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ABSTRACT
Monoclonal antibody (mAb) solution viscosity in ultra-high concentration formulations is a key develop-
ability consideration in mAb development risk mitigation strategies that has implications for downstream 
processing and patient safety. Predicting viscosity at therapeutically relevant concentrations remains 
critical, despite the need for large mAb quantities for viscosity measurement being prohibitive. Using 
a panel of IgG1s, we examined the suitability of viscosity prediction and fitting models at different mAb 
test concentration regimes. Our findings caution against extrapolation from low concentration measure-
ments, as they lack predictive ability for ultra-high concentration regimes. For the first time, we demon-
strate the importance of analyte concentration range selection, and the need for bespoke viscosity model 
development.
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Introduction

Monoclonal antibodies (mAbs) represent an important therapeutic 
class, with autoinjector-based dosing gaining popularity for patient 
and carer administration. Injection of mAbs subcutaneously 
requires high solution concentrations (>100 mg/mL) and low- 
dose volumes to achieve dose-relevant target therapeutic effects.1

High-concentration mAbs are subjected to substantial 
molecular crowding at ultra-high concentrations, and the con-
formational flexibility of mAbs leads to increased intermole-
cular interactions resulting in elevated opalescence, higher 
protein aggregation risk, phase separation, and elevated solu-
tion viscosity.2 Viscosity, a fluid’s resistance to flow or rate of 
deformation, is mechanistically characterized by examining 
electroviscous effects, mAb molecular size, and surface poten-
tial distributions, with these factors determining the likelihood 
of protein–protein interactions (PPIs).2,3

Developed from colloidal principles, the primary electro-
viscous effect describes the distortion of the electrical double- 
layer in the ultra-dilute regime with varying ionic strength. 
Changes in counterions and the hydration shell around mAbs 
affect their hydrodynamic volume and Brownian motion.4,5 

With the growing demand for ultra-high concentration mAbs, 
secondary electroviscous effects reduce mAb solubility while 
increasing their solution viscosity.2,6 Increased crowding and 
decreased inter-‘particle’ distance increase the pair interaction 
potential.7 The interaction potential is quantified by 
the second virial coefficient (B22) or diffusion interaction para-
meter (kD) that are correlated with solution-phase viscosity.8,9 

However, B22 and kD do not fully capture anisotropic interac-
tions due to surface potential variations.

Beyond pair-wise interactions, cluster formation from solu-
ble mAb oligomerization drives elevated viscosity for high 
concentration mAb solutions. Small-angle X-ray scattering 
experiments and coarse-grained computational simulations 
have revealed mechanisms of mAb self-assembly and micro-
structure formation, directly correlating with increased 
viscosity.10–12

The complexity of interactions contributing to high viscos-
ity, along with manufacturability and injectability risks, has 
driven the development of in silico sequence and structure- 
based models. Regression and clustering models13–15 have 
identified correlations between molecular descriptors derived 
from three-dimensional homology constructs and high con-
centration mAb viscosity. To mitigate the risks of overfitting of 
small, non-diverse datasets, machine learning classification 
tools are used to categorize mAb viscosity risks.11,16–18

Considering manufacturability, product quality, and inject-
ability risks of highly viscous mAb formulations, a variety of 
mitigation strategies have been investigated to improve the 
likelihood of mAb translation to the clinic.19

Currently, there is a knowledge gap in selecting appro-
priate viscosity prediction models for high mAb solution 
viscosity, with no prior cross-comparisons in the ultra-high 
mAb concentration regime. This study comprehensively 
assesses viscosity fit and prediction models for nine anti- 
IL-8 mAbs (eight mutant variants and wild-type (WT)) 
previously manufactured, focusing on high- and ultra- 
high mAb concentration regimes. Using a combined com-
putational and experimental approach, we compare the 
effectiveness of these models for triaging mAb 
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developability. Our findings highlight the necessity of mea-
suring viscosity at dose relevant ultra-high concentrations 
and reveal the limitations of predictive models, low con-
centration hydrodynamic properties and in silico molecular 
descriptors.

Materials and methods

In silico structural modeling and generation of molecular 
descriptors was performed in Molecular Operating 
Environment (MOE) software, version 2020.0901 (Chemical 
Computing Group, Montreal, Canada).

Homology constructs of anti-IL-8 Fv structures

Homology models19 for nine anti-IL-8 antibody variable frag-
ment (Fv) regions, including eight single-point mutants were 
constructed based on the anti-IL-8 IgG1 Fab domain crystal 
structure (PDB: 505B). Using the Antibody modeller feature 
(version 2020.0901) in MOE with default refinement and for-
cefield settings, we created homology constructs and intro-
duced single-point mutations via the Residue Scan feature. 
The same methodology was applied to construct homology 
models for four in-house mAbs.

In silico molecular descriptors

We computed sequence and structure based physicochemical 
descriptors using the Protein Properties tool and Descriptors 
Feature in BioMOE (version 2021-11-18, Chemical Computing 
Group, Montreal, Canada). Viscosity-relevant parameters for 
input into predictive models are reported in Supplementary 
Table S1.

Aggregation propensity tools: TANGO and WALTZ.

The TANGO20,21 (http://tango.crg.es/tango.jsp.) and 
WALTZ22,23 (https://waltz.switchlab.org/) sequence-based 
aggregation propensity tools were used to predict cross-beta- 
sheet formation in all anti-IL-8 IgGs examined.

DeepSCM

A convolutional neural network (https://github.com/ 
Lailabcode/DeepSCM.) was used to assess charge distributions 
of the assumed Fv structure over molecular dynamic 
simulations.17,24 All anti-IL-8 heavy and light chain variable 
sequences were inputted separately as FASTA files and the 
code was run in the terminal on a Linux system.

Viscosity prediction from Fv construct molecular 
descriptors

Three empirical models derived from the regression of viscos-
ity data and molecular descriptors were used to directly predict 
viscosity at either 150 mg/mL13 or 180 mg/mL.9,14

The viscosity model by Li et al. uses the structure-based 
isoelectric point and WALTZ aggregation propensity score, 

normalized by the number of amino acid residues to generate 
relative viscosity predictions.13  

ln ηrel
� �

NresFv

¼ 0:022182 � 0:55131�
pI3D

NresFv

� �

þ 0:00087416

�
PaggWALTZFv

NresFv

� �

(1) 

where ηrel is the relative viscosity, NresFv the number of residues 
in the Fv (N = 227, anti-IL-8 mutant panel), pI3D the structure- 
based isoelectric point, computed from homology constructs 
in MOE, and PaggWALTZFv the WALTZ aggregation propensity 
score for the Fv construct.

The Sharma viscosity model incorporated a hydrophobic 
index score (HI) and the Fv charge symmetry (FvCSP) to 
account for nonpolar attractive interactions, and repulsive 
interactions arising from net charge.14  

η ¼ 10 0:15þ1:26 0:6ð Þð ÞHI� 0:043Fvcharge� 0:02 0:015ð ÞFvCSPð Þ (2A) 

HI ¼ �
ΣniEi

ΣnjEj

� �

(2B) 

where η is the dynamic viscosity, FvCSP is the Fv charge 
symmetry, and HI the hydrophobic index, calculated using 
Equation 3B. ni represents the number of hydrophobic 
amino acids (i.e., A, C, F, I, L, P, V, G, W, and Y), and nj 
the hydrophilic amino acids (i.e., D, E, H, K, M, N, Q, R, S, 
and T). E is the Eisenberg hydrophobicity score for each 
residue.25

Tomar et al. developed an empirical viscosity prediction 
model from the regression of molecular descriptors for 16 
mAbs.15  

ln
η
η0
¼ � 0:58þ Bc (3A) 

B ¼ � 0:0044� pI3D þ 0:056 (3B) 

where η is the dynamic viscosity and η0 the buffer viscosity. 
−0.58 is used as the average value of intercept of the slope (B) 
when ln η

η0 
is plotted against antibody concentration (c), which 

is 180 mg/mL in the original study.15

The Tomar model Equation 3A was used to fit concentra-
tion–viscosity profiles, using parameterization with experi-
mental viscosity measurements to interpolate/extrapolate 
viscosity at different concentrations (Table 1).

Protein expression and purification

An anti-IL-8 IgG panel was generated in a Chinese Hamster 
Ovary glutamine-synthetase-knockout cell line.19 Cation 
exchange polishing followed before diafiltration by small-scale 
tangential flow filtration (pH monitored and remained at pH 6.0 
(±0.2) throughout concentration and diafiltration steps) and con-
centration to ≥150 mg/mL in a proprietary histidine-based for-
mulation buffer containing trehalose and arginine (pH 6.0, 0.1 M 
ionic strength). Identity and purity was confirmed for each 
molecule.19 All samples for low concentration analytics were 

2 G. B. ARMSTRONG ET AL.

http://tango.crg.es/tango.jsp
https://waltz.switchlab.org/
https://github.com/Lailabcode/DeepSCM
https://github.com/Lailabcode/DeepSCM


prepared from the dilution of the highly concentrated mAb 
product.

