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Abstract: This study characterized groundwater resources for the Nakivale sub-catchment of the
transboundary Victoria Basin in Uganda using classical hydrochemical and stable isotopic approaches.
Groundwater in the study area is essential for domestic, agricultural, and industrial uses. As a
sub-domain of the larger Victoria Basin, it also plays a crucial role in shaping the hydrological
characteristics of this vital transboundary basin, both in terms of quality and quantity fronts. This
makes its sustainable management and development vital. The predominant groundwater type is
Ca-SO4, with other types including Ca-HCO3, Na-Cl, Na-HCO3, and Ca-Mg-SO4-Cl. Hydrochemical
facies analysis highlights the importance of rock–water interactions in controlling groundwater
chemistry, mainly through incongruent chemical weathering of Ca-rich plagioclase feldspars and the
oxidation of sulfide minerals, such as pyrite, which are prevalent in the study area. Groundwater
recharge is primarily influenced by the area’s topography, with recharge zones characterized by
lineament networks, located in elevated areas. Stable isotope analyses indicate that groundwater
mainly originates from local precipitation, while tritium data suggest the presence of both recent
and older groundwater (likely over 20 years old). The study’s comprehensive approach and findings
contribute significantly to the understanding of groundwater systems in the region, thus providing
valuable insights for policymakers and stakeholders involved in water resource management and
development strategies.

Keywords: hydrogeochemistry; isotope hydrology; precipitation; groundwater management; Victoria Basin;
Nakivale; Isingiro; Uganda

1. Introduction

Water resources are integral to sustaining human life, fostering economic growth, and
supporting biotic ecosystems, particularly in regions such as the Lake Victoria Basin, one of
Africa’s most critical transboundary water systems [1]. The significance of these resources
is underscored by global and regional frameworks, such as Sustainable Development
Goal 6, Africa’s Agenda 2063 Goal 6, and Uganda’s National Development Plan 4, all of
which advocate for easy and equitable access to safe and sustainable water resources [2–4].
Uganda’s Vision 2040, a long-term national development plan aimed at transforming the
country into a modern and prosperous nation by 2040, projects significant growth in water
demand as the country strives for a competitive upper middle-income status [5].

In the Nakivale sub-catchment in Southwestern Uganda, water demand is projected to
rise substantially, with domestic, industrial, irrigation, and livestock needs expected to reach
6.3, 0.28, 0.81, and 0.46 MCM/year, respectively, by 2040 [6,7]. Without proper management,
these resources may face depletion, threatening regional development and ecological bal-
ance [1,6–9]. The current water resource demand in the Nakivale sub-catchment ranges be-
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tween 3.5–4.5 MCM/year [6], with groundwater recharge estimated at 50–100 mm/year [7].
This close range imbalance between water demand and recharge highlights the need for
detailed studies on local hydrological processes, which are essential for the sustainable
management of water resources in the region.

According to previous studies by [9,10], groundwater and surface water within the
Lake Victoria Basin are closely interlinked. As a consequence, this symbiotic effect influ-
ences both the quantity and quality of water resources in the two hydrological systems.
Despite this, critical aspects such as localized groundwater recharge processes, flow dy-
namics, and the factors influencing groundwater chemistry in the region remain poorly
understood [1,7]. Therefore, this study aims to characterize groundwater within the Naki-
vale sub-catchment in Southwestern Uganda using both classical hydrochemistry and
isotopic approaches.

These techniques have been globally used to infer information on groundwater origin,
recharge processes, flow patterns, rock–water interaction processes among many more
hydrological studies [10–18]. The specific objectives are to evaluate the key processes
controlling groundwater hydrochemistry, determine the hydrogeochemical groundwater
facies prevalent in the study area, analyze groundwater origin, recharge processes, and
finally, formulate evidence-based policy recommendations for sustainable groundwater
management and development within the Nakivale sub-catchment.

The findings of this study are not only relevant for the Nakivale sub-catchment but
also have broader implications for the entire Lake Victoria Basin. As a transboundary water
system shared by Uganda, Kenya, Tanzania, Rwanda, and Burundi, effective management
of the Lake Victoria Basin’s water resources requires a comprehensive understanding of
the hydrological processes that govern water availability and quality at both localized and
broader fronts. This enhances the understanding of groundwater dynamics in the study
area and provides valuable insights for the wider management of the transboundary Lake
Victoria Basin.

2. Materials and Methods
2.1. Study Area

The Nakivale sub-catchment is located in Isingiro district, southwestern Uganda
(Figure 1). It serves as a tributary to the Rwizi Catchment which is also a tributary to the
greater Victoria Basin [6]. The area spans over a total area of 760 square kilometers and is
positioned within the country’s water stressed area (locally referred to as a cattle corridor),
where riparian communities travel long distances during drought spells in search for water
from nearby deep boreholes and limited surface water bodies [1,6,7].

The study area predominantly consists of lowland surface remnants, occupying more
than 60 percent of the sub-catchment. Infill areas are located in the western and eastern
parts of the sub-catchment and are characterized by poorly sorted outwash fans. High-
relief areas are positioned along the extreme margins of the catchment and are covered by
upland surface remnants susceptible to erosion (Figure 1). The project area has a population
estimate of over 616,700 people with most of the riparian communities staying within urban
and peri urban centers [19]. It houses the fourth largest refugee camp in Uganda after
Yumbe, Adjumani, and Arua districts. The area also registers an annual refugee influx
estimate of 10,000–30,000 [20], and is a grazing spot for over 0.5 million cattle [6].

