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ABSTRACT

Employing vortex dynamics, we explore the turbulent cascade mechanisms in Schroedinger and Navier–Stokes fluids. While both cascades
are driven by vortex instabilities, the ability of Navier–Stokes vortices to stretch and exhibit complex core dynamics significantly affects the
resulting turbulence behavior. In dilute Schroedinger turbulence at scales smaller than the intervortex distance, Aarts-de Waele instabilities
trigger reconnection-driven Kelvin wave energy cascades, transferring energy from the reconnection scale to smaller scales. At sufficiently
long times, these cascades create a high-wavenumber bottleneck before transitioning into a k�5=3 local-interaction cascade scaling regime.
Energy accumulates in the length scales preceding the bottleneck, triggering partial spectrum equilibration and resulting in a positive scaling
exponent there, which differs from the equilibrium value of k2. At scales larger than the intervortex distance, the spectrum scales as k2, which
is indicative of finite linear impulse in the system. In Navier–Stokes turbulence, the self-stretching of large-core vortices triggers an energy
cascade to smaller scales, which is then intensified by the stretching of emergent vortex structures created by Crow or helical vortex line insta-
bilities. The k�5=3 scaling arises only once this iterative process has progressed sufficiently to confine flow enstrophy within tubular regions,
where the core size becomes a sufficiently small fraction of the overall system size. This confinement causes the vortices to appear quasi-
singular when measured on large-scale units. The scaling of the entire-system spectrum is determined by the spectrum of the quasi-singular
structures at the culmination of the cascade process, rather than by the cascade process itself.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0243526

I. INTRODUCTION

A striking characteristic of turbulence physics is the cascading of
energy from large to small scales. This occurs due to nonlinear instabil-
ities, which break down larger eddies into smaller ones, a process first
visualized by Richardson. Turbulence cascades are driven by strong
inertial effects, with their energy spectra following power-law scalings.
The aim of our study is to examine the specific vortex interactions
responsible for transferring energy from large to small scales in turbu-
lent flows, and to use these mechanisms to explain the observed spec-
trum scaling exponents.

In physics, there are two rather different types of turbulent flow.
From the practical point of view, turbulence in the Navier–Stokes
equation (NSE) is the more important of the two, and historically, tur-
bulence was identified with dissipative, chaotic solutions of the NSE.
In the NSE, vortex filament structures have solid-body rotating cores
with concentrated vorticity, while their surrounding flow is, to a good
approximation, potential with strain but no vorticity. In this work, we
present an explanation of the NSE turbulent cascade and its scaling
based on the interactions between such vortex filaments.

However, there exists a second, and arguably more fundamental,
type of turbulence. This type appears in the Schroedinger equation

(SE), whether in its linear1 or nonlinear form.2 Historically, the SE has
been known to describe the dynamics of the complex probability of
quantum mechanics. However, applying the Madelung transformation
reveals a material field interpretation, transforming the Schroedinger
equation into a fluid dynamics equation.3 The material interpretation
is employed in finite temperature superfluids4 to describe the dynamics
of the superfluid ground state. In this context, the SE becomes nonlin-
ear and is known as the Gross–Pitaevskii equation. SE fluids are invis-
cid, barotropic, compressible fluids, but, in this work, we exclusively
consider their incompressible, large-scale dynamics. In this limit, both
the linear and nonlinear Schroedinger equations can be effectively
described by the vortex dynamical model, as they feature reconnecting,
filamentary vortex solutions characterized by quantized circulation.1–3

Certainly, the nonlinear term in the Gross–Pitaevskii equation has a
significant impact in the compressible regime, as it serves as an addi-
tional source of barotropic pressure, complementing the quantum
stress and influencing the dynamics of reconnections. However, baro-
tropic pressure becomes irrelevant in the incompressible regime. In the
coarse-grained reconnection models employed in vortex dynamics
approaches, the subtle effects of nonlinearity at small compressible
scales are neglected, focusing exclusively on modeling the dissipative
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action of reconnections and the topological changes they induce.
Consequently, a unified vortex dynamical approach to both linear and
nonlinear Schroedinger-fluid turbulence becomes feasible. Recently,
new SE solvers depicting incompressible SE turbulence have become
available.5 In contrast to the Eulerian approach which describes vorti-
ces as emergent structures in a material field, we instead track SE tur-
bulence vortices in a Lagrangian manner, providing an explanation of
SE turbulence physics based on their interactions. The key idea that
enables us to study these two seemingly unrelated turbulence topics
together is that we can numerically model NSE vortices using SE vorti-
ces. It is worth noting that our approach, which utilizes Schroedinger
filaments as a method for the direct numerical discretization of NSE
vortices, serves as a complement rather than an overlap to previous
efforts aimed at establishing physical connections between superfluid
and classical turbulence.6,7

A key feature of NSE turbulence8–11 that distinguishes it from
other cases of deterministic chaos is the striking organization of its vor-
ticity into predominantly filamentary coherent structures. Interactions
between these structures play a key role in the energetics and overall
phenomenology of turbulent flows.12–19 Indeed, to sustain small-scale
strain, turbulence requires a continuous energy transfer from large to
small scales. The latter is driven by two processes:8,9,20–22 strain self-
amplification, and vortex stretching in the inertial range. The Ref. 22
results suggest an energy-transfer capacity ratio between strain self-
amplification and vortex stretching equal to 5=3. Therefore, vortex
stretching appears to be a key factor in NSE turbulence energetics, con-
trolling (via the supply of energy to the smallest scales) the generation
of turbulent strain and, consequently, the rate of energy dissipation.
Certainly, one could argue that vortex stretching is more fundamental
than strain self-amplification, as small-scale strain is first generated
through vortex stretching in the early stages of the cascade. This is also
formally indicated by the well-known formulation of the Navier–
Stokes equation expressed entirely in terms of vorticity (i.e., without
any strain terms). Thus, from a physical perspective, vortex stretching
is a fundamental aspect of the nonlinearity in NSE turbulence, while
from an analytical perspective, it plays a critical role in the theory of
singularities in the NSE.23 Conversely, the morphology of SE vortices
is highly constrained, allowing only line vortices with infinitesimally
small cores (the closest natural example of the vortex line concept). All
SE vortices have the same quantized circulation, which is not a dynam-
ical variable but depends solely on the material properties of the mod-
eled fluid. While in the NSE, coherent vorticity is embedded within a
background of unstructured, lower-intensity vorticity, in the SE, vortic-
ity is zero everywhere except on a set of fractal dimension.24 Since an
NSE vortex filament is essentially a tube filled with vortex lines, and an
SE vortex can be thought of as a realization of a vortex line, SE vortices
can be used to create discretized models of NSE vortex tubes.25 Due to
their finite core, these NSE vortex models are capable of depicting key
NSE phenomena such as core stretching, torsion, and reconnection.
The latter is facilitated by the ability of SE vortices to reconnect—an
idea first proposed by Feynman26 and later confirmed by numerical
solutions of both linear and nonlinear SE1,2 and superfluid experi-
ments.27 This idea establishes a direct link between SE and NSE
vorticities, which we will use here to gain a deeper understanding of
the self-stretching of NSE filaments and, consequently, the physics of
the NSE turbulent cascade and its associated Kolmogorov k�5=3 energy
spectrum.

