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Abstract 

Electric vehicles (EVs) have become a key factor in the shift towards sustainable transportation. Yet, 
the rapid growth in EV adoption has outpaced the development of adequate EV charging infrastructure, 
leading to a critical adoption bottleneck. While recent studies have increasingly focused on optimizing 
charging station placement through mathematical modelling and decision-making strategies, they often 
overlook the intricate spatial dynamics among charging demand nodes. Moreover, the impact of new 
charging stations on the utilization of existing charging infrastructure is rarely accounted for in the site 
selection process. Additionally, socio-demographic factors are frequently neglected, potentially 
marginalizing underserved communities. To address these critical gaps, we propose a novel, 
geodemographic aware approach for EV charging site selection. This method leverages graph neural 
networks (GNNs) to identify optimal locations for charging stations while maximizing the efficiency of 
the installed charging infrastructure. We apply our approach to a case study of the Glasgow City area, 
Scotland, UK, demonstrating the potential to effectively guide infrastructure planning. The methodology 
not only significantly reduces installation costs but also boosts the utilization of urban charging facilities. 
By considering socio-demographic, spatial, and post-installation factors, this approach offers a holistic 
solution for the fair and efficient growth of EV charging infrastructure. 
 

1 Introduction 

In the wake of escalating environmental concerns and the pressing need to mitigate climate change, 
the transportation sector has been identified as one of the cornerstones of a successful transition to net 
zero [1]. The longstanding reliance on vehicles that utilize common fossil fuels, while integral to societal 
advancement, has significantly contributed to greenhouse gas emissions and environmental 
degradation [1]. In recent years, alternative fuel vehicles, such as Electric Vehicles (EVs), have emerged 
as a transformative technology in this context, offering a cleaner, more sustainable mode of 
transportation. Global penetration of alternative fuel vehicles has experienced rapid growth in recent 
years [2]. In the UK alone, at the end of 2023, there were over 735,000 registered Battery Electric 
Vehicles (BEVs) and over 480,000 Plug-In Hybrid Electric Vehicles (PHEVs), a number expected to sky 
rocket in the coming years [3]. However, despite an optimistic market expansion forecasts, rapid growth 
in EV ownership is juxtaposed against a lagging EV charging infrastructure, creating a critical adoption 
bottleneck [4]. Development of accessible, convenient and reliable charging infrastructure is not keeping 
pace with the surge of EVs on the road. At the same time, the optimal placement of charging 
infrastructure is a complex problem, influenced by a myriad of factors including regional uptake of EVs, 
urban planning constraints, electrical grid capacity, accessibility, and consumer behavior patterns. 
Similarly, utilization of deployed charging stations is dependent on various factors, including 
accessibility, position within the road network, proximity to areas of public interest, area coverage, 
reachability, safety, area traffic flow, and connectivity to the public transport network [5]. Lastly, ensuring 
fair access to charging facilities remains a key concern, guaranteeing that all members of the public, 
regardless of geographical location or sociodemographic group, can partake in the shift towards more 
sustainable transportation. 

In the realm of EV charging infrastructure planning, various modeling methods, optimization techniques, 
and decision-making approaches have been introduced [6]–[9]. These methodologies can generally be 
classified into two categories: flow-based and node-based models. Early research tackled the challenge 
of predicting charging demand using a flow-based perspective. which assumes that traffic volume near 
a prospective site is the primary determinant of charging demand, and represents charging demand as 
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a series of origin-destination trips [10]. However, this approach has limitations, particularly in urban 
settings, as it fails to account for other significant elements influencing urban vitality [11]. Conversely, 
node-based approaches favor the view that charging demand is dependent on demand nodes within 
the urban network. This perspective suggests that EV drivers prefer charging locations that are 
conveniently located, such as near their homes, workplaces, or other key points of interest like public 
service facilities and recreational areas. While node-based approaches provide valuable insights into 
urban charging requirements, they often neglect the broader socio-demographic and spatial dynamics 
that play a crucial role in determining the feasibility and effectiveness of EV charging infrastructure 
deployment. 