2.2. Climate

Nakivale lies within the equatorial zone of low pressure where winds typically remain
light and variable [21]. Its weather patterns are notably influenced by the thermal equator,
also known as the Inter-Tropical Convergence Zone (ITCZ), which acts as a zone of instabil-
ity separating the converging air masses of the northern and southern hemispheres [1,6,7].
Characterized as hot and humid, the climate of the study area features two distinct rainy
seasons (March to May and September to November), the later occasionally extending
to December [6]. The dry seasons extend from December to February, and from June to
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August. The wettest months typically occur in November and April, with July being the
driest. Annual rainfall ranges from 966 mm to 1380 mm and is influenced significantly by
factors such as topography, wetland systems, and open water bodies [1]. Average monthly
temperatures range from a minimum of 27 ◦C to a maximum of 31 ◦C. The dew-point
temperature averages around 19 ◦C, while the long-term average monthly temperature
consistently surpasses 30 ◦C and occasionally peaks at 38 ◦C [6].
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2.3. Geological Setting

The study area is overlain by the Proterozoic Karagwe-Ankolean system of rocks
(1400–950 Ma) which is part of the Burundian belt in the eastern Democratic Republic of
Congo [6,9]. This rock system rests unconformably on the Buganda-Toro rock system in
Uganda which also overlies the Basement Complex rocks [22]. The Karagwe-Ankolean
rock system consists of sedimentary to meta-sedimentary rocks that have been exposed to
various grades of metamorphism, ranging from low to high [23].

The sedimentary facies within the Karagwe-Ankolean rock system comprise sand-
stones, shales, and conglomeratic lenses, while the metamorphic rocks include granite
gneisses, phyllites, and schists. Sedimentary facies are common in elevated areas while the
metamorphosed facies are present in lowlands, providing evidence of regional metamor-
phism and contact metamorphism near former areas of granitic intrusion [24]. These older
rocks were intruded by younger variable granitic rocks that initially formed topographical
highs but are now represented as low-lying areas due to the susceptibility of granites to
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weathering. The current topography can be attributed to differential weathering between
the older host rocks and the younger granitic rocks [25].

The dominant minerals in this area are silicate minerals, ranging from felsic silicates
(quartz, muscovite and orthoclase) to mafic silicate minerals (plagioclase feldspars and
minerals of the Bowen discontinuous series) [16]. This is due to varying episodes of variable
granitic intrusions (G1-G4) that the region experienced [26]. Muscovite schists and phyllites
intercalated with quartzites are also common within the lower Karagwe-Ankolean rock
system where the project area lies [9,26]. Occasional calc–silicate rocks are also common
in the study area [25]. According to [22], the Karagwe-Ankolean rock system is also
characterized by sulfide rich minerals such as chalcopyrite, pyrite, galena, and sphalerite
evident in Kitaka (Mbarara district) and Gayaza (Isingiro district).

2.4. Hydrogeology

The hydrogeology of the Nakivale sub-catchment is primarily shaped by the re-
gion’s underlying geology. The area is predominantly composed of argillaceous, imper-
meable rock types such as shales, slates, phyllites, and granite gneisses (Figure 1). These
low-permeability lithologies result in high surface runoff, limiting groundwater recharge.
Groundwater infiltration occurs mainly through fractured networks and bedding planes,
where structural weaknesses allow for some permeability [27–29].

Groundwater flow in the study area is largely controlled by the hydraulic head gradi-
ent which closely follows the natural topography (Figure 2). The flow pattern is predom-
inantly local, with groundwater moving through shallow aquifers over short distances.
In certain areas, particularly in the western and eastern parts of the sub-catchment, inter-
mediate groundwater flow systems exist, indicating slightly longer flow paths. Previous
studies by [30–32] identified three main aquifer types in the region: weathered/fractured
aquifers, fluvial aquifers, and paleochannels. The weathered and fractured aquifer system
typically occurs at depths greater than 60 m [31], though this can vary. Permeability is
highest near the fracture–saprolite interface and is determined by the number, distribution,
and connectivity of fractures [30,31].

Fluvial aquifers consist of consolidated and unconsolidated sediments and are gener-
ally shallow [6]. Their hydraulic properties depend on sediment sorting, size, and packing,
with well-sorted sediments exhibiting higher permeability [33]. These aquifers can be
unconfined or semi-confined, with fine riverbed material often creating confined condi-
tions [30]. According to [31], paleochannel aquifers formed by historic river reversals also
serve as significant aquifers in the region. These ancient river channels are filled with thick
sediment deposits, including gravels and sands, and provide high groundwater yields,
often exceeding 50 cubic meters per hour [34]. In areas like Rukungiri in southwestern
Uganda, paleochannels are known for their high aquifer productivity due to the thick
alluvial deposits [31].