Our primary goal is to conduct a comparative study of SE and
NSE turbulence, emphasizing the fundamental physical differences
between these two types of turbulent phenomena. Our approach to the
SE problem is inspired by numerous previous studies,28–30 which high-
light the significant role of vortex reconnections in SE turbulence. We
begin by examining the energetics of vortex reconnections. In the next
stage, we explore fully developed SE turbulence, aiming to explain its
spectra based on the reconnection physics obtained. Conversely, our
approach to the NSE problem is motivated by the well-established role
of vortex interactions in NSE turbulence.13–15 We examine the energet-
ics of two distinct NSE vortex configurations and, through numerical
simulations, uncover a universal path to turbulence and the
Kolmogorov spectrum via vortex instabilities, the formation of emer-
gent vortex structures, and vortex stretching.

Reconnections of SE vortices are a well-studied topic. Svistunov28

indicated that, due to the singular nature of SE vortices, vortex recon-
nection in the SE framework should induce Kelvin wave excitations
across a continuous range of frequencies. Consequently, this leads to a
cascade of energy from reconnection scales toward the smallest excit-
able scales. The first calculation of the energy cascade spectrum was
conducted by evaluating the flow field on an Eulerian grid and taking
its three-dimensional Fourier transform.29 This revealed a k�1 energy
scaling and was followed by additional analytical and numerical studies
with both similar and contrasting results (see Ref. 30 for a review).
Conversely, Nemirovskii pioneered a Lagrangian approach to comput-
ing the energy spectrum by using vortex contours and idealizing SE
vorticity as a delta function.31 We continue here this approach and uti-
lize the recent advancements in contour-based energy spectra evalua-
tion presented in Ref. 32. The new energy-spectrum formula derived
in Ref. 32 accounts for the fact that numerical vortex dynamics calcula-
tions introduce an effective finite core to renormalize the self-
interaction singularity in the Biot–Savart law. To ensure consistency,
this core is retained in the energy spectrum calculation, replacing the
delta function in the approach of Ref. 31. We first apply these new,
highly accurate methods alongside parallel algorithms to investigate
the energetics of SE vortex reconnections. Following this, we expand
our study to the energetics of fully developed SE turbulence cascades,
accounting for the effects of chaotic vorticity, multiple reconnections,
and interactions between numerous vortices.

In the NSE context, we develop here models of NSE filaments as
bundles of SE vortices and use these models to study vortex stretching
at high Reynolds numbers and its impact on turbulence physics. In
particular, we will explore the formation of the turbulence cascade and
the associated Kolmogorov spectrum, focusing on the role of vortex
stretching and instability-induced emergent vortex structures. Our
results are relevant to other similar in scope investigations, though
conducted with different methods. For example, in Ref. 33, an experi-
mental and computational study of vortex rings colliding head-on
demonstrated that such strong interactions trigger an (apparently) iter-
ative cascade of instabilities. The latter generate extremely thin vortex
sheets that break down into smaller secondary vortex filaments, which
then rapidly flatten and further break down into even smaller tertiary
filaments. Since no energy spectra were reported, it remains unclear
whether this iterative mechanism contributes to the generic turbulence
cascade and its Kolmogorov spectrum. The same vortex setup was
employed in Ref. 35 to explain the observed clumps of matter along
the equatorial ring of Supernova 1987A. A direct connection between
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Crow instability and the formation of these lumps was suggested. The
analysis was linear, and no energy spectra were reported. Conversely, a
theoretical investigation of four NSE vortex rings in a head-on colli-
sion34 observed a k�5=3 scaling, though without the iterative mechanism
described in Ref. 33 or the detailed resolution of core dynamics that we
provide here. Overall, our approach to NSE turbulence aligns with the
aforementioned studies, emphasizing the crucial role of interacting vor-
tex structures. We investigate two different configurations: (a) a Hopf
link structure, which, similar to Ref. 33, highlights the role of instability-
induced emergent structures, and (b) a vortex configuration termed the
“vortex collider,” developed through experimentation to induce signifi-
cant vortex stretching and explicitly illustrate dynamic vortex core
behavior. Based on our findings, we propose a corresponding interpreta-
tion of turbulent cascade processes and Kolmogorov spectra in the NSE.

II. PHYSICAL SYSTEM AND SOLUTION METHODS

The following material has been extensively covered in other pub-
lications; therefore, we will only highlight the essential aspects here to
ensure completeness of exposition. In vortex-filament dynamics, the
velocity vector vðxÞ of a fluid at field position x is given by the Biot–
Savart integral over the filament positions x0:

vðxÞ ¼ � 1
4p

ð
x � x0

jx � x0j3 � xðx0Þdx0; (1)

where xðx0Þ is the fluid vorticity vector. In SE vortices, xðx0Þ is repre-
sented by a delta function. However, to obtain stable numerical calcu-
lations, we assign the filaments a constant core of radius r which is of
the order of the numerical discretization length Dn (see Refs. 36–39 for
details). We have employed both Gaussian and algebraic distributions
of vorticity within the numerical core.37 The self-interaction infinity
when x ¼ x0 is handled with the method of Schwarz.40 According to
Kelvin’s theorem, filaments move with the fluid velocity, so a vortex
segment at position zmoves with the local flow velocity:

dz
dt

¼ vðzÞ: (2)

The mathematical model incorporates reconnection induced topologi-
cal changes.41 In particular, let zk�1; zk; zkþ1g

�
and zl�1; zl; zlþ1g

�
be

any two sequences of discrete vortex point positions (as produced by
numerical discretization) along one or two different vortices. The
increasing k or l indices are consistent with the vorticity direction
along the contours. In numerical calculations, the discrete vortex
points are separated by the effective cutoff scale dcf of vortex contour
fluctuations which is of the order of the numerical grid size along the
vortices Dn, Dn=a < jzk � zk�1j < aDn. Here, n is the arc length
parametrization along the vortices, and a > 1 is a computational
parameter allowing a small variability in the discretization length. In
the computations, a ¼ 1:65. Next, define the intervortex spacing scale
div ¼

ffiffiffiffiffiffiffiffiffiffiVs=L
p ¼ k�1=2 (with Vs the system volume, L the vortex tangle

length and k ¼ L=Vs the vortex line density). Accordingly, the recon-
nection algorithm and the accompanying topological change becomes:

zk�1; zk; zkþ1
� �

� zl�1; zl; zlþ1g� jzk � zlj < bminðDn; divÞ
� ��

! zk�1; zk; zlþ1g� zl�1; zl; zkþ1g;
��

(3)

where b is a computational parameter, less than unity, that controls
reconnection proliferation, with its value depending on the specific

