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Quantum annealers play a major role in the ongoing development of quantum information process-
ing and in the advent of quantum technologies. Their functioning is underpinned by the many-body
adiabatic evolution connecting the ground state of a simple system to that of an interacting classical
Hamiltonian which encodes the solution to an optimization problem. Here we explore more general
properties of the dynamics of quantum annealers, going beyond the low-energy regime. We show
that the unitary evolution operator describing the complete dynamics is typically highly quantum
chaotic. As a result, the annealing dynamics naturally leads to volume-law entangled random-like
states when the initial configuration is rotated away from the low-energy subspace. Furthermore, we
observe that the Heisenberg dynamics of a quantum annealer leads to extensive operator spreading,
a hallmark of quantum information scrambling. In all cases, we study how deviations from chaotic
behavior can be identified when analyzing cyclic ramps, where the annealing schedule is returned
to the initial configuration.

I. INTRODUCTION

The goal of exploiting quantum effects to solve compu-
tational problems more efficiently than classical devices
has led to the fast-paced development of quantum tech-
nologies. A remarkably simple, yet potentially powerful,
approach is quantum annealing [1], which uses adiabatic
quantum evolution to tackle problems in combinatorial
optimization. More broadly, adiabatic dynamics can be
leveraged to perform universal quantum computation [2],
in quantum control protocols for entangled-state prepa-
ration [3], and is closely related to variational quantum
algorithms like the quantum approximate optimization
algorithm (QAOA) [4, 5].

From a many-body physics perspective, the richness
of adiabatic dynamics arises from the interplay between
interactions and time-dependent driving. Interestingly,
generic quantum many-body systems, in absence of ex-
tensive symmetries, are typically quantum chaotic [6–10],
displaying features such as random-matrix-like spectral
statistics [9], pseudorandom eigenstates [11–13], fast dy-
namical generation of entanglement [14], and three-stage
dynamics in the entanglement spectrum [15]. The ad-
dition of driving and the ensuing lack of energy con-
servation typically enhances the dynamical signatures of
chaos [16], and can turn integrable systems into chaotic
ones [17].

In this context, adiabatic driving can be regarded
as the “gentlest” form of time-dependence, as the slow
change in system parameters leads to a quasi-static con-
nection between eigenstates of different Hamiltonians.
In generic many-body systems, however, such connec-
tion can only realistically be achieved in the low-energy
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regime, where states can be protected by a sufficiently
large energy gap. This suffices to guarantee the func-
tioning of a quantum annealer, which focuses on ground
states. But, the dynamical properties of these systems
at other energy scales will be determined by a nontrivial
interplay between driving, (non)adiabaticity, and chaos.
So far, this regime has remained largely unexplored in
the literature.

In this paper we explore many-body adiabatic evolu-
tion beyond the low-energy sector. We consider a system
of spin-12 particles whose Hamiltonian is slowly interpo-
lated between two integrable models through a chaotic
path. This is the typical scenario in quantum anneal-
ing, where the system is driven from a “mixer” (non-
interacting) Hamiltonian HM at t = 0 to a “problem”
(classical) Hamiltonian HP at t = T , as depicted in
Fig. 1a and 1b. We first explore the dynamics of the
system when the initial product state is rotated away
from the ground state of HM, by studying the entan-
glement properties of the final state after the “anneal”,
|ψ(T )⟩. Then, we probe global properties of the adi-
abatic evolution by analyzing properties of the unitary
operator U(t) dictating the full dynamics, for which we
use standard diagnostics of quantum chaos based on the
spectrum of eigenphases and eigenvectors of U(t). Fi-
nally, we study the dynamics of generic operators in the
Heisenberg picture through the formalism of operator
growth and demonstrate the onset of quantum informa-
tion scrambling.

The emergence of chaotic properties in the dynamics
of a quantum annealer can be readily observed in a sim-
ple example shown in Fig. 1c. There, we plot the half-
chain entanglement entropy the state |ψ(T )⟩ at the end
of the annealing schedule, as a function of the mean en-
ergy ⟨HM⟩ of the initial product state for different system
sizes N . For ⟨HM⟩ = ±N , the initial state is the ground
state of ±HM, i.e. the standard annealing scenario, and
in consequence we obtain that the corresponding final
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FIG. 1. (a) Schematic of a quantum annealing protocol.
Two integrable Hamiltonians HM and HP are interpolated
by chaotic Hamiltonian H(s). Slowly varying the parameter
s from 0 to 1 will connect the ground state of HM to that the
ground state of HP. (b) The forward ramp from s(t = 0) = 0
to s(t = T ) = 1 leads to the unitary map U(T ) ≡ UFW.
Ramping back from s = 1 to s = 0 generates the back-
wards unitary UBW such that the cyclic process is given by
Ucycle = UBWUFW. (c) Half-chain entanglement entropy of
the state |ψ(T )⟩ at the end of a forward ramp under annealing
dynamics, for the Ising model described in Sec. II. The ini-
tial state is the spin coherent state |ψ(0)⟩ = |θ = 0, φ⟩, where
all qubits are pointing along the direction (cos(φ), sin(φ), 0)
on the Bloch sphere. For φ → 0, π, the dynamics connects
the ground state of ±HM to that of ±HP and generate little
entanglement. For intermediate values of φ, the final states
acquire volume-law entanglement entropy, similar to that of
random states.

states are only slightly entangled. However, as the initial
state is rotated away from the ground state (by angle φ,
as described in Sect. III) we find that the final configura-
tion acquires a entanglement entropy which grows with
system size. At the peak, the final states exhibit clear
volume-law entanglement entropy, well approximated by
Page’s value [18]. We thus observe that the annealing dy-
namics is generating random-like states with very high
entanglement, akin to what is expected from the time
evolution of a fully quantum chaotic system.

As we show in this paper, the observed chaotic features
turn out to be generic and emerge in the dynamics of
most initial states. Interestingly, we find that significant
deviations from chaoticity are observed if one considers
a cyclic annealing schedule, where the interpolation pa-
rameter s(t) is driven from s(t = 0) = 0 to s(t = T ) = 1
and then back to s(t = 2T ) = 0; see Fig. 1 (b). For such
case, we observe the existence of eigenstates of U(2T )
that show clear signatures of low-energy states, in par-

ticular displaying area-law entanglement, and that the
dynamics of global operators show unscrambling features.