Over the past three years, groundwater levels at the Isingiro groundwater monitor-
ing station in the study area have notably fluctuated (Figure 3). From January 2021 to
mid-2023, these levels exhibited a declining trend, indicating over-extraction or inadequate
recharge during that time. Groundwater levels at this station respond to rainfall with a time
lag of 1–2 months, reflecting low recharge rates in the area (Figure 3). The recent increase
in groundwater recharge can be partly attributed to catchment restoration activities in the
Rwizi catchment since 2021, as well as two significant flooding events: one in May 2023 and
the El Nino flood event in November 2023 [35,36]. Additionally, potential changes in confin-
ing pressure related to land use and aquifer recharge processes can play a role in controlling
piezometric surfaces [37]. Therefore, it is evident that effective groundwater management
is essential for the sustainable use of groundwater resources in the study area.
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2.5. Sample Collection and Analysis

Sampling points were strategically selected to account for hydrogeological variations
in the study area. Groundwater samples were collected from 19 boreholes in the study
area (Figure 1). Sampling occurred from 15 February 2024 to 20 February 2024 during the
dry season. Field measurements of pH, redox potential (Eh), dissolved oxygen (mg/L),
temperature (◦C), and electrical conductivity (µS/cm) were obtained in situ using a cali-
brated HANNATM multi-parameter meter (HI 9829_S/N 07100011101). Total alkalinity
was analyzed in situ by acid–base titration using 0.02 M hydrochloric acid. Water samples
for cations and anions were collected in 500 mL HDPE bottles and tightly capped to prevent
any leakage. Samples intended for cation analysis underwent filtration using GF/C filter
papers and were then acidified with concentrated nitric acid of analytical grade to achieve a
pH of less than 2. For tritium and stable isotope analysis (Deuterium and oxygen-18), water
samples were respectively collected in 500 mL HDPE bottles and 50 mL HDPE bottles.

The major ions, namely, Na+, K+, Ca2+, Mg2+, Cl−, NO3
−, and SO4

2−, were analyzed
in mg/L using the ion chromatography method. Al, Fe, Si, and B were analyzed in
their elemental forms using the Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
method. This method allows for the highly sensitive and precise measurement of elements
at very low concentrations [38]. The stable isotopes, 2H and 18O in each water sample were
estimated using laser absorption spectroscopy. The results possess an accuracy of ±0.2‰
for δ18O and ±1.6‰ for δ2H. Tritium concentration was determined with an accuracy of
±0.2 TU using liquid scintillation counting (LSC), a method known for its high sensitivity
and accuracy [39].

2.6. Hydrochemical Data Analysis
2.6.1. Groundwater Facies Analysis

This analysis involved graphical representation of the cationic (Ca2+, Mg2+, Na+ + K+)
and anionic (HCO3

−, SO4
2−, Cl−) chemical species on a Piper diagram using Origin Pro

Version 2022, a statistical software. The respective concentrations (meq/L) were normalized
to 100% and then plotted as points on a Piper diagram. The position of each plot on a piper
diagram serves as an estimate for the groundwater type inherent to the sampled well [40].

2.6.2. Groundwater Hydrochemical Evolution Assessment

(i) The Gibbs plot

The Gibbs plot involved plotting total dissolved solids (TDS) against the quotient factor
of major cations for the cationic Gibbs plot (Equation (1)) and TDS against the quotient factor
of major anions for the anionic Gibbs plot (Equation (2)). According to [41], this model offers
insights into three key mechanisms that influence groundwater chemistry: atmospheric precip-
itation dominance, rock weathering dominance, and evaporation-crystallization dominance.

Gibbs Cationic Ratio =
Na+ + K+

K++Na+ + Ca2+ (1)

Gibbs Anionic Ratio =
Cl−

Cl− + HCO3
− (2)

(ii) Multivariate analysis

This utilized both the R-mode and Q-mode hierarchical cluster analysis (HCA), along
with the Factor Analysis approach, using Origin Pro version 2022. R-mode and Q-mode
HCA group variables and samples, respectively, to identify relationships and possible com-
mon sources or processes affecting these parameters [18,42–44]. These clusters can reveal
spatial or temporal patterns in groundwater quality and can be instrumental in identifying
distinct facies or regions influenced by similar geochemical processes [13]. Factor Analysis
was used to complement HCA by reducing the dimensionality of hydrochemical data and
identifying the most significant factors influencing groundwater chemistry [44].
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2.6.3. Geochemical Modelling

This approach utilized the Geochemist’s Workbench Community Edition 17.0 software
to calculate the saturation indices (SI) of different mineral species as well as the partial pres-
sure of carbon dioxide for each groundwater sample. The saturation index was estimated
as the logarithm of the ratio of the ion activation product (IAP) to the solubility product
(Ksp) of dissolving species.

SICalcite = log
IAP
Ksp

(3)

The calcite saturation index and partial pressure of carbon dioxide provide insights
into the potential sources of bicarbonates within groundwater [45,46]. They also shed light
on the incongruent weathering of silicates or other forms of chemical weathering [45].

2.6.4. Spatial Analysis Using GIS Tools

Spatial analysis utilized Quantum Geographical Information System (QGIS) Version 3.36.3.
The spatial analytical tools employed in this study include, but are not limited to, in-
terpolation and raster analysis tools. The interpolation tool used in this study was the
ordinary kriging interpolation tool which is ideal for datasets with unknown trends such
as hydrochemical datasets [47]. This tool assumes a constant mean and variance across the
interpolated field [48]. It is particularly suitable for hydrochemical assessments [13,47,48].

2.7. Isotope Analysis
2.7.1. Stable Isotope Analysis

This involved characterizing the isotopic signature of rainfall in the area through es-
tablishment of a local Deuterium excess (D-parameter) line for the Nakivale sub-catchment.
This approach has been widely adopted for tracing the origin of groundwater [12,17,49].
Deuterium excess values in precipitation were calculated to identify the moisture source
for rainfall received within the study area (Equation (4)).

