment. Now you will begin

the third part. In third part, each scenario will start with only one Group of people in

existence. You can choose to give all Resources to that Group OR you can choose to bring a

second Group of people into existence, and then allocate Resources between the two Groups.

You can bring this second Group into existence by ticking the button “Group X Exists?”.

They will start with an initial Health level of 0. You can then allocate Resources between the

two Groups. You can untick the “Group X Exists?” to not bring that Group into existence.

As before, the Population Size and Multipliers will change between these Groups. You will

be given one practice round to explore the consequences of bringing another Group of people

into existence or not, and of your chosen allocations between the Groups. Try allocating

all Resources to the first Group. Then try bringing the second Group into existence and

allocating resources between the two Groups to see these consequences. Press Next to Begin.

A.3 Pilot Study

We ran a small pilot study in July 2022 to test and receive feedback on our experimental

design, recruiting a convenient sample of twelve participants. While pilot feedback was gen-

erally positive, two main modifications were made to the experiment in light of participant’s

feedback. First, the number of Treatment C scenarios was increased from ten to twelve. This

decision was made primarily to implement a block randomisation design (see A.4), but also

because participants did not report fatigue after the experiment. Second, summary statistics
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on the right of the user interface were emboldened to promote the visibility of this informa-

tion. Other modifications were more minor: new options were added to the employment and

education questionnaire items, and some wording changes were made in the tutorial.

A.4 Treatment C Block Randomisation

Table A1 show shows the block randomisation design of Treatment C. This design ensures

that all participants saw sufficiently distinct combinations of the three random factors,

namely population size, multipliers, and baseline health values for the pre-existent group.

Table A1: Treatment C Block Randomisation Design

Large Population Small Population

Multiplier Low yi High yi Low yi High yi

(1,1) 1 2 3 4
(1, pi) 5 6 7 8
(pi, 1) 9 10 11 12

Remark that each block describes the characteristics of the pre-existent group in that

round. Each participant would see one of the twelve types of scenarios (numbered from one

to twelve) described in Table A1; they would face these scenarios in a random order decided

by a shared seed. As such, there would be six rounds where the pre-existent group would

have a ‘Large’ population size, randomly drawing from the set {3, 4, 5}, and six with a ‘Small’

population size drawn from the set {1, 2}. Within each of these blocks there would be three

rounds where they would have a ‘Low’ baseline health value of 10, and three rounds where

they would have a ‘High’ baseline health value drawn from the set {40, 70}. The final block,

multipliers, created three groups of four scenarios: in the first four the groups had an equal

multiplier (1,1), in the second four the pre-existent group had a higher relative multiplier

(1, pi), and in the final four they had a lower relative multiplier (pi, 1), where pi was drawn

randomly from the set {0.25, 0.50}.
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A.5 Existence Interface

Treatment C sees our participants make decisions wherein one of the two groups is initially

non-existant. Participants then have the option to bring them into existence, as illustrated

by Figure A1. Note that if the box was to be left unchecked, Group K would not exist and

their slider would be hidden.

Figure A1: Treatment C Existence Interface
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Appendix B Descriptive Statistics

Table B1 details the demographic characteristics of our experimental sample. There is sub-

stantial heterogeneity in participants socio-demographic characteristics, with a near 50/50

gender split, an average age close to that of the UK at large (Office for National Statis-

tics, 2021), and a range of educational backgrounds and labour market outcomes.

Table B1: Demographic Data Overview

Variable Mean Obs Range

Female 0.49 115 [0-1]
Married 0.51 115 [0-1]
Age 43.13 109 [19-71]
Income (£K) 29.362 102 [2.5-175]
Highest Education
Postgraduate 0.23 115 [0-1]
Undergraduate 0.37 115 [0-1]
A-Level 0.29 115 [0-1]
Secondary/Primary 0.11 115 [0-1]

Labour Market Status
Employed 0.63 115 [0-1]
Unemployed 0.08 115 [0-1]
Retired 0.15 115 [0-1]
Student 0.07 115 [0-1]
Other 0.07 115 [0-1]
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Appendix C Additional Results

C.1 Existence Decision

In Table C1, we estimate what factors were most contributive towards participant’s decisions

as to whether or not to bring in the initially non-existant groups of Treatment C. Note that

in this table the dependant variable ‘Give Existence’ equals one when the second group is

given existence and zero otherwise.