physical context of the investigation. To mimic the loss of kinetic
energy into acoustic energy during fully compressible SE vortex recon-
nections, operation (Physical system and solution methods) is only
performed when it leads to vortex length reduction. To the same effect,
very small rings with less than four computational points are removed
from the system. The dependence of reconnection threshold on the
intervortex spacing scale ensures that the production of very dense
vortex tangles in the calculation will not lead to the proliferation of
spurious reconnections. Equation (2) is an integrodifferential equation
that becomes a differential equation following the spatial discretization
of the Biot–Savart integral. The differential equation is solved with a
third-order accurate Runge–Kutta method. Within the floating point
number set F employed in the algorithms, the distance between 1 and
the next larger floating point number is �m ¼ 0:222� 10�15. The
smallest and largest numbers that can be represented are 2:2� 10�308

and 1:8� 10308 correspondingly. The algorithmic arithmetic employs
the round to nearest even rounding method. To investigate long-time
equilibration spectra, we applied the Single Input Multiple Data paral-
lelization algorithms from Ref. 42 to vortex dynamics. This approach
accelerated the evolution of vortex dynamics by a factor of six and
sped up the spectral evaluation by approximately half that amount.
Periodic boundary conditions were applied using the minimum image
method43 when appropriate.

III. SCHROEDINGER VORTEX RECONNECTIONS

To investigate SE reconnection energetics, we adopt a configura-
tion (Fig. 1, left) first proposed in Ref. 34. Since SE fluids in nature are
superfluids, we use the material parameters of superfluid He� 4.
Accordingly, the quantum of circulation is j ¼ 9:97� 10�4 cm2s�1

and the physical core radius is a ¼ 10�8 cm.
In this setup, four rings with a radius of R ¼ 0:0415 cm are

arranged in pairs, moving in opposite directions, on two faces of an
imaginary cube with side length lc ¼ 0:1cm. Since there is no net lin-
ear impulse in the system, the initial low wavenumber energy spectrum
presents a k4 scaling32 (Fig. 2, right). Similarly with the single ring
case,32 the spectrum shows oscillations superimposed on a k�1 scaling
at high wavenumbers, before reaching the discretization cutoff (Fig. 2,
left). The discretization length along the vortices is Dn ¼ 3:906
�10�4 cm, the b parameter is b ¼ 0:1 and the smoothing core radius
is r ¼ 3:3Dn. To resolve better the energy distribution in the small
scales, a smaller core radius r ¼ 0:5Dn was used in spectra calcula-
tions. The numerical time step is set so that the fastest Kelvin waves
cannot propagate more than Dn within its duration. The resulting
time step is Dt ¼ 6:8� 10�5s. These parameters, along with the float-
ing point number set F within which the algorithmic arithmetic takes
place, ensured stable computations.

As the rings in each pair move toward one another, we observe
four simultaneous reconnections, each generating Kelvin waves (Fig. 1,
right). These waves propagate from the different reconnections sites
and collide at t ¼ 3:734� 10�2s ¼ sf . We will show that sf serves as
the natural unit for characterizing the system’s energetics. The initial
reconnections produce two large structures (Fig. 1, right), with the
slowest Kelvin waves having wavelengths roughly equal to twice the
perimeter of the original rings. We can characterize the slow dynami-
cal processes by the time it takes for these waves to complete a full lap
around the structures, ss ¼ 35s. Notably, there is nearly a three-order-
of-magnitude difference between these two characteristic times.
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To analyze our results, we need to determine the timescale within
which significant energetic changes occur—that is, to identify the char-
acteristic time of energy transfer via Kelvin waves. To this end, we
observe that reconnection-generated helical Kelvin wave configura-
tions do not induce any spectral changes until the collision time sf , as
the spectra maintain their initial k�1 scaling (Fig. 3). As collisional
wave interactions build up, the transfer of energy to small scales
encounters a high-wavenumber energy-flux bottleneck, leading to an
increase in small-scale energy. This causes the spectra to initially evolve
toward a flat scaling (Fig. 4) and eventually form a bottleneck bump
before transitioning into a k�5=3 regime (Fig. 5). Geometrically, wave
interactions lead to the formation of highly corrugated vortex contours
(Fig. 6). This is evident in the results for t ¼ 82:82sf (Fig. 7, left),
where the spectrum’s k0:6 scaling (Fig. 7, right) approaches the equilib-
rium value of k2, indicating partial spectral equilibration before the
bottleneck.

At the same time, a significant portion of the energy contained in
the large vortex structures is “radiated” away as small rings formed by
reconnections (Fig. 7, left). This process inhibits direct interactions
between the large structures and the smaller waves within them,

leading to energy transfers between the small rings and the rest of the
vortex tangle through weaker, nonlocal Biot–Savart interactions.
Consequently, in the absence of reconnections, we would expect to
observe a stronger spectral equilibration before the bottleneck, while

FIG. 1. Initial conditions for the cubic configuration (left). Kelvin waves system after four simultaneous reconnections (right).

FIG. 2. Energy spectra of the initial conditions of the cubic configuration (left). Same spectra multiplied by k�4 to indicate that the initial linear impulse is zero (right).

FIG. 3. Compensated energy spectra for the cubic configuration at t ¼ 0 (purple),
t ¼ 0:932sf (green), t ¼ 1:005sf (blue), t ¼ 1:096sf (orange), and t ¼ 1:277sf
(yellow). The plateau demonstrates the k�1 scaling. No significant spectral dynam-
ics are observed during the pre-collision phase of Kelvin waves.
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FIG. 4. Evolution of energy spectra for the cubic configuration. From bottom to top,
we have t ¼ 1:097sf (green), t ¼ 2:739sf (light blue), t ¼ 5:484sf (orange),
t ¼ 8:044sf (yellow), t ¼ 12:249sf (dark blue), t ¼ 17:185sf (red), t ¼ 20:110sf
(black), t ¼ 26:143sf (purple), and t ¼ 36:381sf (dark green). A high wavenumber
bottleneck is formed.

FIG. 5. Evolution of energy spectra for the cubic configuration at t ¼ 43:51sf (pur-
ple), t ¼ 51:01sf (green), t ¼ 58:32sf (blue), t ¼ 71:48sf (orange), t ¼ 76:24sf
(yellow), t ¼ 81:54sf (dark blue), and t ¼ 82:82sf (red). A post-bottleneck k�5=3

spectrum regime is formed.

FIG. 6. Cubic configuration vortex tangles at t ¼ 2:739sf (a), t ¼ 8:044sf (b), t ¼ 20:110sf (c), and t ¼ 36:381sf (d).
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drawing similar conclusions otherwise. To test this conjecture, we con-
ducted a calculation where reconnections were disabled after time sf .
Comparing the vortex tangle configurations at t ¼ 20:11sf shows that,
in the absence of reconnections, the filaments become significantly
more corrugated (Fig. 8). Furthermore, although the spectra remain
similar at t ¼ 20:11sf (Fig. 9, left), a stronger partial equilibration of
the pre-bottleneck spectrum is observed at t ¼ 67:0960sf (Fig. 9, right)
in the no-reconnections case, thereby confirming our conjecture.
Notably, the k�5=3 regime is similar in both cases.