To overcome the challenges in infrastructure placement, it is essential to consider a multidimensional 
set of data points in order to accurately model charging demand. This approach involves integrating 
demographic data, such as human development indices, information on points of interest (POIs), 
charging infrastructure information, traffic flow, and geospatial topology. By adopting this multi-
dimensional methodology, we facilitate a more nuanced understanding of the potential utilization and 
effectiveness of EV charging infrastructure. Specifically, utilizing geodemographic data allows for the 
consideration of socio-economic factors that influence EV adoption rates and charging needs, which 
ultimately can help strategic placement of chargers for underserved communities to ensure fair access 
and encourage EV adoption. Placement decisions are often made without understanding the spatial 
dynamics of the urban network, an often-overlooked aspect of existing node-based approaches. In this 
paper, we propose a geodemographic, spatially-aware approach for EV charging station placement 
using graph neural networks (GNNs), which ensures that the deployment and expansion of EV charging 
infrastructure is both efficient and fair, addressing the critical bottleneck in EV adoption, and contributing 
to the larger goal of transitioning to more sustainable transportation. We conduct thorough experiments 
using real-world data from the selected urban site of the city area of Glasgow, Scotland, UK. As a major 
urban center and the largest city in Scotland - a region known for its high renewable energy production 
and lower than average national carbon footprint [12] - Glasgow presents an ideal environment for 
advancing EV usage with a reduced carbon footprint. 

The rest of this paper is organized as follows: Section 2 introduces the related work of EV charging site 
selection. Section 3 illustrates the proposed graph representation learning mechanism design 
framework. Section 4 presents the experimental study. Section 5 draws conclusions and suggests future 
research. 

2 Background 

Traditionally, the problem of EV charging station site selection has been approached as a decision-
making process that aims to identify an optimal site based on a set of predefined criteria. This approach 
hinges on carefully defined criteria by experts or sophisticated mathematical modelling. Approaches 
include the use of mixed integer linear programming (MILP) [6], multi-objective programming (MOP) [7], 
and algorithmic approaches such as genetic algorithms [8]. However, as selection criteria contains 
multiple (subjective) factors that often have conflicting properties, approaches that take this important 
aspect into account have been proposed. Among them, multi criteria decision making (MCDM) are one 
of the most popular site selection methods. MCDM has been used in various site selection domains, 
such as offshore wind farms [13], emergency hospital placement [14], and landfill sites [15]. MCDM 
follows a hierarchical process that evaluates and prioritizes different selection objectives across 
candidate sites to determine the most suitable locations. A key aspect of MCDM is the assignment of 
weights to various criteria, which can be subjective and influenced by the decisionmaker’s preferences 
or biases. Moreover, MCDM typically relies on static objectives and lacks the capability to capture 
complex relationships within data. This limitation is particularly pertinent in contexts like EV charging 
station placement, where modeling of the spatial dynamics between evolving and interdependent 
charging demand hotspots is crucial for effective site selection. 

To enhance the understanding of spatial relationships between urban demand nodes and their influence 
on site placement, recent research has investigated the use of GNNs in the urban mobility domain. [16] 
utilized GNNs to predict the attractiveness of different store sites within neighborhoods based on public 
transport hotspots, [17] propose a spatiotemporal graph convolutional network for traffic forecasting, 
combining graph convolutions and gated temporal convolutions to extract the relevant spatial features 
and capture key temporal dynamics. However, despite these successes in the urban mobility field, the 
application of GNNs for EV charging infrastructure placement has been relatively unexplored. The first 
known approach using GNNs for this purpose uses GNNs to select candidate sites of charging stations, 
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where the sites are evaluated using traffic flow and construction cost information [9]. This method, 
however, divides the data into equally sized grid cells, imposing artificial boundaries that might not 
correspond with natural charging demand nodes. It also assumed uniformity within each cell, which 
limits the ability to utilize socio-demographic characteristics of demand nodes. Additionally, this 
approach did not consider how new stations might affect existing charging demands within each node, 
a critical aspect in determining the most effective installation sites. 

 

Figure 1 – Proposed ChargeDEM EV charging site selection approach. 