Deuterium excess = δ2H − 8δ18O (4)

where δ2H and δ18O are deuterium and oxygen-18 values in local precipitation, respectively.
The obtained D-excess values were used to generate the D-parameter line for the

Nakivale sub-catchment using Equation (5).

δ2H = 8 ∗ δ18O ± Mean(D − excess value) (5)

The D-parameter line was then plotted alongside the Global Meteoric Waterline
(GMWL) on the δ2H vs. δ18O graph. The GMWL is represented by Equation 6 [50]. The
shift of the D-parameter line from the GMWL provided insights into the moisture sources
for precipitation received within the study area [51,52].

δ2H = 8 ∗ δ18O + 18 (6)

2.7.2. Tritium Isotope Analysis

According to [53], interpreting tritium values involves comparing tritium concen-
trations with known atmospheric input levels from local precipitation. This comparison
helps reconstruct groundwater recharge histories and assess the sustainability of aquifer
resources in the study area [53,54]. However, it is important to note that there are no his-
torical tritium measurements for precipitation received within the project area and nearby
isotope stations. Therefore, this study adopted a proxy approximation: tritium unit values
less than 0.4 to indicate groundwater likely to be older than 20 years and tritium unit values
greater than 0.4 to indicate recent groundwater water recharged less than 20 years ago.
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2.8. Groundwater Recharge Assessment

The assessment of groundwater recharge employed a multifaceted approach, integrat-
ing hydrogeochemical evolution analysis with the examination of the local groundwater
flow network through geospatial analysis of hydraulic head gradients. The hydrogeo-
chemical analysis focused on evaluating the groundwater’s chemical properties as they
evolve along its flow path, providing insights into the transformation of these properties
along hypothetical recharge-discharge gradients. Additionally, analyzing the piezometric
surface in relation to the area’s geomorphology and structural geology offered a deeper
understanding of active groundwater recharge zones.

3. Results and Discussion
3.1. Chemical Analysis

The chemical parameters show a range of variability across the samples. pH values
range from 4.5 to 9.3 with a mean of 6.7 and a low standard deviation (SD) of 1.0, indicating
consistency. Bicarbonate (HCO3

−) has a wide range (10.0–439.3 mg/L) and a high SD
(134.0), reflecting significant variability. Chloride (Cl−) and nitrate (NO3

−) show moderate
variability, while sulphate (SO4

2−), calcium (Ca2+), and alkalinity exhibit considerable
fluctuation. Sodium (Na+), potassium (K+), and magnesium (Mg2+) have moderate vari-
ability. Total iron (Fe) ranges from 0.02 to 5.1 mg/L with a high SD of 1.5, indicating
large fluctuations, with some samples showing minimal iron and others being significantly
higher. Electrical conductivity (EC) also shows significant variation (297.0–1538.0 µS/cm)
with a high SD of 366.3 (see Table 1).

Table 1. Descriptive statistics of major analyzed chemical parameters for 19 groundwater samples.

Chemical Parameter Mean Standard Deviation (SD) Maximum Minimum

pH 6.7 1.0 9.3 4.5
HCO3

− (mg/L) 141.5 134.0 439.3 10.0
Cl− (mg/L) 48.6 25.6 96.1 16.0

NO3
− (mg/L) 16.4 14.1 46.1 0.0

SO4
2− (mg/L) 204.7 148.9 515.6 29.9

Na+ (mg/L) 59.9 27.4 134.6 8.7
K+ (mg/L) 6.6 3.8 15.1 2.8

Mg2+ (mg/L) 23.5 15.6 51.5 0.0
Ca2+ (mg/L) 59.0 42.3 144.0 0.7

Total Fe (mg/L) 0.8 1.5 5.1 0.02
Alkalinity (mg/L CaCO3) 145.2 136.1 445.3 11.4

EC (µS/cm) 746.8 366.3 1538.0 297.0

3.2. Mechanisms Controlling Groundwater Hydrochemistry

All groundwater samples fall within the rock-weathering dominance region of the
Gibbs diagram. This clearly indicates that rock weathering is the predominant geochemical
process shaping groundwater chemistry in the study area. These findings align with
those of [16], who also attributed rock weathering processes as the primary mechanism
controlling groundwater hydrochemistry in the region.

The relative position of each groundwater sample on the Gibbs diagram is primarily
influenced by the Gibbs ionic ratio in relation to total dissolved solids [55]. When anionic
plots tend toward a ratio of 1, it suggests Cl− dominance. Similarly, when cationic plots
approach a ratio of 1, it suggests Na+ + K+ dominance. From the Gibbs plots, it is evident
that the exchanging cations are less of Na+ + K+ relative to Ca2+ for the ionic species and
less of Cl− relative to HCO3

− for the anionic species. However, these interpretations should
be treated with caution, as other principal hydrochemical components of groundwater,
such as SO4

2− and Mg2+, are not considered in the Gibbs graphical model (Figure 4).
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There is evidence of the Chebotarev sequence of groundwater hydrochemical species
along groundwater flowlines within the study area (Figure 5). This sequence indicates
that groundwater hydrochemistry evolves in the following order as it moves along a
pathway: HCO−

3 → HCO−
3 + SO2−

4 → HCO−
3 + SO2−

4 + Cl− → SO2−
4 + Cl− → Cl− [56].