The rest of the manuscript is organized as follows. In
Sec. II we introduce the model we use in this paper, char-
acterize the onset of chaos and integrability for different
parameter values, and discuss the connection between
adiabaticity and the spectral gaps throughout the energy
spectrum. In Sec. III we analyze the evolution of initial
states that are rotated away from the ground state ofHM.
Expanding on the example discussed in Fig. 1 and consid-
ering both forward and cyclic adiabatic ramps. In Sec. IV
we study properties of the many-body time-evolution op-
erator U(t) describing the dynamics. We focus on the
analysis of the statistical properties of its eigenphases
and entanglement structure of its eigenstates. We con-
nect the behavior of these quantities to the emergence
of chaotic signatures in the system for both forward and
cyclic driving protocols. In Sec. V we study the adia-
batic dynamics of the system in the Heisenberg picture.
For that, we consider different sets of initial operators
and probe the emergence of quantum information scram-
bling by tracking how the mean operator size evolves in
time for the two driving protocols. Finally, in Sec. VI
we summarize our findings, discuss how our results could
inform new uses and applications of quantum annealers,
and propose potential avenues for future work.

II. PHYSICAL MODEL AND DRIVING
PROTOCOL

We consider a system of N spin- 12 particles described
by a Hamiltonian of the form

H(s) = sHM + (1− s)HP, (1)

where

HM =

N∑
i=1

σx
i (2)

HP =

N∑
i,j=1

χijσ
z
i σ

z
j +

N∑
i=1

λiσ
z
i (3)

and where {σα
i } with α = x, y, z denote the usual Pauli

operators acting on site i = 1, . . . , N . The parameter
s ∈ [0, 1] allows to interpolate between the noninteract-
ing mixer Hamiltonian HM, and the interacting classi-
cal Hamiltonian HP which is diagonal in the computa-
tional basis for any choice of connectivity {χij} and lo-
cal longitudinal fields {λi}. The problem Hamiltonian
HP can encode instances of quadratic binary optimiza-
tion (QUBO) problems [19] for instance maximum cut
and maximum independent set [20], as well as describe
physical models of relevance to the theory of spin glasses
and statistical mechanics [21, 22]. In this work we focus
entirely on the simplest scenario, where interactions are
nearest-neighbor χij = δj,i+1 (with open boundary con-
ditions) and the local field is homogeneous across all sites
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FIG. 2. Spectral properties of Hamiltonian H(s) in Eq. (1).
(a) Mean level spacing ratio r, defined from Eq. (5), as a
function of the interpolation parameter s. Average is taken
over the bulk of the spectrum, here defined by not considering
the top 5% lowest and highest energy levels. Dotted (dash-
dotted) lines indicate the values of r for chaotic (GOE) and
integrable (Poisson) models. (b) and (c) Spectral gaps as a
function of s for system sizes N ∈ [8, 12] (light to dark tones).
Figure (b) shows the ground state gap ∆0(s), while (c) shows
the average gap

∑
j ∆j/(d̃ − 1) with d̃ the relevant Hilbert

space dimension. (d) Scaling of the minimum ground state
gap and average gap with system size N ; minimum is taken
over s ∈ [0, 1]. All calculations are performed in the positive
parity sector of the Hamiltonian H(s), whose dimension is
d = 2N−1.

λi = λ = 1. This choice makes H(s) in Eq. (1) equivalent
to the mixed-field Ising model [23–25].

The Hamiltonian in Eq. (1) is trivially integrable for
s = 0 and s = 1, while for s ∈ (0, 1) integrability is
broken and the model becomes quantum chaotic. As dis-
cussed in Ref. [26], a similar situation is found for most
choices of connectivity graphs χij (at least, those far from
the disconnected and completely connected regimes).
This motivates our choice of the nearest-neighbor graph
as a simple representative of the typical case leading to a
chaotic path interpolating between two integrable limits,
as depicted in Fig. 1a. The onset of chaos can be diag-
nosed by the emergence of level repulsion in the bulk of
the energy spectrum of the Hamiltonian, which in turn
can be quantified by the mean level spacing ratio (MLSR)
r [27]. Given a set of eigenvalues {ei}, the associated level

spacings (gaps) are

∆j = ej+1 − ej (4)

and we define the spacing ratios as

rj =
max(∆j ,∆j+1)

min(∆j ,∆j+1)
. (5)

The MLSR is computed as the mean of the set {rj} across
the bulk of the spectrum. For quantum chaotic Hamilto-
nians, the MLSR matches random matrix theory predic-
tions; for the case of the model considered here, the rele-
vant matrix ensemble is the Gaussian Orthogonal Ensem-
ble for which rGOE ≃ 0.535 [27]. Integrable systems show
uncorrelated level statistics yielding rINT ≃ 0.386 [27].
Importantly, for the MLSR (and any other spectral prop-
erty) to be meaningful one must consider a given symme-
try sector of the Hamiltonian. For the model in Eq. (1),
the only discrete symmetry present is related to the in-
variance of the system when performing a reflection with
respect to the middle of the chain. We choose to work
in a positive parity sector since this is where the ground
state of HM resides.

In Fig. 2 (a) we plot the MLSR r for the Hamiltonian
in Eq. (1) as a function of the interpolation parameter
s for the chosen geometry. Dotted (dash-doted) lines
indicate expected limiting values for chaotic (integrable)
models. We observe that the model is maximally chaotic
for s ≃ 0.3 − 0.6, with clear deviations from the GOE
predictions as s = 0 and s = 1 are approached. We
emphasize that this characterization of quantum chaos
corresponds to the static Hamiltonian H(s) where s is
fixed. Nonetheless, these results will inform our analysis
of the properties of the adiabatically-driven system in the
next sections.

A. Gap characterization and adiabaticity

We are interested in analyzing the dynamics of the
system when the parameter s = s(t) is slowly changed
in time. We consider two protocols: a standard for-
ward ramp, and a cyclic ramp. In the forward ramp,
s(t) = t/T and the Hamiltonian is interpolated between
HM at t = 0 to HP at t = T . This is the usual sce-
nario in quantum annealing where one expects to con-
nect the ground state of HM to that of HP. In the cyclic
ramp, on the other hand, s(t) = t/T for t ∈ [0, T ] and
s(t) = (2T − t)/T for t ∈ (T, 2T ], such that the Hamilto-
nian returns to HM at the final time t = 2T . In this case,
the system initially prepared in one of the eigenstates of
HM will return to the same eigenstate at t = 2T if the
evolution is truly adiabatic, having acquired an overall
geometric phase in the process [28].