 

3. Methodology 

Let 𝒢 = (𝒱, ℰ) represent a graph with |𝒱| number of nodes and |ℰ| number of edges, where 𝒳 ∈ 𝑅|𝕍|×𝐹 
denotes a set of features of all nodes, where 𝐹 is the feature dimension. In particular, tackling the EV 
charging station placement problem, we consider a charging demand node 𝑣 ∈ 𝒱 to be the area with 

radius 𝑟 centered around an existing EV charger site, while edges ℰ represent undirected connections 
between nearby nodes going from node 𝑢 ∈ 𝒱 to node 𝑣 ∈ 𝒱 such that (𝑢, 𝑣) ∈ ℰ ↔ (𝑣, 𝑢) ∈ ℰ. That is, 

a pair of nodes in the graph are connected if their physical distance is at most 𝑟. Let 𝐴 ∈ {0,1}|𝒱|×|𝒱| 
represent the graph adjacency matrix with entries 𝑎𝑢,𝑣 = 1 if there is an edge between nodes 𝑢 and 𝑣, 

and 𝑎𝑢,𝑣 = 0,otherwise, all pairs of nodes 𝑢, 𝑣 ∈ 𝒱, and 𝑎𝑢,𝑢 = 0. 

In this work, we argue that to successfully extrapolate this graph-based approach in the realm of EV 
charging station placement, it is crucial to note that each node in 𝒢 is not merely a point in space but 
encapsulates a comprehensive data-driven representation of its surrounding environment. This 
representation includes, but is not limited to, the sociodemographic makeup, density and type of POIs, 
traffic patterns, and existing parking infrastructure within the confines of 𝑟. The edges ℰ, on the other 
hand, embody the physical and functional connectivity between these nodes, influencing the flow and 
demand of EV charging within the network. The integration of this diverse set of data within the graph 
structure allows for a nuanced understanding of the EV charging demand dynamics at each node. To 
achieve this, we place the underlying problem of capturing structural information and encoding of 
relational context of urban charging demand in the framework of graph representation learning through 
graph autoencoders. This approach will enable effective capture and utilization of complex relationships 
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inherent in the graph structure of urban charging demand that include diverse influencing factors such 
as spatial characteristics, existing demand, urban vitality, demographic makeup, traffic flow, 
reachability, safety. This approach also benefits from accounting for relationships between neighboring 
demand nodes, an often-overlooked aspect of charging station site selection. 

An overview of the proposed sociodemographic, spatially aware GNN based framework for EV charging 
infrastructure placement is shown in Figure 1. The approach consists of three parts: 1) graph 
representation learning for capturing complex relationships inherent in the graph structure of urban 
charging demand 2) clustering of node representations and subsequent identification of low potential, 
medium potential, and high potential installation areas 3) utility-informed site selection based on area 
potential, taking into account installation requirements, such as the number of chargers to be installed, 
their installation utility, and how they affect the overall charging potential of surrounding areas. In this 
section, we describe each component in detail. 

3.1 Urban charging graph representation learning 

Use of autoencoders for learning graph representation without supervision based on graph neural 
networks (GNNs) has been proposed in [18]. An autoencoder usually contains an encoder, latent 
representations, and a decoder. The encoder aims to map the input data to latent representations, and 
leverages on latent representations to reconstruct the input under supervision of a reconstruction 
criterion. Given 𝑓𝑒  as the graph encoder, 𝑓𝑑  as the graph decoder, and 𝐻′ representing the encoder 
latent representations, the aim of graph autoencoders is to learn the mapping: 

𝐻′ = 𝑓𝑒(𝐴, 𝑋), 𝐺′ = 𝑓𝑑(𝐴, 𝐻′) (1) 

where G′ represents the reconstructed features or structure of the graph by the decoder. 

The use of completely symmetric graph convolutional autoencoders which utilize both the structure of 
the graph and node attributes through the whole encoding-decoding process has been proposed in [19]. 
In such approaches, the issue of instability of common graph convolutional layers is tackled by the 
addition of Laplacian sharpening layers to counterbalance the common smoothing effects. However, 
even though this approach fixes common graph representation learning problems, it does not allow for 
dynamic weighting of node importance weights. In this setting, GNNs use a set of node features to learn 
node representation. Typically, GNNs perform a node-level feature aggregation within a neighborhood, 
which involves iterative learning of node representation through aggregation of representations of its 
neighbors to create 𝐻′ latent representation. However, this approach usually assumes equal importance 
of all neighbors and assigns the same aggregation weights based on the degree distance. 