Therefore, water dominated by HCO3
− suggests young, shallow groundwater or a localized

flow pattern, while water dominated by Cl− provides evidence of older groundwater or a
regional flow pattern [16].

3.3. Groundwater Facies Analysis

The identified cationic groundwater types in the area include Ca, Mg, and Na, while
the anionic groundwater facies consist of SO4, HCO3, and Cl. Based on the diamond-
shaped Piper plot, these groundwater facies in the study area are further classified into
Ca-Mg-SO4-Cl and a mixed water type comprising Na-HCO3 and Ca-Mg-SO4-Cl (Figure
S2). To address the bias posed by summing up hydrochemical facies within the Piper plot,
the analysis of dominant hydrochemical species was further refined using 1:1 trendline
plots. This approach helped to accurately characterize the dominant hydrochemical species
and identify potential geogenic sources of ions and weathering processes.
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Figure 6a reveals that Ca2+ is more dominant as compared to Mg2+. Therefore, the
cationic facies in the Nakivale sub-catchment groundwater are ordered by relative abun-
dance as Ca > Na > Mg > K. The 1:2 trendline represents potential incongruent weathering
of Ca-rich plagioclase feldspars (Equation (9)). Figure 6c clearly shows that the domi-
nant anionic species is SO4 evidenced by 90% of groundwater samples plotting above
the SO4

2− vs. Cl− 1:1 trendline. Therefore, the anionic species are ordered by relative
abundance as SO4 > HCO3 > Cl. These findings also align with the results of [16], which
suggested the prevalence of Ca-SO4 rich waters within southwestern Uganda.

Figure 6b reveals that the occurrence of Na-Cl groundwater facies is minimally due to
halite dissolution, as only 16% of the points plot along the halite dissolution line. This is
further evidenced by a weak correlation coefficient of less than 0.5 between Na+ and Cl−

(Table S3). Most plots fall toward the sodium side, thus indicating another potential source
of Na ions, possibly the weathering of Na-rich plagioclase feldspars. The 2:1 trendline
indicates a potential cation exchange of Ca2+ for Na+ in groundwater.

Figure 6d reveals that gypsum dissolution is less predominant within the study area.
This is evidenced by only a few groundwater samples (26%) plotting along the gypsum
dissolution line. This trend indicates that Ca and SO4 ions are derived from other sources
other than gypsum dissolution. The 1:2 trendline signifies potential ion exchange of Ca2+

for Na+ in groundwater.
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Figure 7 indicates that HCO3
− in groundwater is not primarily due to calcite dissolu-

tion. Instead, it likely results from the dissolution of soil CO2 derived from organic matter
decay and microbial respiration as groundwater infiltrates (Equation (7)).

CO2 + H2O ↔ H2CO3 ↔ H+ + HCO−
3 (7)

Typical atmospheric pCO2 is around 10−3.5 atm [57]. In total, 95% of the sample
values indicate higher dissolved CO2 concentrations typical of groundwater influenced by
soil CO2 or microbial respiration and 16% of the samples exhibit positive SIcalcite values
indicating that these samples are oversaturated with calcite mineral [46].

CaCO3+CO2 + H2O ↔ Ca2+ + 2HCO−
3 (8)

High pCO2 and negative SIcalcite values also suggest active groundwater recharge with
recent infiltration of CO2-rich water, whereas lower pCO2 and increasing SIcalcite values
may indicate the progression of groundwater away from recharge areas to discharge areas
with potential for calcite precipitation as CO2 degasses [57].

There exists a negative correlation between the partial pressure of carbon dioxide
(pCO2) and pH in groundwater (Figure S3). This can be attributed to the consumption of
hydrogen ions (H+) during silicate incongruent weathering [58]. H+ ions are consumed as
they react with silicate minerals to produce clay minerals (such as kaolinite) and dissolved
ions (like bicarbonate and silica) [59]. This consumption of H+ ions reduces the acidity of
the water leading to an increase in pH.

CaAl2Si2O8+2H+ + H2O → Al2Si2O5(OH)4 + Ca2+ (9)

2NaAlSi3O8 + 9H2O+2H+ → Al2Si2O5(OH)4+2Na+ + 4H4SiO4 (10)
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The redox potential (Eh) vs. pH, Pourbaix plot for a pyrite–water system, indicates
that 90% of the samples fall within the pyrite region (Figure 8). Therefore, the dominance
of sulphate anionic facies within groundwater in the study area primarily results from the
oxidation of pyrite [60].

FeS2 +
7
2

O2 + H2O → Fe2++2SO2−
4 +2H+ (11)

3.4. Hierarchical Cluster Analysis

The R-mode cluster analysis of variables identified three clusters of hydrochemical
facies (Figure 9a). Cluster 1 includes the ionic species K+, Na+, Fe2+, Cl−, HCO3

−, and
Br−. Cluster 2 comprises SO4

2−, Mg2+, and Ca2+, while Cluster 3 consists of NO3
−, Al3+,

and Si. pH is more closely correlated with the ionic species in Cluster 1, and electrical
conductivity (EC) is more correlated with the ionic species in Cluster 2. The presence
of these ions is likely due to a combination of natural geological processes and human
activities. The detection of chloride and bromide points to potential anthropogenic sources
such as agricultural runoff or industrial activities [62].