Viscosity measurement

A VROC Initium (Rheosense, United States) was used to 
measure viscosity using the ‘Auto’ shear rate function at 
fixed shear rates (100, 180, 500, 1000, and 2000s−1). 
Newtonian behavior was observed across all IgGs, with con-
sistent viscosities recorded across shear rates tested (averages 
reported). Sample viscosity was measured up to 260 mg/mL to 
derive viscosity–concentration profiles. Viscosity data were 
segmented into two concentration regimes: high (≤120 mg/ 
mL)19 and ultra-high (≤260 mg/mL, inclusive of high concen-
tration data). Data were subjected to the following criteria: 
priming segments were excluded, the percent full scale was in 
the 5–95% range, the R2 fit of the pressure sensor position 
was ≥0.998, and transient curves reached steady plateaus with 
no drift.

Viscosity parameter fitting

An exponential growth, a simplified three-parameter exponen-
tial, a modified Ross-Minton and Tomar viscosity models were 
used to fit viscosity–concentration data for the mAb panel to 
determine the optimal model (Table 1).

Intrinsic viscosity calculation
For intrinsic viscosity η½ � measurements multiple priming seg-
ments were set up, followed by 10 replicates at the maximum 
shear rate (23,080 s−1). Formulation buffer and test mAbs 
(5–50 mg/mL) were measured to determine the relative visc-
osities (ηrel) (Equation 4), from which the specific (ηsp) 
(Equation 5) and reduced viscosities (ηred) (Equation 6) 
could be calculated. 

ηrel ¼
η
η0

(4) 

where the relative viscosity (ηrel), (cP), is the apparent dynamic 
viscosity of the sample η (cP), divided by the apparent dynamic 
viscosity of the formulation buffer only, η0 (cP). 

ηsp ¼ ηrel � 1 (5) 

where the specific viscosityðηsp) (cP), which can be used to 
calculate the reduced viscosity (ηredÞ, (cP): 

ηred ¼
ηsp

c
(6) 

where c is the mAb solution concentration (mg/mL).
The Huggins equation describes the concentration- 

dependence of ηred in the dilute concentration linear region: 

ηred ¼ η½ � þ kH η½ �2c (7) 

where [η] is the intrinsic viscosity (mL/g), kH is the Huggins 
coefficient.

Slopes and intercepts from the linear regression of ηred 
versus the mAb concentration range were used to compute 
the Huggins coefficient (kH): 

kH ¼
slopef cð Þ

η½ �avg
2 (8) 

The intrinsic viscosity η½ �avg was determined from the 
intercept.

The uncertainty of kH was calculated from the propagation 
of the error equation: 
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where kH is the Huggins coefficient, η½ �avg
2 the squared intrin-

sic viscosity from either respective linear regression, σ η½ �avg
2 

the error of squared intrinsic viscosity, calculated as 

σ η½ �avg
2
¼ η½ �avg

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� σ η½ �avg
η½ �avg

� �2
r

, x the slope determined 

from linear regression, and σx error of the slope.

Table 1. Viscosity model equations. η is the dynamic viscosity (cP), and c the concentration (mg/mL). For the exponential growth equation, Y0 the intercept (cP), k the 
rate constant (mL/mg). For the three-parameter exponential equation, α2 the slope for concentration versus ln(η) and α3 the slope for 1 divided by the temperature 
(K−1) versus ln ηð Þ, and α1 the intercept (cP). For the modified Ross-Minton model, η0 represents the buffer viscosity (cP) set at 1.13, η½ � the intrinsic viscosity, k the 
crowding factor, v the simha shape parameter. η½ �, k and v were estimated using the Generalized Reduced Gradient non-linear solver function to find the local optimum 
value to reduce the sum of squared errors. Finally, for the tomar model ln Að Þ is the intercept of the slope B, when ln η

η0 
is plotted against concentration. To find the knee 

of each exponential model, each equation was solved with the first derivative (dη
dc) set to 1. For the Ross Minton model, this required solving for c numerically, using the 

generalized reduced gradient non-linear solver function with the objective of dη
dc = 1.

Model 
name Exponential growth

Three-parameter 
exponential Modified Ross-Minton2 Tomar9,15

Equation η ¼ Y0ekC
η ¼ e a1þa2�cþ

a3
Tð Þ

η ¼ η0exp η½ �c
1� κ

υð Þ η½ �c

� �
ln η

η0
¼ ln Aþ Bc

References Simple formula to describe concentration- 
dependent viscosity26,27 The exponential 
coefficient, k, can be used to simplify 
correlations to other hydrodynamic/ 
biophysical parameters. Used for viscosity 
prediction in neural networks16

In-house model 
developed from 
simplification of 
an empirical 
model28

A widely used formula, derived from Mooney’s 
semi-empirical equation relating effective 
volume fraction to intrinsic viscosity.29 Used 
in fitting viscosity curves30,31 as well as 
deriving viscosity and hydrodynamic 
parameters.4,31,32

Linearized exponential 
derived from prediction 
of viscosity curves on 
a dataset of 16 mAbs.15

Knee  
of curve 
equation

c ¼
ln 1

Υ0 k

k c ¼
ln 1

a2

� �� �
� a1 � a3

a2

dη
dc ¼ 1 ¼ η� η½ �

1� κ
νð Þ�η�c

� �

c ¼
ln 1

Bη0 A

� �

B
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An exponential coefficient (kexp) for the relative viscosity 
was calculated from fitting ηrel to Equation 10 with the 
Generalized Reduced gradient least squares solver function. 
This empirical model has previously been applied to systems 
in which an exponential relationship exists between viscosity 
and concentration:26,33  

ηrel ¼ ekexp�c (10) 

Theoretical hydrodynamic properties
Hydrodynamic volume fraction and predicted intrinsic visc-
osities were computed for each anti-IL-8 molecule. The 
volume fraction (ϕ) per mutant was computed as follows:34  

rh ¼
3 η½ �Mw

10πNA

� �1
3 

ϕ ¼
cNA

Mw

� �
4πrh

3 

where rh is the hydrodynamic radius (nm) determined from 
[η] (nm3/g), Mw is molecular weight (g/mol), and NA is the 
Avogadro constant (mol−1). This was used to calculate ϕ (the 
volume fraction (nm3/g)), at a certain c (concentration 
(g/nm3)).

Hydrodynamic properties predictions
The HYDROPRO program (version 10)35 was used to predict 
the hydrodynamic properties for each anti-IL-8 molecule. Full 
IgG homology constructs were exported in pdb format and 
analyzed using the residue-level shell and bead calculation 
modes, with partial specific volumes set at 0.75 mL. 
Molecular weights were obtained from peptide mapping liquid 
chromatography-mass spectrometry experiments.19

Shape factor estimation
The shape factor (v) was calculated by computing the solvent- 
accessible surface area (SASA) and protein volume (water 
probe) of full IgG homology constructs generated in MOE 
(Chemical Computing Group, Montreal, Canada)36:  

Ψ ¼
SASA
V2=3 

Ψ ¼ 1:454vþ 7:085 

where Ψ is the geometric shape coefficient and v the shape 
factor.

Biophysical analysis of anti-IL-8 molecules

Assessment of colloidal parameters

Dynamic light scattering was used to measure diffusion coeffi-
cients in the 1–20 mg/mL concentration range (Stunner, 
Unchained Labs, CA, USA).19 Diffusion coefficients and size 
data were calculated from the correlation function, which uses 
cumulant analysis within the Stunner software (Unchained 
Labs, CA, USA). All measurements had cumulative variance  
<0.01 and correlogram amplitude intercepts of >0.6. 
Formulation buffer alone measurements showed no significant 

decay in correlograms over experiment duration. 
Hydrodynamic radii (rhDLS) were obtained by halving the 
mean Z-ave diameters obtained for each molecule. Five mea-
surements were performed at 25°C with 10-s acquisition times. 
A 1% extinction coefficient of 1.55 AUL/(gcm) was applied for 
all panel molecules. Samples were prepared in formulation 
buffer (pH 6.0) and data were analyzed using the Lunatic & 
Stunner software (Unchained Labs, CA, US, version 8.1.0.244). 
The self-interaction parameter, kD, was obtained from the 
linear fit of concentration-dependent diffusion coefficient 
behavior: 

Dapp ¼ D0 1þ kDcð Þ

where Dapp is the cumulative diffusion coefficient, D0 the self- 
diffusion coefficient at infinite dilution, and kD the interaction 
parameter. This equation assumes linearity of diffusion coeffi-
cients over a concentration range (c), which is usually valid for 
antibody solutions at <10 mg/mL concentrations.

Measurement of isoelectric point

Capillary isoelectric focussing was used to measure charge hetero-
geneity and isoelectric point of the IgG panel, using a previously 
described method.19 The Empower 3 software (v4, Waters, US) 
was used for data processing, isoform assignment, and analysis.