A key aspect of designing the adiabatic driving is to
make sure that the conditions of the Adiabatic Theorem
are met throughout the evolution. For H(s) = H(s(t))
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and s ∼ t/T , these can be roughly translated into the
requirement [29, 30].

T ≫ max
s∈[0,1]

|⟨k| ∂H∂s |n⟩|
∆n(s)2

(6)

where |n⟩ and |k⟩ denote instantaneous eigenstates of
H(s) and ∆n(s) is the spectral gap of Eq. (4). In
a generic many-body system, however, the exponential
amount of energy levels in a given fixed energy window
(in the bulk of the spectrum) precludes the validity of
Eq. (6) for the entirety of the spectrum even for moder-
ate system sizes. For the model we consider this can be
seen by analyzing the scaling of the spectral gaps ∆j(s)
defined in Eq. (4). In Fig. 2b and 2c we plot the ground
state gap ∆0(s) and the average gap

∆(s) =
1

d̃− 1

d̃∑
j=1

∆j(s), (7)

where d̃ indicates the dimension of the positive parity
subspace, d ≃ 2N−1. Curves are shown for various sys-
tem sizes N ∈ [8, 12], revealing that the ground state gap
remains finite as the system is scaled up, while the aver-
age gap shrinks exponentially. This is confirmed by the
data in Fig. 2 (d) which shows the scaling of the mini-
mum values of ∆0(s) and ∆(s) with system size. These
results show that in order to strictly meet the adiabatic-
ity condition Eq. (6) for every energy level, the evolution
time would have to grow exponentially with system size,
making it practically unfeasible.

This effective lack of adiabaticity in a many-body sys-
tem is not surprising, and it can be seen as a consequence
of the exponential growth of Hilbert space dimension
(nonetheless, see Ref. [31, 32] for important exceptions).
Here we take the approach of considering evolution times
T that are long enough to meet condition (6) for the low
(and high) energy portions of the spectrum - in particular
for the ground state of the system. These are the con-
ditions in which quantum annealers are ideally designed
to work in. Our focus will be in analyzing the dynamical
process as a whole, without restricting to analyzing only
the evolution of the ground state.

III. EVOLUTION OF SPIN COHERENT STATES

In this section we explore the dynamics of different
states under the slow adiabatic driving. Formally, the
annealing dynamics is described by the set of unitaries

U(Ttot) := T
[
e−i

∫ Ttot
0 dtH(s(t))

]
(8)

with T [.] the time ordering operator, Ttot = T, 2T for the
forward and cyclic ramps, respectively, and s(t) chosen
accordingly. In our numerical simulations we approxi-
mate the ideal protocol with a discretized version of the

form

U(Ttot) ≈
q−1∏
m=0

e−im∆tH(s(m∆t)), (9)

with ∆t the time step and q = Ttot/∆t the total num-
ber of steps. Hence, the protocol is controlled by the
two independent parameters (∆t, Ttot), which can always
be chosen to guarantee the fulfillment of the adiabatic
condition (for the low energy sector). Here, we take
Ttot ∝ N2 [33, 34] and ∆t < 1 [35, 36], which satisfy
the above requirements.

We begin our exploration of the quantum ergodic prop-
erties in the annealing process by considering the evolu-
tion of product states where initially all spins are polar-
ized along the same direction n⃗, such that

|ψ(0)⟩ = |↑n⃗⟩⊗N = |θ, φ⟩ (10)

are spin coherent states (SCS) [37], where n⃗ is defined
by the polar and azimuthal angles (θ, φ). Note that
|π/2, π⟩ = |ψ(0)⟩ = |−⟩⊗N and |π/2, 0⟩ = |ψ(0)⟩ =
|+⟩⊗N are the lowest and highest energy eigenstates of
HM, respectively. We define a continuous family of SCSs
connecting these two extremal states as

S = {|π/2, φ⟩ | φ ∈ [0, π]}, (11)

which cover the full range of energies ofHM since ⟨HM⟩ =
⟨π/2, φ|HM|π/2, φ⟩ = N cos(φ). For the results discussed
in this section we always take |ψ(0)⟩ ∈ S.

For both the forward and cyclic protocols we investi-
gate the ergodicity of the evolution by computing the
half-partition entanglement entropy of the final state.
This quantity measures the degree of entanglement be-
tween two subsetsA andB in a collection ofN spins, with
|A ∪B| = N . Given a pure state |ψ⟩ of the N spins, the
reduced density matrix of the subsystem A (respectively,
B) ρA = trB(|ψ⟩⟨ψ|) associated with the considered bi-
partition gives access to the half-partition entanglement
entropy as the von Neumann entropy of the reduced state

SA = −tr (ρA log(ρA)) = −
∑
l

λl log(λl), (12)

where {λl}l=1,..,2|A| are the eigenvalues of ρA satisfying∑
l λl = 1. For the rest of the manuscript we fix A as

the block of the N/2 left-most spins in the chain and B
the complement, and thus we will refer to the quantity
in Eq. (12) as half-chain entanglement entropy. Typ-
ically, time evolution under a time-independent chaotic
Hamiltonian or chaotic unitary transforms initial product
states, with SA = 0, into highly entangled states which
are indistinguishable from random pure states with SA

saturating the Page value SA ∼ log(2)
2 N [18].

