Differential impacts of temperature increase on prokaryotes across 1 2 temperature regimes in subtropical coastal waters: Insights from field 3 experiments 4 Bowei Gu^{1,2+}, Xiao Ma¹, Bingzhang Chen³, Hongbin Liu⁴, Yang Zhang^{1,2}, 5 6 Xiaomin Xia^{1,2.5*} 7 ¹Key Laboratory of Tropical Marine Bio-resources and Ecology, Key 8 Laboratory of Breeding Biotechnology and Sustainable Aquaculture, South 9 China Sea Institute of Oceanology, Chinese Academy of Sciences, 10 Guangzhou, 510000, China ²University of Chinese Academy of Sciences, Beiling, 065001, China 11 12 ³Department of Mathematics and Statistics, University of Strathclyde, 13 Glasgow, G1, United Kingdom ⁴Department of Ocean Science, The Hong Kong University of Science and 14 15 Technology, Hong Kong, 999077, China 16 ⁵Innovation Research Center for Carbon Neutralization, Fujian Key Laboratory 17 of Marine Carbon Sequestration, Xiamen University, Xiamen, Fujian, 361102, 18 China *Present address: MARUM Center for Marine Environmental Sciences & Max 19 20 Planck Institute for Marine Microbiology, Bremen, 28359, Germany 21

22 *Correspondence: Xiaomin Xia; xiaxiaomin@scsio.ac.cn

23 Abstract

24	Prokaryotic communities play a dominant role in driving biogeochemical
25	cycling in marine ecosystems. How short-term temperature increase impacts
26	prokaryotes in subtropical coastal waters is still largely unknown. Here, 14
27	field experiments were conducted to investigate the response of prokaryotes
28	in subtropical coastal waters to temperature increases of 3° C and 6° C,
29	encompassing a range of ambient temperatures from 17°C to 31°C. We found
30	that responses of prokaryotic growth, grazing pressure, community and
31	transcriptomes to increased temperatures were largely affected by ambient
32	temperatures. Increased temperatures enhanced the growth rate and grazing
33	pressure of heterotrophic prokaryotes when ambient temperatures were
34	below 26-28°C. The increased temperatures had greater negative effects on
35	the grazing rate compared to the growth rate, therefore the abundance of
36	heterotrophic prokaryotes generally increased after temperature increase
37	across all temperature regimes. Metatranscriptomics analysis showed that at
38	an ambient temperature of 30° C, genes involved in the ATP synthase were
39	significantly down-regulated by the increased temperature. This could be a
40	major factor contributing to the decreased prokaryotic growth rate. In
41	comparison, autotrophic prokaryotes (Synechococcus) exhibited better
42	performance in response to elevated temperatures, thriving up to 35°C,
43	beyond which their growth rate experienced a dramatic decline. When

- 44 exposing to extremely high temperatures, genes involved in photosynthesis
- 45 significantly decreased. These findings highlight the differential ecological
- 46 impacts of temperature increase on prokaryotic communities, varying across
- 47 different ambient temperatures and taxa in subtropical coastal waters.

48

- 49 **Keywords:** Marine heatwaves, subtropical waters, prokaryotes, growth rate,
- 50 grazing pressure, metatranscriptomics.

52 Introduction

53	Marine prokaryotes are the most abundant and diverse organisms in the
54	global ocean. Synechococcus is the major autotrophic prokaryote in coastal
55	waters, and contributes an estimated 16.7% of global net primary production
56	(Flombaum et al., 2013). Heterotrophic prokaryotes transform organic matter
57	to CO_2 and biomass. Furthermore, they are main drivers of the microbial
58	carbon pump (Jiao et al., 2010), a pathway for marine carbon sequestration
59	that transfers liable dissolved organic matter to refractory organic matter.
60	These prokaryotes are mainly grazed by protists, which in turn transfer energy
61	and nutrients across trophic levels, sustaining diverse ecosystems. A great
62	number of studies indicate that prokaryotic growth and community
63	composition are largely driven by temperature and organic carbon (Kirchman
64	et al., 2005; Morán et al., 2017; Lønborg et al., 2022). Global warming has
65	been one of the major environmental concerns nowadays, causing extinction
66	of organisms (Penn and Deutsch, 2022) and regime shift (Parmesan and
67	Yohe, 2003; Glibert et al., 2022). Compared with long-term warming, marine
68	heatwaves, which are on the rise (Oliver et al., 2018), are possibly more
69	problematic for marine microbes (Kling et al., 2020). While prokaryotes can
70	acclimate and adapt to slow, decades-long increases in temperature (Hall et
71	al., 2010; Kent et al., 2018), it could be difficult for them to survive sudden and

72	severe warming events, especially in low-latitudes waters where marine
73	microbes often live near their optimal temperatures (Thomas et al., 2012;
74	Chen et al., 2014). However, how short-term heatwaves impact on
75	prokaryotes in low-latitude coastal waters is largely unknown (Carreira et al.,
76	2023).
77	
78	Temperature can affect prokaryotes in two fundamentally different ways: (i) It
79	directly affects the metabolic rates including the respiration rate and
80	production rate (Paerl and Huisman, 2008; Chen et al., 2014; Lewandowska
81	et al., 2014; Smith et al., 2019); (ii) it indirectly affects the mortality of
82	prokaryotes via top-down control, which includes viral lysis and grazing by
83	protists (Pernthaler, 2005; Kirchman, 2015). The relationship between
84	temperature and the growth rate /grazing rate of prokaryotes generally fits a
85	unimodal model. Below the optimum temperature, rising temperature
86	increases the growth and grazing rates, while negative effects on these rates
87	could be observed once the temperature exceeds the optimum temperature
88	(Chen and Shakhnovich, 2010; Dell et al., 2011; Liu et al., 2018). Therefore,
89	the ambient temperature could be one of important factors controlling
90	ecological impacts of temperature increase on prokaryotic community. For
91	example, our previous study revealed that in subtropical coastal waters (Gu et
92	al., 2020), a 3°C increase has positive impacts on heterotrophic prokaryotic

93	growth in winter with an ambient temperature of 19.1°C, while no significant
94	impacts in summer with an ambient temperature of 28.5°C. This suggests that
95	the impacts of rising temperature on prokaryotes in subtropical waters varied
96	seasonally. However, we still do not know which ambient temperature is the
97	threshold where the impacts of temperature increase on prokaryotic
98	community changes from positive to negative in that area.
99	
100	Thermal sensitivity differs considerably across diverse prokaryotic taxa (Smith
101	et al., 2019, 2021), suggesting a taxon-dependent effect of elevated
102	temperatures (Arandia-Gorostidi et al., 2020). For example, Smith et al.
103	(2021) showed varying optimal temperatures and thermal sensitivities for
104	carbon use efficiency and growth rates among 29 bacterial strains under lab
105	conditions. As autotrophs and heterotrophs play fundamentally different roles
106	in the carbon cycle, it is a topic of interest to understand how they differ in
107	sensitivity to temperature changes. Conventional analyses using an
108	exponential equation, like the metabolic theory of ecology, propose that the
109	metabolism of heterotrophs is more thermally sensitive than that of autotrophs
110	(Allen et al., 2005). However, this approach overlooks the fact that the
111	temperature performance curves of individual species exhibit a unimodal
112	shape (Chen, 2022) and is only applicable when temperatures are below the
113	optimum temperature. To our knowledge, there are no studies comparing the

114	temperature sensitivity between autotrophic and heterotrophic prokaryotes
115	when temperatures exceed optimum growth temperatures- something which
116	typically occurs in tropical and subtropical summers (Chen et al., 2014; Gu et
117	al., 2020). If autotrophic and heterotrophic prokaryotes exhibit different
118	temperature sensitivities, warming could shift carbon fluxes within prokaryotic
119	communities, potentially driving feedback loops that contribute to climate
120	change in subtropical marine ecosystems.
121	
122	In microbial ecology, field incubation stands as a potent tool routinely
123	employed to understand responses to changes in a variety of ecosystems.
124	This method has widespread application in studying the effects of temperature
125	increase on marine prokaryotic community in diverse marine environments
126	(von Scheilbner et al., 2014; Bergen et al., 2016; von Scheilbner et al., 2018;
127	Gu et al., 2020; Liu et al., 2021; Lønborg et al., 2022). However, few studies
128	have integrated physiological processes and omics to offer a comprehensive
129	understanding of the effects of rising temperatures on prokaryotic community.
130	Here, by integrating field incubations, flow cytometry, 16S rRNA sequencing
131	and metatranscriptomics, we conducted 14 temperature-manipulated
132	experiments (with an ambient temperature ranging from 17°C to 31°C) to
133	estimate the effects of short-term warming on growth rate, grazing pressure
134	and community functions of heterotrophic and autotrophic prokaryotes in

135	Daya Bay and the Pearl River Estuary. These areas are the typical subtropical
136	coastal environments in the northern South China Sea which have
137	experienced a drastic increase in the frequency and severity of marine
138	heatwaves in recent years (Tan et al., 2022). Subtropical and tropical seas are
139	experiencing marine heatwaves with an annual mean intensity of 1-3°C and
140	duration of 10-15 days (Oliver et al., 2018). Extreme heatwaves have also
141	been recorded, such as during the summer of 2010-2011, when coastal
142	waters in Australia saw temperature anomalies exceeding 5° C (Pearce and
143	Feng, 2013). We used 3° C and 6° C above the ambient temperature as the
144	warming treatments to represent moderately and extremely hot events,
145	respectively. We hypothesized that varying temperature increases could have
146	differential effects on prokaryotes. Moderate temperature increases may
147	remain within the optimal range for prokaryotic growth, potentially enhancing
148	growth rates. In contrast, more significant temperature increases could
149	exceed the optimal range, leading to negative impacts on prokaryotes.
150	