Electrophoretic light scattering

The zeta potential (ζ) of all molecules was measured in the 
formulation buffer (pH 6.0, 5 mg/mL) using a Zetasizer Nano 
ZS (Malvern Panalytical, Malvern, UK).19 All samples were 
filtered before measurements that used default settings; an equi-
libration time of 120 s, automatic attenuation, and 10–100 
measurement runs with a one-minute pause between measure-
ments. At least three technical replicate measurements were 
performed and standard deviations are reported.

Statistical analysis

JMP Pro (version 17.0.0, 2022) was used for correlation ana-
lysis between computational and experimental data and pre-
dictive modeling. For partial least squares modeling (PLS), 
a non-linear iterative PLS algorithm was selected with leave 
one-out cross-validation. This model is based on the lowest 
mean root predicted residual error sum of squares (PRESS) 
and the best Q2 (i.e. 1 − PRESS/sum of squared deviation from 
mean). Training data included all panel IgGs and the test data 
consisted of four in-house early-stage molecules.

Results

In this study, we applied various viscosity modeling approaches 
to predict and fit concentration-dependent viscosity profiles of 
a panel of nine anti-IL-8 IgG1 molecules formulated in the same 
buffer. Eight of these IgGs carry single-point mutations, 
designed to disrupt negative (D17N, D70N, D28N, and 
D56N), hydrophobic (V5Q, W32Q), or positive patches 
(K42E, R53G). Computational and experimental molecular 
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descriptors for this IgG panel are published elsewhere.19 We 
examined the solution viscosity at high (≤120 mg/mL) and 
ultra-high (≤260 or noted as >120 mg/mLmg/mL) mAb con-
centrations to compare viscosity–concentration profile fits.1

Viscosity profile fitting for the anti-IL-8 mAb mutant panel

Viscosity–concentration data are crucial for fitting models that 
extrapolate to higher concentrations or interpolate between 
points. Table 2 compares four viscosity–concentration fit 
models across two regimes: ≤120 mg/mL (high- 
concentration) and ≤260 mg/mL (ultra-high concentration) 
(Figures 1 and 2) formulated in the same buffer (pH 6.0). 
While D70N and W32Q mutants exhibited viscosity reduction 
relative to the WT at the high-concentration regime 
(Figures 1a and2a), none exhibited reduced viscosity at ultra- 
high mAb concentrations.

A critical feature of viscosity–concentration curves is the 
identification of the point where the curvature shifts to 
pseudo-exponential growth. We used this knee point to define 
this critical concentration and compared this knee point in 
four model fits derived from the same viscosity–concentration 
data in two concentration regimes for all nine molecules. 
Significant shifts in the knee of viscosity–concentration curves 
were observed with each model, altering conclusions about the 
viscosity-altering effects of single-point mutations (Table 1). 
For example, D70N consistently showed reduced viscosity 
relative to WT in all fits at the lower concentration regime 
(Figure 1a). However, when including ultra-high concentra-
tion data, overall viscosity reduction was negligible except with 
the exponential growth model (Figure 1b). These findings 
demonstrate the importance of capturing complete viscosity– 
concentration profiles rather than relying on interpolated or 
extrapolated data, as conclusions may vary considerably 
between different viscosity models and concentration regimes.

The Ross-Minton model describes the self-crowding para-
meter, k, and Simha shape parameter, v. Previous work has 
reported non-self-associating mAbs to have a k/v value of 
0.38.31 Here, we observed much lower k/v values, indicating 
an increase in molecular packing resulting from increased 
attractive forces, particularly at the high concentration (>120  
mg/mL) regime viscosity profiles (Supplementary Table S2).

Goodness-of-fit assessment (average R2) for the growth- 
exponential or modified Ross-Minton models across both 
concentration regimes were determined as 0.90 and 0.92 for 
high- and ultra-high-concentration range data, respectively 
(Supplementary Information). However, both the growth- 
exponential and Ross-Minton equations significantly overesti-
mated predicted viscosity with the high-concentration range 
viscosity–concentration data (Table 2).

A key question to answer is if the models from high con-
centration data can predict or scale to ultra-high concentration 
data (Table 2 and Supplementary Information)? Large discre-
pancies in the predicted viscosity from the high concentration 
regime to the ultra-high concentration regime were observed 
(% differences −186% to + 177%), highlighting the lack of 
predictive power from dose-relevant ultra-high concentrations 

based on viscosity data obtained for the high-concentration 
regime. Additionally, comparisons of the ranking of predicted 
viscosities per molecule from the high concentration at 180  
mg/mL did not align to the ultra-high concentration regime 
for any of the model equation fits (Table S3). Most predictions 
of ultra-high concentration data based on the high- 
concentration regime viscosity models demonstrated 
increased uncertainty and error, as well as reduced accuracy 
in measured viscosity points. For example, the growth expo-
nential model for V5Q showed increased uncertainty when 
predicting ultra-high concentration viscosities (180 mg/mL) 
with broadening of 95% confidence intervals (from predicted 
245 (±27.8) cP to 245 (±125) cP) and reduced R2 (from 0.98 to 
0.78). Additionally, the modified Ross-Minton high concen-
tration viscosity models showed numerous overpredictions. 
High concentration viscosity measurements may not accu-
rately account for the complex anisotropic interactions occur-
ring at ultra-high mAb concentrations with increased 
molecular crowding, including the formation of clusters or 
transient networks.12,37

Intrinsic viscosity, pair-wise interactions, and 
hydrodynamic properties of the anti-IL-8 mAb panel

One method of assessing anti-IL-8 mAb contribution to the 
solution viscosity is to determine the intrinsic viscosity ([η]) 
(Supplementary Table S4). Apparent dynamic viscosity was 
calculated in the dilute concentration regime (0–50 mg/mL), 
and reduced viscosities (ηred) and ln(ηrel)/c plotted against 
mAb concentration (Supplementary Figures S1 and S2). The 
intercept of each plot was reported as intrinsic viscosity, [η]H 
and [η]K, which were averaged to determine [η]avg. Most anti- 
IL-8 mAb mutants had similar [η]avg values, but R53G had 
a higher intrinsic viscosity, indicating an increased excluded 
volume effect.

To account for any curvature in reduced viscosities over 
concentration plots, a second order polynomial fit was applied 
to the ηrel profiles of each anti-IL-8 mAb (Supplementary 
Figure S3), with the assumed approximation that intrinsic 
viscosity ([η]v)= k1 in the equation ηrel ¼ 1þ k1cþ k2c2.38 The 
[η]v values aligned with linear-derived intrinsic viscosity 
([η]avg) (R2 = 0.73) (Supplementary Figure S4), but showed 
increased variation amongst the anti-IL-8 panel.

The HYDROPRO tool39 was used to compute the intrinsic 
viscosity ([η]HYD) and radius of gyration (Rg) estimations for 
anti-IL-8 mutants (Supplementary Table S4). These were com-
puted at residue levels in both shell and bead mode. Though no 
strong correlations were found with [η]HYD to experimental [η] 
(<0.7 R2) in either mode, the residue-shell mode better aligned 
to the experimental intrinsic viscosity ([η]avg) (R2 = 0.59) than 
the residue-bead mode (R2 = 0.20) (Supplementary Figure S5).

Intrinsic viscosity can also be derived from the Ross- 
Minton model (Table 1 and Supplementary Table S2). Here, 
the Ross-Minton derived viscosities poorly correlated with 
[η]avg in both concentration regimes (Supplementary Figure 
S6). This demonstrates how the ultra-high-concentration data, 
from which the Ross-Minton viscosity is derived, skews [η] to 
no longer be representative of molecular size and molecular 
diffusivity in the ultra-dilute regime.

MABS 5



Ta
bl

e 
2.

 M
od

el
 r

es
ul

ts
 o

f 
in

te
rp

ol
at

ed
/e

xt
ra

po
la

te
d 

vi
sc

os
it

y 
va

lu
es

 a
t 

18
0 

m
g/

m
L 

an
d 

pr
ed

ic
ti

on
s 

fo
r 

ul
tr

a-
hi

gh
 c

on
ce

nt
ra

ti
on

 v
is

co
si

ti
es

 (a
t 

18
0 

m
g/

m
L)

 b
y 

m
od

el
s 

tr
ai

ne
d 

fr
om

 h
ig

h 
co

nc
en

tr
at

io
n 

da
ta

 o
nl

y.
 a

, 
re

su
lts

 fr
om

 g
ro

w
th

 e
xp

on
en

tia
l a

nd
 th

re
e-

pa
ra

m
et

er
 e

xp
on

en
tia

l m
od

el
s.

 b
, r

es
ul

ts
 fr

om
 m

od
ifi

ed
 R

os
s 

M
in

to
n 

an
d 

To
m

ar
 e

qu
at

io
n 

m
od

el
s.