Cluster 2 contains bivalent ions typically associated with natural mineral weathering.
Sulphates potentially originate from the weathering of rocks rich in sulfides such as FeS2
which is common in the area [22]. The correlation of pH with these ions indicates that their
concentrations in solution are mainly influenced by pH, particularly during the hydrolysis
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of plagioclase minerals. The presence of sulphate further underscores the influence of
both natural geological processes and potential anthropogenic sources such as the use of
agricultural fertilizers [60].

Water 2024, 16, x FOR PEER REVIEW 14 of 25 
 

 

The redox potential (Eh) vs. pH, Pourbaix plot for a pyrite–water system, indicates 
that 90% of the samples fall within the pyrite region (Figure 8). Therefore, the dominance 
of sulphate anionic facies within groundwater in the study area primarily results from the 
oxidation of pyrite [60]. 

FeS2+
7
2 O2+H2O→Fe2++2SO4

2-+2H+ (11)

 
Figure 8. Pourbaix diagram for Fe-S-H2O system at 25 °C 10–5 M dissolved species [61]. 

3.4. Hierarchical Cluster Analysis 
The R-mode cluster analysis of variables identified three clusters of hydrochemical 

facies (Figure 9a). Cluster 1 includes the ionic species K+, Na+, Fe2+, Cl−, HCO3−, and Br−. 
Cluster 2 comprises SO42−, Mg2+, and Ca2+, while Cluster 3 consists of NO3−, Al3+, and Si. pH 
is more closely correlated with the ionic species in Cluster 1, and electrical conductivity 
(EC) is more correlated with the ionic species in Cluster 2. The presence of these ions is 
likely due to a combination of natural geological processes and human activities. The de-
tection of chloride and bromide points to potential anthropogenic sources such as agricul-
tural runoff or industrial activities [62].  

Cluster 2 contains bivalent ions typically associated with natural mineral weathering. 
Sulphates potentially originate from the weathering of rocks rich in sulfides such as FeS2 
which is common in the area [22]. The correlation of pH with these ions indicates that their 
concentrations in solution are mainly influenced by pH, particularly during the hydrolysis 

Figure 8. Pourbaix diagram for Fe-S-H2O system at 25 ◦C 10–5 M dissolved species [61].

Cluster 3 ions reflect both natural and anthropogenic influences. Nitrate often indicates
agricultural activity such as the use of nitrogen-based fertilizers or contamination from
septic systems [63,64]. Aluminium and silicon are typically derived from the weathering
of silicate minerals [65]. This cluster shows a blend of natural mineral weathering and
human-induced contamination.

The Q-mode cluster analysis grouped groundwater samples into three groups based on
their similarity in hydrochemical signatures. Group 1 includes samples RAF7021-1, RAF7021-9,
RAF7021-11, RAF7021-13, RAF7021-14, RAF7021-23, and RAF7021-25. Group 2 consists of sam-
ples RAF7021-2, RAF7021-8, RAF7021-10, RAF7021-15, RAF7021-17, RAF7021-18, RAF7021-21,
RAF7021-22, RAF7021-24, and RAF7021-26. Lastly, Group 3 comprises samples RAF7021-3 and
RAF7021-6 (Figure 9b).

Group 1 groundwater samples exhibit moderate electrical conductivity (EC), indicating
moderate mineral presence. The pH levels range from slightly acidic to slightly basic with
an average around neutral (7.1). This group also has moderate levels of chloride (Cl−) and
nitrate (NO3

−) with variability in HCO3
− and SO4

2− concentrations, indicating diverse
sources of mineralization [18]. The water types in this group include Ca-Mg-SO4-HCO4,
Ca-Mg-SO4, and Ca-Mg-SO4-HCO3.
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Group 2 groundwater samples have lower electrical conductivity compared to Group
1, reflecting lower mineral content. The pH values are more variable, with some samples
being notably more acidic. The concentrations of HCO3

−, Cl−, and SO4
2− are generally

lower than in Group 1. However, this group shows high variability in nitrate NO3
− levels

indicating potential diverse contamination sources [63,64]. This group’s lower mineral
content and variable pH suggest different hydrochemical processes [66]. The water types in
this group are varied including Na-Cl-SO4, Na-HCO3, Ca-Mg-SO4, and Ca-Mg-SO4-HCO3.

Group 3 groundwater samples show the highest electrical conductivity and bicarbon-
ate HCO3

− levels, indicating very high mineral content. The pH values in this group are
relatively stable, averaging around 7.3 (slightly basic). This group also has significantly
higher concentrations of SO4

2− and Ca2+. The dominant water type in Group 3 is Ca-SO4.

3.5. Analysis of Stable Isotope in Local Precipitation

Stable isotope data from 11 isotope stations near the study area, within Uganda
and Rwanda obtained from the IAEA GNIP website, reveal variations in stable isotope
signature across the region (Table S1). Mean δ2H values range from −7.099 to 10.845, while
mean δ18O values range from −3.497 to −0.272. There is an altitude effect on the isotopic
composition of rainfall in the study area (Figure 10). This is attributed to the temperature
gradients associated with elevation differences [51]. Low-altitude areas are associated with
high temperatures that enhance heavy isotope enrichment, whereas high-altitude areas
experience lower temperatures that result in heavy isotope depletion [67].

The majority (90%) of stations show a mean Deuterium (D) excess value higher than
the global average of 10 computed by [50]. The high D-excess values (>10) observed in local
precipitation, along with findings from studies by [10,68,69], suggest local atmospheric
moisture recycling processes within the region. This localized effect can be attributed to the
influence of the Great Lakes (particularly Lake Victoria) on local precipitation.