151 Materials and Methods

Sampling. Samples were collected during the day in six field sampling trips
and three cruises experiments between July 2020 and July 2021. The
estuarine sampling sites A1, A3, E3, S10, S15, S19 and S20 were located in

155	the Pearl River Estuary and the coastal sampling site DYB was located in the
156	Daya Bay (Fig. S1a). Part of the estuarine samples (A1, A3 and E3) were
157	collected during a cruise in June-July 2021, and surface seawater samples
158	were collected using a conductivity-temperature-depth (CTD, Sea-Bird)
159	rosette fitted with 12-L Niskin bottles. The remaining estuarine samples (S10,
160	S15, S19, S20) were collected during cruises in January and April 2021. For
161	these estuarine samples, as well as the coastal samples from station DYB,
162	surface seawater samples were collected using several 25-L acids-washed
163	polycarbonate (PC) bottles. In each case, the ambient temperature of the
164	seawater was measured immediately with a mercury thermometer. At each
165	sampling site, 32-72 L seawater was pre-filtered through a 200- μm mesh and
166	then transported to a land-based or onboard laboratory within \sim 20 min for the
167	incubation experiments.

168

Short-term warming manipulation experiments. A total of 14 incubation experiments were performed (Table S1) and schematic of the experimental design is shown in Fig. S1b. One fraction of the seawater samples was not filtered and thus contained grazers of size < 200 µm (hereafter called with grazers group). The other fraction was filtered through 1.2-µm pore size PC membranes (Millipore) and thus contained nearly no grazers (hereafter called without grazers group). Each group was then separated into three 1-L PC

176	transparent bottles (Nalgene, ThermoFisher) for incubation at the ambient
177	temperature, 3° C and 6° C over the ambient temperature. All the incubations
178	were carried out in near-transparent 280-L tanks temperature-controlled by
179	pump- equipped macro chillers (CW-0500, RESUM) located on the deck and
180	outdoors on the shore for 24 h. To ensure the accuracy of temperature
181	control, we measured the temperature of the tank every hour during the
182	incubation period.
183	
184	Sample collection. To determine the prokaryotic abundance, 2 mL seawater
185	was fixed with glutaraldehyde (1% final concentration; Sangon Biotech) before
186	and after incubation. They were then flash frozen in liquid nitrogen and stored
187	at -80°C until further analysis. To determine ambient nutrients and DOC
188	before incubation, 100 mL seawater was filtered through a GF/F membrane
189	(47 mm; Whatman) and stored at -20°C until further analysis. Filters for DNA
190	extraction of three size fractions were collected via sequential filtration of
191	approximately 100 ml of seawater from in-situ (before incubation) waters and
192	from each bottle post-incubation using (after incubation). Each sample was
193	sequentially filtered 5- μ m, 1.2- μ m, and 0.2- μ m PC membranes (47 mm;
194	Millipore) which stored at -80°C until required. Two experiments (Jan19 and
195	Jul15 from DYB) were also collected for RNA extraction of the with grazers
196	group. In brief, approximately 700 mL seawater from each bottle post-

197	incubation was filtered through a 0.2- μ m PC membrane (47 mm; Millipore)
198	and subsequently transferred to 2-mL tubes containing 0.2 mL RNA hold
199	(TransGen Biotech), flash frozen with liquid nitrogen and stored at -80°C.
200	
201	Measurements of prokaryotic abundance, and concentrations of
202	nutrients and DOC. To measure prokaryotic abundance, glutaraldehyde-fixed
203	samples were analyzed with a flow cytometer (Cytoflex S, Beckman). The
204	samples were stained 1x SYBR Green I (10,000x, Invitrogen) according to the
205	published protocol (Marie et al., 1997) for assessing the abundance of
206	heterotrophic prokaryotes, whereas the abundance of Synechococcus was
207	determined by pigment fluorescence. The concentrations of inorganic
208	nutrients (i.e., ammonium, nitrate, nitrite, phosphate, and silicate) were
209	determined with a SEAL AutoAnalyzer 3 (Bran-Luebbe) according to the
210	manufacturer's instructions. The concentrations of DOC were measured with
211	a TOC analyzer (TOC-VCPH, Shimadzu).
010	

212

213 Growth rate of and grazing rate on prokaryotes. We assumed an

exponential growth rate and nearly no grazing in the without grazers group

- since most of the grazers, such as nanoflagellates and ciliates were lager
- 216 than 1.2 µm in nearby seas (Gu et al., 2021). We used the following formula
- to calculate the intrinsic growth rate of prokaryotes including both

218	Synechococcus and heterotrophic prokaryotes: $\mu = (In_{Af} - In_{Ai}) / (t_f - t_i)$, where
219	A_f and A_i are the abundance of prokaryotes at the final (t_f) and initial (t_i) time
220	point of the incubation, respectively. Growth rates estimated by this method
221	are conservative because viruses that pass through 1.2-µm membranes
222	would cause prokaryotic mortality during the incubations (Yokokawa and
223	Nagata, 2005). The grazing rate (day ⁻¹) of grazers on prokaryotes
224	(Synechococcus and heterotrophic prokaryotes) was calculated by the
225	following formula: $g = (In_{abundance of without grazers group - In_{abundance of with grazers group}) /$
226	(t_f - t_i), where the abundances of without and with grazers groups were
227	measured at the final time point of incubation.
228	
229	Estimating effects of short-term warming on growth and grazing rate.
230	
	Generalized linear models are flexible in handling dependent variables (e.g.
231	Generalized linear models are flexible in handling dependent variables (e.g. growth and grazing rate) and independent variables (e.g. temperature),
231 232	Generalized linear models are flexible in handling dependent variables (e.g. growth and grazing rate) and independent variables (e.g. temperature), allowing for precise estimation of treatment effects and providing robust
231 232 233	Generalized linear models are flexible in handling dependent variables (e.g. growth and grazing rate) and independent variables (e.g. temperature), allowing for precise estimation of treatment effects and providing robust statistical inference (Nelder and Wedderburn, 1972). We fitted generalized
231 232 233 234	Generalized linear models are flexible in handling dependent variables (e.g. growth and grazing rate) and independent variables (e.g. temperature), allowing for precise estimation of treatment effects and providing robust statistical inference (Nelder and Wedderburn, 1972). We fitted generalized linear models with Gaussian distributions with the <i>Ime4</i> v1.1-27.1 package

- 235 (Bates et al., 2015) in R v4.1.0 (R Core Team, 2018) to calculate the effect
- size (parameter estimates from models; see below) of temperature increase
- 237 on growth rate and grazing rate in each experiment, and then assessed
- statistical significance using a chi-squared test (Schulhof et al., 2019).

239	Parameter estimates and standard error values from the generalized linear
240	models were used to represent effect sizes of the warming treatments on
241	response variables (Schulhof et al., 2019). Then, a linear regression model
242	was employed to check if there was a linear relationship between growth rate
243	and grazing rate for each experiment with seawater ambient temperatures.
244	Before running models, growth rate and grazing rate were standardized to a
245	mean of zero and a standard deviation of 1 in R with the function of <i>scale</i> to
246	ensure that they followed a normal distribution.
247	
248	DNA extraction, PCR, pyrosequencing, amplicon processing and
249	prokaryotic community analysis. To evaluate the effect of warming on the
250	prokaryotic communities, we extracted genomic DNA from four experiments
251	(i.e., summer: Jul15, Aug14, and Sep07; winter: Jan19). Genomic DNA stored
252	on 0.2-µm membranes (described above) was extracted using a modified
253	enzyme/phenol-chloroform extraction protocol (Xia et al., 2020; Gu et al.,
254	2022). In brief, each membrane was cut into small pieces and then transferred
255	into a 2-mL tube with 0.5 mL solution I (50 mM EDTA, 50 mM Tris-HCL and 50
256	mM sucrose; pH 8.0). These were then subjected to three freeze-and-thaw
257	cycles using liquid nitrogen and a 60 $^\circ C$ dry bath, after which 5 mg mL-1
258	lysozyme (final concentration; Sangon Biotech) was added to each tube and
259	incubated for 1 h at 37°C. 2 mg mL ⁻¹ proteinase K (final concentration; Sangon

