
1

Discrete-time controllability of Cartesian product
networks

Bo Liu, Mengjie Hu, Junjie Huang, Qiang Zhang, Yin Chen, Housheng Su

Abstract—This work studies the discrete-time controllability
of a composite network formed by factor networks via Carte-
sian products. Based on the Popov-Belevitch-Hautus test and
properties of Cartesian products, we derive the algebra-theoretic
necessary and sufficient conditions for the controllability of the
Cartesian product network (CPN), which is devoted to carry
out a comprehensive study of the intricate interplay between the
node-system dynamics, network topology and the controllability
of the CPN, especially the intrinsic connection between the CPN
and its factors. This helps us enrich and perfect the theoretical
framework of controllability of complex networks, and gives new
insight into designing a valid control scheme for larger-scale
composite networks.

Index Terms—Controllability; Cartesian product networks;
composite networks.

I. INTRODUCTION

Controllability is a structural attribute of a dynamical sys-
tem, describing the ability of a dynamic system, with an
appropriate choice of inputs, to transfer from any initial state to
desired final state within a finite time [1], [2]. Controllability is
an essential and important problem in the coordination control
of multi-agent networks (MANs), which has rapidly attracted
scholars’ attention and become a very hot multi-disciplinary
research area (e.g., [3]–[7] and the references therein).

Today, the network is becoming the inseparable part of our
life. The emergence of large-scale complex networks, such
as the Internet, power grids, information networks, intelligent
transportation networks, biological neural networks, social
networks and gene regulation networks, makes one pay in-
creasing attention to the topological structure and performance
of networks [8]–[15]. With the development of real networks,
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the more the numbers of edges and nodes are, the more
diversified the types of edges and nodes are, and the more
complex the network topology (network structure) is, which
together with multi-layer, multi-level, multi-time-scale, multi-
dimension, multi-attribute and other characteristics [16]–[22]
makes things have an abundance of challenging. The primary
problem or task of controlling a network is to determine
whether it is controllable, which is one of the preconditions
and cornerstones for the deep study of system performance
index, optimization control, etc. For a large-scale networked
system with a considerable number of agents (nodes) and
complex connections between agents, one has to not only
focus on the network system models and related dynamics,
but also pay more attention to the topological evolution among
agents. This will be a job of high complexity and a limitation
of understanding the network structure and mechanism and
determining the controllability of the whole system in terms
of the existing controllability criteria such as the Kalman
rank criterion [1] and the Popov-Belevitch-Hautus (PBH) rank
test [2]. Therefore, it is of theoretical, computational and
realistic significance to study the controllability of large-
scale composite networks from the perspective of the multiple
subsystems themselves and the interactions that exist between
them. In [16], the author explored the controllability and
observability of a large-scale networked system from the per-
spective of subsystems with different dynamics and obtained
some necessary and sufficient conditions depending only on
transmission zeros of each subsystem and the subsystem
connection matrix. The controllability of large-scale dynamical
systems was investigated based upon communications among
interconnected subsystems in [17].

Decomposition provides both analytical and calculational
benefits for a large-scale composite network or system, which
has great significance and application for understanding and
analyzing the system performance. There are some very clas-
sical and practical decomposition methods in system theory,
such as Jordan decomposition, Kalman decomposition and
structural decomposition. In fact, many large-scale networks
can usually be generated by two or more smaller pieces and
subsystems [16], [17], such as motifs [23], clusters and com-
munities [24], by graph products ways, for example, Cartesian
product, Corona product, Kronecker product, direct product,
strong product, among others [25]. Some important studies,
such as synchronization, stability and consensus, in complex
networks by Cartesian product graphs were developed. The
authors [26] investigated the influences of graph operations
on the consensus of complex networks. The stability of
delayed coupled oscillators in CPNs was studied in [27]. In
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recent paper [28], the average-consensus problem was solved
by a Cartesian product-based hierarchical scheme to design
complex networks.

However, to our knowledge, there has been few results in the
literature devoted to the controllability of a composite network
by graph products [29]–[35]. The controllability was inves-
tigated for Cartesian product networks [29]–[32], Kronecker
product networks [33] and Corona product networks [35], re-
spectively. The central theme in the literature is to analyze the
controllability of product networks by means of the properties
of factors under composition of networks. In [29], the authors
first explored the controllability and observability of network-
of-networks by Cartesian products and established a necessary
and sufficient condition for the composite network under the
assumption with the diagonalizability for the system matrix.
Guan et al. [30] discussed the structural controllability for the
Cartesian product of two digraphs. Recently, we respectively
investigated the controllability of signed and unsigned MANs
via Cartesian product [31], [32]. So far, it remains elusive
for a composite MAN to be controllable and the effects of
factor networks on the entire network cannot be fully reflected.
The controllability problem of a composite MAN bears new
characteristics and challenges. As is known, the coordination
behaviors of MANs, such as controllability, observability and
consensus, are jointly determined by the system dynamics,
evolutionary protocols and network topologies, which will
cause more obstacles in the performance analysis even when
only one factor changes. On the other hand, for the composite
networks, it is also hard to reveal the intrinsic connection
between the entire network and its factors, as well as their
own controllability. Usually, it is not easy to find suitable
analytical tools and checkable methods to solve the controlla-
bility problem of the entire network through the controllability
of its factor networks, which makes the controllability of a
composite MAN generated by Cartesian products a nontrivial
new problem.