To tackle this problem, we leverage on and adapt the common approach of employing the self-attention 
mechanism in the encoding step using Graph Attention Network (GAT) [20]. Unlike typical GNNs, GATs 
assign dynamic weights to neighboring nodes based on relative importance of nodes in the 
neighborhood through masked attention mechanism. Given the input as a set of node features 𝐻 =

{𝐻1, 𝐻2, … 𝐻|𝒱|}, 𝐻𝑖 ∈ 𝑅𝐹 , a graph attention layer computes output 𝐻′ = {𝐻1
′ , 𝐻2

′ , … 𝐻|𝒱|
′ }, 𝐻𝑖

′ ∈ 𝑅𝐹′
 with a 

different cardinality 𝐹′. To compute the weights, masked self-attention mechanism is performed, where 

attention coefficient α𝑖𝑗 that indicate the importance of features in node 𝑗 to node 𝑖 are computed only 

for nodes 𝑗 ∈ 𝒩𝒾 where 𝒩𝒾 is some neighborhood of node 𝑖 in the graph: 

α𝑖𝑗 =
exp (𝑎(𝑊𝐻𝑖 , 𝑊𝐻𝑗))

∑  𝑘∈𝒩𝒾
exp(𝑎(𝑊𝐻𝑖 , 𝑊𝐻𝑘))

 (2) 

 

where a represents attention function, and 𝑊 a weight matrix, where 𝑊 ∈ 𝑅𝐹′×𝐹. Additionally, as an 
urban graph tends to have large number of neighbors, in order to mitigate “neighbor explosion” problem, 
the data sampling procedure is performed by obtaining a set of subgraphs by sampling the original 
training graph and then building the graph autoencoder based on the subgraph [21]. 

The ability to assign dynamic node weights is a crucial step in modelling the GNN approach to the 
charging station placement setting where model allows for the implicit assignment of different 
importance weights to nodes of a same neighborhood, enabling representation learning of graphs that 
encompass dense information sources such as traffic patterns, street topology, demographic factors, 
charging demand zones, urban mobility etc. ChargeDEM EV charging site selection approach is 
illustrated in Fig. 1. Contrary to the aforementioned traditional graph representation learning approach, 
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which makes use of common graph convolutional network (GCN) spectral convolutional layers, 
ChargeDEM consists of a GAT-based encoder and a simplified, linear decoder layer for reconstruction 
of graph representation. This formulation enables dynamic weighting of node features and strikes a 
balance between model learning capacity through self-attention and smoothing minimization. 

3.2 Clustering 

After acquiring graph embeddings that reflect the underlying structure of urban charging demand, 
informed by factors inherent in the node features, we harness this data to pinpoint areas with high 
charging potential. Our dataset lacks explicit information, such as historical charger utilization records, 
making it impossible to frame this as a supervised problem. Instead, we adopt an unsupervised 
clustering approach, similar to one used in previous research [9], to identify charging nodes with 
significant potential. To determine the optimal number of clusters, we use the K-means [22] clustering 
combined with the Silhouette method [23] applied to the original, non-graph representation of input data. 
This dataset includes all node features, along with additional information like the number of parking 
spots, existing charging stations in the area, and their power output in kilowatt-hours. After calculating 
the Silhouette index, we establish the optimal cluster number as 𝑘 = 3, as this yielded a lower Silhouette 
index value compared to other potential values for 𝑘. On examining the cluster characteristics, we find 
a strong correlation between the cluster formation and the number of charging stations in each node 
area. Consequently, we select the candidate sites based on their potential: sites within clusters 
containing low number of existing charging stations are labelled as high potential, those with medium 
amount of charging stations as a medium potential, while clusters with highest number of stations, and 
hence the lowest need for new infrastructure, as low potential. 

Table 1 – Battery capacity and range of the most sold EVs in the UK in year 2023 [3]. 