260	Biotech) and sodium dodecyl sulfate (0.5%, w/v; Sangon Biotech) were then
261	added and the samples were incubated for 1 h at 60 $^\circ$ C. DNA was then
262	extracted from each sample by the addition of an equal volume of phenol-
263	chloroform-isoamyl alcohol (Sigma-Aldrich) at a ratio of 25:24:1. The samples
264	were centrifuged for 10 min at 12,000 g, after which the upper aqueous layer
265	was transferred to a new microcentrifuge tube. These samples were then
266	extracted twice with an equal volume of chloroform-isoamyl alcohol (Sigma-
267	Aldrich) at a ratio of 24:1. After the final extraction step, the supernatant was
268	transferred to a new microcentrifuge tube and isopropyl alcohol (Sangon
269	Biotech) at 70% volume of the supernatant was added. The samples were
270	incubated overnight at -20 $^{\circ}$ C, after which the DNA pellets were washed twice
271	using 0.2 mL 70% ethanol (Sangon Biotech) and then resuspended in 35 μL
272	TE buffer (1 mM EDTA, 10 mM Tric-Hcl; pH 8.0; Sangon Biotech). The V4-V5
273	regions of the 16S rRNA gene were amplified with the following primers: 515F
274	(5'-GTGCCAGCMGCCGCGGTAA-3') and 907R (5'-
275	CCGTCAATTCCTTTGAGTTT-3') for pyrosequencing (Turber et al., 1999).
276	The PCR reaction was carried out in a 25- μ L master mix, including 1 μ L DNA,
277	0.5 μ M of each primer, 1.5 mM MgCl ₂ , 0.2 mM of each dNTP, 1× PCR buffer,
278	and 1.0 unit Platinum [®] Taq DNA polymerase (Invitrogen). Sterile water was
279	used as the negative control. The PCR for each sample was carried out in
280	triplicate with the following thermal cycles: 5 min initial denaturation at 95°C,

281	followed by 30 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 60 s,
282	followed by a final extension step at 72°C for 7 min before holding at 4°C.
283	Paired-end amplicon sequencing was then conducted by Novogene Company
284	using the Illumina Hiseq 2500 platform. Read quality control, trimming, and
285	inference of amplicon sequence variants (ASVs) were analyzed by DADA2
286	v1.20.0 (Callahan et al., 2016) in R v4.1.0. The truncation lengths of the
287	forward and reverse reads and primer trimming (e.g., trim-left or trim-right)
288	were defined based on the read-quality profiles. The maximum number of
289	expected errors (MaxEE) was set to 2 for the forward and reverse reads.
290	Default DADA2 parameters (e.g., maxN) were used for other flags. Taxonomy
291	was assigned using the Silva database v138 (Quast et al., 2013). Bray-Curtis
292	dissimilarity between warming treatments and control (ambient temperature
293	treatments) was analyzed by permutational multivariate ANOVA using the
294	Adonis function in the vegan package v2.5-7 (Oksanen et al., 2020) in R
295	v4.1.0.

296

297 RNA extraction, metatranscriptome sequencing and metatranscriptomic

analysis. For metatranscriptomics, the total RNA of the microbial community

- 299 was extracted using TRIzol reagent (ThermoFisher). RNA samples were
- 300 collected and stored on PC membranes in RNA hold, as described above.
- 301 The RNA hold was removed from the PC membranes by centrifugal, and

302	these were then incubated with 1 mL TRIzol in 2-mL tubes for 5 min at room
303	temperature, after which 0.2 mL chloroform was added and the samples were
304	incubated for 3 min, again at room temperature. The samples were
305	centrifuged for 15 min at 12,000 g and a temperature of 4° C, after which the
306	upper aqueous layer was transferred to a fresh microcentrifuge tube, and
307	incubated with 0.5 mL isopropyl alcohol for 10 min at 4 $^\circ$ C. The samples were
308	centrifuged again (for 10 min at 12,000 g and 4° C) to pellet the RNA. The
309	RNA pellets were then washed twice using 1 mL 70% ethanol and
310	resuspended in 35 μ L nuclease-free water (Invitrogen). Whole mRNAseq
311	libraries were generated by Magigene Biotechnology Company using the NEB
312	Next [®] UltraTM Nondirectional RNA Library Prep kit for Illumina [®] (New
313	England Biolabs), following the manufacturer's recommendations. The library
314	was sequenced on an Illumina Novaseq6000 platform and paired-end reads
315	were generated. Metatranscriptomic analysis was conducted using the
316	SqueezeMeta pipeline v1.6.2 (Tamames et al., 2019). Metatranscriptomic
317	reads were quality checked and trimmed for low-quality regions using
318	Trimmomatic v0.38 (Bolger et al., 2014), after which the sequences were
319	assembled using <i>Megahit</i> with default settings (Bankevich et al., 2012). The
320	open reading frames (ORFs) of the assembled contigs (> 200 bp), which were
321	identified with the <i>Prodigal</i> software (Hyatt et al., 2012), were further
322	annotated using DIAMOND v2.0.15.153 (Buchfink et al., 2015) against both

323	the NR and KEGG databases, with an e-value cutoff of 1×10 ⁻³ . Raw reads
324	were mapped to the contigs using <i>Bowtie</i> v1.1.2 (Langmead et al., 2009) to
325	calculate the abundance of each ORF. The abundance of each ORF was
326	calculated as: the transcripts per million (TPM) = $rg \times rl \times 10^6$ / cl \times T, where rg
327	indicates the reads mapped to gene g, rl is read length, cl is the coding
328	sequence (CDS) length, and T is the sum of $rg \times rl$ / cl for all genes (Wagner
329	et al., 2012). To distinguish between the cyanobacterial genes and other
330	heterotrophic prokaryotic genes, we subdivided the genes annotated as
331	Cyanobacteria at the phylum level as being cyanobacterial genes, and those
332	annotated as other phyla as heterotrophic prokaryotic genes. The significant
333	differential abundance of functional genes between groups of samples was
334	identified using the DESeq2 v1.32.0 package with an adjusted p-value (p_{adj}) <
335	0.05 (Love et al., 2014).
336	
337	Data availability. The sequence data have been deposited in the National
338	Center for Biotechnology Information sequence read archive (BioProject
339	accession no. PRJNA822857; 16S rRNA amplicon Biosample accession nos.
340	SAMN27280266- SAMN27280409, metatranscriptomics-seq BioSample
341	accession nos. SAMN27280410- SAMN27280424).

343 Results

344	Environmental parameters and initial abundance of prokaryotes. Ambient
345	temperatures in the experimental stations varied from 17 to 31° C. At the
346	various coastal experimental stations, the surface seawater was characterized
347	by high concentrations of dissolved organic carbon (DOC) with mean \pm
348	standard deviations (SD) ranging from 92.94 \pm 14.58 to 233.75 \pm 49.12 μ mol
349	L. Concentrations of phosphate and nitrite in these stations were below 1.5
350	μM and 1.1 $\mu M,$ respectively, while ammonium and nitrate were at a wide
351	range of concentrations, i.e., 0.53-6.18 μM and 0.10-17.18 $\mu M,$ respectively
352	(Table S1).
353	
354	For heterotrophic prokaryotes, the initial abundances before 1.2- μ m filtration
355	ranged from 0.47 ± 0.01 (Jul01) to 40.71 ± 2.70 × 10⁵ cells/mL (Aug14).
356	These values were comparable to those after 1.2- μ m filtration, which ranged
357	from 0.42 ± 0.01 (Jul01) to 38.25 ± 2.37 × 10⁵ cells/mL (Aug14) (Table S2).
358	For Synechococcus, the initial abundances of non-summer samples (Jan12,
359	Jan13, Jan19, Jan21, Apr15, Apr16, and Apr18) were quite low, falling below
360	the detection limit. The abundance of the summer sample Jul03 was also
361	below the detection limit, likely because it was collected at offshore station A3
362	(Fig. S1a), which could be dominated by <i>Prochlorococcus</i> . The initial

363 *Synechococcus* abundances for other samples ranged from 1.53 ± 0.06

364 (Jul08) to 79.24 ± 3.39×10^4 cells/mL (Aug14) (Table S2).

365

366 Effects of temperature increase on the abundance, growth rate and

367 grazing loss of heterotrophic prokaryotic communities across

- 368 **temperature regimes**. In the ambient temperature incubations (24 h), the
- abundance of heterotrophic prokaryotes varied from 0.98 ± 0.08 to $58.43 \pm$
- 370 2.98 × 10⁵ cells/mL, with an average of 24.19 ± 18.29 × 10⁵ cells/mL in the
- 1.2-μm filtered group (Fig. 1a), while they were generally lower in the
- 372 unfiltered group that the abundance varied from 0.58 ± 0.04 to $16.57 \pm 4.84 \times$
- 10^5 cells/mL, with an average of $13.21 \pm 8.57 \times 10^5$ cells/mL (Fig. 1b). After
- 374 exposure to 3°C and 6°C increases, abundances of heterotrophic prokaryotic
- 375 communities were enhanced only when the ambient temperatures were
- $376 \leq 25^{\circ}C$ in the filtered group (Fig. 1a), while they were enhanced in all
- temperature regimes in the unfiltered group (Fig. 1b).
- 378
- 379 In the ambient temperature incubations, the growth rate of heterotrophic
- prokaryotes was at its lowest on Jan 12, with a value of $0.08 \pm 0.04 d^{-1}$. It then
- increased with rising ambient temperatures, peaking on Jul 01 (1.58 \pm 0.09 d⁻
- ³⁸² ¹), and subsequently decreased in these experiments with ambient
- 383 temperatures exceeded 29°C (Fig. S2a). We found that the responses of

384	prokaryote growth rates to short-term temperature rising depended on
385	ambient temperatures. After exposure to 3°C and 6°C increases, growth rates
386	of heterotrophic prokaryotic communities were enhanced only when the
387	ambient temperatures were ≤26°C (Fig. S2a) . Once ambient temperatures
388	exceeded 26°C, negative impacts of warming on the growth rate were
389	observed. These observations were also supported by the generalized linear
390	model, which was applied to quantify the effects of temperature increase on
391	the growth rate of heterotrophic prokaryotes. The positive effects of
392	temperature increase on the growth rate of heterotrophic prokaryotes were
393	observed at an ambient temperature ≤26°C, while the growth rate of
394	heterotrophic prokaryotes of all eight experiments with ambient temperatures
395	≥28°C showed negative responses to short-term warming (Fig. 1c),
396	suggesting 26-28°C is a tipping temperature for the effects of warming on
397	heterotrophic prokaryotic growth. The effects of a 6° C temperature increase
398	were greater than those of a 3°C temperature increase (Fig. 1e), except for
399	the Apr16 and Apr18 experiments, which exhibited an ambient temperature of
400	24-25°C. In addition, the slope of effect/ambient temperatures was larger in
401	the 6°C warming treatment than the 3°C warming treatment (Fig. 1f and 1g),
402	suggesting the impact of warming was largely determined by the degree of
403	temperature change.