 C
oe

ffi
ci

en
t o

f d
et

er
m

in
at

io
n 

an
d 

go
od

ne
ss

-o
f-

fit
 (R

2 
pa

ra
m

et
er

). 
*P

re
di

ct
ed

 v
is

co
si

ty
 is

  
>

20
,0

00
 c

P 
or

 h
as

 r
ea

ch
ed

 m
od

el
 fa

ilu
re

 (~
0 

cP
). 

95
%

 c
on

fid
en

ce
 in

te
rv

al
s 

ar
e 

sh
ow

n 
in

 b
ra

ck
et

s 
be

lo
w

 c
al

cu
la

te
d 

vi
sc

os
iti

es
. P

er
ce

nt
ag

e 
di

ffe
re

nc
es

 b
et

w
ee

n 
vi

sc
os

ity
 p

re
di

ct
io

ns
 a

t 
18

0 
m

g/
m

L 
fr

om
 u

ltr
a-

hi
gh

-c
on

ce
nt

ra
tio

n 
ve

rs
us

 h
ig

h-
co

nc
en

tr
at

io
n 

da
ta

 w
er

e 
ca

lc
ul

at
ed

 w
ith

 c H
IG

H
�

c M
ID
Þ

c H
IG

H
þ

C M
ID

2

�
10

0.
 V

is
co

si
ty

 p
re

di
ct

io
ns

 f
ro

m
 t

he
 h

ig
h-

co
nc

en
tr

at
io

n 
da

ta
 t

ha
t 

ex
ce

ed
ed

 p
re

di
ct

io
ns

 f
ro

m
 t

he
 u

ltr
a-

hi
gh

-c
on

ce
nt

ra
tio

n 
da

ta
 (

ne
ga

tiv
e 

%
 d

iff
er

en
ce

s)
 a

re
 

hi
gh

lig
ht

ed
 in

 r
ed

.

G
ro

w
th

 e
xp

on
en

tia
l

3-
pa

ra
m

et
er

 e
xp

on
en

tia
l

a
M

od
el

 r
es

ul
ts

H
ig

h 
co

nc
en

tr
at

io
n 

m
od

el
 

pr
ed

ic
tio

n
M

od
el

 r
es

ul
ts

H
ig

h 
co

nc
en

tr
at

io
n 

m
od

el
 

pr
ed

ic
tio

n

M
ol

ec
ul

e
Co

nc
en

tr
at

io
n 

re
gi

m
e

Vi
sc

os
ity

 m
od

el
le

d 
(c

P)
 a

t 
18

0 
m

g/
m

L
R2

%
 d

iff
er

en
ce

 in
 η

 b
et

w
ee

n 
co

nc
. r

eg
im

e
Vi

sc
os

ity
 p

re
di

ct
io

n 
(a

t 
18

0 
m

g/
m

L)
 (c

P)
R2

Vi
sc

os
ity

 m
od

el
le

d 
(c

P)
 a

t 
18

0 
m

g/
m

L
R2

%
 d

iff
er

en
ce

 in
 η

 b
et

w
ee

n 
co

nc
. r

eg
im

e
Vi

sc
os

ity
 p

re
di

ct
io

n 
(a

t 
18

0 
m

g/
m

L)
 (c

P)
R2

W
T

<
12

0 
m

g/
m

L 
(h

ig
h)

47
.6

9 
(4

3.
12

–5
1.

9)
0.

97
5

52
%

47
.6

9 
(3

4.
77

– 
54

.9
7)

0.
91

1
41

.2
3 

(3
7.

7–
44

.7
6)

0.
97

4
45

%
41

.2
3 

(3
3.

57
–4

8.
89

)
0.

91
2

>
12

0 
m

g/
m

L 
(u

ltr
a-

hi
gh

)
81

.2
4 

(6
5.

36
–9

7.
12

)
0.

91
0

65
.2

9 
(4

8.
78

–8
1.

80
)

0.
90

5

D
17

N
 

(F
W

RL
)

<
12

0 
m

g/
m

L 
(h

ig
h)

24
42

.8
8 

(1
83

1.
02

– 
30

54
.7

4)
0.

95
8

–1
86

%
24

42
.8

8 
(–

2.
85

x1
05 – 

2.
89

x1
05 )

0.
48

2
86

.4
3 

(6
4.

72
–1

08
.1

4)
0.

84
8

–9
%

86
.4

3 
(6

3.
43

–1
09

.4
3)

0.
76

2

>
12

0 
m

g/
m

L 
(u

ltr
a-

hi
gh

)
90

.8
9 

(7
6.

96
–1

04
.8

2)
0.

81
7

79
.3

4 
(5

9.
58

–9
9.

1)
0.

76
7

D
70

N
 

(F
W

RL
)

<
12

0 
m

g/
m

L 
(h

ig
h)

18
.2

6 
(1

7.
32

–1
9.

2)
0.

99
8

12
4%

18
.2

6 
(1

6.
4–

20
.1

2)
0.

95
5

16
.8

 (1
5.

86
–1

7.
74

)
0.

99
7

12
2%

16
.8

 (1
5.

07
–1

8.
53

)
0.

95
1

>
12

0 
m

g/
m

L 
(u

ltr
a-

hi
gh

)
77

.5
2 

(6
9.

4–
85

.6
4)

0.
97

3
69

.2
4 

(6
1.

26
–7

7.
22

)
0.

97
2

K4
2E

 
(F

W
RL

)
<

12
0 

m
g/

m
L 

(h
ig

h)
42

28
.5

 (3
80

3.
84

–4
65

3.
16

)
0.

99
3

12
0%

42
28

.5
 (–

51
9.

66
–8

97
6.

66
)

0.
71

8
12

1.
63

 (9
9.

83
–1

43
.4

3)
0.

86
2

31
%

12
1.

63
 (1

06
.9

4–
13

6.
32

)
0.

47
2

>
12

0 
m

g/
m

L 
(u

ltr
a-

hi
gh

)
17

02
3.

12
 (1

55
75

.1
– 

18
47

1.
2)

0.
98

4
16

6.
9 

(1
46

.2
5–

18
7.

55
)

0.
49

6

V5
Q

 (F
W

RH
)

<
12

0 
m

g/
m

L 
(h

ig
h)

24
5.

03
 (2

26
.1

5–
28

1.
91

)
0.

98
5

10
1%

24
5.

03
 (1

19
.6

5–
37

0.
41

)
0.

77
9

44
.5

4 
(4

0.
19

–4
8.

89
)

0.
97

4
57

%
44

.5
4 

(2
1.

26
–6

5.
80

)
0.

76
2

>
12

0 
m

g/
m

L 
(u

ltr
a-

hi
gh

)
80

.7
6 

(6
0.

84
–1

00
.6

8)
0.

78
9

80
.4

2 
(6

5.
63

–9
5.

21
)

0.
75

4

W
32

Q
 

(C
D

RH
)

<
12

0 
m

g/
m

L 
(h

ig
h)

13
.0

2 
(8

.8
1–

17
.2

3)
0.

55
2

13
2%

13
.0

2 
(1

0.
49

–1
5.

55
)

0.
74

3
19

.6
2 

(1
1–

28
.2

4)
0.

53
8

13
0%

19
.6

2 
(1

5.
61

–2
3.

63
)

0.
80

7

>
12

0 
m

g/
m

L 
(u

ltr
a-

hi
gh

)
63

.1
6 

(4
9.

04
–7

7.
28

)
0.

98
6

92
.8

7 
(7

4.
24

–1
11

.5
)

0.
94

7

D
28

N
 

(C
D

RL
)

<
12

0 
m

g/
m

L 
(h

ig
h)

89
.3

8 
(7

3.
49

–1
05

.2
7)

0.
94

2
7%

89
.3

8 
(8

6.
12

–9
2.

64
)

0.
99

7
51

.7
7 

(4
3.

62
–5

9.
92

)
0.

92
7

59
%

51
.7

7 
(4

9.
07

–5
4.

47
)

0.
98

9

>
12

0 
m

g/
m

L 
(u

ltr
a-

hi
gh

)
95

.9
8 

(9
2.

37
–9

9.
59

)
0.

99
7

94
.7

7 
(9

1.
2–

98
.3

4)
0.

99
7

D
56

N
 

(C
D

RL
)

<
12

0 
m

g/
m

L 
(h

ig
h)

62
.2

 (4
6.

11
–7

8.
29

)
0.

84
1

15
4%

62
.2

 (5
6.

22
–6

8.
18

)
0.

81
7

24
.0

8 
(2

0.
26

–2
7.

9)
0.

79
1

16
7%

24
.0

8 
(2

1.
76

–2
6.

4)
0.

80
0

>
12

0 
m

g/
m

L 
(u

ltr
a-

hi
gh

)
48

1.
55

 (3
85

.5
2–

57
7.

58
)

0.
81

3
26

3.
87

 (2
28

.2
8–

29
9.

46
)

0.
80

2

R5
3G

 
(C

D
RL

)
<

12
0 

m
g/

m
L 

(h
ig

h)
20

8.
26

 (1
43

.9
7–

27
2.