This work discusses the controllability of a discrete-time
composite CPN. Compared to most of the existing literature,
the advantage and novelty of this study lies in that the network
model is constructed by using Cartesian graph products and
the properties of Kronecker matrix products are adopted in
developing the controllability conditions. The main contribu-
tions of this work are threefold. First, a discrete-time CPN
with multiple leaders and weighted topology is considered.
Second, some necessary and sufficient conditions on the con-
trollability of the discrete-time CPN is established according
to the (generalized) left eigenvectors of topology matrices
of factor networks, which employs Jordan decomposition to
remove the diagonalizability requirement in [29]. Finally, a
study of the intricate interplay between the node dynamics,
network topology and the controllability of the discrete-time
CPN is delved, which provides new insight into the relation
between the controllability and the connectivity of a composite
network.

The remainder is arranged as follows. Some relevant im-
portant preliminaries and problem statement are presented in
Section II. The main results are given in Section III. Simu-
lation examples are given in Section IV. Finally, conclusions

� =

Fig. 1: Factor graphs G1 and G2 and their Cartesian product G1�G2.

are drawn in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph preliminaries

A triple G = (V, E ,A) indicates a weighted graph
with a node set V = {v1, v2, · · · , vn}, an edge set E =
{ε1, ε2, · · · , εk} ∈ V × V and the weighted adjacency matrix
A = [aij ] ∈ Rn×n. Let Ni = {j ∈ V | (j, i) ∈ E , i 6= j},
D and L(, D − A) be the neighborhood set of node i, the
degree matrix and the Laplacian matrix of G, respectively.
A composite graph (a large-scale network) G = G1�G2 is
generated by two small size graphs by Cartesian products,
where V = {(i, t) ∈ V1 × V2 | i ∈ V1, t ∈ V2} and
E = {((j, s), (i, t)) | s = t, (j, i) ∈ E1 or j = i, (s, t) ∈ E2}
are the node and edge sets, respectively. The corresponding
edge weight is a(i,t),(j,s) = δijats + δtsaij , where δpq = 1
if p = q and if 0 otherwise. Obviously, G1�G2 is isomorphic
with G2�G1, i.e., the operation � is commutative and asso-
ciative. At the same time, it is easy to verify that L(G) =
L(G1�G2) = L(G1) ⊕ L(G2) = L(G1) ⊗ In2

+ In1
⊗ L(G2),

where ⊕ is the Kronecker sum and ⊗ is Kronecker product;
L(G) ∈ Rn1n2×n1n2 , L(G1) ∈ Rn1×n1 and L(G2) ∈ Rn2×n2

are the Laplacians of G, G1, G2, respectively, when |V1| = n1

and |V2| = n2. An example of the Cartesian product graph is
shown in Fig. 1.

B. Problem formulation

A discrete-time MAN with n agents under the leader-
follower framework is governed by
xi(k+1)=xi(k)−

∑
j∈Ni

aij [xi(k)−xj(k)]+νi(k), i∈Vl,

xi(k+1)=xi(k)−
∑
j∈Ni

aij [xi(k)−xj(k)], i∈Vf ,
(1)

where xi, νi ∈ R are the state of agent i and the control signal
received by leader i, respectively. Vl is the leaders’ set and Vf
is the followers’ set, where Vl ∪ Vf = V , Vl ∩ Vf = ∅.

Let x = [x1, x2, · · · , xn]T , u = [ν1, ν2, · · · , νm]T , then a
compact form of the network (1) is

x(k + 1) = Fx(k) +Bu(k),

where F , In − L ∈ Rn×n, L is the Laplacian of G and
B = [eT1 , e

T
2 , · · · , eTm] ∈ Rn×m.
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For simplicity, denote L(G) = L, F (G) = F , L(Gi) = Li
and F (Gi) = Fi for i = 1, 2. In this work, we will explore a
composite theory for the controllability of factor networks

xi(k + 1) = Fixi(k) +Biui(k), i = 1, 2,

where xi ∈ Rni , ui ∈ Rmi , Fi = Ini
− Li ∈ Rni×ni , Bi =

[eT1 , e
T
2 , · · · , eTmi

] ∈ Rni×mi for i = 1, 2. Compose together
to form the CPN

x(k+1)=F (G)x(k) +Bu(k)

=F

(∏
�

Gi

)
x(k) +

(∏
⊗
Bi

)
u(k)

=

(
2In1n2

−L

(∏
�

Gi

))
x(k)+

(∏
⊗
Bi

)
u(k), i=1, 2,

(2)

where x ∈ Rn1n2 , u ∈ Rm1m2 denote the stacked sys-
tem states and the total external control input, respectively;
L(
∏

� Gi) = L1 ⊕ L2 = L1 ⊗ In2
+ In1

⊗ L2 and B =∏
⊗Bi = B1 ⊗B2.
Of particular note is F1 ⊕ F2 = 2In1n2

− L1 ⊕ L2 =
2In1

⊗ In2
− (L1 ⊗ In2

+ In1
⊗ L2), which is crucial for

exploring the controllability of CPN (2) through its factors. As
in its usual sense in systems theory, if the continuous system
can be controllable, the controllability of its corresponding dis-
cretization depends on its sampling period. When the sampling
period is small enough, the controllability of the continuous
system can be well maintained. However, the continuous-time
version of the composite MAN (2) is governed by

ẋ(t) = −L(G)x(t) +Bu(t), (3)

investigated in [29], aiming at matrix pair (L1 ⊕ L2, B), in
which the eigenvectors of 2In1n2

−L1⊕L2 cannot be directly
obtained from those of L1⊕L2 and, especially, as L1⊕L2 is
non-diagonalizable, the case is more complicated (see Table
I later). It is therefore to investigate that the controllable
conditions in our study are not merely direct analogy or
parallel preserving. Contrarily, it is very difficult to obtain the
controllability conditions due to the appearance of the unit
matrix in the system matrix pair (2In1n2