Since we now know that the detached rings allow for similar con-
clusions with the small scales integrated within the large vortex struc-
tures, we can exploit the small rings to gain insight into the energetics
of the small scales in the system. In particular, we decompose the Biot–
Savart velocity v into contributions vs from small rings with fewer than
20 vortex segments and vl from larger rings, i.e., v ¼ vl þ vs. We then
compute the spectra of the individual contributions (vl and vs) as well
as the cross or interaction spectra, which offer insights into energy
transfers. Shortly after the initial reconnections, the small-ring spec-
trum exhibits a peak at high wavenumbers and a k2 regime at the lower
ones (Fig. 10, top-left). This is because, unlike the entire system, which

has zero linear vortex impulse and exhibits a k4 low-wavenumber scal-
ing, there is no reason for the rings created by the reconnections to
also have zero linear impulse, therefore, we expect a k2 far-field
regime.32,44 The interaction spectrum (Fig. 10, top-right) appears
noisy, with no clear dominant direction of energy transfer. However,
as the system evolves, a dominant energy transfer from large rings to
small rings becomes evident (Fig. 10, bottom-right). This occurs near
the peak of the large-ring spectrum, where the energy difference
between the large rings and small rings is greatest. Notably, the spectra
at very large wavelengths reflect only the asymptotic long-distance
behavior dictated by the system’s net linear impulse, while the actual
energy transfer dynamics occur between the spectrum’s peak and the
cutoff. For this reason (Fig. 10, bottom-left), the small-ring, low-wave-
number k2 scaling regime beyond the spectrum-peak begins to transi-
tion from a linear-impulse signature spectrum to one dominated by
Kelvin-wave interactions. The latter become more vigorous at later
times (Fig. 11, top), with energy cascading across all scales from large
to small wavenumbers. At even longer times, the noisy energy flux at
small scales suggests a spectrum quasi-equilibrium (Fig. 11, bottom-
right and Fig. 12, top-right), as indicated by an extensive k2 regime

FIG. 7. Cubic configuration vortex tangle
(left) and energy spectra (right) at
t ¼ 82:82sf (a). The spectrum follows a
k0:6 scaling for wavenumbers preceding
the bottleneck and a k�5=3 scaling beyond it.

FIG. 8. Cubic configuration vortex tangle at t ¼ 20:11sf when reconnections are allowed (left) and disallowed (right).
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(Fig. 11, bottom-left and Fig. 12, top-left), resulting from the reshaping
of the original linear-impulse scaling. At the longest time (Fig. 12, bot-
tom), the correspondence between the positive scaling exponent in the
total spectrum and the small-rings spectrum becomes evident.
Notably, all spectra—small-ring, large-ring, total—converge to a high
wavenumber k�5=3 regime.

These results confirm the interactive nature of the k2 regime in
the small rings, rather than being related to linear impulse. Indeed, we
first notice that the area around the bump in the total spectra coincides
with the maximum in the small-ring spectra. Furthermore, the same
bump in the total spectra is also observed in the calculations without
reconnections (Fig. 9). Since, in the no-reconnections case, there are
no small rings to produce a nonzero linear-impulse far-field spectrum,
the positive slope in this case must result from spectrum equilibration.
Thus, we can conclude that the same is true for the interaction-
dominated, long-time k2 regime in the small-ring spectra. This line of

argument is illustrated by observing the temporal evolution of the
small-ring spectra (Fig. 13). Clearly, the initial far-field k2 spectrum
(10�1 < k < 2� 103, at t ¼ 16:0884sf ) develops a distinct wiggle
that separates (at t ¼ 82:8188sf ) the far-field spectrum with nonzero
impulse (k < 4) from an equilibration spectrum dominated by inter-
scale interactions (20 < k < 2� 103). Notably, the onset of the equili-
bration regime coincides with the emergence of nonzero values in the
interaction spectrum (Fig. 12, bottom).

Finally, we can confirm the local nature of the energy flux in the
k�5=3 regime by observing that the long-time results (Fig. 12, bottom-
right) show no interscale energy flux between the large rings and the
small rings (those with fewer than 20 segments) in the k�5=3 regime.
However, we observe such fluxes (Fig. 14, right) when we define the
small-rings cutoff as 8 segments. Thus, within the k�5=3 regime, rings
smaller than 8 segments interact only with rings that are smaller than
20 segments, indicating localized energy-flux processes in that range. It

FIG. 9. Cubic configuration energy spectra at t ¼ 20:11sf (left) when reconnections are allowed (green) and disallowed (purple), and at t ¼ 67:0960sf (right) when reconnec-
tions are allowed (purple), and disallowed (green).

FIG. 10. Cubic configuration: small ring
(less than 20 segments), large ring, entire
tangle spectra (left) and interaction spec-
tra (right). Top, t ¼ 2:6874sf , bottom
t ¼ 10:7317sf .
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seems that a portion of the flux arriving at the bottleneck enters an
energy pipeline that transports it to the smaller scales, all the way to
the numerical cutoff.

IV. SCHROEDINGER TURBULENCE

Here, we investigate the extent to which SE vortex reconnection
contributes to the physics of fully developed SE turbulence. Compared

to the cubic case, a key feature of turbulence calculations is the use of
periodic boundary conditions, which allow for the definition of a
meaningful intervortex distance, encoding the same information as the
vortex line density. In this work, we will explore the physics of dilute
vortex systems, where the intervortex spacing is much closer to the sys-
tem size than to the smallest length scales in the computation.
Consequently, our calculation offers a high resolution of vortex

FIG. 11. Cubic configuration: small ring
(less than 20 segments), large ring, entire
tangle spectra (left) and interaction spec-
tra (right). Top, t ¼ 16:0884sf , bottom,
t ¼ 30:5314sf .

FIG. 12. Cubic configuration: small ring
(less than 20 segments), large ring, entire
tangle spectra (left) and interaction spec-
tra (right). Top, t ¼ 51:0076sf , bottom,
t ¼ 82:8188sf .
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processes occurring below the intervortex distance. The initial condi-
tions consist of a system of 100 vortex rings with radii in the range of
½0:015� 0:0198�cm (Fig. 15). They are placed within a periodic box
with a side length of b ¼ 0:1 cm, with random positions and orienta-
tions. In this way, the energy is initially concentrated in the large scales,
as is typically the case in turbulence. The discretization length along
the vortices is Dn ¼ 7:8125� 10�4cm, the reconnection parameter is
b ¼ 0:3 and the smoothing core radius is r ¼ 3:3Dn. We selected a
higher value of b in this case compared to the reconnections scenario
for two reasons: (a) to investigate the impact of this parameter, (b) to
verify that the underlying physics remain robust with respect to its
choice, and (c) to accelerate the onset of chaos, leading to fully devel-
oped turbulence, by increasing the frequency of reconnections. The
numerical damping ensured stable calculations, effectively preventing
the well-known zig-zag instability in vortex dynamics. For instance,
using a smaller core radius of r ¼ 1:8Dn resulted in unphysical oscilla-
tions at the Dn scale (Fig. 16). To better resolve the energy distribution
at small wavelengths, a core radius of r ¼ 0:25Dn was used in the
spectral calculations. The slowest possible Kelvin wave in the system
has a wavelength equal to the average vortex-ring length in the initial

conditions, while the fastest Kelvin wave has wavelength equal to 2Dn.
To better characterize the dynamics, we define two time scales. The
fast timescale, sf ¼ 0:034 s, represents the time required for the fastest
Kelvin wave to propagate a distance equal to the wavelength of the
slowest Kelvin wave in the initial conditions. The slow timescale,
ss ¼ 1:724 s, represents the time required for the slowest Kelvin wave
to propagate a distance equal to its own wavelength. Accordingly, we
have ss=sf � 50.