 

3.3 New infrastructure installation performance metric 

To select the optimal changing location within a range of selected potential candidate sites, we focus 
on medium-high potential areas and opt to maximize the area demand coverage by simulating how the 
addition of a new charging station affects the incremental change in the area’s total charging output, 
and propose Incremental Coverage Difference (ICD) metric. This metric is dependent on many factors 
and requires knowledge of: 1) total annual EV flow within the demand node, 2) average annual power 
requirement of an EV, and 3) maximal annual power output of a demand node. To measure the 
approximate number of EVs in the Glasgow City area, we multiply the number of registered private 
vehicles with the assumed 10% EV penetration rate:  

𝑁𝐸𝑉 = 0.1 × 197,540 = 19,754 (3) 

In order to measure the charging frequency of an EV within city limits, we first calculate the average 
driving range of an EV. Given existing statistics on most purchased vehicles in the UK (see Table 1), 
the average driving range of an EV is set to rangeavg = 466.45 km, while average battery capacity is set 
to capacityavg = 68.20 kWh. According to the UK Department of Transport, total annual traffic in 2023 

Vehicle Model Battery Capacity [Kwh] Range [km] 

Tesla Model Y 60-75 455-542 

MG4 51-77 349-520 

Audi Q4 e-tron 82 455-543 

Tesla Model 3 60-78 513-528 

Polestar 2 82 555-653 

Volkswagen ID.3 62-82 430-558 

Kia e-Niro 68 463 

BMW i4 83.9 413-589 

Volkswagen ID.4 82 515-550 

Skoda Enyaq 82 538-547 
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for private cars and taxis in Glasgow City is 2.684 billion kilometers. Thus, the average annual travel 
distance of cars in Glasgow is:  

𝑑𝐶𝐴𝑅 =
2,684.06 × 106

197,540

𝑘𝑚

𝑦𝑒𝑎𝑟
= 13,567.4

𝑘𝑚

𝑦𝑒𝑎𝑟
 (4) 

Assuming that EVs only recharge when the battery capacity is lower than 20%, the yearly charging 
frequency of a car in the Glasgow City area is: 

𝑓𝐸𝑉 = 13,567.4
𝑘𝑚

𝑦𝑒𝑎𝑟
÷ (𝑟𝑎𝑛𝑔𝑒𝑎𝑣𝑔 × 0.8) = 36.36

𝑐ℎ𝑎𝑟𝑔𝑒𝑠

𝑦𝑒𝑎𝑟
 (5) 

Similarly, the average energy need of an EV per year is:  

𝑝𝐸𝑉 = 𝑓𝐸𝑉 ∗ (𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑎𝑣𝑔 ∗ 0.8) = 1,983.7
𝑘𝑊ℎ

𝑦𝑒𝑎𝑟
 (6) 

With this in mind, we calculate the charging capacity of each charging station within 500m radius. The 
500m radius is chosen as a charging demand node radius as it is generally considered a comfortable 
walking distance to the charging station according to previous studies [24]. First, we calculate the annual 
EV flow within the area 𝑖, given 10% EV penetration rate: 

𝑓𝑙𝑜𝑤𝐸𝑉
𝑖 = 0.1 × 𝑓𝑙𝑜𝑤𝐶𝐴𝑅

𝑖  (7) 

Following this, we calculate the total annual energy requirement of a demand node: 

𝐶𝑡𝑜𝑡𝑎𝑙
𝑖 = 𝑓𝑙𝑜𝑤𝐸𝑉

𝑖 × 𝑝𝐸𝑉[𝑘𝑊ℎ] (8) 

Next, we calculate the current annual power output of the demand node, given the average charger 
power output in the demand area 𝑂𝑎𝑣𝑔[𝑘𝑊], and maximal (24h) utilization: 

𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑖 = 24 × 365 × 𝑛𝑜_𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑠𝑖 × 𝑂𝑎𝑣𝑔

𝑖 [𝑘𝑊ℎ] (9) 

Thus, current demand node coverage is measured as: 

𝐶𝑖 = 𝑚𝑖𝑛 [
𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑖

𝐶𝑡𝑜𝑡𝑎𝑙
𝑖 , 1] [%] (10)

Similarly, to calculate the new demand node coverage when adding a charger with output power cout[kW] 
to a demand node i: 