A. Forward ramps

First, we consider the evolution of every state |ψ(0)⟩ ∈
S with a forward ramp and compute SA of the final state
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FIG. 3. Properties of the final state, |ψ(2T )⟩, for a cyclic
ramp initialized with a spin coherent state pointing along the
direction given by angles (θ, φ) = (π/2, φ) (see main text for
details), for systems N = 8, 10, 12, 14. (a) Half-chain entan-
glement entropy SA of |ψ(2T )⟩ as a function of the mean-
energy density of the initial state which is determined by its
direction. The dashed lines indicate the Page value for the re-
spective system size. The dotted line indicates SA = log(2).
(b) Fidelity between initial and final states of the cyclic ramp
as function of the initial state mean-energy density. A per-
fect cyclic evolution is characterized by a unit fidelity. Only
states with a small mean-energy density neighborhood of ei-
ther |+⟩⊗N and |−⟩⊗N can be successfully returned to their
initial configuration. Parameters are: T = 600, ∆t = 0.05.

|ψ(T )⟩. When |ψ(0)⟩ = |π/2, π⟩ with ⟨HM⟩/N = 1, this
is the standard quantum annealing scenario. Naturally,
the ground state of HP is reached at the end of the ramp,
as is witnessed by the value SA = log(2) in Fig. 1c (or-
ange dashed line). The opposing limit, where φ = 0 and
⟨HM⟩/N = −1, can be regarded as an anneal between
−HM and −HP, for which the final state is a product
state and so SA = 0, as also seen in the Figure.

For initial states away from the two extremal cases, we
find that they reach final configurations with SA rapidly
converging to the Page value of random pure states (col-
ored dashed lines in Fig. 1c). Interestingly, states with SA

closer to the Page value also have mean-energy ⟨HM⟩ ≈
0, corresponding with the middle of the energy spec-
trum, an observation which will be further discussed in
Sec. IV. Finally, since ⟨θ, φ|HM|θ, φ⟩ = N sin(θ) cos(φ),
all other |θ, φ⟩ /∈ S have a mean-energy which rapidly
decreases away from θ = π/2. Hence the fate of the
majority of states, |θ, φ⟩, in the manifold of SCSs, with
the exception of small neighborhoods in the vicinity of
(θ, φ) = (π/2, 0), (π/2, π), i.e., ⟨HM⟩/N = ±1, is to be
transported by the forward ramp into highly entangled
states, displaying an entanglement entropy which grows

with system size, and with some of them resembling ran-
dom pure states.

B. Cyclic ramps

We now consider the cyclic ramp. For a perfect adi-
abatic connection, the two extremal states, |π/2, 0⟩ =
|+⟩⊗N and |π/2, π⟩ = |−⟩⊗N , must be transported into
themselves, i.e., |ψ(2T )⟩ = |ψ(0)⟩ = |π/2, {0, π}⟩. Hence,
we are also interested in determining the degree to which
such return takes place. To do so, we look at the final
state fidelity f(2T ) = |⟨ψ(2T )|ψ(0)⟩|2, which will com-
plement the study of the entanglement entropy SA.

Both SA(2T ) and f(2T ) for all |ψ(0) ∈ S are shown,
as function of the mean-energy density ⟨HM⟩/N of the
initial state, in Fig. 3a and 3b, respectively. We find
that the two extremal states of HM are successfully con-
nected back to themselves through the cyclic evolution,
as evidence by the corresponding values of SA(2T ) = 0
and f(2T ) = 1. On the other hand, most of the initial
states reach “warmer” states, i.e., SA(2T ) > 0. In par-
ticular, the value of SA(2T ) = log(2) (grey dotted line
in Fig. 3a) seems to provide a good discriminator be-
tween initial states reaching f(2T ) > 0 and f(2T ) ∼ 0
when SA(2T ) < log(2) or SA(2T ) > log(2), respectively.
Furthermore, most of the energy range defined by HM

is occupied by states which fail to come back to them-
selves with a finite f(2T ). In connection with the above
discriminator, we see that states with SA(2T ) < log(2)
have |⟨HM⟩/N | ⪆ 0.9 and those with SA(2T ) > log(2)
have |⟨HM⟩/N | ⪅ 0.9. Notice that the effect is also asym-
metric: It is easier to transport along a cyclic adiabatic
ramp product states with ⟨HM⟩ close to the top of the
spectrum than those with ⟨HM⟩ close to the bottom of
the spectrum of HM.

Finally, we stress that the results discussed in Sec. III A
and Sec. III B are not unique to product states; in fact,
entangled initial states display a similar behavior. In
App. A we report results for a set of initial states given by
the eigenstates of HM, i.e., Dicke states, which are in gen-
eral entangled. This suggests an initial-state-independet
character of the reported behavior, connected to univer-
sal properties of the unitary operator U(Ttot). We ex-
plore this aspect of the problem in the following section.

IV. CHAOS IN THE UNITARY EVOLUTION
OPERATOR

In this section we characterize the global spectral prop-
erties of the unitary evolution operator describing the
adiabatic driving of the Hamiltonian in Eq. (1), as ap-
proximated by Eq. (9). We investigate the onset of quan-
tum chaos on the annealing process from properties of the
eigenphases and eigenvectors of U(t).

The degree of correlation among eigenphases is stud-
ied with the MLSR as introduced in Eq. (4) and Eq. (5),
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FIG. 4. Spectral properties of the adiabatic unitary operator for both forward and cyclic ramps. (a) Mean level spacing ratio
(MLSR) as a function of time for 0 ≤ t ≤ 2T covering both forward and backward ramps. The green star indicates the first
time instant t∗ at which the unitary becomes fully chaotic (s ≃ 0.14 for N = 14), and the inset shows the behavior of this
quantity with system size. The dash-dot line shows the MLSR for an integrable system and the dotted line that of a chaotic
system. The bottom panels shows s(t), with the forward ramp stopping at t/T = 1 and the cyclic ramp defined over the
full range of t/T . (b) Half-chain entanglement entropy of all the eigenstates of U(T ) as a function of their mean energy with
respect to the problem Hamiltonian HP. (c) Half-chain entanglement entropy of all the eigenstates of U(2T ) as a function of
their mean energy with respect to mixer Hamiltonian HM. Both in (b) and (c) the dots are colored based on the local density,
with black indicating very low density and light orange indicating very high density, the dashed lines (bottom to top), indicate
S = 0, log(2), 0.5 log(N)− 0.5, respectively. In all panels the parameters are: N = 14, T = 600, dt = 0.5.

allowing us to discern whether the unitary can be asso-
ciated with an integrable, quasi-integrable, or quantum
chaotic system. As we deal with spectral properties of
a unitary operator, the random matrix ensembles linked
with quantum chaotic behavior are now the circular en-
sembles [38]. In particular, for the circular orthogonal
ensemble (COE), rCOE ≃ 0.529. In contrast with the
case of Hamiltonian spectra, unitary operators do not
have a clear-cut notion of low-energy and bulk sectors
in their spectra. As such, we perform the MLSR anal-
ysis including all the eigenphases of the positive parity
symmetry sector.