55
)

0.
82

5
–1

34
%

20
8.

26
 (1

38
.5

5–
27

7.
97

)
0.

83
5

11
3.

15
 (8

5.
43

–1
40

.4
5)

0.
81

9
82

%
11

3.
15

 (7
9.

33
–1

46
.9

7)
0.

80
8

>
12

0 
m

g/
m

L 
(u

ltr
a-

hi
gh

)
41

.2
6 

(–
72

.1
2–

15
4.

64
)

0.
92

0
26

9.
73

 (2
03

.7
1–

38
9.

75
)

0.
84

0

(C
on

tin
ue

d)

6 G. B. ARMSTRONG ET AL.



Ta
bl

e 
2.

 (C
on

tin
ue

d)
.

M
od

ifi
ed

 R
os

s-
M

in
to

n
To

m
ar

b
M

od
el

 r
es

ul
ts

H
ig

h 
co

nc
en

tr
at

io
n 

m
od

el
 

pr
ed

ic
tio

n
M

od
el

 r
es

ul
ts

H
ig

h 
co

nc
en

tr
at

io
n 

m
od

el
 

pr
ed

ic
tio

n

M
ol

ec
ul

e
Co

nc
en

tr
at

io
n 

re
gi

m
e

Vi
sc

os
ity

 m
od

el
le

d 
(c

P)
 a

t 
18

0 
m

g/
m

L
R2

%
 d

iff
er

en
ce

 in
 η

 b
et

w
ee

n 
co

nc
. r

eg
im

e
Vi

sc
os

ity
 p

re
di

ct
io

n 
(a

t 
18

0 
m

g/
m

L)
 (c

P)
R2

Vi
sc

os
ity

 m
od

el
le

d 
(c

P)
 a

t 
18

0 
m

g/
m

L
R2

%
 d

iff
er

en
ce

 in
 η

 b
et

w
ee

n 
co

nc
. r

eg
im

e
Vi

sc
os

ity
 p

re
di

ct
io

n 
(a

t 
18

0 
m

g/
m

L)
 (c

P)
R2

W
T

<
12

0 
m

g/
m

L 
(h

ig
h)

15
4.

59
 (1

41
.8

5–
16

7.
33

)
0.

98
2

–1
06

%
15

4.
59

 (–
5.

82
x1

04 – 
5.

85
x1

04 )
0.

33
59

.4
 (5

3.
31

–6
5.

49
)

0.
97

7
53

%
59

.4
 (4

5.
66

–7
3.

14
)

0.
90

8

>
12

0 
m

g/
m

L 
(u

ltr
a-

hi
gh

)
47

.6
3 

(2
5.

38
–6

9.
88

)
0.

86
5

10
2.

5 
(6

6.
85

–1
38

.1
5)

0.
89

2

D
17

N
 

(F
W

RL
)

<
12

0 
m

g/
m

L 
(h

ig
h)

To
o 

hi
gh

*
0.

99
1

–
O

ve
rp

re
di

ct
iv

e
–

13
9.

72
 (9

6.
5–

18
2.

94
)

0.
86

6
–1

0%
13

9.
72

 (7
2.

37
–2

07
.0

7)
0.

72
7

>
12

0 
m

g/
m

L 
(u

ltr
a-

hi
gh

)
94

.2
2(

80
.2

2–
10

8.
22

)
0.

82
6

12
6.

74
 (7

3.
36

–1
80

.1
2)

0.
73

3

D
70

N
 

(F
W

RL
)

<
12

0 
m

g/
m

L 
(h

ig
h)

19
.7

6 
(1

8.
93

–2
0.

59
0.

99
9

11
9%

19
.7

6 
(1

7.
79

–2
1.

73
)

0.
97

20
.9

7 
(2

0.
08

–2
1.

86
)

0.
99

9
13

5%
20

.9
7 

(1
3.

28
–2

8.
66

)
0.

96
2

>
12

0 
m

g/
m

L 
(u

ltr
a-

hi
gh

)
77

.8
8 

(6
9.

74
–8

6.
02

)
0.

97
3

10
7.

72
 (9

0.
33

–1
25

.1
1)

0.
96

7

K4
2E

 
(F

W
RL

)
<

12
0 

m
g/

m
L 

(h
ig

h)
To

o 
hi

gh
*

0.
99

9
–

O
ve

rp
re

di
ct

iv
e

–
19

9.
84

(1
55

.9
2–

24
3.

76
)

0.
88

7
38

%
19

9.
84

 (1
73

.2
–2

26
.5

)
0.

49
9

>
12

0 
m

g/
m

L 
(u

ltr
a-

hi
gh

)
To

o 
hi

gh
*

0.
99

0
29

4.
29

(2
46

.6
9–

34
1.

89
)

0.
52

4

V5
Q

 (F
W

RH
)

<
12

0 
m

g/
m

L 
(h

ig
h)

To
o 

hi
gh

*
0.

99
3

–
O

ve
rp

re
di

ct
iv

e
–

19
3.

43
 (1

71
.2

9–
21

5.
57

)
0.

98
1

–4
3%

19
3.

43
(1

19
.4

9–
26

7.
37

)
0.

77
3

>
12

0 
m

g/
m

L 
(u

ltr
a-

hi
gh

)
79

.7
6 

(6
0.

35
–9

9.
17

)
0.

79
5

12
4.

59
 (9

4.
07

–1
55

.1
1)

0.
76

6

W
32

Q
 

(C
D

RH
)

<
12

0 
m

g/
m

L 
(h

ig
h)

24
.4

9 
(1

2.
52

–3
6.

46
)

0.
52

7
96

%
24

.4
9 

(1
9.

39
–2

9.
59

)
0.

85
24

.6
7 

(1
2.

32
–3

6.
66

)
0.

52
8

14
3%

24
.6

7 
(1

9.
54

–2
9.

8)
0.

84
3

>
12

0 
m

g/
m

L 
(u

ltr
a-

hi
gh

)
70

.0
2 

(5
6.

39
–8

3.
65

)
0.

98
9

14
8.

81
 (1

18
.6

5–
17

8.
97

)
0.

96
7

D
28

N
 

(C
D

RL
)

<
12

0 
m

g/
m

L 
(h

ig
h)

To
o 

hi
gh

*
0.

99
1

–
O

ve
rp

re
di

ct
iv

e
–

76
.4

2 
(6

2.
88

–8
9.

96
)

0.
93

7
67

%
76

.4
2 

(7
3.

45
–7

9.
39

)
0.

99
6

>
12

0 
m

g/
m

L 
(u

ltr
a-

hi
gh

)
76

.2
1 

(6
6.

69
–8

5.
73

)
0.

98
2

15
3.

64
 (1

43
.2

5–
16

4.
03

)
0.

99
6

D
56

N
 

(C
D

RL
)

<
12

0 
m

g/
m

L 
(h

ig
h)

89
2.

43
(6

75
.9

4–
11

08
.9

2)
0.

87
8

–5
8%

89
2.

43
 (–

-5
43

.9
–2

32
8.

8)
0.

46
31

.2
 (2

5.
48

–3
6.

92
)

0.
80

7
17

7%
31

.2
 (2

8.
2–

34
.2

)
0.

80
9

>
12

0 
m

g/
m

L 
(u

ltr
a-

hi
gh

)
49

1.
72

(3
91

.0
7–

59
2.

37
)

0.
82

4
50

3.
71

 (3
77

.5
3–

62
9.

89
)

0.
78

7

R5
3G

 
(C

D
RL

)
<

12
0 

m
g/

m
L 

(h
ig

h)
To

o 
hi

gh
*

0.
99

5
–

O
ve

rp
re

di
ct

iv
e

–
17

8.
38

 (1
24

.8
9–

23
1.

87
)

0.
82

3
93

%
17

8.
38

(1
21

.1
1–

23
5.

65
)

0.
82

7

>
12

0 
m

g/
m

L 
(u

ltr
a-

hi
gh

)
79

.4
3 

(–
24

.9
6–

18
3.

82
)

0.
93

0
48

6.
36

 (2
82

.4
–6

90
.3

2)
0.

85
7

MABS 7



Next, we compared the linear correlations of hydrodynamic 
radius (rh) measurements derived from the linear intrinsic visc-
osity ([η]avg) and polynomial intrinsic viscosity ([η]v) to the 
dynamic light scattering (DLS)-derived hydrodynamic radius 
(rhDLS) (Figure 4). R53G, which had the highest rh from intrinsic 
viscosity, did not exhibit an increase in hydrodynamic size 
measured by DLS, resulting in poor correlation with the intrin-
sic viscosity-derived rh (Figure 4a) which was influenced from 
the high intrinsic viscosity of R53G. However, the use of [η]v to 
derive rh (rh[η]v) resulted in no correlation to rhDLS (Figure 4b). 