𝐶𝑛𝑒𝑤
𝑖 = 𝑚𝑖𝑛 [

𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑖 +24×365×𝑐𝑜𝑢𝑡

𝐶𝑡𝑜𝑡𝑎𝑙
𝑖 , 1] [%] (11)

Lastly, to calculate the Incremental Coverage Difference (ICD), when adding a new charger to a demand 
node: 

𝐼𝐶𝐷𝑖 = 𝐶𝑛𝑒𝑤
𝑖 − 𝐶𝑖[%] (12) 

Figure 2 presents an algorithmic method for selecting optimal sites for charger installation based on 
their ICD scores for installation of chargers with a predefined power output. This process involves 
assessing the utility gain for demand nodes resulting from the addition of new charging stations in areas 
that are equipped with ncharging chargers and nparking parking stations. High ICD scores are indicative of 
demand nodes with underserved charging needs due to insufficient infrastructure. 

Conversely, sites meeting or surpassing demand are excluded from consideration. A key advantage of 
this approach is the ranking of candidate stations by their ICD scores, which offers a clear hierarchy of 
installation priority and anticipated impact on meeting the charging demand of individual charging 
nodes. Additionally, the algorithm addresses the practical scenario of bulk charger installation and 
considers how new charging infrastructure influences the charging capacity of nearby demand nodes. 
Additionally, it provides insights into the effects of different deployment strategies on charging demand, 
i.e., a comparison of utility of installing a number of 22kW chargers compared to a number of 50kW 
chargers within city limits. Finally, this solution advocates for leveraging existing parking spaces to 
identify ideal charging locations, thereby potentially reducing investment costs. 
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Figure 2 – Site Selection Algorithm for New Charging Stations 

 

4 Data Collection 

To comprehensively capture the diverse factors impacting charging demand, we build upon existing 
literature (for more details see [5]). To represent demand nodes, we consider an area in r = 500m radius 
around a charging station or parking spot, aligning with the preference for shorter walking distances for 
car charging as noted in [24]. We incorporate a variety of node features, including Points of Interest 
(POI), population statistics, traffic flow, coverage, parking availability, and existing charging stations. 
Additionally, the study integrates aspects related to the Human Development Index, as detailed in the 
Scottish Index of Multiple Deprivation (SIMD) dataset [25].  

Figure 3 visually depicts the construction of these charging demand nodes. Each subfigure highlights a 
demand node centered on an existing charging station or parking spot, with a 500-meter radius 
encompassing relevant metrics. It’s noteworthy that SIMD data is organized into ”data zones”, which 
are specific areas designated for small-scale statistics in Scotland. Table 2 outlines the various data 
sources used in assembling datasets used in this study. OpenStreetMap [27] provides extensive details 
on street-level parking and POIs, including counts of recreational/touristic and social/public service 
POIs. This information is valuable for identifying locations with existing parking infrastructure suitable 
for new EV charging station installation, potentially reducing costs and expediting deployment. 
Additionally, the distribution of POIs aids in strategically placing charging stations in areas where drivers 
are likely to spend considerable time, enhancing charging convenience. Traffic flow data within Glasgow 
City is collected from [28], where only data for cars and taxis is selected. Existing charging infrastructure 
data is collected and pre-processed through the UK National Chargepoint Registry [26], while socio-
demographic data is collected through the Scottish Index of Multiple Deprivation (SIMD) [25]. SIMD 

Algorithm 1: Site Selection Algorithm for New Charging Stations 

Require: Charging nodes 𝒱, Number of chargers to be installed 𝑘, New charger power output 𝑐𝑜𝑢𝑡 

[Kw], Charging node radius 𝑟 

 

  1: Initialize list of new stations: 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠 ← [ ] 

  2: for 𝑖 =  1 to 𝑘 do  

  3:       𝑚𝑎𝑥𝐼𝐶𝐷 ← 0 

  4:       𝑚𝑎𝑥𝐼𝐶𝐷𝑆𝑡𝑎𝑡𝑖𝑜𝑛 ← 𝑛𝑢𝑙𝑙   

  5:       for each node 𝑣 ∈ 𝑉 do 

  6:             Calculate 𝐼𝐶𝐷𝑣 (Eq. 12) 