−L1⊕L2, B). Con-
trollability of a system refers to the possibility of controlling
the state and output of the controlled system, which mainly has
three equivalent statements, namely, the Gram matrix criterion,
Kalman rank criterion and PBH test. In the analysis of network
systems, Gram matrix criterion is usually associated to the
minimum control energy problem, which is mainly applicable
to the theoretical derivation stage, so that there is still a gap
in the use due to the complex construction. PBH test is also
applicable to the theoretical derivation including PBH rank test
and PBH eigenvector test, where the PBH rank test, combined
with the special structure of the network system, draws on the
properties of the rank of the matrix (such as the properties
of the rank of the block matrix) to realize the simplification
of this test and, meanwhile, the PBH eigenvector test is more
used to further reveal the relationship between eigenvalues,
eigenvectors and controllability. In contrast, the Kalman rank
criterion looks much better and is also the most commonly

used judgment way. It only relies on the state matrix and the
input matrix and has nothing to do with the length of time,
but it has a larger computational cost due to the large number
of agents in the network system and high dimension of the
system. In general, each criterion has its own use scenarios and
research questions, which can be chosen to use according to
different research objectives and expectations. In what follows,
we will delve into the controllability for the discrete-time CPN
(2) by analyzing the eigenvalue-(left) eigenvector relationship
between 2In1n2

− L1 ⊕ L2 and L1 ⊕ L2.

C. Left eigenvalue-eigenvector pairs analysis

PBH test is one of the cornerstones for analyzing the
controllability of a LTI system, which states the fact that the
matrix pair (A,B) is uncontrollable if and only if there is a left
eigenvalue-eigenvector pair (λ, v) of A such that vTB = 0.
This implies that it is important and necessary to explore the
controllability of the discrete-time CPN (2) by seeking the
eigenvalues and eigenvectors of Kronecker products, i.e., the
matrix pair (2In1n2−L1⊕L2, B1⊗B2) is controllable if and
only if 2In1n2−L1⊕L2 does not allow for all left eigenvectors
orthogonal to B1 ⊗B2.

Definition 1: J = diag{J1, · · · , J%}n×n is the Jordan
form of A ∈ Cn×n, if ∃|P | 6= 0, s.t. A = PJP−1 with
the Jordan block {Ji1 , Ji2 , · · · , Jiki

}di×di and the geometric
multiplicity ki corresponding to the eigenvalue ξi of A. The
row vectors σ1

il
, σ2
il
, · · · , σα

l
i

il
(l = {1, 2, · · · , ki}) are said to

be the generalized left eigenvectors, if

σ1
il

(ξiIn −A) = 0,

σ2
il

(ξiIn −A) = −σ1
il
,

...

σ
αl

i
il

(ξiIn −A) = −σα
l
i−1

il
,

where ξi is A’s eigenvalue and αli is the length of l-th Jordan
chain generated by eigenvalue ξi.

In the meantime as discussed in the following, due to the
same diagonalization of A and In − A, the (generalized) left
eigenvectors of In−A are of the form stated as the following
proposition by the (generalized) left eigenvectors of A, which
is the basis of the controllability analysis later.

Proposition 1: Let Λ = {ξ1, ξ2, · · · , ξs} and {σ1
il
, σ2
il
, · · · ,

σ
αl

i
il
} be the eigenvalue set and the generalized left eigenvector

set associated with ξil of A ∈ Rn×n for i ∈ s , {1, · · · , s}
and l ∈ ki , {1, · · · , ki} respectively, where ki is the
geometric multiplicity of the eigenvalue ξi and αli is the length
of the l-th Jordan chain. Then the left eigenvalue-eigenvector
pair of In −A can be express as
(i). (1− ξi, σil), if A is diagonalizable, for i ∈ s and l ∈ ki.
(ii). (1 − ξi, {σ1

il
, σ2
il
, · · · , σα

l
i

il
}), if A is non-diagonalizable,

for i ∈ s and l ∈ ki.
Proposition 1 can be simplified as shown in Table I.
Proposition 2: The controllability of pair (A,B) is equiv-

alent to that of pair (In −A,B).
Based on Propositions 1–2 and PBH test, the eigenvalues

and generalized eigenspace of the low-dimensional factors are
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TABLE I: Eigenvalues and left eigenvectors of A and In −A.

diagonalization eigenvalues (generalized) left eigenvectors
A Y ξi σil

In−A Y 1− ξi σil

A N ξi σ1
il
, σ2
il
, σ3
il
, · · · , σα

l
i

il

In−A N 1− ξi σ1
il
,−σ2

il
, σ3
il
,· · ·, (−1)α

l
i−1σ

αl
i

il

used to represent those of CPN (2), which is the key to get
its controllable conditions.

Lemma 1: Let Ψ = {ψ1, ψ2, · · · , ψs} and Φ =
{φ1, φ2, · · · , φt} be the eigenvalue sets of L1 and L2; ki(kj)
and di(dj) be the geometric and algebraic multiplicity of
ψi(φj); αli(α

w
j ) be the length of l-th (w-th) Jordan chain

generated by ψi(φj); gjl = {g1
il
, g2
il
, · · · , gα

l
i

il
} and hjw =

{h1
jw
, h2
jw
, · · · , hα

w
j

jw
} be the generalized left eigenvectors

corresponding to ψil and φiw , respectively. Then the left
eigenvalue-eigenvector pair of F = F1⊕F2 = 2n1n2

−L1⊕L2

can be expressed as
(i). (2−ψi−φj , p̃iljw), if L1 and L2 are both diagonalizable,
where p̃iljw = gil ⊗ hjw , i ∈ s , {1, · · · , s}, l ∈ ki ,
{1, · · · , ki}, j ∈ t , {1, · · · , t}, w ∈ kj , {1, · · · , kj};
(ii). (2−ψi−φj , p̃1

ijw
), if L1 is diagonalizable without repeated

roots, L2 is non-diagonalizable, and φj = φ1
jw

= φ2
jw

= · · · =
φ
αw

j

jw
, where p̃1

ijw
= gi ⊗ h1

jw
, i ∈ n1, j ∈ t, w ∈ kj ;