405	The grazing rates on heterotrophic prokaryotic community varied from 0.06 \pm
406	0.03 d ⁻¹ (Jan13) to 1.20 \pm 0.16 d ⁻¹ (Jul29) in the ambient temperature
407	incubations of fourteen experiments. Regarding the responses of grazing rate
408	to temperature increase, a similar trend to growth rate was observed (Fig.
409	S2b). When the ambient temperature exceeded 26°C, the grazing on
410	heterotrophic prokaryotic community was strongly suppressed by the warming
411	of 6°C. In addition, grazing rates on heterotrophic prokaryotes decreased
412	more than growth rate of heterotrophic prokaryotes in response to warming
413	(Fig. 1e). While the decrease was not significant (t-test, $p > 0.05$) with a 3°C
414	increase, it was significant (t-test, p < 0.05) with a 6°C increase (Fig. 1e) . This
415	suggested that grazers may be more sensitive to warming than heterotrophic
416	prokaryotes. This may explain why the abundance of heterotrophic
417	prokaryotes increased in summer in the warming treatments (Fig. 1b), even
418	though the growth rate was decreased by warming.
419	
420	Effects of temperature increase on the growth rate and grazing loss of
421	autotrophic prokaryotic communities. Autotrophic prokaryotic
422	Synechococcus is one of the major groups among the prokaryotic community
423	in summer (Fig. 2b). Therefore, we further compared the effects of
424	temperature increase between the heterotrophic prokaryotes and

Synechococcus community in summer experiments which conducted on

426	Jul01, Jul08, Jul15, Jul29, Aug14 and Sep07. In the ambient temperature
427	incubations, the abundance of Synechococcus varied from 3.38 ± 0.14 to
428	97.93 \pm 3.34 × 10 ⁴ cells/mL, with an average of 31.81 \pm 32.66 × 10 ⁴ cells/mL
429	in the 1.2- μ m filtered group (Fig. 2a), while they were generally lower in the
430	unfiltered group that the abundance varied from 1.77 \pm 0.03 × 10 ⁴ to 85.00 \pm
431	4.11 × 10^4 cells/mL, with an average of 21.91 ± 29.90 × 10^4 cells/mL (Fig. 2b).
432	After exposure to 3°C increases, abundances of Synechococcus were
433	generally stable compared to ambient temperature incubations in both filtered
434	and unfiltered groups (Fig. 2a and b). When exposed to 6°C increases,
435	abundances of Synechococcus in both filtered and unfiltered groups
436	significantly decreased in most of the experiments (Fig. 2a and b).
437	
438	The 3°C increases showed little effects on the growth rate of Synechococcus
439	(Fig. 2c and S3a), and the average warming effects (n=5; -0.06 \pm 0.16) were
440	smaller than that on the growth of heterotrophic prokaryotes (n=5; -0.15 \pm
441	0.15) (Fig. 3a). However, the 6°C increases demonstrated predominantly
442	negative impacts in most of the incubation experiments (Fig. 2c and S3a),
443	and the average warming effects (n=5; -1.04 \pm 0.33) were significantly larger
444	than that on the growth of heterotrophic prokaryotes (n=5; -0.31 \pm 0.16) (Fig.
445	3a). This indicated the different responses between heterotrophic and
446	autotrophic prokaryotes to temperature increase. Similar to heterotrophic

447	prokaryotes, the grazing pressure on Synechococcus decreased after
448	temperature increase (Fig. 2d). The negative effects of temperature increase
449	on Synechococcus growth were higher than that on grazing pressure (Fig. 2c
450	and 2d). The different responses of heterotrophic prokaryotes and
451	Synechococcus to warming might lead to a shift in their abundance ratio in the
452	subtropical oceans of the future, which potentially results in a change in the
453	local carbon budget. We investigated the relationships between the ratio of
454	heterotrophic prokaryotes and Synechococcus abundance (Fig. 3b). The ratio
455	reached a minimum at 34°C and increased at 36°C (Fig. 3b) , indicating that
456	extremely warming in summer would decrease the proportion of
457	Synechococcus among the pico-prokaryotes.
150	
400	
459	Responses of prokaryotic communities to temperature increase. To
459 460	Responses of prokaryotic communities to temperature increase. To investigate the impact of elevated temperature on prokaryotic community
459 460 461	Responses of prokaryotic communities to temperature increase. To investigate the impact of elevated temperature on prokaryotic community composition, we sequenced the 16S rRNA gene of samples from four
459 460 461 462	Responses of prokaryotic communities to temperature increase. To investigate the impact of elevated temperature on prokaryotic community composition, we sequenced the 16S rRNA gene of samples from four experiments (Jan19, Jul15, Aug14, and Sep07) which were conducted in the
459 460 461 462 463	Responses of prokaryotic communities to temperature increase. To investigate the impact of elevated temperature on prokaryotic community composition, we sequenced the 16S rRNA gene of samples from four experiments (Jan19, Jul15, Aug14, and Sep07) which were conducted in the DYB. Our findings revealed that during the summer months (Jul15, Aug14,
459 460 461 462 463 464	Responses of prokaryotic communities to temperature increase. To investigate the impact of elevated temperature on prokaryotic community composition, we sequenced the 16S rRNA gene of samples from four experiments (Jan19, Jul15, Aug14, and Sep07) which were conducted in the DYB. Our findings revealed that during the summer months (Jul15, Aug14, and Sep07), the prokaryotic communities in the sampled areas were primarily
459 460 461 462 463 464 465	Responses of prokaryotic communities to temperature increase. To investigate the impact of elevated temperature on prokaryotic community composition, we sequenced the 16S rRNA gene of samples from four experiments (Jan19, Jul15, Aug14, and Sep07) which were conducted in the DYB. Our findings revealed that during the summer months (Jul15, Aug14, and Sep07), the prokaryotic communities in the sampled areas were primarily comprised of Cyanobiaceae, Rhodobacteraceae, and Flavobacteriaceae.
459 460 461 462 463 464 465 466	Responses of prokaryotic communities to temperature increase. To investigate the impact of elevated temperature on prokaryotic community composition, we sequenced the 16S rRNA gene of samples from four experiments (Jan19, Jul15, Aug14, and Sep07) which were conducted in the DYB. Our findings revealed that during the summer months (Jul15, Aug14, and Sep07), the prokaryotic communities in the sampled areas were primarily comprised of Cyanobiaceae, Rhodobacteraceae, and Flavobacteriaceae.

468	showed that warming had stronger effects on prokaryotic community
469	composition in summer than in winter. In addition, in summer, an increase of
470	6°C affected greater changes in prokaryotic community composition than an
471	increase of 3°C (Fig. S4). This indicates that the response of the prokaryotic
472	community to increased temperatures was largely determined by ambient
473	temperatures— a conclusion which is further supported by the ternary plot
474	illustrating different bacterial families positioned near the middle of the plot in
475	winter, while different bacterial families were positioned closer to the ends of
476	the axes representing the different temperature treatments (Fig. 4). For
477	example, Cyanobacteria were generally close to the ambient temperature and
478	ambient temperature +3°C treatments, which is consistent with the response
479	of Synechococcus abundance to temperature increase (Fig. 2b). In contrast,
480	Bacteroidia (NS9 marine group and Flavobacteriaceae) were generally
481	enriched in the ambient temperature +6°C treatment (Fig. 4).
482	
483	Responses of the prokaryotic metatranscriptome to warming. To explore
484	the response of metatranscriptome to warming at different ambient
485	temperatures, we selected samples from the experiments conducted at the
486	ambient temperatures of 17° C (Jan19) and 30° C (Jul15) for further analysis.
487	Principal coordinate analysis showed that warming had little effects on the

transcriptome profiles of prokaryotic community in winter (Fig. S5). In summer

489	samples, a 3°C temperature rise resulted in 4.1% of Cyanobacteria genes
490	(i.e., 96/2322) being significantly changed (i.e., 2.8% up-regulated and 1.3%
491	down-regulated), and 2.2% heterotrophic prokaryotes genes (i.e., 200/8997)
492	being changed (i.e., 0.8% up-regulated and 1.4% down-regulated; DESeq2,
493	p _{adj} <0.05). Short-term warming by 6°C resulted in 13.4% Cyanobacteria
494	genes (314/2342; 5.7% up-regulated and 7.7% down-regulated), and 7.5%
495	heterotrophic prokaryotes genes (689/9146; 2.7% up-regulated and 4.8%
496	down-regulated), being significantly changed (DESeq2, $p_{adj} < 0.05$). These
497	results strongly suggest that the effects of seawater temperatures increase on
498	the prokaryotic community are dependent on the ambient temperatures.
499	
500	We further examined the effects of temperature increase on the
501	metatranscriptome profile of the prokaryotic communities during summer. The
502	50 pathways with the most differentially expressed genes were mostly
503	associated with amino acid metabolism, carbohydrate metabolism, energy
504	metabolism, environmental adaption (thermogenesis), lipid metabolism, and
505	genetic information processing, as well as signaling and cellular processes
506	(Fig. 5a). For heterotrophic prokaryotes, it is particularly interesting that most
507	genes relating to oxidative phosphorylation related genes (i.e., ATPF0C,
508	ATP1A, cox1, 2, 3, 15, coxACD, nD1, 2, 4L, 6, ndufs123, and nuoAM) were
500	