  7:             if 𝑣𝑡𝑦𝑝𝑒 == 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 and 𝑛𝑝𝑎𝑟𝑘𝑖𝑛𝑔
𝑑 ≥ 1 then 

  8:                    if 𝐼𝐶𝐷𝑣 > 𝑚𝑎𝑥𝐼𝐶𝐷 then 

  9:                          𝑚𝑎𝑥𝐼𝐶𝐷 ← 𝐼𝐶𝐷𝑣     

10:                          𝑚𝑎𝑥𝐼𝐶𝐷𝑆𝑡𝑎𝑡𝑖𝑜𝑛 ←  𝑣 

11:                    end if 

12:              end if 

12:        end for 

14:       Add site 𝑚𝑎𝑥𝐼𝐶𝐷𝑆𝑡𝑎𝑡𝑖𝑜𝑛 to 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠 

15:       for 𝑣 ∈ 𝑉 do 

16:             Calculate the distance 𝑑𝑖𝑠𝑡𝑣 from node 𝑣 to 𝑚𝑎𝑥𝐼𝐶𝐷𝑆𝑡𝑎𝑡𝑖𝑜𝑛 

17:             if 𝑑𝑖𝑠𝑡𝑣 ≤ 𝑟 then 

18:                   𝑛𝑝𝑎𝑟𝑘𝑖𝑛𝑔
𝑣 ← 𝑛𝑝𝑎𝑟𝑘𝑖𝑛𝑔

𝑣 − 1 

19:                   𝑛𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
𝑣 ← 𝑛𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

𝑣 + 1 

20:                   Recalculate node output given newly added 𝑐𝑜𝑢𝑡 (Eq. 11) 

21:             end if 

22:       end for 

23: end for 

24: return 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠 
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contributes in-depth socio-demographic data, encompassing income, employment, health, education, 
service access, and crime statistics. Incorporating SIMD data into the analysis offers valuable insights 
into the socioeconomic context of potential EV charging station sites, ensuring that infrastructure is 
optimally placed to be effective and beneficial, especially in areas that might otherwise lack adequate 
EV infrastructure. 

Figure 3 – Data sources collected and used in this study. 

 

 

 

 

 

 

a) Charging and parking spots 

 

b)   Public service and social POI 

 

c) Deprivation data (SIMD) 
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Table 2 – Experimental results of proposed method for k = 300 placed stations. 

Dataset Core Aspect Selected Attributes 

SIMD [25] Socio 
Demographic 
Factors 

total population, working population, shape area, 
income rate, crime rate, lat, long, avg. car drive to 
public service POIs, avg. public transport drive to 
public service POIs 

UK National Chargepoint 
Registry [26] 

Existing 

Charging 

Infrastructure 

output power (kW), connector type, lat, long 

OpenStreetMap [27] POIs, 
Parking 

lat, long, rec poi: {’restaurant’, ’cafe’, ’bar’, ’theatre’, 
’arts centre’, ’cinema’}, soc poi: {’school’, ’community 
centre’, ’music school’, ’prep school’, ’art school’, 
’university’, ’hospital’, ’kindergarden’, ’pharmacy’, 
’place of worship’, ’bank’, ’doctors’, ’dentist’, 
’kindergarten’, ’social facility’, ’post office’, ’clinic’, 
’childcare’, ’library’, ’police’, ’veterinary’, ’nursing 
home’, ’post depot’, ’fire station’, ’courthouse’, 
’nursery’, ’healthcare’, ’bank’}, parking: {’fuel’, ’parking’, 
’events venue’, ’college’, ’hospital’, ’university’, 
’venue’, ’food court’, ’exhibition centre’, ’community 
centre’, ’townhall’, ’stadium’, ’conference centre’} 

Road Traffic Statistics, UK 

Department of Transport 

[28] 

Traffic Flow cars_and_taxis, lat, long 

 

5 Experimental Evaluation 

The experimental results of the proposed methodology are detailed in Table 3. To ensure a 
comprehensive evaluation, our ChargeDEM GNN-based approach is compared against four distinct 
algorithms: Kmeans clustering, Spectral clustering, Agglomerative clustering, and GraphSAGE [29]. K-
means and spectral clustering analyze the data solely based on its inherent features. On the other hand, 
GraphSAGE employs an unsupervised graph representation technique, aggregating feature information 
from a node’s location and environment. The superior ICD performance of the ChargeDEM model 
signifies its enhanced capability to integrate spatial and demographic data with EV charging 
characteristics, making it more adept at pinpointing strategic locations for urban charging station 
deployment. The improved ICD scores across different station output values highlight the nuanced 
considerations necessary for effective EV infrastructure planning.  