This indicates potential inaccuracies in Z-ave DLS measure-
ments at 1 mg/mL and misrepresentation of intrinsic viscosity 
from using the polynomial function on ηrel, when accounting for 
higher-order interactions. The hydrodynamic radii obtained 
from polynomial fitting resulted in physically unrealistic values 
(3–9 nm) and therefore should be discounted. Effective volume 
fraction (ϕ) was computed up to 100 mg/mL from [η]avg accord-
ing to Equation 11B (Figure 4c). R53G exhibited a significantly 
higher hydrodynamic volume across the whole concentration 
range.

Figure 1. Anti-IL-8 IgG framework mutant concentration–viscosity profiles were fitted with four models; an exponential growth equation, a three-parameter 
exponential model, a modified Ross-Minton (RM) model and the Tomar model (left to right). A horizontal dotted line at 30 cP is the threshold for ‘acceptable’ 
viscosity. Vertical dotted lines for each molecule mark the ‘knee’ of each viscosity–concentration curve. FWRL (a-b) and FWRH (c-d) mutants viscosity data in two 
concentration regimes are shown; ≤ 120 mg/mL (top row) and > 120 mg/mL (bottom row). Error bars represent standard deviation (N=2). Abbreviations: FWRL= light 
chain framework region, FWRH= heavy chain framework region, RM= Ross-Minton model.
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Two methods were used to generate shape information 
for each anti-IL-8 molecule (Supplementary Figure S7). 
The HYDROPRO program was used in shell mode to 
predict the radius of gyration (Rg) and its ratio to rh (the 
shape ratio (ρ)) was computed for each molecule 
(Supplementary Figure S7a). We used rh values from both 
intrinsic viscosity (linear ([η]avg) and polynomial ([η]v) and 
DLS. The shape ratio determined for each molecule was  
~0.775, which was attributed to spherical, globular 

proteins.40–42 Interestingly, R53G showed the lowest ratios 
Rg/rh[η]avg and Rg/rh[η]v demonstrating a deviation in 
shape.43,44 Use of DLS rh values showed comparable ratios 
for all anti-IL-8 molecules.

Subsequently, shape coefficients (Ψ) and shape factors (v) 
were calculated from computed solvent-accessible surface areas 
(SASA) and protein volumes of IgG homology constructs of the 
anti-IL-8 panel (Supplementary Figure S7b). Since the same 
IgG1 scaffold was used with single amino acid substitutions 

Figure 2. Anti-IL-8 CDR mutant concentration–viscosity profiles were fitted with four models; an exponential growth equation, a three-parameter exponential model, 
a modified Ross-Minton (RM) model and the Tomar model (left to right). A horizontal dotted line at 30 cP is the threshold for ‘acceptable’ viscosity. Vertical dotted lines 
for each molecule mark the ‘knee’ of each viscosity–concentration curve. CDRH (a-b) and CDRL (c-d) viscosity data in two concentration regimes are shown; up to 
120 mg/mL (top row) and over 120 mg/mL (bottom row). Error bars show standard deviations per viscosity measurement (N=2). Abbreviations: CDRL= light chain 
complementarity determining region, CDRH= heavy complementarity determining region, RM= Ross-Minton model.
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for the anti-IL-8 panel, SASA and protein volumes were com-
parable, and therefore no distinguishable differences in shape 
factors were observed.

Computational viscosity predictions of the anti-IL-8 mAb 
mutant panel

Numerous empirical viscosity prediction models from small 
datasets of proprietary development phase mAbs have been 

developed to date. Li et al. studied the relationship of 18 
different molecular descriptors on 11 Fv constructs to viscosity 
data of these mAbs at 150 mg/mL.13 The best regression model 
for viscosity prediction was found to include isoelectric point 
and aggregation propensity predictions (Equation 1). A similar 
regression model on 14 IgG1 mAbs viscosity data at 180 mg/ 
mL was developed by Sharma et al., drawing a relationship 
between viscosity and Fv charge, charge symmetry, and hydro-
phobic index (Equation 2).14 Finally, Tomar et al. found that pI 

Figure 3. No correlation between average intrinsic viscosity and anti-IL-8 mAb charge parameters. No strong correlations were observed between [η]avg and charge 
parameters, zeta potential (ζ) (a) or mean isoelectric point (pI) (b). Vertical error bars represent standard deviations for ζ and pI. Horizontal error bars represent the 
standard error of [η]avg. Logarithmic equations shown for kH/kK over [η]avg plot.

Figure 4. Hydrodynamic diameter from intrinsic viscosity versus dynamic light scattering and effective volume fraction of anti-IL-8 molecules. the hydrodynamic radius 
(rh) of each molecule at 1 mg/mL was derived either from intrinsic viscosity measurements with equation 12A or from dynamic light scattering (DLS) Z-ave 
measurements. DLS-derived rh values poorly correlated to rh values from either the rh derived from average intrinsic viscosity (rh[η]avg) (a), or from polynomial intrinsic 
viscosity (rh[η]v) (b). rh[η]avg was used to compute the theoretical effective volume fraction (ϕ) for each molecule up to 100 mg/mL(c).
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correlated with parameter B in the logarithmic fitting of 16 
development-phase mAb viscosity profiles at concentrations 
up to 180 mg/mL (Equation 3A). Here, we used these 
approaches to derive viscosity prediction scores for an anti- 
IL-8 mAb panel (Figure 6). With all models, negative patch 
disrupting mutants were predicted to have lower viscosity 
compared to the WT, with ≤30 cP predicted for mutants 
(180 mg/mL) using the Sharma scores. Positive patch disrupt-
ing mutants were predicted to increase viscosity compared to 
WT IgG, with viscosities >30 cP with both Sharma and Tomar 
scores at 180 mg/mL. Hydrophobic patch disrupting mutants 
showed similar predicted viscosities to WT as these models 
primarily use charge-based descriptors. With regards to model 
performance, the Li viscosity model significantly underesti-
mates viscosities at 150 mg/mL when comparing to all experi-
mental model fits (Figure 5b). For viscosity predictions at 180  
mg/mL, the true experimental viscosity appears to lie in 
between the Sharma and Tomar viscosity scores (Figure 5e), 
with Sharma scores underpredicting and Tomar scores over-
predicting viscosities. Since inaccuracies from quantitative 
predictions from the Li, Sharma, and Tomar scores were 
observed, we next assessed qualitative prediction to identify if 
molecule rankings are correct (Supplementary Table S5). None 
of the predictions directly matched the experimental viscosity 
ranking of the anti-IL-8 panel.

A previous study by Kingsbury et al. examined a larger 
dataset (N = 59) that included approved ‘developable’ mAbs 
to better identify non-redundant in silico descriptors and 
experimental parameters that result in improved developabil-
ity characteristics (viscosity and opalescence).45 Clustering 

analysis showed distinct correlations between mAbs with 
favorable developability characteristics and kD, measured pI 
and the effective charge. They also assessed sequence-based 
molecular descriptors (hydrophobic index and charge symme-
try), finding that such singular descriptors did not have the 
same discrimination level as the experimental parameters.

In our study, we used the same parameters and thresholds 
to test these trends to viscosity, using both high and ultra-high 
concentration data (Figure 6 a,b respectively). Here, we could 
not clearly distinguish between low or high viscosity molecules 
at either concentration regime examined with use of either 
experimental parameters (kD, pI or zeta potential) or molecu-
lar descriptors.

The structure-based ensemble charge (ens_charge) descrip-
tor has previously been shown to correlate with viscosity; 
molecules with ens_charge values of ≥+2 C were correlated 
with reduced viscosity.46 Here, only positive patch disrupting 
mutants had an ens_charge of <+2 (Supplementary Table S1). 
At 120 mg/mL, these mutants had high viscosities (>30 cP), 
but the three highly viscous molecules had ens_charge values > 
+2 (false positives) when examining the high concentration 
data (67% accuracy) (Supplementary Table S8), suggesting 
limitations in the use of this singular descriptor for predicting 
viscosity. Interpolations from ultra-high concentration data 
for viscosity at 120 mg/mL resulted in 55% accuracy, with 
both false negatives and false positives present.

Predictive modelling of the anti-IL-8 molecule panel

We next sought to develop and assess a simple regression 
model to predict the viscosity of the anti-IL-8 panel 

Figure 5. Predicted viscosity scores at 150 mg/mL Li (a) and Sharma (c) and Tomar (d) predicted viscosities at 180 mg/mL for anti-IL-8 wild-type (WT) and mutant IgG. 
Comparisons to experimental data at 150 mg/mL (b) and 180 mg/mL (e) with all model fits reported. Red dotted line represents an ‘acceptable’ viscosity threshold of 
30 cP. Compared to wild-type, mutants targeting negative patches (blue bars) had consistently lower predicted viscosities for all models. Mutants targeting positive 
patches (red bars) had consistently higher predicted viscosities to WT, and hydrophobic patch disrupting mutants (green bars) had similar predicted viscosities to WT. 
For predicted versus experimental viscosity data, the following thresholds were set: ≤20 cP (green), 20cP≤≥30cP (amber) and ≥30cP (red).
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(Figure 7). Here, we averaged the ‘knee’ found for each model- 
fitted viscosity profile and assessed correlations with computa-
tional molecular descriptors (Supplementary Figure S10). Five of 
the highest correlating variables (R > 0.5) were used in PLS regres-
sion, resulting in a final equation (Figure 7b) with an R2 value of 
0.76 (Figure 7d). Model performance was tested with a set of four 
in-house molecules (Ab1–4), which saw a reduction in R2 to 0.31 
(Figure 7e). The regression model underpredicted the viscosity 
knee values for the test molecules, which were significantly higher 
than the training anti-IL-8 panel, demonstrating the need for 
a case-by-case approach when predicting viscosity, particularly 
with small datasets.

