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Ultracold atoms are crucial for unlocking truly precise and accurate quantum metrology and provide an
essential platform for quantum computing, communication, and memories. One of the largest ongoing
challenges is the miniaturization of these quantum devices. Here, we show that the typically macroscopic
optical lattice architecture at the heart of many ultraprecise quantum technologies can be realized with a
single-input laser beam on the same diffractive chip already used to create the ultracold atoms. Moreover,
this inherently ultrastable platform enables access to a plethora of new lattice dimensionalities and
geometries, ideally suited for the design of high-accuracy, portable quantum devices.
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Optical lattices, formed by the standing wave of two or
more interfering laser beams, are an essential platform for
many quantum optics experiments [1–3]. The extremely
long atomic coherence times possible in such optical traps
have been used extensively in some of the most sensitive
measurements to date, notably extending the lifetime in
atomic memories many orders of magnitude to several
seconds [4] and allowing optical lattice clocks [5] to reach
fractional frequency accuracies at the 10−18 level [6,7].
Such clocks are typically built on 1D lattices, but 3D [8,9]
and 2D lattices [10] can also be used.
Lattices in one [11], two [12,13], and three [14] dimen-

sions were also vital components for many key experiments
with quantum degenerate gases. By selectively preparing
a single 2D layer from such 3D lattices, quantum gas
microscopes can be prepared in bosonic [15,16] and fer-
mionic [17–19] atoms, in an increasing range of atomic
species [20–23]. Optical lattices for storage, augmented by
optical tweezers for transport [24], can also be used in the
burgeoning field ofneutral-atomquantumcomputing [25,26].
In recent years, there has been a concerted effort to

develop portable cold-atom sensors, translating the excel-
lent performance of lab-based experiments to real-world
applications. Optical-lattice-based devices utilize laser-
cooled atomic clouds, created in magneto-optical traps
(MOTs) [27] using overlapping near-resonant laser beams,
which are subsequently loaded into the lattice potentials.
The lattices themselves are typically generated from a
single laser at a far-detuned wavelength which is then split
into multiple intersecting laser paths [28], adding more

complexity to beam delivery. Mirrors aid stability in 1D
lattices, by providing a fixed node of the optical standing
wave; however, this stable point is often many centimeters
away from the atoms. Multiple intersecting 1D lattices can
generate higher-dimensional lattices, if they are carefully
mutually orthogonally polarized and/or frequency shifted
to avoid optical interference which can shake the lattice or
even change its geometry [29].
Previous work on atom chips has demonstrated atomic

loading from a MOT into a 1D optical lattice by way of a
magnetic surface trap [30,31]; however, the mirror and 3D
MOTs used require four and six beams, respectively. The
integration of a single-beam pyramid MOT [32] and 1D and
2D optical lattices [33] has also been demonstrated, but the
lattice did not use the same input beam direction as theMOT,
and lattice mirrors were ≫ 1 mm from the atoms. The
equivalent to a single-input-beam MOT with a 1D lattice
along the same input axis has been achieved in interferometry
[34]; however, the lattice in this case is used as a beam splitter
instead of storage, and the atom number may be limited [35].
Grating magneto-optical traps (GMOTs) offer a conven-