(iii). (2−ψi−φj , p̃1
iljw

), if L1 is diagonalizable with repeated
roots (i.e. ψi = ψi1 = ψi2 = · · · = ψiki

, di = ki), L2 is non-

diagonalizable, and φj = φ1
jw

= φ2
jw

= · · · = φ
αw

j

jw
, where

p̃1
iljw

= gil ⊗ h1
jw

, i ∈ s, l ∈ ki, j ∈ t, w ∈ kj .
(iv). (2−ψi−φj , p̃qiljw), if L1 and L2 are non-diagonalizable,
and ψi + φj = ψ1

il
+ φ1

jw
= ψ2

il
+ φ2

jw
= · · · = ψril + φrjw ,

ψi = ψ1
il

= ψ2
il

= · · · = ψ
αl

i
il

, φj = φ1
jw

= φ2
jw

= · · · = φ
αw

j

jw
,

where

p̃1
iljw

= g1
il
⊗ h1

jw ,

p̃2
iljw

= −(g2
il
⊗ h1

jw − g
1
il
⊗ h2

jw),

p̃3
iljw

= g3
il
⊗ h1

jw − g
2
il
⊗ h2

jw + g1
il
⊗ h3

jw ,

...

p̃riljw = (−1)r−1{gril ⊗ h
1
jw − g

r−1
il
⊗ h2

jw

+ · · ·+ (−1)r−1g1
il
⊗ hrjw},

i ∈ s, l ∈ ki, j ∈ t, w ∈ kj , q ∈ {1, 2, · · · , r},
r , r(i, l, j, w) = min{αli, αwj }.

Lemma 1 gives the eigenvalues and eigenvectors of the CPN
(F1⊕F2) from those of factors (L1 and L2), of which one of
the analytical cornerstones in this work is PBH test together
with features of Cartesian products. Furthermore, a parallel
result of Lemma 1 in conjunction with Proposition 1 can be
directly obtained for F1 and F2.

Lemma 2: Let ∆ = {λ1, · · · , λs} and Θ = {µ1, · · · , µt}
be eigenvalue sets of F1 and F2; ki(kj) and di(dj) be the
geometric and algebraic multiplicity of λi(µj); αli(α

w
j ) be

the length of l-th (w-th) Jordan chain generated by λi(µj);
vjl = {v1

il
, v2
il
, · · · , vα

l
i

il
} and ujw = {u1

jw
, σ2
jw
, · · · , uα

w
j

jw
}

be the generalized left eigenvectors associated with ψil and

φiw , respectively. Then the left eigenvalue-eigenvector pair of
F = F1 ⊕ F2 can be expressed as
(i). (λi + µj , piljw), if F1 and F2 are both diagonalizable,
where piljw = vil ⊗ ujw , i ∈ s, l ∈ ki, j ∈ t, w ∈ kj .
(ii). (λi + µj , p

1
ijw

)), if F1 is diagonalizable without repeated
roots, F2 is non-diagonalizable, and µj = µ1

jw
= µ2

jw
= · · · =

µ
αw

j

jw
, where p1

ijw
= vi ⊗ u1

jw
, i ∈ n1, l ∈ ki, w ∈ kj .

(iii). (λi + µj , p
1
iljw

), if F1 is diagonalizable with repeated
roots (i.e., λi = λi1 = λi2 = · · · = λiki

, di = ki), and

µj = µ1
jw

= µ2
jw

= · · · = µ
αw

j

jw
, where p1

iljw
= vil ⊗ q1

jw
,

i ∈ s, l ∈ ki, j ∈ t, w ∈ kj .
(iv). (λi + µj , p

q
ij), if F1 and F2 are both non-diagonalizable,

and λi+µj = λ1
il

+µ1
jw

= λ2
il

+µ2
jw

= · · · = λril +µrjw , λi =

λ1
il

= λ2
il

= · · · = λ
αl

i
il
, µj = µ1

jw
= µ2

jw
= · · · = µ

αw
j

jw
, where

p1
iljw

= v1
il
⊗ u1

jw ,

p2
iljw

= v2
il
⊗ u1

jw − v
1
il
⊗ u2

jw ,

...

priljw = vril ⊗ u
1
jw − v

r−1
il
⊗ u2

jw + · · ·+ (−1)r−1v1
il
⊗ urjw ,

i ∈ s, l ∈ ki, j ∈ t, w ∈ kj , q ∈ {1, 2, · · · , r},
r , r(i, l, j, w) = min{αli, αwj }.

It is worth noting that Lemmas 1–2 explore the connection
between the eigenvalues and eigenvectors of the composite
network and those of its factors from the points of view
of the system matrices and interaction topologies between
agents, respectively, which are the foundation for studying the
controllability of a large-scale composite network via Carte-
sian products. Eigenvalue decomposition is adopted in devel-
oping the controllable conditions of the composite network.
Eigenvalue decomposition is to extract the most important
features of a matrix, which is a common and effective method
for solving linear algebra problems and is widely applied in
signal processing, image processing, machine learning among
others. The traditional eigenvalue decomposition algorithm has
problems in numerical stability, accuracy and computational
efficiency. If a matrix A can satisfy ATA = AAT , the
eigenvalue decomposition of the matrix is not numerically
sensitive. In practice, there are some actual systems satisfying
this condition, such as the spring oscillator system. In general,
eigenvalue decomposition is numerically sensitive. Indeed,
with the dimension increment of a matrix, its eigenvalue
decomposition usually becomes more numerically sensitive,
and even for a low dimensional matrix, there is no guaran-
tee that it does not meet numerical instability issues in its
eigenvalue decomposition. In this paper, the controllability of
the Cartesian network is theoretically discussed by its factors.
In [16], an interesting work was to design an algorithm with
lower computation complexity and more numerical stability,
which provides considerable insight into the controllability
of Cartesian networks with perturbations. As we all know,
numerical stability is an unavoidable problem in specific
applications, and it is also the limitation of our research, which
will be further investigated in Cartesian networks in future
studies.
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III. CONTROLLABILITY ANALYSIS

In what follows, the controllability of the composite
discrete-time CPN (2) can directly be deciphered from that
of its factors based on Lemma 1.