Discussion

Reducing high solution viscosity in concentrated mAb formulations 
is a crucial aim in mAb drug development, achievable through 
sequence-based30,47,48 and formulation strategies.2,49,50 Predicting 
sequences that lead to elevated viscosity at high mAb concentrations 
can aid in early-stage candidate selection and risk assessment.

In this work, we used structure- and sequence-based mole-
cular descriptors to compare our predictions with experimen-
tally derived viscosity parameters across different 
concentration regimes. Our focus was on evaluating viscosity 
predictions from model fits and hydrodynamic properties, as 
well as from empirical and machine-learning derived models 
for a panel of anti-IL-8 IgG molecules. These molecules 
include single-point mutations designed to target electrostatic 
or hydrophobic surface patches, known to significantly impact 
viscosity.19

Interpretation of viscosity data dependent on 
concentration regime and model fit and lack of predictive 
power from high concentration models to ultra-high 
concentration viscosities

Routes of administration with volume limitations, such as 
subcutaneous injection, require high (>100 mg/mL) or ultra- 
high (>150 mg/mL) mAb concentrations to achieve effective 
therapeutic doses. In this study, we defined a high 

Figure 6. Experimental parameters and sequence-based molecular descriptors, categorized according to Kingsbury et al. 45 for anti-IL-8 IgGs, categorized by mutation 
strategy, across the high concentration (< 120 mg/mL) viscosity data (a) and ultra-high concentration (≥120 mg/mL) viscosity data (b). Ross-Minton model fitted 
experimental viscosities were used to grade each molecule from low viscosity to high viscosity (green to red) (Supplementary Table S7). Experimental parameters were 
the self-interaction parameter, kD, mean measured isoelectric point (pI) and mean zeta potential (ζ) at 5 mg/mL. Sequence-based molecular descriptors were 
hydrophobic index (HI) and fv charge symmetry (FvCSP). Ensemble charge is included as a structure-based descriptor that has previously been correlated with viscosity.46 

red dotted lines represent thresholds attributed from clustering analysis from original studies where correlations with viscosity were found. Error bars represent 
standard deviation.
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concentration regime up to 120 mg/mL and an ultra-high 
concentration regime up to 260 mg/mL. The viscosity of 
mAb formulations at these concentrations is influenced not 
only by intrinsic factors like hydrodynamic size, anisotropic 
surface charges, and hydrophobicity, but also by concentra-
tion-dependent effects.9,48,51,52 Contributions to viscosity present 
in infinitely dilute systems are typically characterized using light 
scattering techniques to determine the self-interaction parameter, 
kD, or the second osmotic virial coefficient, B22. However, in more 
concentrated solutions - involving pairwise and higher-order associa-
tions- the interactions become more complex and challenging to 
model.

We assessed the viscosity profiles of an anti-IL-8 mutant 
panel in two concentration regimes (high and ultra-high) 
(Figures 1 and 2). While two mutants (D70N and W32Q) 
initially exhibited reduced viscosity compared to the wild- 
type (WT) molecule at lower concentrations, including ultra- 
high concentration data revealed that all mutants exhibited 
higher viscosities relative to WT. Therefore, all anti-IL-8 mole-
cules were classified as ‘high risk’ in terms of their develop-
ability at clinically relevant concentrations.

This study represents the first direct comparison of multiple 
viscosity fitting models and their impact on data interpreta-
tion. We selected four prominent models routinely used for 
viscosity curve analysis (Table 1). Our findings indicate that 
the exponential growth or modified Ross Minton equations are 
optimum models, showing the highest R2 values. However, 

extrapolating viscosity from lower concentration data to 
higher concentrations, where higher-order interactions intro-
duce complexities, proved challenging (Table 2). Additionally, 
we propose using the ‘knee’ of each curve to standardize the 
point where viscosity begins to increase exponentially, facil-
itating comparison between models. The notable differences in 
modeled viscosities at identical concentrations emphasize the 
importance of examining complete concentration–viscosity 
profiles rather than relying on interpolated or extrapolated 
results.

We also assessed parameters derived from the modi-
fied Ross-Minton model fit, such as the k/v crowding 
factor and intrinsic viscosity ([η]RM). We observed 
increased molecular packing and attractive forces in the 
ultra-high concentration regime, represented with lower 
k/v values (Suplementary Table S2). However, [η]RM did 
not align with experimental [η] values (Supplementary 
Figure S6), suggesting overfitting of high concentration 
viscosity data using the generalized reduced gradient 
algorithm, and highlighting the lack of translatability 
between concentration regimes (experimental [η] mea-
sured in 0–50 mg/mL range).

This lack of translatability was further exemplified by asses-
sing accuracy and errors of high-concentration models gener-
ated for each anti-IL-8 molecule to predict ultra-high 
concentration data (Table 2). Molecule rankings for viscosity 
prediction at 180 mg/mL showed misalignment between 

Figure 7. Viscosity regression model from an anti-IL-8 mAb panel lacked predictive ability with in-house test molecules. five molecular descriptor variables (a) were 
selected for modelling to predict the averaged knee for each viscosity profile per molecule. The respective scatter plots with Pearson correlation coefficients (R) per 
variable are reported. The resulting equation (b) was generated through non-linear iterative partial least square (NIPLS) regression with leave-one-out cross validation. 
Predicted viscosity knee values (c) were lower for the more viscous anti-IL-8 molecules compared to the less viscous test molecules. The model predicted the anti-IL-8 
viscosity knee values well (R2=0.76, RMSE=12.7, R=0.87) (d), but underpredicted for the test set (R2=0.31, RMSE=43.8, R=0.56) (e).
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concentration regimes across all model equation fits adopted 
(Table S3). The increased uncertainties of the models and 
reduced alignment to ultra-high concentration data supported 
how different mechanisms which may be contributing to visc-
osity prevail as mAb concentration increases.

Viscosity predictions and deeper mechanistic 
understanding from hydrodynamic parameters

Traditionally, the hydrodynamic behavior of proteins has been 
modeled from colloidal principles and expanded with the 
integration of polymer science to account for shape 
anisotropy.53 Here, we assessed the anti-IL-8 molecule panel 
with an extensive range of hydrodynamic parameters, such as 
intrinsic viscosity ([η]), the Huggins (kH) coefficient, shape 
descriptors, and volume fraction. Our goal was to identify 
correlations between high concentration viscosities and other 
previously determined biophysical parameters.19

For most mutants, [η] values were comparable to the WT 
molecule (Suplementary Table S2 and Figure 3), indicating 
similar contributions from their respective hydrodynamic 
sizes, as illustrated by the computed volume fraction occupied 
(ϕ) (Figure 4). This was unsurprising as we hypothesized 
changes in excluded volume would unlikely result from single- 
point mutations. However, the R53G mutant, which disrupts 
positive patches, exhibited increased viscosity and inferred 
size, although this was not consistently reflected in Z-ave 
data from DLS measurements at 1 mg/mL, affecting the corre-
lation between hydrodynamic radius (rh) derived from viscos-
ity ([η]) and rh derived from DLS (Figure 4a,b). It is 
worthwhile noting that the Z-ave data at such low mAb con-
centrations may be more significantly impacted by the pre-
sence of trehalose in the formulation buffer, with preferential 
exclusion of the sugar to the mAb surface, reducing the pro-
tein-water interfacial area and affecting apparent hydrody-
namic size.54,55 Beyond concentration and formulation 
composition dependence, size data from DLS also assume 
molecule sphericity, are orientation dependent and can have 
calculation inaccuracies with solutions that have increased 
polydispersity, depending on the mathematical algorithm 
used to compute diffusivity and estimate size. Pair-wise inter-
action quantification from kH values showed consistent results 
for most molecules, except for W32Q and notably R53G, 
which exhibited lower inferred pair-wise contributions 
(Supplementary Table S4). These findings align with the visc-
osity profiles observed for W32Q (hydrophobic patch- 
disrupting mutant) in the high concentration regime 
(Figure 2a), but contrast with the ultra-high concentration 
viscosity (Figure 2c,d) and increased [η] was observed for 
R53G. Furthermore, unlike other mutants, R53G ηred does 
not scale linearly with concentration (Suplementary 
Figure S1).