ient platform for the formation of ultracold atomic clouds
with a single-input trapping beam [36,37]. This technology
has now been extended to a range of atomic species
[38–41] and applications and is well placed for adoption
in compact, cold-atom quantum sensors [42–44]. Here, we
extend this single-input beam architecture to the formation
of optical lattices [36]. By aligning a single high-intensity
far-detuned laser beam onto different areas of the grating
chip, 1D, 2D, and 3D lattices can be formed—on the same
grating used for the GMOT. All lattice beams share a
common nodal plane, pinned to the grating-chip surface
≲1 mm from the atoms, so the resulting optical lattice is
stable against the drift often seen in macroscopic systems.
We anticipate that this simple, highly compact, and stable
optical lattice geometry will be ideal for many portable
quantum-optic experiments.
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Figure 1(a) illustrates the central 4 × 4 mm2 of the 20 ×
20 mm2 GMOT chip we use to create a 3D lattice. The chip
comprises three sectors of one-dimensional diffraction gra-
ting (gray triangles). The binary grating sectors have proper-
ties and fabrication methods as detailed in [36,41,45,46] and
are optimized for the atomic species utilized here—87Rb.We
use a similar theoretical description to our MOT modeling
papers [35,47]; however, here we consider the coherent
superposition of electric fields rather than the Doppler- and
Zeeman-effect sensitive sums of intensity-based average
radiation pressures (see Supplemental Material [48]).
Theoretical cross sections of the 3D lattice itself are shown
in Figs. 1(b) and 1(c), illustrating the different lattice regions
with their distinct geometries and dimensions. The 1D lattice
model and experimental data are shown in Figs. S2(a) and
S2(b), respectively [48].
To make the 3D (1D) optical lattices in this Letter, we

use a single circularly (linearly) polarized laser beam,
normally incident near the center of the grating with
wavelength ≈780 nm (1070 nm), power 0.9 W (10 W),
and e−2 intensity radius 2.5 mm (80 μm). For the near-
resonant lattice at ≈780 nm, the laser red detuning was
78 GHz relative to the center of the four Doppler-broadened
D2 transitions. Our Al-coated grating has a material
reflectivity of 88% at 780 nm and 95% at 1070 nm [52].
Because of the grating period d ¼ 1080 nm, the 780 nm
light diffracts (�1 order) at an angle of θ ¼ 45° to the
grating normal with diffraction efficiencies into the first and
zeroth orders of η�1 ≈ 35% and η0 ≈ 5%, respectively [46].
The 1070 nm light has most power in the zeroth order
η0 ≈ 70%, and the first-order diffraction angle is large
(82°), so these beams have no impact on the 1D lattice.

As a basis for loading the optical lattices, ≈8 × 106 87Rb
atoms are loaded into a GMOT and cooled to ≈3 μK using
a standard red molasses cooling stage [36,37]. Stray dc
magnetic fields are canceled by three pairs of orthogonal
Helmholtz coils. TheMOT location with respect to the chip,
and its overlap with the optical lattice, can be controlled
within the GMOT’s optical overlap volume by varying the
zero position of the quadrupole magnetic field. The typical
MOT location and size are also shown in Figs. 1(b) and 1(c).
The grating chip is bonded to the open end facet of a

rectangular cuvette vacuum cell using UHV compatible
epoxy, allowing a base vacuum pressure at the 10−8 mbar
level, as measured by the ion pump. No bowing of the chip is
observed due to pressure differential [53]. The decision to
mount the chip in vacuum was made to allow the lattice to
form as close to the chip surface as possible with no glass
interface, enabling future use of atoms in chip-surface
traps [54].
Atom detection is achieved via fluorescence imaging

onto a CCD camera sensor. The imaging system is aligned
orthogonal to the directions of both the MOT or lattice
beam and gravity. A spatially selective focal plane is
utilized to reduce background noise originating from
scattered light [55]. For both the 3D and 1D lattice
geometries, 150-μs-long resonant fluorescent images are
taken with the MOT light after a 1 ms time of flight
following the extinction of the lattice beam. In both the 3D
and 1D lattices, the lattice beam power can be rapidly
adjusted by a single-pass acousto-optic modulator (AOM)
designed for the beam wavelength.
The 780 nm 3D lattice beam is from a near-resonant