Theorem 1: CPN (2) is controllable if and only if one of
the following four conditions holds
(i). If L1 and L2 are diagonalizable, and ψi, ψî ∈ Ψ, φj , φĵ ∈
Φ, Ωij = {(̂i, ĵ) : ψî +φĵ = ψi +φj ∈ σ(L)}, where i, î ∈ s,
l ∈ kî, j, ĵ ∈ t, w ∈ kĵ , then for {cîl ĵw} (not all zero), ∑

(̂i,ĵ)∈Ωij

kî∑
l=1

kĵ∑
w=1

cîl ĵw p̃îl ĵw

 (B1 ⊗B2) 6= 0.

(ii). If L1 is diagonalizable without repeated roots, L2 is non-

diagonalizable, and ψî + φ1
ĵ1

= · · · = ψî + φ
α1

ĵ

ĵ1
= · · · =

ψî + φ
α

k
ĵ

ĵ

ĵk
ĵ

, where ψi, ψî ∈ Ψ, φj , φĵ ∈ Φ, Ωij = {(̂i, ĵ) :

ψî + φĵ = ψi + φj ∈ σ(L)}, i, î ∈ n1, l ∈ kî, j, ĵ ∈ t,
w ∈ kĵ , then for {cîĵw} (not all zero), ∑

(̂i,ĵ)∈Ωij

kĵ∑
w=1

cîĵw p̃
1
îĵw

 (B1 ⊗B2) 6= 0.

(iii). If L1 is diagonalizable with repeated roots (i.e., ψî1 =
ψî2 = · · · = ψîk

î

), L2 is non-diagonalizable, and ψî1 +φ1
ĵ1

=

· · · = ψî1 + φ
α1

ĵ

ĵ1
= · · · = ψî1 + φ

α
k
ĵ

ĵ

ĵk
ĵ

= · · · = ψîk
î

+ φ
α

k
ĵ

ĵ

ĵk
ĵ

,

where ψi, ψî ∈ Ψ, φj , φĵ ∈ Φ, Ωij = {(̂i, ĵ) : ψî + φĵ =

ψi + φj ∈ σ(L)}, i, î ∈ s, l ∈ kî, j, ĵ ∈ t, w ∈ kĵ , then for
{cîl ĵw} (not all zero), ∑

(̂i,ĵ)∈Ωij

kî∑
l=1

kĵ∑
w=1

cîl ĵw p̃
1
îl ĵw

 (B1 ⊗B2) 6= 0.

(iv). If L1 and L2 are both non-diagonalizable, and ψ1
î1

+

φ1
ĵ1

= · · · =
r(̂i,1,ĵ,1)

î1
+ φ

r(̂i,1,ĵ,1)

ĵ1
= · · · = ψ1

îl
+ φ1

ĵw
=

ψ2
îl

+ φ2
ĵw

= · · · = ψ
r(̂i,l,ĵ,w)

îl
+ φ

r(̂i,l,ĵ,w)

ĵw
, where ψi, ψî ∈ Ψ,

φj , φĵ ∈ Φ, Ωij = {(̂i, ĵ) : ψî + φĵ = ψi + φj ∈ σ(L)},
i, î ∈ s, l ∈ kî, j, ĵ ∈ t, w ∈ kĵ , q ∈ {1, 2, · · · , r(̂i, l, ĵ, w)},
r(̂i, l, ĵ, w) = min{αl

î
, αw

ĵ
}, then for {cq

îl ĵw
} (not all zero), ∑

(̂i,ĵ)∈Ωij

kî∑
l=1

kĵ∑
w=1

r(̂i,l,ĵ,w)∑
q=1

cq
îl ĵw

p̃q
îl ĵw

 (B1 ⊗B2) 6= 0.

A parallel result of Theorem 1 based on Lemma 2 can be
received for F1 and F2 substituting for L1 and L2 in the
following.

Theorem 2: CPN (2) is controllable if and only if one of
the following four conditions holds
(i). If F1 and F2 are diagonalizable, and λi, λî ∈ ∆, µj , µĵ ∈
Θ, Ωij = {(̂i, ĵ) : λî+µĵ = λi+µj ∈ σ(F )}, i, î ∈ s, l ∈ kî,

j, ĵ ∈ t, w ∈ kĵ , then for {cîl ĵw} (not all zero), ∑
(̂i,ĵ)∈Ωij

kî∑
l=1

kĵ∑
w=1

cîl ĵwpîl ĵw

 (B1 ⊗B2) 6= 0.

(ii). If F1 is diagonalizable without repeated roots, L2 is non-

diagonalizable, and λî + µ1
ĵ1

= · · · = λî + µ
α1

ĵ

ĵ1
= · · · =

λî + µ
α

k
ĵ

ĵ

ĵk
ĵ

, where λi, λî ∈ ∆, µj , µĵ ∈ Θ, Ωij = {(̂i, ĵ) :

λî + λĵ = ψi + µj ∈ σ(F )}, i, î ∈ n1, l ∈ kî, j, ĵ ∈ t,
w ∈ kĵ , then for {cîĵw} (not all zero), ∑

(̂i,ĵ)∈Ωij

kĵ∑
w=1

cîĵwp
1
îĵw

 (B1 ⊗B2) 6= 0.