The energy spectrum in the initial conditions (Fig. 17, left)
presents the same k�1 scaling as the cubic configuration in the range
of scales before the numerical cutoff. However, at large wavelengths,
we observe a k2 scaling (Fig. 17, right), in contrast to the k4 scaling
seen in the reconnection configuration. This difference arises because,
in the reconnection case, the net initial vortex impulse is zero, leading
to a k4 spectrum. In contrast, the random vortex-ring arrangement has
a nonzero initial vortex impulse, resulting in a k2 spectrum (see Ref. 32
for detailed discussion).

In comparison with the cubic configuration, we expect that the
confined nature of the system and the accompanying higher vortex

FIG. 13. Evolution of energy spectra of small rings (less than 20 segments) for
the cubic configuration at t ¼ 16:0884sf (purple), t ¼ 30:5314sf (green),
t ¼ 51:0076sf (blue), and t ¼ 82:8188sf (orange). The initial far-field k2 spectrum
(10�1 < k < 2� 103, at t ¼ 16:0884sf ) develops a distinct wiggle that separates
(at t ¼ 82:8188sf ) the far-field spectrum with nonzero impulse (k < 4) from an
equilibration spectrum dominated by interscale interactions (20 < k < 2� 103).

FIG. 14. Cubic configuration: small ring (less than 8 segments), large ring, entire tangle spectra (left) and interaction spectra (right), at t ¼ 82:8188sf .

FIG. 15. Chaotic configuration vortex tangle at t ¼ 0.
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line densities will have a greater impact on the system energetics.
Indeed, a key difference lies in a dynamically significant transient char-
acterized by a high rate of reconnections (Fig. 18). This phenomenon
arises from the random initial conditions and the selected value of the
reconnection parameter, b. Following this transient phase, the number
of reconnections stabilizes into a steady state, increasing linearly with
time (Fig. 18). The onset of reconnections generates Kelvin waves cas-
cades along the filaments [Fig. 19(a)] which, for times of the order of
sf , do not affect the k�1 scaling of the initial conditions (Fig. 20, left).
This is consistent with the findings in the cubic configuration, where
the system evolved over several sf times before displaying significant
spectral dynamics. For longer times [Figs. 19(b)–19(d)], the high rate
of (dissipative) reconnections removes a significant portion of the
large-scale energy. As a result, the characteristic bottleneck in the spec-
tra is not observed (Fig. 20, right), as the energy cascading to small
scales is reduced compared to the cubic configuration. Accordingly, at
t ¼ 152:083sf , when large structures remain substantial in the system
(Fig. 21, left), we observe a high wavenumber k�5=3 regime in both the
small-ring and entire tangle spectra (Fig. 22, left). However, the large
structures show no signs of an energy bottleneck, while the small rings
exhibit a k3=2 partial equilibration scaling. To further clarify the role of
reconnections, we allow the system to evolve until t ¼ 22:055sf , after
which we disallow them. At the same time of t ¼ 152:083sf as before,
the tangle appears highly corrugated (Fig. 21, right), and the spectrum
of the entire vortex tangle exhibits a bottleneck with k1 scaling (Fig. 22,
right). Notably, our vortex system is dilute, as indicated by the rela-
tively low wavenumber corresponding to the intervortex spacing scale
(Fig. 22). Above this wavenumber, we observe only the k2 signature
spectrum associated with nonvanishing linear impulse. It has been
demonstrated elsewhere4 that significant spectral dynamics can arise
above the intervortex spacing scale, provided there is sufficient vortex
line density and excitation.

V. NAVIER–STOKES VORTEX COLLIDER

This configuration was conceived as a vortex dynamics analog to
the well-known elementary particle colliders. The goal is to use colliding
NSE vortices to confine high enstrophy and intense vortex stretching
processes within small regions of space. We have applied the method
from Refs. 37 and 45 to discretize NSE tubes as bundles of SE vortices.

In particular, we arranged 49 SE vortex rings within a cylindrical
NSE filament to achieve a circulation C ¼ 0:049 cm2s�1. The diame-
ter of the vortex ring at the centerline is Dcl ¼ 0:083 cm, and the tube-
core radius is Rtc ¼ 0:0083 cm. The discretization length along the SE
vortices is Dn ¼ 2:371� 10�3cm, and the numerical core radius is
r ¼ 1:1Dn. The numerical core radius used in the calculations of the
spectra took values in the range between 0:25Dn and 1:1Dn. The
reconnection parameter was set to b ¼ 0:1. We have arranged six
such tubes in the following configuration (Fig. 23): two NSE tubes are
set up to collide with each other in each direction. The distance
between the planes that contain their centerlines is 0:4Dcl . Moreover,
to prevent head-on collisions and introduce more complex vortex
dynamics, we offset the centers of their centerlines along directions
perpendicular to the collision axis. For instance, if the collision direc-
tion is along the x-axis, the offsets are applied in the y and z directions.
These offsets are each 0:2Dcl , and because they have opposite signs for
the bundles in a colliding pair, the total offset along the two directions
perpendicular to bundle motion is 0:4Dcl . The initial system configura-
tion is confined within a cubic box with dimensions lb ¼ 0:1 cm. The
vortex dynamics take place in an unbounded domain. Based on the
diameter of the centerline vortex ring and bundle circulation, we com-
pute a characteristic time sc ¼ 0:0832=ð49� 9:97� 10�4Þ ¼ 0:141 s.
The offsets and initial distances are crucial in determining the type of
vortex dynamics observed in the system. The final choices resulted in
vigorous vortex stretching and core dynamics over sufficient time peri-
ods to support our conclusions.

FIG. 16. Example of zig-zag numerical
instability.