We hypothesize that this mutant forms clusters starting 
from concentrations as low as 1 mg/mL, which may explain 
why differences in rhDLS were not detected. In these small 
clusters, short-ranged attractive interactions primarily affect 
neighboring molecules interacting in the cluster. However, 
long-range repulsive interactions are additive and apply in an 
isotropic range from the cluster.33,56 This could result in an 
effect where the cluster stabilizes at a critical cluster number, as 
the attractive forces remain in play due to the reduced distance 
between the molecules but the combined repulsion repels any 
new entrants to the cluster. When measuring interactions 
based on bulk solution flow properties, the base unit being 
measured would be the cluster as the constituent proteins 
move as one entity within the flow. The cluster has a larger 
hydrodynamic radius than the underlying mAb leading to the 
observed increased intrinsic viscosity, however, the clusters do 
not interact strongly with one another due to resulting in the 
low observed kH. The base unit being measured in DLS is the 
protein, even when clustering is occurring, demonstrated by 
the more negative kD for R53G observed in the 1–30 mg/mL 
range, stemming from the reduced molecular diffusivity and 
increased self-association of the protein when entrained in 
a cluster. Conversely, W32Q had a less negative kD, aligning 
with reduced kH. Further size and structural analysis for R53G, 
such as assessing Rg experimentally with multi-angle or X-ray 
scattering, would confirm this clustering hypothesis.

It is worthwhile to note that the variability in both concen-
tration and viscosity measurements results in large measure-
ment errors for intrinsic viscosity. Furthermore, the derivation 
of intrinsic viscosity from linear regression of solutions 
exceeding the infinitely dilute regime and containing higher- 
order interactions, results in the misrepresentation of pair- 
wise contributions. Previous work has demonstrated mini-
mum and maximum concentration limits for protein solu-
tions, around 2–40 mg/mL, observing a three-state power law 
model for log(η) versus log(c).38 To reduce the curvature of 
our data, we excluded the highest concentration data points for 
each molecule in the ηred/c plots. Overall, this approach did not 
significantly reduce [η] error, and in most cases the linear fit 
was dependent on only three data points (Suplementary Figure 
S2). We therefore chose to include the polynomial fitting of ηrel 
over concentration to derive [η]v, previously proposed by 
Yadav and coworkers,51 but this similarly showed high error 
(Suplementary Figure S3).

We examined correlations of multiple biophysical para-
meters to the hydrodynamic properties and viscosity of the 
anti-IL-8 molecule panel (Supplementary Table S5). 
According to the primary electroviscous effect, the higher the 
net charge of a molecule, the greater the distortion of the 
electrical double-layer (EDL) surrounding the molecule, 
increasing drag force in solution and [η].57 Here, we saw no 
correlation in surface zeta potential (ζ) nor isoelectric point to 
[η] for the anti-IL-8 molecules (Figure 3). This lack of 
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correlation has been observed previously38,51 and suggests that 
ζ measurements at 5 mg/mL (where different molecular weight 
species may be present) are not representative of the expected 
molecular surface charge at infinite dilution. We found the 
exponential constant, kexp, derived from ηrel/c exponential 
modeling, to correlate strongly with kD, aligning to the use of 
kD in predicting viscosity in the low concentration regime.5,8,9 

However, these correlations were reduced significantly when 
comparing to high concentration data, suggesting limits to 
predicting viscosity at dose-relevant concentrations. The bio-
physical behavior of each mAb is also formulation dependent 
and whilst the pH was within specification (pH 6 .0± 0.2) 
through tangential flow filtration steps, formulation composi-
tion was not determined and the Gibbs Donnan effect was not 
accounted for, which could impact protein charge.

Beyond size, pair interactions and charge, the shape factor 
(Rg/rh) and computed shape coefficients were used to gauge 
morphological differences of the anti-IL-8 molecule panel 
(Supplementary Figure S7). No strong correlations were 
observed between these shape parameters, and [η] or high 
concentration viscosity. Both methods derived molecular 
volume information from homology constructs, which did 
not account for environmental differences (buffer compo-
nents, surface counterions) nor the effect of neighboring mole-
cules on molecular conformations.

Limited predictive power of viscosity models

The development of models derived from sequence- and struc-
ture- based molecular descriptors to predict and mitigate visc-
osity risks represents an ever-growing field of research. We 
iterated through testing simple regression models developed 
from mAb molecular descriptors of small datasets. Li13 and 
Sharma14 models underpredicted the viscosities of the anti-IL 
-8 molecule panel, whilst the Tomar15 model over-predicted 
(Figure 5), suggesting overfitting.

Furthermore, clustering based on the five descriptors iden-
tified by Kingsbury et al. 45 did not reveal consistent trends to 
categorize viscosity risks for the anti-IL-8 molecules at high or 
ultra-high concentrations (Figure 6). Classification using the 
ensemble charge parameter achieved accuracy rates ranging 
from 55% to 66% when predicting viscosity values at 120 mg/ 
mL, depending on the concentration regime used for interpo-
lation/extrapolation (Supplementary Table S8).

Generally, there is a consensus amongst these models that 
both electrostatic and hydrophobic parameters play a role in 
predicting viscosity, but the accuracy of these models relies 
heavily on the diversity and size of their datasets. As a result, 
machine learning approaches, leveraging comprehensive 
molecular descriptors and larger datasets often limited to 
clinical-phase mAbs for accessibility reasons, are gaining 
popularity. The Lai decision tree58 (Figure S8), incorporating 
a ‘high viscosity index’ (HVI) effectively classified the anti-IL-8 
mutants as highly viscous, and the Makowski decision tree18 

(Figure S9) classified negative-patch disrupting mutants (i.e. 
D→N) as low viscosity based on the predicted isoelectric point 
thresholds. Importantly, the prediction accuracy of these 

models varies depending on the fitting and interpolation 
methods for concentration-dependent viscosities, the concen-
tration range examined, and the defined viscosity thresholds. 
While a consensus suggests a low viscosity threshold of 20–30 
cP, some studies have proposed values as low as 15 cP.60 

Confusion matrices evaluating the Lai and Makowski decision 
trees (Supplementary Table S9 and Table S10) illustrate how 
model choice, concentration range, and viscosity thresholds 
impact the proportion of true positives/negatives versus false 
positives/negatives.

We aimed to identify computational parameters predicting 
the knee of viscosity curves for the anti-IL-8 molecule panel. 
Strong correlations were found with the TANGO score, num-
ber of hydrophilic residues, hydrophobic index, and counts of 
hydrophobic and positive patches, encompassing electrostatic 
and hydrophobic profiling (Supplementary Figure S10). Using 
partial least-squares regression and leave-one-out cross valida-
tion (Figure 7), we developed a model demonstrated 0.76 R2 

accuracy (RMSE = 12.7, Pearson’s R = 0.87), suggesting poten-
tial for defining key parameters for viscosity predictions in 
early-phase screening on a project-specific basis. However, 
when tested on a proprietary in-house molecule set, the 
model showed signs of overfitting to the mutant panel, echoing 
previous regression models’ limitations due to their focus on 
limited parameters. The model produced in Figure 7 provides 
an example of overfitting to small datasets of a panel of mole-
cules with only small variations in their biophysical profiles 
from single-point mutations. This highlights the need for 
larger datasets incorporating diverse molecular scaffolds and 
mAbs with varying viscosities to build a robust predictive 
model.

Conclusion

Knowledge of factors governing elevated solution viscosity 
at high mAb concentrations is critical in developing new 
mAbs for self-administration. Early measurements of solu-
tion viscosity are hindered by significant material- 
associated cost burdens. Therefore, a combination of pre-
dictive and experimental frameworks for solution viscosity 
prediction are required.

In this work, we address the question of which predictive and 
viscosity fitting models are optimal for viscosity prediction, using 
an anti-IL-8 IgG panel. We observed that the selection of fit 
models plays a critical role in the interpretation of viscosity 
results and the use of interpolated or extrapolated results carries 
significant variability risk. We found that extrapolation of visc-
osity measurements in a high concentration regime are not 
predictive of viscosities at ultra-high concentrations, suggesting 
various concentration-dependent mechanisms govern self- 
interaction, assembly, and aggregation. We highlighted the use 
of hydrodynamic and colloidal parameters can help elucidate 
what mechanisms drive viscosity in low concentration regimes, 
but these did not correlate to ultra-high concentration viscosities.

Predictive regression models from small datasets are generally 
overfitted and lack generalizability. We demonstrate the limita-
tions of current machine learning models using global parameters 
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which are insensitive to residue-level differences that impact 
viscosity. We propose the use of machine learning for viscosity 
predictions, incorporating amino acid sequences and structure- 
based descriptors and/or dilute solution data to improve the 
probability of identifying sequence motifs governing molecular 
properties which give rise to viscosity. We also recommend the 
use of ‘non-developable’ molecules in training and testing datasets 
to better account for biophysical risks in early-phase 
development.
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