D-excess histograms indicate that both the SON (September–October–November) and
MAM (March–April–May) rainy seasons exhibit moderate variability, with the highest
frequencies in the mid-range bins (Figures S4 and S5). The SON season’s D-excess values
suggest more uniform and stable moisture sources with limited atmospheric mixing. In
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contrast, the MAM season shows a slightly broader range. However, the consistency in
moisture sources across seasons, despite some variability, underscores the dynamic atmo-
spheric processes in the study area and can be attributed to the effects of the Intertropical
Convergence Zone (ITCZ) shift on rainfall patterns in the region.
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To determine if there is a significant difference in D-excess between the two rainy
seasons (MAM and SON) (Figures S4 and S5), a statistical t-test was conducted (Figure S9).
This test was appropriate for assessing whether a statistical difference existed between
the D-excess values for these two seasons. The paired t-test results showed a t-statistic
of 1.929 and a p-value of 0.066. Since the p-value is greater than the common significance
level of 0.05, there is no evidence to reject the null hypothesis [70]. Therefore, there is
no statistically significant difference in D-excess between the MAM and SON rains at the
5% significance level.

3.6. Analysis of Stable Isotope in Groundwater

Eighteen groundwater samples (seventeen from Cluster B and one from Cluster A)
plot along and close to the D-parameter line that also plots above the Global Meteoric
Waterline (Figure 11). One groundwater sample (in Cluster A) plots below the Global
Meteoric Waterline. Cluster A consists of groundwater samples that are more enriched
in heavy isotopes relative to Cluster B samples. This can be attributed to evaporative
enrichment imposed on Cluster A samples prior to groundwater recharge possibly from
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depression storage and slow groundwater recharge as a consequence of the prevalence
of impervious formations such as shales and phyllites that are dominant in the study
area (Figure 1).
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One groundwater sample in Cluster A plots away from the D-parameter line (Figure 11).
This groundwater sample (RAF7021-25) was collected at Masha within the granite gneiss at
lower hydraulic elevations (Figure 2). The isotopic shift of this sample can be attributed to
high-temperature chemical reactions relative to its sister groundwater sample in the same
cluster. The graphical model in (Figure 11) clearly indicates that groundwater in the project
area originates from local precipitation. This is evidenced by 90% of the groundwater sam-
ples plotting along and close to the D-parameter line. This signifies that both groundwater
and local precipitation share a common moisture source [52].

3.7. Tritium Isotope Analysis

Tritium results reveal clusters of groundwater samples based on their respective
relative ages (Figure 12). Ten groundwater samples (marked in red) clustered in the
lower eastern and northwestern regions have tritium units below the detection limit of
0.4, indicating groundwater likely older than 20 years. These samples cover areas of Masha,
Kaberebere, Isingiro, Kakamba, Rugaga and Mbaare. Conversely, nine samples (marked in
green) have tritium units above 0.4, indicating recently recharged groundwater (likely less
than 20 years old). This dating approach was adopted due to the lack of historical tritium
measurements in precipitation for the region and the study area, in particular, from the
Global Network of Isotopes in Precipitation (GNIP) website.
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ter recharge zones within the Nakivale sub-catchment.

The tritium analysis results align with those of [32], which identified old groundwater
in the region characterized by very low tritium values (<0.4 TU). This groundwater is
believed to reside within pockets of paleochannels formed by historic river reversals due
to the down-warping and uplifting of the Ugandan plateau [34]. Additionally, the results
align with findings from the Chebotarev sequence (Figure 5), which suggest the aging
of groundwater toward the Masha and Nakivale areas. These findings point to slow
groundwater recharge and movement within the underlying aquifer systems, underscoring
the need for careful management of this invaluable resource.

3.8. Groundwater Recharge Assessment

Groundwater recharge zones correlate to topographically high areas characterized by a
network of lineament features which facilitate groundwater infiltration into the underlying
aquifers. Groundwater generally flows from these elevated regions with high hydraulic
gradients to discharge areas situated within lowlands of the study area (see Figure 13).
Additionally, these zones exhibit low Cl/Br ratios (Figure S13). According to [71], areas
with a low Cl/Br ratio may signify active groundwater recharge zones. The low Cl/Br ratio
in areas close to Lake Nakivale may be attributed to preferential organic adsorption of chlo-
ride [72]. This pattern is further supported by high tritium values (>0.4 TU), highlighting
active recharge in elevated areas, in contrast to the lower tritium values (<0.4 TU) observed
in the low-lying regions of Masha and Lake Nakivale.
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4. Conclusions and Recommendations
4.1. Conclusions

This study has comprehensively examined groundwater resources within the Nakivale
sub-catchment in Isingiro district, southwestern Uganda using both classical hydrochem-
istry and isotopic approaches.

The predominant groundwater type in the study area is Ca-SO4. The cationic facies are
ordered by relative abundance as Ca > Mg > Na > K, while the anionic species are ordered
as SO4 > HCO3 > Cl. Groundwater hydrochemistry is primarily influenced by water–rock
interaction processes, including the weathering of plagioclase and alkali feldspars, as well
as mafic minerals. Calcium is mainly derived from the weathering of Ca-rich plagioclase
feldspars and sulphate primarily from the oxidation of sulfide minerals like pyrite which
are predominant in the study area. Key weathering processes identified include dissolution,
hydrolysis, hydration, and carbonation.