FIG. 17. Energy spectra of the chaotic tangle configuration at t ¼ 0 (left) and compensated energy spectra at t ¼ 0 (right), highlighting the nonzero linear impulse of the initial
conditions.
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The initial conditions spectra (Fig. 24) exhibit a k�4 scaling at low
wavenumbers, which is a consequence of the zero linear impulse at
t ¼ 0. There is no evidence of k�5=3 scaling. During the initial stages
of evolution, vortex stretching occurs, leading to energy transfer to
smaller scales, but without the establishment of a Kolmogorov regime
(Fig. 25). The vortices continue to stretch until at t ¼ 0:1486sc
(Fig. 26), the smallest cores in the system reach typical radii of approxi-
mately rc ¼ 0:00258 cm (Fig. 27, left), resulting in a ratio lb=rc � 40.
The corresponding wavenumber kc � 380 marks the end of a brief
k�5=3 range (Fig. 28). Moreover, there is evidence of core sheetification
processes (Fig. 27, right) consistent with findings from other studies
using Navier–Stokes solvers, such as Refs. 46 and 47. As the system
evolves, vortex stretching intensifies, and by time t ¼ 0:4457sc, due to
well-documented instabilities,12,48,49 the vortex lines within the cores
become helical, implying that stretching is now accompanied by core
torsion and changes in core size (Fig. 29). Subsequently, at time
t ¼ 0:5942sc, the helical vortex lines form emergent vortex structures

FIG. 18. Chaotic configuration: Number of reconnections NR vs time (in sf units).

FIG. 19. Cubic configuration vortex tangles at t ¼ 22:05sf (a), t ¼ 36:755sf (b), t ¼ 73:515sf (c), and t ¼ 144:82sf (d).
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(Fig. 30) whose stretching extends the k�5=3 scaling regime toward
higher wavenumbers (Fig. 31). These higher wavenumbers correspond
to the sizes of the smaller structures emerging in the system (Fig. 32).
Remarkably, the observed stretched filaments, originally arcs in the

initial configuration, are straightened by extensional strain. This sug-
gests that the observed stretching process may be characteristic of
curved-vortex stretching in actual turbulent flows. These results sup-
port an alternative interpretation of Kolmogorov’s k�5=3 law: rather

FIG. 20. Energy spectra of the chaotic configuration. Left: compensated spectra at t ¼ 0 (purple), t ¼ 0:7sf (blue), and t ¼ 2:2sf (green). Up until times on the order of sf ,
the generation and propagation of Kelvin waves do not affect the spectrum. Right: t ¼ 0, t ¼ 22:05sf , t ¼ 36:755sf , t ¼ 58:8sf , t ¼ 73:515sf , t ¼ 102:185sf , t ¼ 144:82sf
(top to bottom).

FIG. 21. Chaotic configuration vortex tangle at t ¼ 152:083sf with reconnections allowed (left) and reconnections disallowed (right).

FIG. 22. Chaotic configuration: Energy spectra for small rings (less than 20 segments, blue), large rings (green), and entire vortex tangle (purple). On the left, reconnections
are allowed—on the right, reconnections are disallowed. The vertical line indicates the intervortex spacing scale.
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than being directly related to energy transfer between scales, it may
instead be connected to the formation of high-intensity enstrophy
structures as the end product of energy cascading events. Due to their
quasi-singular nature, these structures exert influence across a broad
range of wavenumbers. Their broad spectral footprint, coupled with
their high signal-energy, likely causes the high-frequency scaling to
“leak” into the lower frequency range, thereby affecting the entire
spectrum.

To test this idea, we evolve the initial conditions kinematically, by
streching the initial bundles without altering the geometry or inner
structure of the vortex tubes, while preserving the total filament vol-
ume (Fig. 33). Although the initial spectrum shows no evidence of a
Kolmogorov regime (Fig. 34, purple line), the situation changes as the
kinematic stretching of the tubes progresses. When the core radius
reaches 0:0062 cm (Fig. 34, green line), a k�5=3 regime emerges in the
spectra, which approximately ends at wavenumber k ¼ 160, corre-
sponding to the tube radius. At this stage, the ratio of system size over
bundle radius is lb=rc ¼ 32, which aligns well with the value of 40
observed in the vortex collider case. Similarly (Fig. 34, blue line), when
the core radius reaches 0:00415 cm, the Kolmogorov regime termi-
nates at the corresponding wavenumber, approximately k ¼ 240. In
all cases, the Kolmogorov scaling begins at the core size and extends
toward lower wavenumbers. Since these spectra are generated kine-
matically and are not part of any specific vortex dynamical evolution,
it is reasonable to conclude that the Kolmogorov spectrum reflects the
imprint of quasi-singular structures on the inertial range of turbulence.
Therefore, it is linked to the final outcome of the cascade process
(quasi-singular vorticity) rather than the energy-transferring turbulent
instabilities in the inertial range.

Furthermore, we observe that vortex line torsion is not a neces-
sary condition for the emergence of a Kolmogorov spectrum. Its physi-
cal role lies in forming emergent vortex structures, whose subsequent
stretching forms quasi-singular structures at smaller scales, thereby
extending the Kolmogorov spectrum to higher wavenumbers. It is
important to note that the smallest vortex cores, with the highest ens-
trophy values, correspond to the smallest scales of turbulence (just
before the viscous cutoff). As a result, the k�5=3 spectrum always

FIG. 23. Initial conditions of collider bundle configuration.

FIG. 24. Initial energy spectrum of collider bundle configuration. The red line corre-
sponds to the bundle core radius, the green line to the intervortex distance within
the core, and the dashed black line to the diagnostics core radius.

FIG. 25. Compensated energy spectra of collider bundle configuration at t ¼ 0
(purple), t ¼ 0:046sc (green), t ¼ 0:089sc (blue), and t ¼ 0:118sc (yellow).

FIG. 26. Collider bundle configuration at t ¼ 0:1486sc .
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begins at the end of the turbulent inertial range, rather than in the mid-
dle of it. Additionally, since the tubes are perfectly cylindrical in the
kinematic case, whereas they exhibit sheetification processes in the
dynamical case, the kinematic calculation suggests that the key factor
for Kolmogorov scaling is the confinement of enstrophy at small scales,
rather than the specific geometry of these vorticity structures.
Moreover, since the spectrum of vortex sheets follows a k�2 scaling,32

which is absent in our results, it implies that possibly both the confine-
ment of enstrophy into quasi-singular structures and the closed circu-
lar topology of these structures at large scales are crucial. These
findings point to the need for a thorough topological analysis of NSE
turbulent vorticity.

VI. NAVIER–STOKES VORTEX LINK

The vortex Hopf link problem has been well-studied with NSE
solvers in the context of vortex reconnection and topological change
studies. Our purpose here is to employ our approach of modeling NSE

FIG. 27. Collider bundle configuration at
t ¼ 0:1486sc . Example of core thinning
on the left, and sheetification on the right.

FIG. 28. Compensated energy spectrum of collider bundle configuration at
t ¼ 0:1486sc . The red line corresponds to half of the axial distance between pairs
of colliding bundle centerlines in the initial configuration, and the purple line to the
diagnostics core radius.