diode laser [56] with a tapered amplifier. The broadband

FIG. 1. Grating and lattice geometry in a ð4 mmÞ3 volume, here with both periods magnified by 250 to aid visibility. Red and purple
arrows in (a) indicate the laser beams incident (−z direction) on the triangular grating to generate the 3D and 1D lattice, respectively. All
other arrows (þz direction) indicate principle contributing diffracted orders, and planes 1 and 2 are used to generate images of the 3D
lattice structure [red linear shading in (b) and (c), respectively]. The gray lines in (b) are spaced by the grating period. The 3D lattice is
shown in the xy plane at z ¼ 1.5 mm above the grating surface [plane 1 (b)] and the zy plane at x ¼ 0 mm [plane 2 (c)]. The zx plane at
y ¼ 0 mm is similar to (c) and shown in Fig. S1 in Supplemental Material [48]. Dark red dashed lines indicate the 3D beam overlap
region boundaries within which the MOT can form, and the solid and dashed blue ellipses indicate the approximately Gaussian MOT’s
e−1=2 and e−2 radii, respectively. Gravity g is in the −y direction. Equivalent images of (c) for the 1D lattice are shown in Fig. S2 in
Supplemental Material [48].
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amplified spontaneous emission (ASE) pedestal associated
with this laser produces some near-resonant light which can
heat atoms from the lattice via scattering. To reduce this
effect, we filter the lattice beam through a 7.5-cm-long
>70 °C Rb vapor cell [57]. The lattice beam is combined
with the MOT beam on a polarizing beam splitter. Atoms
are loaded into the 3D lattice potentials by switching the
lattice beam on at the end of the red molasses sequence, to
mitigate the effect of light shifts on the cooling process.
To form the far-detuned 1D lattice, a 1070 nm ytterbium

laser is used. The vertically polarized light is combined
with the MOT light on a dichroic mirror and aligned onto
the grating chip. Atoms are loaded into the 1D lattice by
switching the lattice beam on at the beginning of the red
molasses cooling stage.
A log plot of the number of trapped atoms as a function

of the hold time in both the 3D and 1D lattice is shown in
Fig. 2. Exponential decays are fitted, excluding data where
thold < 75 ms, to eliminate untrapped atoms ejected from
the imaging region over this timescale due to gravity. The
1D lattice has a much longer lifetime; this is because it is
much deeper and the far-off resonance light also induces
less scattering and thereby heating than the near-resonant
3D lattice. The overlap volume between the 3D lattice and
the MOT is much larger than for the 1D lattice, which can
be seen by the difference in initial lattice atom number.
From the time constant of the fits, we estimate a 3D

lattice lifetime of 54 ms. Because of the limited power
available from the laser, a relatively low detuning from the
Rb D2 line of Δ ¼ −78 GHz was used. As a consequence,
atomic heating due to photon scattering is significant,
estimated to be 1 kHz for each photon absorption-emission
cycle within the deepest (and brightest) parts of the lattice,
where the expected potential depth at lattice sites is 40 μK.
This leads to a maximum heating rate at lattice sites of
10 μK=s in good agreement with the observed ensemble
heating rate across the lattice of 6 μK=s [58]. Along with

any residual unfiltered laser ASE, and the relatively shallow
lattice depth, this heating accounts for the shorter near-
resonant lattice lifetime.
The far-off resonance 1D lattice is expected to have less

photon scattering (3 photons per second per atom) with a
greater depth at the lattice sites (500 μK). Fitting an
exponential decay to lattice atom number data indicates a
longer trap lifetime of 220 ms. An estimation of the back-
ground vacuum pressure can be made using the known
relation between MOT lifetime and vacuum pressure
[59–61]. The shallower potential of the 1D lattice compared
to the MOT leads to a shorter background-limited life-
time [37,62]. When the Rb partial pressure was changed,
the MOT fill time was consistently twice as long as the
1D lattice decay time, indicating that both the MOT and
1D lattice are background-pressure limited.
The long hold time of the atoms, far in excess of that