Table C1: Factor Influence on Existence Decision

Give Existence
Coef./(S.E.)

Budget 0.0026∗∗∗

(0.001)
Relative Multiplier 0.5983∗∗∗

(0.064)
Relative Population Size 0.2307∗∗∗

(0.054)
Constant 0.5332∗∗∗

(0.084)

N 115
Observations 1380
Overall R2 0.1224

Notes: * = p < 0.10; ** = p < 0.05; *** = p < 0.01. relative multipliers are re-centred around 0.50 to
improve coefficient interpretation. A random-effects model with robust standard errors was employed to
counteract within-participant error clustering. Demographic control variables are omitted.

Our first takeaway from these results is that initially non-existent groups with a larger

multiplier than their pre-existent counterparts were much more likely to be brought in. This

finding is consistent with our population principles: those who seek to maximise total welfare

will bring them in as they are more resource productive for a given population size, while

those who favour equity will do so in order to both balance the health outcomes of the

two groups and to increase the minimum level of health experienced by either population.

Similarly, larger groups were more likely to be brought into existence as they are more

productive for a given multiplier, demonstrating that the extension to consider unequally-

sized groups has an appreciable impact on how participants allocate resources. Finally, giving
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participants a larger budget to award also increased their willingness to grant existence to

the second group, with the impact of this factor found to be very close to that of relative

population size for rounds with the largest possible budget (90). As such, we understand

that in budget-constrained scenarios such as ours, both the the characteristics of the two

groups and the size of the budget can affect the decision making of participants.

C.2 Stated Critical-Thresholds: Questionnaire

As part of the questionnaire, we elicited stated critical-threshold values from participants.

These provide us with an alternative to our estimated critical-threshold, τ , allowing for a

comparison of results. This item presented participants with a visual analogue scale, and

requested them to selected a response on an interactive slider to the following question:

“Imagine you could choose whether an individual would come into existence or

not. If this individual existed, they would live for 80 years. Imagine their Health,

averaged across their life, could be captured on a scale numbered from 0 to 100.

Where 100 means the BEST health you can imagine, and 0 means the WORST

health you can imagine. What is the MINIMUM LEVEL OF HEALTH that

individual would have to have in order for you to bring them into existence?”.

Figure C1 plots the resulting distribution of stated threshold values. We find a mean

threshold value is 48.08, with only a few participants (4.34%) selecting a threshold below

10. Interestingly, these values are larger on average than our estimated critical threshold

parameter τ from Section 5.3.2.

To further explore why this was the case, we next provide linear regression results in Table

C2 of the stated critical-thresholds on each participants’ mean existence decision, minimum-

level of health in Treatment C, and our estimated critical-thresholds, τ . We observe from

these results that the stated thresholds are significantly associated with all three regressors,

and in the expected directions: participants with a higher stated threshold are less likely to
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Figure C1: Distribution of Stated Critical-Thresholds

Notes: Distribution of elicited stated critical-threshold values, from questionnaire. Distribution is shown as
both a histogram, with density normalised to 1, and an empirical cumulative density plot.

bring the second group into existence, more likely to ensure there is a higher minimum level

of health across experimental rounds, and have a higher estimated τ . As an additional check,

model (4) drop our sample down to 79 participants by applying our exclusion criteria, and

finds that while the estimate for τ remains positive, its magnitude and significance decline.

Table C2: Stated Critical-Threshold Regressions

(1) (2) (3) (4)
Stated Stated Stated Stated

Threshold Threshold Threshold Threshold
Coef./(S.E.) Coef./(S.E.) Coef./(S.E.) Coef./(S.E.)