(iii). If F1 is diagonalizable with repeated roots (i.e., λî1 =
λî2 = · · · = λîki

), L2 is non-diagonalizable, and λî1 + µ1
ĵ1

=

· · · = λî1 + µ
α1

ĵ

ĵ1
= · · · = λî1 + µ

α
k
ĵ

ĵ

ĵk
ĵ

= · · · = λîk
î

+ µ
α

k
ĵ

ĵ

ĵk
ĵ

,

where λi, λî ∈ ∆, µj , µĵ ∈ Θ, Ωij = {(̂i, ĵ) : λî + µĵ =

λi + µj ∈ σ(F )}, i, î ∈ s, l ∈ kî, j, ĵ ∈ t, w ∈ kĵ , then for
{cîl ĵw} (not all zero), ∑

(̂i,ĵ)∈Ωij

kî∑
l=1

kĵ∑
w=1

cîl ĵwp
1
îl ĵw

 (B1 ⊗B2) 6= 0.

(iv). If F1 and F2 are both non-diagonalizable, and λ1
î1

+

µ1
ĵ1

= · · · = λ
r(̂i,1,ĵ,1)

î1
+ µ

r(̂i,1,ĵ,1)

ĵ1
= · · · = λ1

îl
+ µ1

ĵw
=

λ2
îl

+ µ2
ĵw

= · · · = λ
r(̂i,l,ĵ,w)

îl
+ µ

r(̂i,l,ĵ,w)

ĵw
, where λi, λî ∈ ∆,

µj , µĵ ∈ Θ, Ωij = {(̂i, ĵ) : λî + µĵ = λi + µj ∈ σ(F )},
i, î ∈ s, l ∈ kî, j, ĵ ∈ t, w ∈ kĵ , q ∈ {1, 2, · · · , r(̂i, l, ĵ, w)},
r(̂i, l, ĵ, w) = min{αl

î
, αw

ĵ
}, then for {cq

îl ĵw
} (not all zero), ∑

(̂i,ĵ)∈Ωij

kî∑
l=1

kĵ∑
w=1

r(̂i,l,ĵ,w)∑
q=1

cq
îl ĵw

pq
îl ĵw

 (B1 ⊗B2) 6= 0.

Corollary 1: If CPN (2) is controllable, then factor net-
works G1 and G2 are both controllable.

Remark 1: Note from Theorem 1 and Theorem 2, that the
controllability of the discrete-time CPN (2) is determined by
the controllability and connectivity of its factors, different
from the controllability of the corresponding continuous-time
network (3) of version (2) only depending on the interaction
topology between agents, which is not only related to the
interaction topology between agents, but also associated with
the dynamics of the agent itself. Fortunately, we have found
the relationship between them.

This paper aims to propose controllability analysis methods
of discrete-time MANs via Cartesian products, whose topolo-
gies are different from the general controllability problems
for dynamical systems based on simple connected graphs in
the literature. The Cartesian product is one of the effective
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methods to generate composite networks or hierarchical sys-
tems by using prime networks and preserves many properties
of small-scale ones, through which some common networks
can be built by simpler networks, including some important
topology structures such as regular grids, meshes, cubes and
hypercubes. CPNs have recently emerged in many real-world
scenarios, such as the parallel and distributed systems (multi-
core systems and multiprocessor SoC [36] and interconnection
NoCs [37]), networked dynamical systems (sensor networks
and power grids [38]), social networks (interactions among
families [29]) and bio-evolutionary networks (evolutionary
dynamics of organism-environment coupling networks [30]).
Product networks are still in the primary stage of study, and
most of research results aim at the network parameters, such
as node degree, diameter and network size [39]. In addition,
almost all of relevant studies (e.g. [29]–[33]) considered the
continuous-time Cartesian product MANs, while our work
considers the discrete-time Cartesian product MANs. Our
results can be applied to control systems with the underlying
hierarchical structure of producing a Cartesian product, such
as layered man-made structures (infrastructure networks and
quantum computing networks), physical systems (monitoring
and control of fluids and heat flows) [29] and the control of
UAV formation [31].

This work is concentrated on controllability that is a funda-
mental property of networks and the core of it is to investigate
the controllability relationship between the entire network
and its factors, and obtain controllable conditions consisting
of the four mutually exclusive assertions. There exist some
difficulties in solving the controllability problem for CPNs
lack of the appropriate analytical tools. Therefore, this work
has made a useful attempt, in order to completely solve the
characterizations of the controllable matrices’ eigenvalues and
eigenvectors, and then obtain the controllability conditions of
the CPN, although the controllability proof is a bit lengthy.

Besides, it is noteworthy that one of the main motivations
in this study is to develop computationally feasible conditions
for controllability verification of a large scale network. From
the aforementioned studies, the controllability of the entire
network completely depends on the structure and feature of
its factor networks. Thus, as long as the factor networks are
given, the controllability of the entire network can be judged
by means of the new criteria established here. Theoretically,
the obtained conditions are scalable with the dimension of
the network and the number of factor networks. Moreover,
the computational complexity of directly computing eigen-
values and eigenvectors of the composite CPN is O(n3

1n
3
2),

whereas the complexity of computing those from its factors’
eigenvectors and generalized eigenvectors is no more than
O((min{n1, n2})2n1n2 + n3

1 + n3
2). Therefore, the computa-

tional cost of the new conditions is much lower. Undoubtedly,
as the number and dimension of the factor networks increase,
the amount of calculation will enlarge greatly and all the
agents’ motion trajectories are more complicated, as shown
in the later examples.