510	both as a result of a 3°C and 6°C temperature rise (Fig. 5b) . For
511	cyanobacteria, some of the photosynthesis related genes (i.e., <i>psaADEIJK</i> ,
512	<i>psbE</i> , <i>cpcABC</i> , and <i>cpeAB</i>) were significantly down-regulated (DESeq2, p_{adj} <
513	0.05) with a 6° C temperature increase, but most of these were not significantly
514	affected (DESeq2, p _{adj} > 0.05) by a 3°C temperature increase (Fig. 5c) .
515	
516	Discussion
517	Our primary goal was to analyze the impact of temperature increase on the
518	prokaryotes in subtropical waters and to predict how prokaryotes respond to
519	short-term warming events, such as marine heatwaves, which have increased
520	in frequency and length over the past century (Oliver et al., 2018). We
521	conducted fourteen field experiments (outdoors or ship-deck), closely
522	mimicking natural conditions. This approach minimized the influence of
523	missing sunlight on experimental results (Teira et al., 2019), a factor that can
524	be significant in the laboratory-based studies. Additionally, short-term (24-
525	hour) incubations were employed to minimize potential changes in prokaryotic
526	composition due to the bottle effect. In subtropical coastal waters, bottle
527	incubations lasting 24 h are longer than local prokaryotic division times (Gu et
528	al., 2020; Tsai et al., 2015). In this study, the average intrinsic growth rates
529	under ambient temperature were 0.59 ± 0.40 for heterotrophic prokaryotes

530 and 0.86 ± 0.17 for *Synechococcus* (Fig. S2a and Fig. S3a). This enables us

531	to evaluate the effects of short-term temperature increase on prokaryotes. We
532	believe that our approach is a valid method to examine the effects of
533	temperature increase on current prokaryotic communities, and it can generate
534	plausible hypotheses about changes of prokaryotic communities in response
535	to short-term warming events.
536	
537	Effects of temperature increase on prokaryotes were highly dependent
538	on ambient temperatures. The effects of experimental warming on
539	heterotrophic prokaryotes growth rate have been evaluated by many studies
540	(e.g., Bergen et al., 2016; Lindh et al., 2013; von Scheilbner et al., 2014;
541	2018). However, many of these studies were limited to a narrow temperature
542	range or only one temperature point, resulting in different conclusions about
543	the effects of temperature increase on heterotrophic prokaryotes growth. In
544	our prior study, we found distinct seasonal effects of temperature increase on
545	heterotrophic prokaryotes growth and community dynamics in subtropical
546	coastal waters (Gu et al., 2020). Specifically, we observed a significant
547	enhancement in heterotrophic prokaryotes growth rate during winter (19°C),
548	whereas the effect was minimal during summer (28.5 $^{\circ}$ C), consistent with the
549	results presented here (Fig. 1c). In the present study, we extended the
550	temperature range to 17-31°C and identified a critical temperature range (26-
551	28°C) where the effects of moderate warming (+3°C) transitioned from positive

552	to negative on heterotrophic prokaryotes growth. This shift strongly indicates
553	that the typical unimodal model of the temperature-growth rate relationship of
554	single strains in the laboratory (Chen and Shakhnovich, 2010) is also suitable
555	for the prokaryotic community in the environment. Below the optimum
556	temperature, growth rates of the community generally increase with
557	temperature, while adverse effects become apparent once the temperature
558	surpasses the optimum temperature. Although the optimum temperature of
559	the prokaryotic community may be site-dependent (Lønborg et al., 2022)
560	because of the different substrates and communities, in-situ prokaryotes may
561	all follow the unimodal model when they are responding to temperature
562	increase.
563	
564	Although the growth rate of heterotrophic prokaryotes decreased in warming
565	treatments when ambient temperatures exceeded 28°C, we observed an
566	
	increased abundance of heterotrophic prokaryotes in response to warming
567	increased abundance of heterotrophic prokaryotes in response to warming across all temperature regimes we tested (17-31°C) (Fig. 1b). It is well-known
567 568	increased abundance of heterotrophic prokaryotes in response to warming across all temperature regimes we tested (17-31°C) (Fig. 1b). It is well-known that the abundance of heterotrophic prokaryotes is determined by both top-
567 568 569	increased abundance of heterotrophic prokaryotes in response to warming across all temperature regimes we tested (17-31°C) (Fig. 1b). It is well-known that the abundance of heterotrophic prokaryotes is determined by both top- down (e.g. grazing and viral lysis) and bottom-up control (e.g. substrates and
567 568 569 570	increased abundance of heterotrophic prokaryotes in response to warming across all temperature regimes we tested (17-31°C) (Fig. 1b). It is well-known that the abundance of heterotrophic prokaryotes is determined by both top- down (e.g. grazing and viral lysis) and bottom-up control (e.g. substrates and temperature). Below 28°C, the higher abundance after warming is primarily

572 temperature increase (Fig. 1c). However, once temperatures exceeded 28°C,

573	the increased abundance of heterotrophic prokaryotes after warming may
574	have resulted from the disproportionate response of growth rate and grazing
575	pressure to temperature increases, with the grazing activities showing higher
576	sensitivity to temperature increases compared to the growth of heterotrophic
577	prokaryotes (Fig. 1e-g). Only few studies explored the effects of temperature
578	increase on protist grazing rates on heterotrophic prokaryotes in the field,
579	particularly in subtropical waters. Tsai et al. (2015) reported increased grazing
580	rates on prokaryotes under experimental warming conditions in the coastal
581	waters of the western subtropical Pacific Ocean, mirroring our findings of
582	positive effects at temperatures below 28°C (Fig. 1c). This study expands the
583	temperature regimes and observed negative effects on grazing activities
584	exceeding 28°C. The higher temperature sensitivity of grazing activity when
585	compared with heterotrophic prokaryotes growth might be explained by that
586	the growth efficiency of protists decreases faster than that of bacteria with
587	increasing temperature (Rivkin and Legendre, 2001). Taken together,
588	although the growth rate of heterotrophic prokaryotes decreased after short-
589	term warming when ambient temperatures reached 28°C (Fig. 1c), the higher
590	temperature sensitivity of predators resulted in fewer prokaryotes being
591	subjected to grazing. As seawater temperature increased, this led to a net
592	increase in prokaryotic cell abundance.

594	Different responses to temperature increase between Synechococcus
595	and heterotrophic prokaryotes in subtropical coastal waters in summer.
596	The impact of temperature on Synechococcus abundance has been explored
597	globally (Flombaum et al., 2013) and specifically in subtropical seas as well
598	(Liu et al., 2021). These two studies predicted an increase in the growth rate
599	and abundance of Synechococcus with warming in tropical and subtropical
600	waters, but the highest temperatures they tested were both ≤30°C. Our study
601	expands the knowledge about the effects of temperature increase on
602	Synechococcus over 30°C. In this study, Synechococcus growth showed little
603	response to +3°C warming treatments, while they were significantly
604	suppressed in the +6°C warming treatments in summer (Fig. 2c and S3a).
605	This pattern was further supported by the ternary plot analysis of 16S rRNA
606	gene data, showing that Cyanobacteria were primarily associated with
607	treatments at ambient temperatures (30-31°C) or ambient temperature +3°C
608	treatments (33-34°C), but were distant from ambient temperature +6°C
609	treatments (36-37°C) (Fig. 4). These indicate that Synechococcus are not
610	able to adapt to temperatures exceeding 35° C in the natural environment, and
611	the same applies under laboratory conditions with nutrient-rich culture
612	medium (Labban et al., 2021; Pittera et al., 2014). In addition, our
613	experimental results were consistent with a field investigation (Ren et al.,
614	2019) in regions influenced by thermal effluents for 30 years from a nuclear