possible if they were in free fall, is strong evidence of the
formation of an optical dipole trap. The observed behavior
could not arise due to optical molasses or any light
scattering forces. Even if we overestimate the effects, by
considering a single laser beam scattering at 103 photons
per second against gravity, the maximum acceleration is
6 m=s2. Similarly, using a 1D Doppler model with cop-
ropagating beams in the gravity direction with our laser
intensity and detuning, the overestimated molasses accel-
eration reached is a millionth of that due to gravity.
Although direct imaging of the lattice is not possible

without a suitable microscope for site-resolved imaging,
additional evidence can be obtained via investigating para-
metric resonances at the lattice trapping frequencies [62,63].
This resonance technique relies on modulating the lattice
potential. When the modulation frequency is equal to twice
the trapping frequency νtrap, the kinetic energy of the atoms
increases exponentially, resulting in parametric excitation to
higher vibrational states of the trapping potential. Eventually,
atoms are ejected entirely from the trapping potential. This
process can be easily observed experimentally by an increase
in cloud size, due to atoms entering higher vibrational states,
or a drop in atom number as atoms are ejected from the trap.
In addition to the fundamental parametric resonance at 2νtrap,
subharmonics can also be excited at frequencies given by
2νtrap=n, where n is an integer [63].
We modulated the lattice beam power in the range

(88–100)% using the AOM. In the 3D lattice, modulation
is applied for 50 ms after first holding the atoms in the static
lattice for 50 ms to allow for free evaporation [1]. The
atoms are then imaged after a 1 ms time of flight. In the 1D
lattice case, modulation is applied for 150 ms due to the
improved lattice lifetime and the need to eject a significant
number of atoms from the deeper 1D potentials in order to
observe the trap resonances. In all cases, the modulation
scans are randomized in frequency to negate any effects due
to long-term drifts in experimental conditions during the
data campaigns.

FIG. 2. Number of trapped atoms as a function of lattice hold
time for the 3D lattice (red triangles, solid fit) and 1D lattice
(purple circles, dashed fit). Fitted exponential decays reveal
estimated lattice lifetimes of 54 and 220 ms for the 3D and
1D lattice, respectively.
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A spectrum of the cloud spatial standard deviation after
modulation, as a function of modulation frequency, illus-
trates the heating of the atoms in the near-resonant 3D
lattice [Fig. 3(a)]. We see a clear primary peak at around
100 kHz, with a partially resolved secondary feature at
around 50 kHz. Because the 3D lattice is relatively shallow,
broad resonances are expected as the atoms explore the full
sinusoidal potential, not just the harmonic lattice minima.
We have also determined the expected theoretical trap

frequencies in the 3D lattice, allowing for the spread due to
lattice intensity variation across the atomic cloud from the
Gaussian nature of the input and diffracted beams. For
the conditions in Fig. 3(a), this yields trap frequencies in the
range νz ¼ ð100� 10Þ kHz and νr ¼ ð46� 5Þ kHz, where
standard deviations are given, also allowing for the spatially
varying lattice population due to the initial MOT cloud
distribution used for loading. In addition, the atoms after
optical molasses are usually populated uniformly across the
magnetic hyperfine levels. While subject to the circularly
polarized lattice beam [64], the atoms are subject to the
theoretical trap frequencies above corrected by a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffif2;3;4;5;6g=4p

≈f0.71;0.87;1.00;1.12;1.22g, depend-
ing on which of the five different F ¼ 2 mF states they
are in.
The experimental 3D lattice heating frequencies, there-

fore, match surprisingly well with the expected trap
frequencies [65]. We also found that changing the lattice
depth affects the resolution of the primary and secondary
features in Fig. 3(a), with data for a range of five powers in
Supplemental Material [48]. This may be due to atom loss
from lower depth lattice sites at lower laser power leading
to a remaining trapped atom distribution predominantly
occupying the central portion of the lattice structure with a
lower spread of trap frequencies.
To further test that the atoms experience a lattice arising