IV. SIMULATION EXAMPLES

The controllability of MANs refers that in the case of inter-
action between agents, all follower agents can be steered to the
specified target state from any given initial state in a limited
time through regulating a few agents (leaders), which reflects
the restriction ability of system input on the state. For network
(2), its solution is x(k) = F kx(0) +

∑k−1
i=0 F

k−i−1Bu(i),
where x(0) is the any given initial state. Several simulation
examples are provided to illustrate the theoretical results of
Theorems 1–2 and describe the trajectories of agents.

Example 1: Suppose that CPN (2) with two factor networks
G1 and G2 is depicted in Fig. 2(a). The system matrices are
given as follows

L1 =

 0 0 0
−1 1 0
−1 −2 3

 , L2 =


1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 0

 ;

B1 =

1 0
0 1
0 0

 , B2 =


0
0
0
1

 .
By computing,

F1 =

1 0 0
1 0 0
1 2 −2

, F2 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

;
rank(Q1) = rank[B1 L1B1 L2

1B1] = 3, rank(Q2) =
rank[B2 L2B2 L2

2B2 L3
2B2] = 4, ψ(L1) = {0, 1, 3},

φ(L2) = {1, 1, 1, 0}, λ(F1) = {1, 0,−2}, µ(F2) =
{0, 0, 0, 1}, respectively. It is easy to see that (L1, B1),
(L2, B2), (F1, B1) and (F2, B2) are all controllable and L1,
F1 are diagonalizable and have no repeated roots, and the
(generalized) left eigenvectors of L1, L2, F1 and F2 can be
respectively calculated as


g1 = e1,

g2 = e1 − e2,

g3 = e2 − e3,


h1

11
= e3 − e4,

h2
11

= −e2 + e4,

h3
11

= e1 − e4,

h1
21

= e4,


v1 = e1,

v2 = e1 − e2,

v3 = e2 − e3,


u1

11
= e3 − e4,

u2
11

= e2 − e4,

u3
11

= e1 − e4,

u1
21

= e4.

Furthermore,

ψ1 + φ1
21

= 0,

ψ1 + φ1
11

= ψ1 + φ2
11

= ψ1 + φ3
11

= ψ2 + φ1
21

= 1,

ψ2 + φ1
11

= ψ2 + φ2
11

= ψ2 + φ3
11

= 2,

ψ3 + φ1
21

= 3,

ψ3 + φ1
11

= ψ3 + φ2
11

= ψ3 + φ3
11

= 4,
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1c 1d

2c 2d

3c 3d
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1
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1

1

1

1 1

11

1

1

1

1

1

1

1

1 1 1

2 2 22

(1) (2)

(3)

Control inputs

Control inputs

Control inputs

Control inputs

Control inputs

(a) Factor graphs G1 and G2 and their composite graph
G1�G2 of Example 1.

(b) A triangle configuration for G1.

(c) A square configuration for G2.

(d) A rectangle configuration for G.

Fig. 2: Topologies and the agents’ motion trajectories of Example 1,
where the corresponding matrices of left and right sub-figures are L
and F , respectively.



λ1 + µ21
= 2,

λ1 + µ1
11

= λ1 + µ2
11

= λ1 + µ3
11

= λ2 + µ21
= 1,

λ2 + µ1
11

= λ2 + µ2
11

= λ2 + µ3
11

= 0,

λ3 + µ21
= −1,

λ3 + µ1
11

= λ3 + µ2
11

= λ3 + µ3
11

= −2,

then for any [c1, c2] 6= 0, we can have

p̃1
121

(B1 ⊗B2) = [1, 0] 6= 0,

(c1p̃
1
111

+ c2p̃
1
221

)(B1 ⊗B2) = [−c1 + c2,−c2] 6= 0,

p̃1
211

(B1 ⊗B2) = [−1, 1] 6= 0,

p̃1
321

(B1 ⊗B2) = [0, 1] 6= 0,

p̃1
311

(B1 ⊗B2) = [0,−1] 6= 0,

p1
121

(B1 ⊗B2) = [1, 0] 6= 0,

(c1p
1
111

+ c2p
1
221

)(B1 ⊗B2) = [−c1 + c2,−c2] 6= 0,

p1
211

(B1 ⊗B2) = [−1, 1] 6= 0,

p1
321

(B1 ⊗B2) = [0, 1] 6= 0,

p1
311

(B1 ⊗B2) = [0,−1] 6= 0,

which is consistent with Theorem 1 (ii) and Theorem 2 (ii),
therefore, CPN (2) is controllable.

All the agents’ motion trajectories are exhibited in Figs.
2(b)–2(d) with final triangle, square and rectangle config-
uration corresponding to matrices L (left sub-figures) and
F = I − L (right sub-figures) respectively, where arbitrary
initial state and final desired configuration are denoted by “?”
and “∗”. By respectively comparing the left and right sub-
figures for Figs. 2(b)–2(d), it is not difficult to find that for the
same initial state, the agents’ motion trajectories are different,
but eventually they all converge to the same final state for
matrices L and F = I −L. In other words, the controllability
of the discrete-time CPN (2) is completely determined by the
interaction topologies of its factor networks.