To study the structure of the eigenstates, we use the
half-partition entanglement entropy SA as defined un
Eq. (12). For many-body systems in one dimension the
half-chain entanglement entropy of individual eigenstates
as a function of system size displays two dominant behav-
iors: i) Area-law entanglement with SA(N) ≃ K with K
a constant independent of the system size, and ii) volume-
law entanglement with SA(N) = c1N + c2 + O(N−1) a
linear dependence on the system size. The coefficients
c1,2 allow us to distinguish between random gaussian
states [39, 40] and random pure states which saturate
the Page value [18], with c1 = log(2)/2 and c2 = −1/2.
Importantly, chaotic eigenstates of many-body Hamilto-
nians obey a volume-law of the half-chain entanglement
entropy [13, 41, 42], thus one can diagnose the presence
of this type of eigenstates based on the behavior of SA.

A. Forward ramps

The evolution along the forward ramp is defined iter-
ativelly via a product of unitaries in time succession, see
Eq. (9). For t = m∆t ∈ [0, T ], we write U(t = m∆t) =[∏m−1

p=0 e−ip∆tH(s(pδt))
]
e−im∆tH(s(m∆t)) where the prod-

uct inside the square brackets is the unitary up to the pre-
ceding time U((m−1)∆t). The unitary of the full ramp is
obtain when the number of steps equals T/∆t. The spec-
tral decomposition of any of the unitaries along the ramp
reads U(t)|µl(t)⟩ = e−iµl(t)|µl(t)⟩, with {µl(t)}l=1,..,2N

the set of eigenphases and {|µl(t)⟩}l=1,..,2N the set of as-
sociated eigenvectors, and with t→ T for the unitary of
the full evolution U(T ).

We consider first the MLSR of the set of eigenphases
{µl(t)} of each of the unitaries U(t) for 0 ≤ t ≤ T , i.e.,
along the ramp. The results are shown in Fig. 4a for
a system with N = 14 spins. Naturally, at s(t ≃ 0) the
MLSR indicates the global properties of the unitary coin-
cide with those of an integrable system, which is expected
given thatH(s(0)) = HM. Nonetheless, we find that once
the ramp s(t) reaches a value as small as s(t∗) ≃ 0.14
(green star in in Fig. 4a), the unitary already shows a
MLSR agreeing with that of a COE random matrix, indi-
cating the evolution has become quantum chaotic. Note
that at that point in the interpolation path (s ≃ 0.14),
the instantaneous Hamiltonians H(s) are still far from
the fully chaotic regime, as can be seen from Fig. 2a. In-
terestingly, analyzing s(t∗) vs N shows a clear decreasing
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tendency with increasing N (see inset in Fig. 4a). Thus,
we observe that even the ‘gentle’ adiabatic driving has a
notable effect by leading to an early emergence of ergodic
properties in the unitary evolution operator. Further,
we observe that for the rest of the forward ramp, i.e.,
s(t∗) < s(t) < 1, the adiabatic evolution unitary remains
quantum chaotic.

Having observed the emergence of chaotic properties
along the forward ramp as witnessed by the properties
of the eigenphases, we now focus on the unitary of the
complete forward ramp, U(T ), and its associated set of
eigenstates {|µl(T )⟩}l=1,..,2N . In Fig. 4b we plot the half-
chain entanglement entropy of all eigenstates of U(T ) as
a function of their mean energy with respect to HP, the
Hamiltonian at the end of the forward ramp. As antici-
pated by the MLSR analysis, the forward ramp leads to
spectral properties of the unitary coinciding with those
of a COE random matrix, thus most eigenstates have a
SA which is consistent with the Page value for random
pure states. We emphasize that there is no dependence
on the final energy, i.e. we observe no signatures of the
presence of a low energy or high energy sectors. The inset
shows a closer view of the values of SA where a Gaussian
distribution centered at (⟨HP⟩, SA) = (0, 7 log(2) − 1/2)
is apparent. Thus, our analysis shows that the dynami-
cal map U(T ) describing the adiabatic evolution is highly
chaotic, and spectrally indistinguishable from a random
quantum circuit.

B. Cyclic ramps

The onset of quantum chaos becomes more subtle (and
thus, more interesting) when we consider the evolution
along the cyclic ramp. Since the cyclic ramp is com-
posed of a forward and a backward ramps, the first half
of the evolution is always described by U(T ). Hence, the
results of the MLSR study discussed in Sec. IV A apply
here for the first half of the evolution. For the second half
of the evolution completing the cyclic ramp, the results
of the MLSR analysis are shown in the same Fig. 4a, for
the regime T ≤ t ≤ 2T . We notice that for most of the
backward ramp the chaotic properties remain and only
for the final portion, s(t) ⪆ 1.9, we observe a deviation
from the COE value, with the MLSR of the eigenphases
of U(2T ) acquiring an intermediate value between rInt
and rCOE. Thus, while there is still some degree of level
repulsion, the system no longer resembles a fully random
unitary. In fact, subsets of the eigenphases can unam-
bigously be labeled as low- and high-energy, and bulk.
This means that the spectral structure of U(2T ) is more
similar to that of a Hamiltonian system, than of a random
unitary. We devote the rest of this section to a judicious
quantitative study supporting our previous claim.

Recall that for a time-independent many-body Hamil-
tonian the entanglement entropy SA of eigenstates allows
us to distinguish ergodic (SA saturating the Page value)
from nonergodic (SA constant) eigenstates. Typically
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FIG. 5. (a) Half-chain entanglement entropy of all the eigen-
states of U(2T ) as function of their mean energy with respect
to HP. Darker color indicates low point density, lighter color
indicate high point density. Purples, greens, blues, black, cor-
respond to system sizes of N = 8, 10, 12, 14, respectively. The
bottom two dashed lines indicate S = 0, log(2), the top four
dashed lines indicate the Page value of the entanglement en-
tropy for the respective system size. (b) Scaling exponent
with system size of the locally averaged half-chain entan-
glement entropy. A rapid convergence to the Page value of
log(2)/2 indicates that most of the eigenstates considered in
(a) exhibit volume-law entanglement entropy and thus are er-
godic states.

a quantum chaotic Hamiltonian has eigenstates of both
types, with nonergodic ones constituting a small fraction
appearing close to the lower and top ends of the energy
spectrum, and ergodic ones constituting the dominant
fraction which cluster close to the middle of the energy
spectrum [13].