615	power plant in the DYB. In that study, a significant decline in the relative
616	abundance of Synechococcus within the prokaryotic community (inferred from
617	16S rRNA gene amplicon data) was observed when ambient temperatures
618	rose from 31°C to approximately 39°C (Ren et al., 2019). Collectively, these
619	observations indicate that Synechococcus can adapt to moderate warming
620	conditions below 35°C. However, intense warming during summer with
621	temperatures over 35°C, will have a profound negative impact on
622	Synechococcus growth in subtropical waters.
623	
624	The metabolic theory of ecology suggests that the metabolism of heterotrophs
625	is more thermally sensitive than that of autotrophs (Allen et al., 2005).
626	However, this approach is only applicable when temperatures are below the
627	optimum temperature. In our study, the +6 $^{\circ}$ C treatments can be considered as
628	temperatures exceeding the optimum temperature for both heterotrophic
629	prokaryotes and Synechococcus (Fig. 1c and 2c). Our results demonstrated
630	that the growth of autotrophs (Synechococcus) were more negatively affected
631	by experimental warming beyond the optimum temperature compared to
632	heterotrophs (Fig. 3a). However, in the +3°C treatments, Synechococcus
633	outperformed heterotrophic prokaryotes, which may be attributed to the higher
634	optimum temperature of Synechococcus relative to heterotrophic prokaryotes.
635	Due to the differential response to temperature increase between

heterotrophic prokaryotes and Synechococcus, our model predicted that the 636 prokaryotic community would become more autotrophic under moderate 637 warming conditions and more heterotrophic under extreme warming 638 conditions in subtropical summer (Fig. 3b and 4). 639 640 641 Potential mechanisms of decreased prokaryotic growth under thermal stress in summer. Several covariates are associated with warming, including 642 community structure, thermal acclimation, and nutrient and light levels 643 644 resulting from stratification. Here we only discuss the potential mechanisms caused by temperature increase. Microorganisms often respond to 645 environmental stresses by diverting cellular resources from biomass synthesis 646 647 to the restoration of homeostasis (Lopez-Maury et al., 2008). For example, increased lipid metabolism under thermal stress was reported in both 648 prokaryotes (Koga et al., 2012; Hassan et al., 2020) and phytoplankton (Leles 649 650 and Levine, 2023; Zhang et al., 2022) as a mechanism to mitigate oxidative 651 stress. This is also observed in this study indicated by the significant downregulation of genes involved in carbohydrate metabolism and concurrent up-652 653 regulation of genes involved in lipid metabolism in the +6°C treatments (Fig. 5a). This transition of resources investment could be one reason for the lower 654 growth rate of heterotrophic prokaryotes under thermal stress. 655

657	Furthermore, genes related to oxidative phosphorylation were mostly down-
658	regulated in this study (Fig. 5a). ATPF0C, ATP1A, cox1, cox2, cox3, cox15
659	significantly decreased under heat stress in summer, both as a result of a 3° C
660	and 6°C temperature rise (Fig. 5b). Oxidative phosphorylation is involved in
661	the synthesis of adenosine triphosphate (ATP) (Senior, 1988), which supports
662	the growth and survival of heterotrophic bacteria (Cook et al., 2017). Thus, the
663	decline in oxidative phosphorylation-associated transcript levels that was
664	observed with short-term warming in the summer likely led to reduced ATP-
665	synthesis and a subsequent decrease in the growth rate of heterotrophic
666	prokaryotes (Fig. 1c). The down-regulated ATP synthase of Escherichia coli
667	upon heat stress was also observed <i>in vitro</i> (Kim et al., 2020). Additionally,
668	ATP-synthesis can be blocked by the lack of inorganic phosphate (Nicholls,
669	1982) and Kim et al. (2020) showed that the phosphate required for ATP
670	synthesis decreased upon the temperature increase by metabolome analysis.
671	The ambient concentrations of phosphate were extremely low (mostly < 0.2
672	μM) in our summer experiments (Table S1) . Considering the general pattern
673	of low phosphate concentrations in the subtropical gyres (Martiny et al.,
674	2019), the decrease of heterotrophic prokaryotes growth in response to
675	temperature increase could be common in these areas.
676	

677 In contrast, photosynthesis is generally less sensitive to temperature than

678	respiration (Padfield et al., 2016). In this study, a 3°C increase in temperature
679	had minimal influence on the expression levels of Synechococcus
680	photosynthesis-related genes. However, during summer, when temperatures
681	exceeded 36°C, certain photosynthesis-related genes, including <i>psaADEIJK</i> ,
682	<i>psbE</i> , <i>cpcABC</i> , and <i>cpeAB</i> , were significantly down-regulated (DESeq2, p_{adj} <
683	0.05). Previous research has indicated that the PS-II light-harvesting antenna
684	of Synechococcus is thermally sensitive (Pittera et al., 2017). Our findings
685	further reveal that among all antenna protein genes, <i>cpcB</i> was the most
686	strongly downregulated gene (Fig. S6). Taken together, we attribute the
687	apparent reduction in the growth of heterotrophic prokaryotes and
688	Synechococcus under short-term warming conditions in the summer to a
689	down regulation of oxidative phosphorylation and photosynthesis,
690	respectively.
691	

692 Acknowledgments

693 We thank Grace Ho (Max Planck Institute for Marine Microbiology) for

694 thoughtful review of the language in this manuscript and Prof. Dr. Jan-Hendrik

- 695 Hehemann (MARUM Center for Marine Environmental Sciences & Max
- 696 Planck Institute for Marine Microbiology) for reviewing an earlier version of
- 697 this manuscript. Thanks to Dr. Jana Massing (MARUM Center for Marine

698	Environmental Sciences & Max Planck Institute for Marine Microbiology) for
699	reviewing the model part of this manuscript. We appreciate the help from
700	State Key Laboratory of Tropical Oceanography, South China Sea Institute of
701	Oceanology, Chinese Academy of Sciences for the assistance in analyzing
702	flow cytometer samples. We also thank our colleagues Prof. Dr. Xiaoping
703	Huang and Dr. Yunchao Wu for the help in analyzing nutrient and DOC
704	samples. This work was supported by The National Key Research and
705	Development Program of China (2022YFC3105301), the National Natural
706	Science Foundation of China (31971501, 41906131, 42206151), the CAS
707	Pioneer Hundred Talents Program (Y8SL031001, Y9YB021001), the
708	development fund of South China Sea Institute of Oceanology of the Chinese
709	Academy of Sciences (SCSIO202205), a Key Deployment Project of the
710	Centre for Ocean Mega-Research of Science, Chinese Academy of Science
711	(COMS2020Q09) (2020.12~2023.11), and the Ocean Negative Carbon
712	Emissions (ONCE) Program.

713

714 Author Contributions

715 **Bowei Gu:** Investigation; field experiments; formal analysis; methodology;

visualization; writing – original draft. Xiao Ma: Investigation; field experiments;

717 writing – review and editing. **Bingzhang Chen:** Writing – review and editing.

718 Hongbin Liu: Writing – review and editing. Yang Zhang: Writing – review and

- editing. Xiaomin Xia: Conceptualization; methodology; supervision;
- 720 validation; writing review and editing.
- 721

722 Conflict of Interest Statement

- 723 The authors declare no conflicts of interest.
- 724

Referencs

726	Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the global carbon cycle to
727	individual metabolism. Funct. Ecol. 19, 202-213 (2005).
728	Arandia-Gorostidi, N., Alonso-Sáez, L., Stryhanyuk, H, Richnow, H. H., Morán
729	X. A. G. & Musat, N. Warming the phycosphere: Differential effect of
730	temperature on the use of diatom-derived carbon by two copiotrophic
731	bacterial taxa. Environ. Microbiol. 22, 1381-1396 (2020).
732	Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A.
733	S., et al. SPAdes: a new genome assembly algorithm and its applications
734	to single-cell sequencing. J. Comput. Biol. 19, 455-477 (2012).
735	Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting Linear Mixed-
736	Effects Models Using Ime4. J. Stat. Softw. 67, 1-48 (2015).
737	Bergen, B., Endres, S., Engel, A., Zark, M., Dittmar, T., Sommer, U. &
738	Jürgens, K. Acidification and warming affect prominent bacteria in two
739	seasonal phytoplankton bloom mesocosms. Environ. Microbiol. 18, 4579-
740	4595 (2016).
741	Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for
742	Illumina sequence data. <i>Bioinformatics</i> 30 , 2114-2120 (2014).
743	Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment
744	using DIAMOND. <i>Nat. Methods</i> 12 , 59-60 (2015).

745	Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnnson, A. J. A.
746	& Holmes, S. P. DADA2: High-resolution sample inference from Illumina
747	amplicon data. <i>Nat. Methods</i> 13 , 581-583 (2016).
748	Carreira, C., Joyce, P. W. S., Morán, X. A. G., Carvalho, S., Falkenberg, L. &
749	Lønborg, C. Too hot to handle? An urgent need to understand climate
750	change impacts on the biogeochemistry of tropical coastal waters. Glob.
751	<i>Change Biol.</i> 30 , e17074 (2023).
752	Chen, B. Thermal diversity affects community responses to warming. <i>Ecol.</i>
753	<i>Model.</i> 464 , 109846 (2022).
754	Chen, B., Liu, H., Huang, B. & Wang, J. Temperature effects on the growth
755	rate of marine picoplankton. Mar. Ecol. Prog. Ser. 505, 37-47 (2014).
756	Chen, P. Q. & Shakhnovich, E. I. Thermal Adaptation of Viruses and Bacteria.
757	<i>Biophys. J.</i> 98 , 1109-1118 (2010).
758	Cook, G. M., Hards, K., Dunn, E., Heikal, A., Nakatani, Y., Greening, C., et al.
759	Oxidative Phosphorylation as a Target Space for Tuberculosis: Success,
760	Caution, and Future Directions. <i>Microbiol. Spectr.</i> 5, 2016 (2017).
761	Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature
762	dependence of physiological and ecological traits. Proc. Natl Acad. Sci.
763	<i>USA</i> 108 , 10591-10596 (2011).
764	Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincón, J., Zabala, L. L., Jiao,
765	N., et al. Present and future global distributions of the marine