FIG. 29. Collider bundle configuration at
t ¼ 0:4457sc . Whole system on the left,
and example of vortex line torsion on the
right.
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tubes via SE vortices to test our ideas about the role of vortex stretching
and instabilities in turbulence, as these were formed by reflecting upon
the results of the vortex collider configuration. To highlight the effects
of vortex configuration as we transition from the collider to the link
cases, we use identical bundles, computational parameters, and charac-
teristic times for the link as in the vortex collider case. The link is
formed by having the centerlines of the one ring pass through the cen-
ter of the centerline of the other (Fig. 35, left).

For times less than the characteristic time, the evolution of the
system (Fig. 35, middle and Fig. 35, right) shows similar features with
NSE solutions.25,51,52 On the route to reconnection, the bundles stretch
each other creating two straight segments of antiparallel vorticity
(Fig. 35, right). Similarly with the vortex collider, the corresponding
spectra (Fig. 36) show a transfer of energy to smaller scales but there is
no discernible alteration of the initial spectrum as far as the

FIG. 30. Collider bundle configuration at
t ¼ 0:5942sc . Whole system on the left,
and example of an emergent vortex struc-
ture on the right.

FIG. 31. Compensated energy spectrum of collider bundle configurations at
t ¼ 0:4457sc (purple) and t ¼ 0:5942sc (green).

FIG. 32. Collider bundle configuration. Example of thin vortex structure at
t ¼ 0:5942sc .
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wavenumbers close to its peak are concerned. As already mentioned,
the antiparallel vortices are the setting of the Crow instability which
appears, in the beginning, as wavy vortex lines (Fig. 37, left) which
formK like instabilities that tend to wraparound the antiparallel vortex
cores (Fig. 37, right). The corresponding spectra (Fig. 38) show this
dynamic by lowering the energy of the large scales and indicating the
initial stages of a k�5=3 regime formation. Although the energy cascade
to smaller scales is clearly demonstrated in the results, there is no com-
parable demonstration of a Kolmogorov regime. This is because the
link configuration is not as conducive to stretching phenomena as the
vortex collider. Unlike the collider case, where helical vortex lines

bunched together and formed strong, self-stretching emergent struc-
tures, such effects are absent in the link configuration, although the
vortex bundles are identical in both cases.

The stretching deficit caused by different initial configurations
can, however, be compensated by enhancing the inertial effects in the
system—specifically, by increasing the circulation of the bundles in the
link case compared to the collider case. Therefore, we increased the
number of SE vortex rings in the bundles from 49 to 81, raising the cir-
culation to 0:0807 cm2s�1. The corresponding characteristic time is
now sc ¼ 0:0853 s. We accounted for the increased vortex density
within the tubes by adjusting the numerical core used in the spectral
computations to a value of r ¼ 0:5Dn value. With increased inertial
effects in the system (Fig. 39), and given the higher vortex-line density,
the Crow instability forms emergent bundles of vortex lines (Fig. 40).
Due to their increased inertia and finite core size, these bundles can
undergo significant self-stretching, similar to what was observed in the
vortex collider case. A comparison of the spectra for the cases with 49
and 81 vortices (Fig. 41) reveals that the higher inertia case displays a
well-defined Kolmogorov plateau, analogous to what is observed in the
vortex collider case.

VII. CONCLUSION

The results suggest two distinct energy cascade mechanisms for
SE and NSE turbulence. While both cascades are driven by vortex
instabilities, the capacity of NSE vortices to stretch and display intricate

FIG. 33. Kinematic vortex stretching. The initial bundle radius R and core diameter
d become Rs and ds after the application of isochoric kinematic stretching.

FIG. 34. Kinematic vortex stretching. Compensated energy spectra for original core
size (purple), 15% core reduction (red), 25% core reduction (green), and 50% core
reduction (blue) showing a growing k�5=3 regime.

FIG. 35. Bundle link configuration vortex tangles at t ¼ 0 (left), t ¼ 0:4454sc (middle), and t ¼ 0:7426sc (right).

FIG. 36. Bundle link configuration. Compensated energy spectra at times t ¼ 0
(purple), t ¼ 0:4454sc (green), and t ¼ 0:7426sc (blue). A transfer of energy from
large to small scales is noticable.
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core dynamics drastically influences the corresponding turbulence
behavior. In SE turbulence the primary instability is the Aarts-de
Waele instability,50 which drives neighboring filaments toward recon-
nection. In contrast, in NSE turbulence, key roles are played by the
Crow and helical vortex line instabilities. The latter instability is
responsible for both the initial phase, during which vortex lines form a
helical structure, and a subsequent phase, where the instability of this
helical structure leads to the formation of emergent vortex structures.
In SE turbulence, the Kelvin waves induced by the Aarts-de Waele
instability are the sole mechanism for energy transfer from the recon-
nection scale to the smallest scales in SE turbulence. Indeed, since SE
vortices are modeled as true vortex lines, SE vortex stretching merely
increases filament length without the core dynamics that, in NSE fluids,
drive energy cascades and enstrophy intensification.11,51

In SE turbulence there are a number of important ramifications
implied by the present results:

(a) The mere excitation and propagation of geometry-altering
Kelvin waves along the vortices do not modify the spectrum
and do not lead to significant interscale energy flux. Energy
transfer processes are most effectively measured using the
time scale that marks the onset of Kelvin wave collisions—
specifically, the moment when smaller waves infiltrate the

larger Kelvin wave structures and interact with them locally.
These interactions are what trigger the energy cascade.

(b) The Kelvin-wave cascade encounters a high wavenumber bot-
tleneck, where a partial statistical equilibration of the accumu-
lated small-scale energy is observed. Meanwhile, some of the
cascading energy flux transitions into a k�5=3 energy pipeline,
primarily generated by interactions between vortices of simi-
lar size. These physical processes are related to turbulence
dynamics occurring below the intervortex-spacing length
scale, which are particularly challenging to resolve in actual
turbulence calculations, as a significant portion of the resolu-
tion capacity is devoted to discretizing large turbulence scales
of system size. Furthermore, the physical processes underlying
the k�5=3 scaling in SE turbulence are markedly different from
those in NSE turbulence, as there is no enstrophy-enhancing
vortex stretching present in SE turbulence. Instead, we
observe another instance of the success of Kolmogorov’s
coarse-grained dimensional argument: a local, as indicated by
the interaction spectra, energy cascade exhibits a k�5=3 scaling
when the energy entering the pipeline at low wavenumbers is
fully dissipated at the small scales. In algorithmic calculations,
the cutoff is determined by numerical damping at the numeri-
cal vortex-core scale. In physical processes, we would antici-
pate that the energy flux reaches scales affected by
compressibility and subsequently dissipates into acoustic
energy at those scales.

(c) A crucial computational parameter in the vortex dynamical
model is the reconnection parameter b, as it governs the
reconnection rate. Since reconnections are dissipative pro-
cesses, they directly influence the rate of energy dissipation
within the system. In certain scenarios, such as fully devel-
oped turbulence calculations, an excessively high value of b
can overdamp the system, resulting in the loss of important
physical features, including the high wavenumber bottleneck.
One possible way to reduce the arbitrariness of b in a vortex
dynamics model is to adopt the approach of Ref. 50, using
very fine grids on the vortices that can resolve the microinst-
abilities leading to vortex reconnections. Although reconnec-
tions still occur as discrete events in this method, they happen
when the filaments are so close that the arbitrariness is mini-
mal. However, such fine computational grids make fully

FIG. 37. Bundle link configuration vortex
tangles at t ¼ 1:0397sc (left) and
t ¼ 1:1879sc (right).