We thus focus on U(2T ) and ask: how similar is the
structure of its egenstates {|µl(2T )⟩}l as seen in the
plane (⟨HM⟩, SA) to that of a chaotic Hamiltonian? Here
HM = H(0) = H(2T ) defines the natural energy scale.
In Fig. 4c we show SA of all the {|µl(2T )⟩}l as function
of their mean energy ⟨HM⟩ for a system of N = 14 spins.
This way of displaying SA unveils a structure with strike
similarity to that of a nonintegrable (quantum chaotic)
Hamiltonian [13], in stark contrast with the expectation
that the cyclic ramp must recover the structure of the
integrable initial Hamiltonian HM. Further, the struc-
ture seen in Fig. 4c shows clear emergent energy sectors
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which can be classified into low-energy, bulk, and high-
energy, distinctions which are absent in the forward-ramp
unitary.

The lack of adiabaticity in the bulk of the spectrum is
evident in the preceding analysis. A system evolving in
perfect adiabatic fashion should connect every eigenstate
of HM to itself after the cyclic ramp. Thus, in the SA

vs energy diagram, one would observe that only discrete
values of ⟨HM⟩ are present (in this case, this would be
N + 1 distinct eigenvalues). In contrast to this, we find
the values of ⟨HM⟩ appear to be continuous in value,
particularly near ⟨HM⟩ ≈ 0.

To complete our investigation of the structure of eigen-
states of U(2T ), we look into the behavior of SA as a func-
tion of the system size N . In Fig. 5a we show SA vs ⟨HM⟩
for all the eigenstates of U(2T ) for systems with N =
8, 10, 12, 14 (purples, greens, blues, black, respectively).
We find that, even for the smallest size considered, sig-
natures of a structure resembling that of a nonintegrable
Hamiltonian are noticeable. We thus study SA(N) in
terms of an energy density Ed = ⟨HM⟩/N ∈ [−1, 1].
We bin the Ed axis into small energy-density windows
EW = [Ed −∆Ed, Ed +∆Ed], whose size is chosen as to
not have empty windows. For each system size we count
the number of eigenstates inside a given energy-density
window NW = |{SA(ϵ) : ϵ ∈ EW}| with |.| indicating the
cardinality of the set, and compute the energy-window
averaged SA, that is SA

∣∣
EW

= 1
NW

∑
ϵ∈EW

SA(ϵ). Fi-
nally we regress the energy-density window averaged SA’s
to a linear model, that is, SA

∣∣
EW

(N) ← aN + b with
(a, b) the regression coefficients.

In Fig. 5b we show the values of a as a function of
Ed. We recognize two distinct behaviors, volume-law
entanglement and area-law entanglement, with the par-
ticularity that the volume-law eigenstates can be subdi-
vided into two different groups. For |Ed| < 0.5 we can
unambiguously conclude that the eigenstates of U(2T )
obey a volume-law of entanglement which is consistent
with the Page result for random pure states, and that
the majority of eigenstates are found in this region. For
0.5 < |Ed| ⪅ 0.8, we encounter few sets of eigenstates
which do follow a volume-law of entanglement but whose
values of (a, b) indicate they might be random Gaussian
states [40]. Finally, for |Ed| > 0.8 we observe four sets
of eigenstates which obey an area-law of entanglement.
Interestingly for all system sizes studied, we can read-
ily recognize the states in this last category. Naturally,
the lowest and highest energy states, at Ed = ±1, cor-
respond to the ground state |−⟩⊗N and highest excited
state |+⟩⊗N of HM, which appear both in Fig. 4c and
Fig. 5a at SA = 0 (first black dashed line). The next
one, in increasing SA, corresponds to Dicke states with
one flip (low-energy) and N − 1 flips (high-energy), and
states with similar entanglement structure, appearing at
SA = log(2) (orange dashed line) in Fig. 4c and Fig. 5a.

V. OPERATOR DYNAMICS AND
INFORMATION SCRAMBLING

In this section we analyze the quantum annealing dy-
namics by focusing on the Heisenberg evolution of dif-
ferent classes of operators. In particular, we will study
the size of operators as a function of time, which is a
standard metric in the study of quantum information
scrambling [43–46]. During scrambling dynamics, ini-
tially local operators expand towards the rest of the
degrees of freedom of the system, in such a way that
their support becomes increasingly nonlocal and the so-
called mean operator size µ(t) (to be defined below) be-
comes extensive. For general unitary dynamics, this pro-
cess can be described by the operator size distribution
(OSD) {Pk(t)}, k = 1, . . . , N , where Pk(t) ≥ 0 and∑

k Pk(t) = 1. For a given initial operator A(0), Pk(t)
quantifies the support of the Heisenberg-evolved opera-
tor A(t) = U(t)†A(0)U(t) in the set of Pauli operators
{Q}r(Q)=k of size exactly k. Here the size r(Q) of a multi-
body Pauli operator equates the Hamming weight of the
associated Pauli string. Formally, the OSD is defined as

Pk(t) =
1

d2 Tr (A2)

∑
r(Q)=k

|Tr
(
Q U(t)†AU(t)

)
||2, (13)

where d = 2N . In turn, the mean operator size is defined
as the first moment of this distribution,

µ(t) =

N∑
k=1

kPk(t). (14)

Evidently, 1 ≤ µ(t) ≤ N . For local operators, one
expects µ(t) to grow at short times (in some cases, ex-
ponentially [47]) and, under generic dynamics, the mean
operator size becomes extensive, i.e., proportional to the
system sizeN . Particularly, a Haar-random unitary leads
to µHaar ≃ 3N/4 independent of our choice of initial Pauli
operator. We point out that the properties of the mean
operator size are tightly connected with that of out-of-
time-ordered correlators, as discussed in Ref. [46]. Nat-
urally, higher order moments of the OSD can also be
considered as more refined descriptions of the scrambling
process [43, 46].