766	Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad.
767	<i>Sci. USA</i> 110 , 9824-9829 (2013).
768	Glibert, P. M., Cai, WJ., Hall, E. R., Li, M., Main, K. L., Rose, K. A., et al.
769	Stressing over the complexities of multiple stressors in marine and
770	estuarine systems. Ocean-Land-Atmosphere Research. 2022, 9787258
771	(2022).
772	Gu, B., Lee, C., Ma, X., Tan, Y., Liu, H. & Xia, X. Effect of warming on growth,
773	grazing, and community composition of free-Living bacterioplankton in
774	subtropical coastal waters during winter and summer. Front. Microbiol. 11,
775	534404 (2020).
776	Gu, B., Liu, J., Cheung, S., Ho, N. H. E., Tan, Y. & Xia, X. Insights into
777	prokaryotic community and its potential functions in nitrogen metabolism
778	in the Bay of Bengal, a pronounced oxygen minimum zone. <i>Microbiol.</i>
779	Spectr. 10 , 00892-21 (2022).
780	Gu, B., Wang, Y., Xu, J., Jian, N. & Xu, D. Water mass shapes the distribution
781	patterns of planktonic ciliates (Alveolata, Ciliophora) in the subtropical
782	Pearl River Estuary. Mar. Pollut. Bull. 167, 112341 (2021).
783	Hall, E. K., Singer, G. A., Kainz, M. J. & Lennon, J. T. Evidence for a
784	temperature acclimation mechanism in bacteria: an empirical test of a
785	membrane-mediated trade-off. Funct. Ecol. 24, 898-908 (2010).
786	Hassan, N., Anesio, A. M., Rafiq, M., Holtvoeth, J., Bull, I., Haleem, A., et al.

- 787 Temperature driven membrane lipid adaptation in glacial psychrophilic 788 bacteria. Front. Microbiol. 11, 824 (2020). 789 Hyatt D., LoCascio P. F., Hauser L. J.&Uberbacher E. C. Gene and translation 790 initiation site prediction in metagenomic sequences. *Bioinformatics* 28, 2223-2230 (2012). 791 792 Jiao, N., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm, S. W., 793 et al. Microbial production of recalcitrant dissolved organic matter: Long-794 term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593-599 795 (2010). Kent, A. G., Garcia, C. A. & Martiny, A. C. Increased biofilm formation due to 796 797 high-temperature adaptation in marine Roseobacter. Nat. Microbiol. 3, 798 989-995 (2018). 799 Kim, S., Kim, Y., Suh, D. H., Lee, C. H., Yoo, S. M., Lee, S. Y. et al. Heatresponsive and time-resolved transcriptome and metabolome analyses of 800 801 Escherichia coli uncover thermo-tolerant mechanisms. Sci. Rep.10, 17715 802 (2020). Kirchman, D. L. Growth Rates of Microbes in the Oceans. Ann. Rev. Mar. Sci. 803 8, 285-309 (2015). 804 Kirchman, D. L., Malmstrom, R. R. & Cottrell, M. T. Controlof bacterial growth 805
- by temperature and organic matter in the Western Arctic. *Deep-Sea Res.*
- 807 *PT II* **52**, 3386-3395 (2005).

- Kling, J. D., Lee, M. D., Fu, F., Phan, M. D., Wang, X., Qu, P., et al. Transient
- 809 exposure to novel high temperatures reshapes coastal phytoplankton
- 810 communities. *ISME J.* **14**, 413-424 (2020).
- 811 Koga, Y. Thermal adaptation of the archaeal and bacterial lipid membranes.
- 812 Archaea 2012, 789652 (2012).
- 813 Labban, A., Palacio, A. S., García, F. C., Hadaidi, G., Ansari, M. I., López-
- 814 Urrutia, Á., et al. Temperature responses of heterotrophic bacteria in co-
- 815 culture with a Red Sea *Synechococcus* strain. *Front. Microbiol.* **12**,
- 816 **612732 (2021)**.
- 817 Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-
- 818 efficient alignment of short DNA sequences to the human genome.
- 819 *Genome Biol.* **10**, R25 (2009).
- 820 Leles, S. G. & Levine, N. M. Mechanistic constraints on the trade-off between
- 821 photosynthesis and respiration in response to warming. *Sci. Adv.* **9**,
- eadh8043 (2023).
- 823 Lewandowska, A. M., Boyce, D. G., Hofmann, M., Matthiessen, B., Sommer,
- U. & Worm, B. Effects of sea surface warming on marine plankton. *Ecol.*
- 825 *Lett.* **17**, 614-623 (2014).
- Lindh, M. V., Riemann, L., Baltar, F., Romero-Oliva, C., Salomon, P., Granéli,
- 827 E., et al. Consequences of increased temperature and acidification on
- 828 bacterioplankton community composition during a mesocosm spring

829	bloom in the Baltic Sea. <i>Env. Microbiol. Rep.</i> 5 , 252-262 (2013).
830	Liu, K., Chen, B., Zhang, S., Sato, M., Shi, Z & Liu, H. Marine phytoplankton
831	in subtropical coastal waters showing lower thermal sensitivity than
832	microzooplankton. Limnol. Oceanogr. 64, 1103-1119 (2018).
833	Liu, K., Suzuki, K., Chen, B. & Liu, H. Are temperature sensitivities of
834	Prochlorococcus and Synechococcus impacted by nutrient availability in
835	the subtropical northwest Pacific? Limnol. Oceanogr. 66, 639-651 (2021).
836	Lopez-Maury, L., Marguerat, S. & Bahler, J. Tuning gene expression to
837	changing environments: from rapid responses to evolutionary adaptation.
838	Nat. Rev. Genet. 9 , 583-593 (2008).
839	Lønborg, C., Baltar, F., Calleja, M. & Morán, X. A. G. Hetertrophic bacteria
840	respond differently to increasing temperature and dissolved organic
841	carbon sources in two tropical coastal systems. J. Geophys. Res. Biogeo.
842	127 , e2022JG006890 (2022).
843	Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
844	dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
845	Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and Cell Cycle
846	Analysis of Natural Populations of Marine Picoplankton by Flow
847	Cytometry Using the Nucleic Acid Stain SYBR Green I. Appl. Environ.
848	<i>Microb.</i> 63 , 186-193 (1997).
849	Martiny, A. C., Lomas, M. W., Fu, W., Boyd, P. W., Chen, Y. L., Cutter, G. A., et

- al. Biogeochemical controls of surface ocean phosphate. *Sci. Adv.* **5**,
- eaax0341 (2019).
- Morán, X. A. G., Gasol, J. M., Pernice, M. C., Mangot, J., Massana, R., Lara,
- 853 E., et al. Temperature regulation of marine heterotrophic prokaryotes
- increases latitudinally as a breach between bottom-up and top-down
- 855 controls. *Glob. Chang Biol.* **23**, 3956-3964 (2017).
- Nelder, J. A. & Wedderburn, R. W. M. Generalized linear models. J. R. Stat.
- 857 Soc. A **135**, 370-384 (1972).
- Nicholls, D. G. Bioenergetics: An introduction to the chemiosmotic theory,
- Academic, London (1982).
- 860 Oksanen, F. J. et al. Vegan: Community Ecology Package. R package Version
- 861 2.5-7 (2020).
- 862 Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A.,
- Alexander, L. V., et al. Longer and more frequent marine heatwaves over
 the past century. *Nat. Commun.* 9, 1324 (2018).
- 865 Padfield, D., Yvon-Durocher, G., Buckling, A., Jennings, S. & Yvon-Durocher,
- G. Rapid evolution of metabolic traits explains thermal adaptation in
- 867 phytoplankton. *Ecol. Lett.* **19**, 133-142 (2016).
- 868 Paerl, H. W. & Huisman, J. Blooms like it hot. Science **320**, 57-58 (2008).
- 869 Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change
- 870 impacts across natural systems. *Nature* **421**, 37-42 (2003).