Our model was particularly adept at identifying high-potential areas for new charging infrastructure, 
which is crucial for expanding the EV charging network efficiently and equitably. The use of GNNs 
enabled the model to capture complex spatial and relational data effectively. Additionally, the model 
takes into account how installation in one node affects the neighboring nodes, an often-overlooked 
aspect in heuristic-based approaches.  

For the site selection task, we compare the ICD improvement over k = 300 installed stations for the four 
most common output power values: 7.1kW, 22kW, 34kW and 50kW. Figure 4 showcases the 
percentage of ICD improvement over the number of installed stations, providing a visual representation 
of how strategic deployment can maximize utility and justify investment. The similarity in utility gained 
from installing 60 charging stations at both 7.1kW and 50kW suggests that slow charging stations may 
be adequate in areas within Glasgow City limits, negating the need for higher output stations within city 
environments. This observation points towards a potentially lower need for rapid charging infrastructure 
within urban centers, which is often more expensive to install, leaving the conclusion that such 
investment should be highly targeted and potentially only required near highways. The 22kW stations 
emerge as a pragmatic choice, offering a middle ground that caters well to a wider range of EV charging 
needs, both fast and slow, while still providing considerable ICD improvement. This insight is invaluable 
for stakeholders, as it indicates that a balanced approach to station capacity could serve the diverse 
needs of EV users without incurring excessive installation costs.  
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Figure 4 – CD improvement per energy capacity for the Glasgow City area for k = 300 installed 
charging stations. 

 

Table 3 – Experimental results of proposed method for k = 300 placed stations. 

Algorithm ICD7.1kW ICD22kW ICD34kW ICD50kW 

K-Means 0.2578 0.3756 0.5065 0.5718 

Spectral 0.3374 0.4675 0.5376 0.5895 

Agglomerative 0.3354 0.4684 0.5293 0.5875 

GraphSage 0.2723 0.3893 0.5148 0.5544 

ChargeDEM (Ours) 0.3669 0.5001 0.5772 0.7123 

 

Additionally, as the figure shows, the incremental gains plateau as more stations are added, which 
could inform decision-makers about the point of diminishing returns and help optimize the number of 
stations to install. Furthermore, the results open up discussions about how different urban areas may 
require tailored strategies based on their unique demographic and spatial characteristics. The 
ChargeDEM model’s adaptability to various urban settings could be explored in future research, 
potentially leading to a more customizable framework for infrastructure planning. 

6 Conclusion and Future Work 

This study provides a geodemographic-aware placement of EV charging stations through the usage of 
graph neural networks and quantification of the utility of new charging infrastructure. To address the 
limitations of existing site selection approaches for EV charging station placement, through this 
approach, we address three important factors: modeling of complex spatial relationships within the 
charging demand network, injection of demographic and human development information into the site 
selection process, and quantification of the impact of placed EV charger, both on the immediate 
charging demand node, as well as neighboring nodes. Experimental results performed on the case 
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study of Glasgow City suggest that our methodology helps identify charging stations that provide the 
highest utility and leads to improved charging station utilization. 

The proposed framework introduces three main challenges for future research. First, there’s a need to 
assess the specific spatial contexts of the charging demand nodes, such as distinguishing between 
residential, business, or high-traffic areas. This differentiation could enhance the clustering phase, 
potentially revealing distinct charging patterns linked to different area types. Second, the approach to 
graph construction could be reevaluated. Instead of relying solely on distance, alternative metrics like 
travel or commute time might yield more effective connections between nodes. Finally, the framework 
offers the possibility of being framed as a reinforcement learning problem. In this scenario, the utility 
function described in the current study would serve as the basis for the reward function, guiding the 
learning process towards more effective solutions. 
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