We will consider the dynamics of two types of initial
operators: single-site and global. Single-site operators
correspond to size-one Paulis, e.g.

A(0)→ {σx
i0 , σ

y
i0
, σz

i0} (15)

where we take i0 = ⌊N/2⌋ as a generic choice. The set of
global operators is formed by the collective spin compo-
nents

A(0)→ {Sx, Sy, Sz} (16)

where Sα =
N∑
i=1

σα
i /2. Clearly, for these choices of single-

site and global operators we have µ(0) = 1 as these oper-
ators have (initially) only support on size-1 Paulis. Thus,
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FIG. 6. Normalized mean operator size evolution µ(t)/N ,
defined in Eq. (14), for different choices of initial operators.
Plots (a)-(c) correspond to initial single-site operators shown
in Eq. (15), while (d)-(f) to the global operators defined in
Eq. (16). Data is shown for system sizes N = 4, 5, 6, 7 (light
to dark color tones). All cases show evolution under the cyclic
driving discussed in Sec. II; dashed vertical lines indicate
t = T , where the forward ramp ends, and the backward ramp
begins. Dotted horizontal lines correspond to the mean oper-
ator size expected for Haar random evolution µHaar/N = 3/4.

we are interested in analyzing the initial growth and sub-
sequent evolution of the mean operator size under the
different types of adiabatic evolution considered in the
previous section.

A. Dynamics of local operators

Fig. 6 (a)-(c) shows the evolution of the mean operator
size for the set of single-site operators described above.
Data is shown for the complete cyclic ramp, meaning
that dynamics up to t/T = 1 corresponds to the forward
ramp from s(0) = 0 to s(T ) = 1, while the subsequent
evolution arises from the backwards ramp leading back
to s(2T ) = 0. In all cases, we show data for different
system sizes N = 4, 5, 6, 7 (light to dark tones). We
point out that exact numerical evaluation of the OSD
is computationally expensive as it requires to calculate
the full operator evolution and then project onto each el-
ement of the many-body Pauli basis, which is exponential

in size. The evolution shown in Fig. 6 (a)-(c) indicates
that single-site operators grow during the forward adia-
batic evolution and become extensive, with support on
all the degrees of freedom of the system. Notably, the
operator size reached by the end of the forward ramp at
t = T is very close to that expected for random evolu-
tion, ∼ 3N/4. Thus, in line with the results in Sec. III
and Sec. IV, we see that the adiabatic driving leads to a
highly chaotic evolution, in this case witnessed by scram-
bling in the operator dynamics.

Perhaps more surprisingly, we observe that the op-
erators continue to be extensively delocalized even for
T ≤ t ≤ 2T , that is, during the backward ramp. The
most striking case is σy, where the operator size equili-
brates at the value expected for random evolution and
shows no sign of reversing (“shrinking”) to lower values
at the end of the protocol. The evolution of these single-
site operators thus starkly contrasts the cyclic evolution
expected for states in the low-energy sector. In fact, we
find that single-site operators evolve in an almost ther-
mal fashion, with effectively irreversible dynamics. This
hints at the fact that the evolution of these operators is
dominated by the properties of the bulk eigenstates of
H(s(t)), where adiabaticity is essentially not possible.

B. Dynamics of global operators

As we discussed above, the operator dynamics for the
set of single-site Pauli operators shows clear signatures
of information scrambling. In particular, we found that
the mean operator size dynamics is equivalent to that
generated by Haar-random dynamics, meaning that the
“gentle” adiabatic drive has a similar effect as one would
expect from a thermalizing periodically driven system,
or even from a random quantum circuit. However, as
we have seen in Sec. IV, the cyclic adiabatic evolution
is non-generic and deviations from chaotic evolution are
expected. Here we discuss such cases for the operator
dynamics.

In Fig. 6 (d)-(f) we display the mean operator size for
the global operators {Sx, Sy, Sz}. The dynamics bears
similarities and differences with the evolution of single-
site operators. For the forward ramp, 0 ≤ t ≤ T , we ob-
serve that operator sizes become clearly extensive with
values matching those of random operators for Sx and
Sy; the case of Sz shows maximum operator size in-
creasing with system size, but clearly deviates from the
Haar prediction. From all cases considered, the one that
stands out the most is Sx, where we observe that size
of Sx shrinks back to ∼ 1 during the backward ramp.
Thus, we see that the dynamics of Sx reverses back to
its initial configuration, although not perfectly. A key
aspect here is that Sx is a special operator in this prob-
lem, since its proportional to the mixer Hamiltonian, i.e.
H(0) = H(2T ) = HM = 2Sx. At first sight, the evo-
lution of Sx seen here is consistent with the expectation
that the adiabatic evolution should connect the eigen-
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states of HM back to themselves at the end of the cyclic
protocol. However, a more detailed inspection reveals
that only the eigenstates of Sx near the edges of its spec-
trum follow this expected evolution, while eigenstates
near the bulk undergo mixing evolution. We show this
analysis in Appendix A. As evidenced from the results in
this section, it suffices that the dominant eigenstates (i.e.
those with larger eigenvalues in absolute value) evolve
adiabatically for the operator size to shrink back to its
original configuration.

VI. DISCUSSION AND OUTLOOK

In this work we have shown that a basic model of a
quantum annealer can display clear signatures of quan-
tum ergodicity and scrambling. These features become
prominent when one considers the dynamical behavior of
these models beyond the low (and high) energy regime.
Here, we have analyzed three specific aspects which fall
into this criterion: the generation of volume-law en-
tanglement when the system is initialized in a prod-
uct state which is rotated from the ground state, the
random-matrix-like spectral properties of the complete
unitary map U(T ) describing the annealing dynamics,
and the onset of information scrambling as measured by
the growth of generic operators in the Heisenberg pic-
ture. Furthermore, we have shown that the counterin-
tuitive fact that slow adiabatic drive results in strongly
chaotic dynamics is balanced by the existence of clear de-
viations from chaoticity which are observed when a cyclic
adiabatic drive is considered.