- 871 Pearce & Feng. The rise and fall of the "mairne heat wave" off Western
- Australia during the summer of 2010/2011. J. Marine Syst. 111-112, 139-
- 873 **156 (2013)**.
- 874 Penn, J. & Deutsch, C. Avoiding ocean mass extinction from climate warming.
- 875 Science 376, 524-526 (2022).
- 876 Pernthaler, J. Predation on prokaryotes in the water column and its ecological
- 877 implications. *Nat. Rev. Microbiol.* **3**, 537-546 (2005).
- 878 Pittera, J., Humily, F., Thorel, M., Grulois, D., Garczarek, L. & Six, C.
- 879 Connecting thermal physiology and latitudinal niche partitioning in marine
- 880 Synechococcus. ISME J. 8, 1221-1236 (2014).
- 881 Pittera, J., Partensky, F. & Six, C. Adaptive thermostability of light-harvesting
- complexes in marine picocyanobacteria. *ISME J.* **11**, 112-124 (2017).
- 883 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al.
- 884 The SILVA ribosomal RNA gene database project: improved data
- processing and web-based tools. *Nucleic Acids Res.* **41**, D590-D596
- 886 (2013).
- 887 R Core Team. R: A Language and Environment for Staistical Computing. R
- 888 Foundation for Statistical Computing, Vienna (2018).
- 889 Ren, L., Song, X., He, D., Wang, J., Tan, M., Xia, X., et al. Bacterioplankton
- 890 metacommunity processes across thermal gradients: weaker species
- sorting but stronger niche segregation in summer than in winter in a

892	subtropical bay. Appl. Environ. Microb. 85, e02088-18 (2019).
893	Rivkin, R. B. & Legendre, L. Biogenic carbon cycling in the upper ocean:
894	Effects of microbial respiration. Science 291, 2398-2400 (2001).
895	Schulhof, M. A., Shurin, J. B., Declerck, S. A. J. & Van de Waal, D. B.
896	Phytoplankton growth and stoichiometric responses to warming, nutrient
897	addition and grazing depend on lake productivity and cell size. <i>Glob.</i>
898	Change Biol. 25 , 2751-2762 (2019).
899	Senior, E. A. ATP synthesis by oxidative phosphorylation. Physiol. Rev. 68,
900	177 (1988).
901	Smith, T. P., Thomas, T. J. H., García-Carreras B., Sal, S., Yvon-Durocher, G.,
902	Bell, T., et al. Community-level respiration of prokaryotic microbes may
903	rise with global warming. Nat. Commun. 10, 5124 (2019).
904	Smith, T. P., Clegg, T., Bell, T. & Pawar, S. Systematic variation in the
905	temperature dependence of bacterial carbon use efficiency. Ecol. Lett. 24,
906	2123-2133 (2021).
907	Tamames, J. & Puente-Sanchez, F. SqueezeMeta, a highly portable, fully
908	automatic metagenomic analysis pipeline. Front. Microbiol. 9, 3349
909	(2019).
910	Tan, H., Cai, R. & Wu, R. Summer marine heatwaves in the South China Sea:
911	Trend, variability and possible causes. Adv. Clim. Chang. Res. 13, 323-
912	332 (2022).

913	Teira, E., Logares, R., Gutiérrez-Barral, A., Ferrera, I., Varela, M. M. et al.
914	Impact of grazing, resource availability and light on prokaryotic growth
915	and diversity in the oligotrophic surface global ocean. Environ. Microbiol.
916	21 , 1482-1496 (2019).
917	Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global
918	pattern of thermal adaptation in marine phytoplankton. Science 338,
919	1085-1088 (2012).
920	Tsai, A. Y., Gong, GC. & Shiau, W. Viral lysis and nanoflagellate grazing on
921	prokaryotes: effects of short-term warming in a coastal subtropical marine
922	system. <i>Hydrobiologia</i> 751 , 43-54 (2015).
923	Turber, S., Pryer, K. M., Miao, V. P. W. & Palmer, J. D. Investigating deep
924	phylogenetic relationships among cyanobacteria and plastids by small
925	subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 46, 327-338
926	(1999).
927	von Scheibner, M., Dörge, P., Biermann, A., Sommer, U., Hoppe, H. &
928	Jürgens, K. Impact of warming on phyto-bacterioplankton coupling and
929	bacterial community composition in experimental mesocosms. Environ.
930	<i>Microbiol.</i> 16 , 718-733 (2014).
931	von Scheibner, M., Herlemann, D. P. R., Lewandowska, A. M. & Jürgens, K.
932	Phyto- and bacterioplankton during early spring conditions in the baltic

933 sea and response to short-term experimental warming. *Front. Mar. Sci.* 5,

- 934 **231 (2018)**.
- 935 Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using
- 936 RNA-seq data: RPKM measure is inconsistent among samples. *Theory*
- 937 *Biosci.* **131**, 281-285 (2012).
- 938 Xia, X., Leung, S., Cheung, S., Zhang, S. & Liu, H. Rare bacteria in seawater
- 939 are dominant in the bacterial assemblage associated with the Bloom-
- 940 forming dinoflagellate *Noctiluca scintillans*. *Sci. Total Environ*. **711**,
- 941 **135107 (2020)**.
- 942 Xia, X., Vidyarathna, N. K., Palenik, B., Lee, P. & Liu, H. Comparison of the
- 943 seasonal variations of *Synechococcus* assemblage structures in estuarine
- 944 waters and coastal waters of Hong Kong. Appl. Environ. Microb. 81, 7644-
- 945 **7655 (2015)**.
- 946 Yokokawa, T. & Nagata, T. Growth and grazing mortality rates of phylogenetic
- 947 groups of bacterioplankton in coastal marine environments. *Appl. Environ.*948 *Microb.* **71**, 6799-6807 (2005).
- 949 Zhang, H., Gu, B., Zhou, Y., Ma, X., Liu, T., Xu, H., et al. Multi-omics profiling
- 950 reveals resuorce allocation and acclimation strategies to temperature
- 951 changes in a marine dinoflagellate. *Appl. Environ. Microb.* **88**, e01213-22
- 952 **(2022)**.

953 FIGURE LEGEND

954	Fig. 1. Effects of temperature increase on heterotrophic prokaryotes
955	were highly dependent on ambient temperatures. Thermal responses of
956	heterotrophic prokaryotic abundance at the final point (24 h) of the filtered
957	incubations (a), abundance at the final point (24 h) of the unfiltered
958	incubations (b), intrinsic growth rate (c), and grazing pressure (d).
959	Experimental warming effects on heterotrophic prokaryotes growth rate (μ_{HP})
960	and grazing pressure (g_{HP}) were quantified by generalized linear model (see
961	methods). The letters in the first and second rows of the figure represent the
962	experimental date and the ambient temperatures (T_{amb}) , respectively. The
963	asterisks in panels a-c indicate significance values (*p < 0.05, **p < 0.01; chi-
964	squared test), and the control temperatures (the same as the ambient
965	temperatures) of each experiment are shown in panels. Comparisons
966	between the negative effects of warming on growth and grazing (e). Note that
967	only the negative effects were included. *Represent the significant difference
968	with $p < 0.05$ (t-test). The linear relationships between the control
969	temperatures and the effects of warming on the growth rate $({f f})$ and grazing
970	pressure (g). These effects were scaled before running the model.
971	

972 Fig. 2. Autotrophic prokaryotes Synechococcus hardly survived under

- 973 **6°C experimental warming in summer**. Thermal responses of
- 974 Synechococcus abundance at the final point of the filtered incubations (a),
- abundance at the final point of the unfiltered incubations (**b**), intrinsic growth
- 976 rate (c), and grazing pressure (d) in summer. Experimental warming effects
- 977 on *Synechococcus* growth rate (μ_{Syn}) and grazing pressure (g_{Syn}) were
- 978 quantified by generalized linear model (see methods). The asterisks indicate
- 979 significance values (*p < 0.05, **p < 0.01; t-test), and the control temperatures
- 980 (the same as the ambient temperatures, T_{amb}) of each experiment are shown
- 981 in panels.
- 982

983 Fig. 3. Different responses to temperature increase between

984 heterotrophic prokaryotes and Synechococcus. (a) The comparison of the

- 985 warming effects on growth rates (μ) between heterotrophic prokaryotes (HPs)
- and Synechococcus (Syn) when ambient temperatures (T_{amb}) were $\geq 30^{\circ}$ C.
- 987 The asterisks indicate significance values (**p < 0.01; t-test). (**b**) The
- 988 standardized ratio of heterotrophic prokaryotes and *Synechococcus*
- 989 abundance over ambient temperatures.

990

Fig. 4. Thermal preference of different prokaryotes. Ternary plots showed
responses of prokaryotic taxa to temperature increase (at family level colored

993	by class) in the experiments of Jan19 (a), Jul15 (b), Aug14 (c) and Sep07 (d).
994	The experimental date and ambient temperatures (T_{amb}) of each experiment
995	were shown in each panel. The dot size represented the relative abundance
996	of each family based on 16S rRNA data. The top 10 abundant families were
997	labeled in panels b, c, d, except a, because all the families gathered together
998	in that experiment. Arrows highlight the position of Cyanobacteria in the
999	panels. Abbreviations: Actin., Actinomarinaceae; Alter., Alteromonadaceae;
1000	Bacte., Bacteriovoracaceae; Balne., Balneolaceae; Bdell., Bdellovibrionaceae;
1001	Croci., Crocinitomicaceae; Cryom., Cryomorphaceae; Cyano., Cyanobiaceae;
1002	Flavo., Flavobacteriaceae; Halie., Halieaceae; Micro., Microbacteriaceae;
1003	Rhodo., Rhodothermaceae; Rhodob., Rhodobacteraceae; Sapro.,
1004	Saprospiraceae.
1005	
1006	Fig. 5. Potential mechanisms indicated by metatranscriptomics for the
1007	reduced prokaryotic growth under thermal stress. (a) Overview of the
1008	pathways with metatranscriptional expression genes that significantly respond
1009	to experimental warming. Blue and red bars indicate the number of
1010	significantly down-regulated and up-regulated genes, respectively. The
1011	significantly changed genes related to oxidative phosphorylation of
1012	heterotrophic prokaryotes (b) and photosynthesis of cyanobacteria (c) in

1013 response to extreme temperature increase in summer. Significant (DESeq2,

$1014 p_{adj} < 0.05$) and non-significant (DESeq2, $p_{adj} > 0.05$) effects are marked with

1015 solid and hollow dots, respectively.