Existence Decision -23.128∗∗∗

(6.85)
Mean Minimum Health 0.384∗∗∗

(0.14)
Critical Threshold, τ 0.231∗∗∗ 0.128

(0.09) (0.09)
Constant 60.966∗∗∗ 30.679∗∗∗ 46.402∗∗∗ 51.355∗∗∗

(4.18) (6.66) (2.25) (2.79)

N 115 115 115 79
R2 0.106 0.071 0.032 0.014

In sum, these results provide assurance that the choices participants made in the ex-

periment are in line with their stated critical-threshold values. However, we do observe a
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discrepancy between the estimated and stated critical-threshold values. These differences

illustrate the difficulty involved in pinning down precise critical threshold values.

C.3 Noise Parameter Estimates

Figure C2 details the distributions of our two estimated noise parameters, namely σ1 from

the random behavioural model, and σ2 from the random utility model. Overall, we find a

median value for σ1 of 0.077, and the median value for σ2 is 38.087. The distributions make

it clear however that there is substantial heterogeneity in each estimated parameter.

Figure C2: Distribution of Noise Parameters, σ1 and σ2

Notes: Distribution of participant-specific (n = 79) noise parameters σ1 and σ2, for the random behavioural
and random utility models, respectively. σ1 is estimated using data from Treatment A and B. σ2 is estimated
using data from Treatment C. Distribution is shown as both a histogram, with density normalised to 1, and
an empirical cumulative density plot. The x-axis is shown on a log-scale, σ2 values over 100 are censored.

C.4 Sample Sensitivity

In our structural analysis, we apply exclusion criteria to improve the quality of the data.

More specifically, participants were excluded if they a) did not answer at least 3 of the 5

tutorial questions correctly (n = 23), and b) had a MPL lower than 0.5 from Treatment A/B
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(n = 6) or Treatment C (n = 30). This left an analytic structural sample of n = 79. Here,

we present the distribution of estimated preference and noise parameters, alongside mean

proportional likelihood values, for participants who were included (blue) and excluded (red).

Figure C3 shows these distributions for our health inequality aversion (ε), average-total

(β) and critical threshold (τ) parameters. They detail that included participants were found

to have generally higher values for ε and, in particular, a higher proportion of these partic-

ipants were classified as maximin (ε ≥ 500). Included participants were also more likely to

focus on average welfare (β = 0) and less likely to have a critical threshold of zero (τ = 0).

Figure C3: Distribution of Preferences Parameters: Included and Excluded

Notes: Distribution of participant-specific (n = 138) mean proportional likelihoods, for those those included
in (blue) and excluded from (red) our main structural analysis. Distributions are shown as empirical cumu-
lative density plots.

The top panel of Figure C4 plots the distribution of our estimated noise parameters,

namely σ1 from the random behavioural model, and σ2 from the random utility model.

These parameters are found to be generally lower for included participants, as we see a large

proportion of excluded participants with high noise parameters (σ2 ≥ 100).

The bottom panels of Figure C4 plots the distributions of participant-specific Mean

Proportional Likelihood (MPL) values, which provide an intuitive measure of goodness-of-

fit of the structural model. Define PLt = Lt/(Lt + LUNI
t ), where Lt is the likelihood in

round t for the data and estimates, and LUNI
t is a likelihood for a uniform distribution draw,

and MPL = 1/T
∑T

t (PLt). If MPL = 0.5, model fit to data is no better than fit uniform

49



Figure C4: Noise Parameters and Mean Proportional Likelihoods: Included and Excluded

Notes: Distribution of participant-specific (n = 138) noise parameters, σ1 and σ2, and mean proportional
likelihood values for those included in (blue) and excluded from (red) our main structural analysis. Distri-
butions are shown as empirical cumulative density plots.

distribution draws. As MPL → 1, data fit improves. We plot the distribution of MPLs in

Treatment A and B, in the left panel, and for Treatment C, in the right. Results show that

MPLs are, generally, higher for included participants, and no participants were included in

the main sample if the structural model fit was as bad or worse than a uniform draw.

Taken together, these figures demonstrate that whilst there are differences in the distri-

butions of estimated preference parameters between the included and excluded participants,

we observe lower noise and better goodness-of-fit for included participants. This underlines

the importance of our exclusion criteria towards estimating accurately.
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