due to the dipole force, we measured the primary lattice
resonance frequency for a variety of beam powers P and red
detunings Δ. By plotting the primary observed resonance

frequency as a function of P=Δ, resonance data for different
3D lattice trap depths can be summarized in a single plot,
as shown in Fig. 3(b). As expected, these data follow
a ν ¼ A

ffiffiffiffiffiffiffiffiffiffi

P=Δ
p

relation, where here the fitted value is
A ¼ 34.2 kHz ðGHz=mWÞ1=2, in good agreement with
theory.
The measured parametric resonance frequencies in the 1D

lattice [Fig. 3(c)] are νz ¼ 200 kHz and νr ¼ 0.5 kHz,
which, like in the 3D case, match well with subharmonics
of the expected trap frequencies, νz ¼ 290 kHz and
νr ¼ 0.9 kHz. There should be much less spatial variation
in trap frequency due to lattice structure in the 1D lattice
compared to the 3D lattice, and the atoms are expected to be
in the deeper harmonic parts of the lattice, with no trap
frequency variation with mF state. In the 1D case, however,
the signal-to-noise of the parametric heating is low, and the
(relatively broad) resonances can be observed only via atom
number loss. This is due to lower spatial overlap of the 1D
lattice with the MOT and, hence, lower initial atom number
(Fig. 2) as well as rapid radial expansion during fluorescence
imaging (Fig. S2 and discussion in Supplemental Material
[48]). The 1D lattice beam focal position on the grating
surfacewas optimized for atomnumber, and, given the lattice
beamRayleigh range of 19mm, the beamwaist was constant
over the entire lattice.
In this Letter, we have demonstrated optical lattices in

one and three dimensions. However, we note that, by
loading the MOTatoms into a magnetic and/or optical trap,
they can be transported beyond the MOT capture volume,
and, thus, future single-input-beam two-dimensional latti-
ces are within easy reach [Figs. 1(b) and 1(c)].
We have demonstrated experimentally that the GMOT

architecture can be extended from a single-input-beam
MOT to both three- and one-dimensional single-input-
beam optical lattices on the same chip that is also likely to
enable 2D lattices. Because the grating surface, from which
all other lattice beams originate, is a node of the electric
field, the associated beam phases and thereby grating
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FIG. 3. (a) Experimental standard deviation σ of the 3D lattice cloud distribution, showing the spectrum of vibrational heating
(σ > 0.44 mm), with beam power 650 mW and detuning Δ ¼ −78 GHz. (b) Primary vibrational resonance frequency plotted as a
function of optical power divided by detuning from the 87Rb D2 transition. Black squares, Δ ¼ −30 GHz; dark red triangles,
Δ ¼ −54 GHz; light red circles, Δ ¼ −78 GHz. The large light red circle corresponds to the primary resonance observed in (a).
(c) Experimental spectra of the 1D lattice vibrational heating, indicated here by atom loss due to lower signal:noise in σ than (a).
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lattices are expected to be much more stable than standard
optical lattices derived from multiple centimeter-distant
mirrors.
The 3D and 2D lattices arising from our binary grating

chip with threefold symmetry (“tri” chips) naturally gen-
erate lattices of a topical [66–68] triangular nature.
However, equivalent 3D body-centered-cubic lattices (com-
prising offset 2D square lattice layers) can be generated
using binary gratings based on either four sectors of linear
grating (“quad” chips [36,61,69]) or the larger capture
volume 2D checkerboard grating option [36]. By moving
beyond binary gratings into multilevel gratings, it is
expected that more exotic lattice geometries may also be
explored [70–72]. Given that typical optical lattices have
beam waists around 100 μm, it seems natural to have a
GMOT grating region bordered by a wide variety of small
grating patterns that the MOT can be transported to, to
easily explore different lattice geometries within the same
experimental setup.
We, therefore, expect our technology is ideally suited for

application in a wide range of stable, high-accuracy,
portable quantum devices.
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