FIG. 38. Bundle link configuration. Compensated energy spectra at times t ¼ 0
(purple), t ¼ 1:0397sc (green), and t ¼ 1:1879sc (blue). Initial stages of a k�5=3

regime formation.
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developed turbulence calculations impractical due to the
extremely high computational complexity. The results indi-
cate an alternative practical approach for selecting the recon-
nection parameter b: begin with a value around b ¼ 0:3 and
gradually decrease it until the physics remain robust against
changes in b. In certain cases (though not universally), dis-
abling reconnections may facilitate a clearer observation of a
physical effect—such as the bottleneck—that one expects to

capture in reconnecting simulations. Therefore, runs without
reconnections could also provide valuable insights for deter-
mining the optimal value of b.

(d) In the quantum mechanical interpretation of the
Schroedinger equation, the points where the wavefunction is
zero correspond to locations where the probability of finding
a particle is also zero. Hence, since the line vortices in the
Schroedinger equation define the geometry and topology of

FIG. 39. Bundle link configuration with augmented circulation. Vortex tangles at t ¼ 1:0647sc (a), t ¼ 1:1408sc (b), t ¼ 1:2168sc (c), and t ¼ 1:3689sc (d).

FIG. 40. Bundle link configuration with augmented circulation. An enlarged view of the emergent vortex structures generated by the Crow instability at t ¼ 1:3689sc .
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these zero-probability locations, it would be interesting to
investigate which particle motions correspond to “turbulent”
quantum probability fields.3 Moreover, since the vortex
dynamical description applies equally well to nonlinear
Schroedinger equations, there may be connections between
the present results and contemporary nonlinear generaliza-
tions of quantum mechanics.54

In NSE turbulence there are a number of important ramifications
implied by the present results:

(a) The results suggest that Kolmogorov scaling is accurately pre-
dicted by dimensional analysis because it reflects the physical
reality of large-scale energy flux entering a pipeline and dissi-
pating at smaller scales, regardless of the specific mechanism
driving the energy transfer. Indeed, while the self-stretching
of large core vortices initiates an energy cascade to smaller
scales, further amplified by the stretching of emergent vortex
structures spontaneously created by instabilities, the k�5=3

scaling only emerges once this iterative process has suffi-
ciently advanced. At this stage, the flow enstrophy is confined
within tubular regions where the core size is only a small frac-
tion of the system size, rendering the vortices quasi-singular
when viewed on a large scale. In other words, it is these quasi-
singular structures at the culmination of the cascade process
that dictate the spectrum’s scaling, rather than the cascade
process itself. In alignment with these conclusions, the
Kolmogorov spectrum in the SE is generated by completely
different vortex processes, i.e., direct energy-transferring
interactions between Kelvin waves along the system’s fila-
ments, hence, it reflects the dynamical origins of the energy
cascade.

(b) Although vortex stretching during the turbulent cascade
involves vortex-core torsion and partial sheetification, these
features are not essential for the k�5=3 scaling. It seems that
the crucial factor is the singular nature of intense enstrophy
events combined with their closed tubular topology, rather
than their internal geometric structure. The internal geomet-
ric structure is related to cascade mechanics, as various

processes produce distinct vortex line geometries. Therefore,
it is crucial to examine the prevalence of closed tubular vortex
topology in fully resolved Navier–Stokes solutions and
explore its connection to the Kolmogorov spectrum. This
observation clarifies why coarser filament models with simpli-
fied core structures can effectively capture key characteristics
of vortex stretching and the energy spectrum in turbulent
flows.16

(c) The k�5=3 scaling extends to higher wavenumbers through the
formation of emergent vortex structures driven by Crow or
helical vortex line instabilities, followed by their self-
stretching. This mechanism explains why increased flow iner-
tia results in larger inertial ranges while maintaining the same
k�5=3 scaling: The initial instabilities create filamentary vortex
structures, whose self-stretching drives an energy cascade to
smaller scales. Higher inertia means that the initial vortex
structures, having high circulation values, will have suffi-
ciently high vortex line densities within their cores. As a
result, the emergent vortex structures will also have adequate
circulation to self-stretch further and generate even more con-
fined enstrophy structures. This mechanism, which propa-
gates Kolmogorov’s scaling to progressively smaller scales,
will continue until the available vortex line density for gener-
ating new instability-induced vortex structures is depleted.
The onset of Kolmogorov’s scaling coincides with the forma-
tion of structures that appear as quasi-singular events from a
large-scale perspective (i.e., “fully developed turbulence”).
Greater flow inertia allows for higher vortex line density
(larger circulation) within the initially formed filaments,
enabling more iterations of this mechanism. Each iteration
pushes Kolmogorov’s scaling to progressively smaller scales.
At large Taylor Reynolds numbers, there would be a range of
quasi-singular vortex-core sizes small enough to produce
Kolmogorov scaling, with the smallest of these structures set-
ting its high-wavenumber cutoff.

(d) In Richardson’s cascade,8 energy is transferred across scales
through the break-up of large eddies into progressively
smaller ones. This process is considered continuous, with no
gaps between eddy sizes. Although Richardson eddies (often
referred to as “swirls”) are distinct from vortices, our results,
in agreement with other studies,55,56 support the concept of a
continuous energy transfer across scales, consistent with
Kolmogorov’s postulates. However, they also suggest that
Kolmogorov’s scaling propagates to higher wavenumbers in a
stepwise manner, with jumps from one quasi-singular scale to
the next. The size of these jumps is determined by the circula-
tion of the emergent structures, which influences the extent of
vortex core reduction.

(e) The emergence of the k�5=3 spectrum in the highly ordered
vortex configurations of our initial conditions suggests that a
random distribution of vorticity is not required for the
Kolmogorov spectrum to develop. This is notable given that
turbulence is typically associated with randomness and chaos.

(f) The results demonstrate how SE vortex dynamics can be uti-
lized in studying NSE vortices. Given the inviscid nature of
SE vortices, the modeled NSE dynamics correspond to high
Reynolds number flows.25 This approach enables the probing

FIG. 41. Bundle link configuration. Comparing the spectra of the 49-ring bundles
(purple) and the 81-ring bundles indicates a prominent k�5=3 regime in the latter,
which is less pronounced in the former. In the 81-ring case, the k�5=3 scaling arises
from the stretching of the emergent vortex structures induced by the Crow
instability.
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of inertial processes that are challenging to capture with
numerical solutions of the NSE. For example, in a related
study solving the NSE for the vortex link case at Re ¼ 4000,53

the emergent vortex structures were less pronounced than in
our study, hence their impact on flow energetics was not
addressed.
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