Our findings show that a quantum annealing device,
originally designed to follow adiabatically low-energy
states, could have interesting additional applications if
one uses it in a different regime. For instance, achiev-
ing scrambling, random-like dynamics can be a useful
tool for device benchmarking. In fact, while it is some-
what straightforward to engineer a quantum circuit that
scrambles most initial states, it is not so clear how to find
a class of models where a subset of initial states thermal-
ize while others do not. A notable example of such mod-
els would be those featuring Quantum Many-Body Scars
(QMBS) [48], which refer to the existence of anomalous
high-energy eigenstates which deviate from the eigenstate
thermalization hypothesis description [6, 49, 50]. Sys-
tems displaying QMBS can lead to non-thermal dynam-
ics when starting from certain physical states, but evi-
dence suggests that QMBS emerge in fine-tuned models,
and are not typically robust (see [51] for exceptions). Our
analysis shows that quantum annealers lead to a dynami-
cal process which will scramble most initial states, except
for those associated with the low- and high-energy sub-
spaces of HM. Having an initial-state dependent entan-
glement growth could be a useful tool for benchmarking
quantum devices, as it would allow to vary the hardness
of tracking the dynamics with classical methods such as
matrix product states.

The emergence of ergodicity in the annealing dynamics
can also have negative consequences. For instance, the
rather sharp separation between low-energy states (fol-
lowing adiabatic dynamics) and bulk states (following
mixing dynamics) shown in Fig. 6 indicates that adia-
batic algorithms could have limited scope in the task of
preparing excited states.

Beyond its relevance for quantum annealing devices,
our study is naturally connected to fundamental aspects
of nonequilibrium many-body quantum systems under
adiabatic driving. While here we have studied a model
defined on a chaotic path (see Fig. 1a), setting λ = 0
in Eq. (1) would actually render the model integrable
for all values of s. In addition, adiabaticity in the bulk
of the spectrum could be easier to achieve in such case
thanks to the existence of conserved quantities leading
to exact crossings in the spectrum. Recent studies have
focused on a complimentary model featuring all-to-all in-
teractions, but where the addition of driving leads to
quantum chaos signatures [32]. In this vein, we notice
that a small λ > 0 (i.e., a weak integrability breaking)
leads to avoided crossings with very small gaps, in fact
smaller than in the chaotic regime, which displays level
repulsion. The characterization of integrability-to-chaos
transition in terms of adiabatic process has also been
studied recently [52, 53], and integrable many-body adi-
abatic dynamics has been shown to impact the prolifera-
tion of errors in quantum annealing [34]. In this context,
further characterizing the interplay between adiabaticity
and (non) integrability in a more general setting stands
out as an interesting open problem.
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Appendix A: Evolution of entangled states

To complement the results on the evolution of product
states discussed in Sec. III, here we consider the evolution
of entangled states for both the forward and cyclic ramps.
We focus on the family of Dicke states, {|DN

k ⟩}k=0,...,N ,
on the x-basis, i.e., the eigenbasis of HM. Each of the
|DN

k ⟩ is the equal superposition of all N -qubit states |z⟩,
where z is a bitstring of fixed Hamming weight w(z) = k,
with the latter being the number of spin flips required to
map z on to the all-down (all-zeros) string. That is, a
state where k spin flips are distributed permutationally
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FIG. 7. Adiabatic evolution of Dicke states in the x-basis as
a function of their mean energy density ⟨HM⟩/N . (a) Half-
chain entanglement entropy of the final state after the forward
ramp. (b) Half-chain entanglement entropy of the final state
after the cyclic ramp. (c) Final state fidelity after the cyclic
ramp. Parameters are: T = 600, ∆t = 0.05.

invariant over the N spins. We write

|DN
k ⟩ =

(
N

k

)− 1
2 ∑
z|w(z)=k

H⊗N |z⟩, (A1)

where H is the Hadamard quantum logic gate. Clearly
HM|DN

k ⟩ = (−N + k)|DN
k ⟩, and the first and last Dicke

states correspond to |DN
0 ⟩ = |−⟩⊗N and |DN

N ⟩ = |+⟩⊗N .

With the exception of the two extremal states mentioned
before and the Dicke states with k = 1, N − 1, all of the
other |DN

k ⟩ have a half-chain entanglement entropy which
grows logarithmically with N , SA ∼ log(N) [54]. In par-
ticular, when k = 1, |DN

1 ⟩ is the N -qubit W state, which
has SA = log(2). Correspondingly |DN

N−1⟩ = X⊗N |Dk
N ⟩

also has SA = log(2).
The results of the adiabatic evolution of Dicke states,

i.e., with |ψ(0)⟩ = |DN
k ⟩ are shown in Fig. 7 as function

of their mean energy density ⟨HM⟩/N for three systems
sizesN = 10, 12, 14 (green, blue, black, respectively). Let
us consider first the forward ramp, Fig. 7a shows SA of
the final state for all the Dicke states. Naturally |DN

0 ⟩ =
|−⟩⊗N is mapped to the ground state of HP which can be
evidenced by the value SA = log(2) (orange dashed line),
and the |DN

N ⟩ = |+⟩⊗N is mapped to the product state
of highest energy of HP with SA = 0. Although there are
few Dicke states which seem to be transported to states
with SA(0) = SA(T ), see for instance |DN

N−1⟩ for which
we have SA(0) = SA(T ) = log(2), there is a general
tendency of reaching final states with larger SA, with
those closer to ⟨HM⟩/N = 0 reaching SA consistent with
the Page value for random pure states (colored dashed
lines). Finally, we notice that the curve SA(⟨HM⟩/N) is
assymetric, implying that Dicke states closer to the top
of the energy spectrum suffer less from the effects of the
ergodic properties of the forward ramp unitary.

We move now to discuss the results of the cyclic ramp.
Both the final state SA and fidelity are shown in Fig. 7b,c,
respectively, as function of ⟨HM⟩/N . We see that the two
extremal states of HM are transported back onto them-
selves. All the other Dicke states are transported onto
states of increasing final SA with ⟨HM⟩/N reaching val-
ues very close to Page value (see dashed lines in Fig. 7b),
thus leading to rapidly decreasing fidelity with ⟨HM⟩/N .
Interestingly the asymmetry between Dicke states of neg-
ative and positive mean-energy is manifested in the final
state of the cyclic ramp as well. In particular, those Dicke
states of positive mean-energy suffer less from the dele-
terious effects of the ergodic properties of U(2T ) and we
observed higher final state fidelities after the cyclic ramp.
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