Groundwater recharge and flow in the study area is primarily influenced by the topo-
graphical makeup evidenced by a high hydraulic head and low chloride–bromide ratio in
elevated areas. The elevated areas have dense lineament networks that facilitate groundwa-
ter infiltration into underlying aquifers. These recharge areas include Birere, Nyakayonjo,
Mwizi, Nyamuyanja, Kabingo, Rugaga, and the southern parts of Rugaga. The findings are
underscored by the evidence of the Chebotarev sequence along groundwater flow lines
(Figure 5). This sequence involves the transitioning of groundwater-dominant anionic
facies from bicarbonate to chloride dominance. This pattern is consistent with the spatial
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recharge–discharge gradient, where bicarbonate-rich water is prevalent in topographically
high areas, while chloride-rich water characterizes lowland discharge zones.

Isotopic analysis reveals that the groundwater primarily originates from local precipi-
tation. Tritium data indicate the presence of both recent and older groundwater, with some
samples from Masha, Kaberebere, and Kakamba suggesting groundwater age likely older
than 20 years. The tritium analysis results are consistent with the findings of [32], who
identified old groundwater water in the region characterized by very low tritium values
(less than 0.4 TU).

4.2. Implications to Water Resources Management

The Ministry of Water and Environment plays a crucial role in ensuring the sustainable
management of groundwater resources in Uganda. Groundwater is vital for agricultural,
domestic, and industrial uses, significantly contributing to the region’s economic growth
and development. With low groundwater recharge rates (50–100 mm/year) and the pres-
ence of old water in the region (evidenced by low tritium levels < 0.4 TU), coupled with
projected rising water demand (7.85 MCM/year) by 2040, it is essential to balance ground-
water availability and demand for both current and future generations. As Uganda aims for
upper middle-income status by 2040, immediate action is needed to protect this invaluable
resource from depletion conditions. This study provides critical insights into the current
state of groundwater, highlighting key challenges and opportunities for enhanced manage-
ment. The following recommendations are proposed to ensure the long-term sustainability
of groundwater in the region:

• A robust groundwater monitoring network should be established to continuously
assess both water quality and quantity in the study area. Regular hydrochemical and
isotopic analyses will allow for tracking changes over time and identifying emerg-
ing contamination sources. This approach has been successfully implemented in
California, where extensive groundwater monitoring programs support effective wa-
ter management [73].

• To protect identified recharge areas from contamination and over-extraction, it is cru-
cial to enforce land-use regulations and promote conservation practices. Controlling
agricultural runoff, preventing industrial discharges, and encouraging reforestation in
critical zones will help safeguard these areas. The Guangzhou Greenway Initiative
in China serves as an example of how stringent land-use regulations can protect and
enhance groundwater recharge areas [74].

• Community awareness programs should be developed to educate local populations
on groundwater conservation and sustainable usage practices. Involving communities
in monitoring activities fosters ownership and responsibility, which leads to better
water management. The “Waterkeeper” movement in the USA and Canada has
demonstrated how community engagement can significantly improve water quality
and conservation efforts [75].

• An integrated approach to water resource management is necessary, considering the
interdependencies between surface and groundwater. A rigorous IWRM framework
should address the needs of all water users while ensuring sustainable use. The
Murray–Darling Basin Plan in Australia showcases how integrated management
across states can promote long-term water sustainability [76].

• Investing in infrastructure such as check dams, infiltration ponds, and wastewater
treatment facilities is essential, particularly in urban and industrialized areas where
contamination risks are higher. The state of Gujarat in India provides a successful
example, where the construction of check dams and recharge wells has significantly
improved groundwater levels and quality [77].
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4.3. Limitations of the Study and Directions for Future Research

While this study provides valuable insights into the hydrochemical and isotopic
characteristics of groundwater in the Nakivale sub-catchment, it also acknowledges the
following limitations and potential areas for future research:

• The study focused on a relatively small region (the Nakivale sub-catchment) and
sampled only a limited number of groundwater points. A larger-scale study could
offer a more comprehensive view of regional groundwater dynamics increasing the
relevance and applicability of the findings to other parts of southwestern Uganda and
potentially the broader Great Lakes region. Future research should consider expanding
the study area to include additional catchments, which could help determine whether
the observed hydrochemical and isotopic patterns are consistent across the region.

• The study largely relied on data collected at a specific point in time, potentially missing
seasonal or long-term variations in groundwater quality, recharge patterns, or isotopic
signatures. Future studies should incorporate temporal data by conducting long-term
monitoring of groundwater quality and isotopic compositions across different seasons
and years to assess temporal variability and the impacts of climate change.

• The study’s reliance on tritium data from groundwater samples without historical
tritium measurements from local precipitation presents a limitation. The lack of
precipitation tritium data in the region introduces uncertainties in groundwater age
dating. To improve the accuracy of groundwater age assessments, future studies
should aim to include tritium analysis for local precipitation and establish a more
reliable baseline for interpreting tritium in groundwater.

• The hydrochemical processes in the study area are influenced by various geological
formations, including shales, phyllites, and granite gneiss. However, the study may
not have fully accounted for all local geological heterogeneities, such as fault zones,
fractures, and mineral variations, which could influence groundwater chemistry in
specific locations. Future research could involve detailed geological mapping and
hydrogeological modelling to better understand how different geological formations
influence groundwater flow and chemistry in the region.
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