Example 2: Suppose that CPN (2) with two factor networks
G1 and G2 is depicted in Fig. 3(a). The system matrices are
given as follows

L1 =


1 −1 0 0
0 0 0 0
0 −1 2 −1
0 0 0 0

 , L2 =


1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 0

 ;

B1 =


0 0
1 0
0 0
0 1

 , B2 =


0 0
0 0
1 0
0 1

 .
By computing,

F1 =


0 1 0 0
0 1 0 0
0 1 −1 1
0 0 0 1

, F2 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

;
rank(Q1) = [B1 L1B1 L2

1B1 L3
1B1] = 4, rank(Q2) =

[B2 L2B2 L
2
2B2 L

3
2B2] = 4, ψ(L1) = {0, 0, 1, 2}, φ(L2) =

{1, 1, 1, 0}, λ(F1) = {1, 1, 0,−1}, µ(F2) = {0, 0, 0, 1},
respectively. It is easy to see that (L1, B1), (L2, B2), (F1, B1)
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(1)
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Control inputs
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1 1

1

1

1

1

1

1

1

1

1
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1
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1

1

1

1

1

1

1

1

1

1

1

11

1

1

(a) Factor graphs G1 and G2 and their
composite graph G1�G2 of Example 2.

(b) A letter “Z” configuration for G1.

(c) A letter “N” configuration for G2.

(d) A letter “H” configuration for G.

Fig. 3: Topologies and the agents’ motion trajectories of Example 2,
where the corresponding matrices of left and right sub-figures are L
and F , respectively.

and (F2, B2) are all controllable and L1, F1 are diagonalizable
and have repeated roots, and the (generalized) left eigenvectors
of L1, L2, F1 and F2 can be respectively given by

g11
= e4,

g12
= e2,

g21
= e1 − e2,

g31
= e2 − 2e3 + e4,


h1

11
= e3 − e4,

h2
11

= −e2 + e4,

h3
11

= e1 − e4,

h1
21

= e4,
v11 = e4,

v12 = e2,

v21 = e1 − e2,

v31 = e2 − 2e3 + e4,


u1

11
= e3 − e4,

u2
11

= e2 − e4,

u3
11

= e1 − e4,

u1
21

= e4.

Furthermore,

ψ11
+ φ1

21
= ψ12

+ φ1
21

= 0,

ψ11
+ φ1

11
=ψ11

+φ2
11

=ψ11
+φ3

11
=ψ12

+φ1
11

=ψ12
+φ2

11

= ψ12
+ φ3

11
= ψ2 + φ1

21
= 1,

ψ2 + φ1
11

= ψ2 + φ2
11

= ψ2 + φ3
11

= ψ3 + φ1
21

= 2,

ψ3 + φ1
11

= ψ3 + φ2
11

= ψ3 + φ3
11

= 3,

λ11
+ µ1

21
= λ12

+ µ1
21

= 2,

λ11
+ µ1

11
=λ11

+µ2
11

=λ11
+µ3

11
=λ12

+µ1
11

=λ12
+µ2

11

= λ12
+ µ3

11
= λ2 + µ1

21
= 1,

λ2 + µ1
11

= λ2 + µ2
11

= λ2 + µ3
11

= λ3 + µ1
21

= 0,

λ3 + µ1
11

= λ3 + µ2
11

= λ3 + µ3
11

= −1,

then for any [c1, c2] 6= 0, we can have
(c1p̃

1
1121

+ c2p̃
1
1221

)(B1 ⊗B2) = [0, c2, 0, c1] 6= 0,

(c1p̃
1
211

+ c2p̃
1
321

)(B1 ⊗B2) = [−c1, c1 + c2, 0, c2] 6= 0,

p̃1
311

(B1 ⊗B2) = [1,−1, 1,−1] 6= 0,
(c1p

1
1121

+ c2p
1
1221

)(B1 ⊗B2) = [0, c2, 0, c1] 6= 0,

(c1p
1
211

+ c2p
1
321

)(B1 ⊗B2) = [−c1, c1 + c2, 0, c2] 6= 0,

p1
311

(B1 ⊗B2) = [1,−1, 1,−1] 6= 0,

and for any [c1, c2, c3] 6= 0, we can have

(c1p̃
1
1111

+c2p̃
1
1211

+c3p̃
1
221

)(B1⊗B2)

=[c2,−c2 − c3, c1,−c1] 6= 0,

(c1p
1
1111

+c2p
1
1211

+c3p
1
221

)(B1⊗B2)

=[c2,−c2 − c3, c1,−c1] 6= 0,

which is consistent with Theorem 1 (iii) and Theorem 2 (iii),
therefore, CPN (2) is controllable.

All the agents’ motion trajectories are exhibited in Figs.
3(b)–3(d) with final “Z”, “N” and “H” configuration corre-
sponding to matrices L (left sub-figures) and F = I − L
(right sub-figures) respectively, where arbitrary initial state
and final desired configuration are denoted by “?” and “∗”.
By respectively comparing the left and right sub-figures for
Figs. 3(b)–3(d), it is not difficult to find that for the same
initial state, the agents’ motion trajectories are different, but
eventually they all converge to the same final state for matrices
L and F = I − L.
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Example 3: Suppose that CPN (2) with two factor networks
G1 and G2 is depicted in Fig. 4(a). The system matrices are
given as follows

L1 =


1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 0

, L2 =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 −1 1

;

B1 =


0 0
0 0
1 0
0 1

 , B2 =


0 0
0 0
1 0
0 0
0 1

 .
By computing,

F1 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

, F2 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 0

;

rank(Q1) = [B1 L1B1 L2
1B1 L3

1B1] = 4, rank(Q2) =
[B2 L2B2 L2

2B2 L3
2B2 L4

2B2] = 5, ψ(L1) = {1, 1, 1, 0},
φ(L2) = {1, 1, 1, 0, 2}, λ(F1) = {0, 0, 0, 1}, µ(F2) =
{0, 0, 0, 1,−1}, respectively. (L1, B1), (L2, B2), (F1, B1) and
(F2, B2) are all controllable and L1, L2, F1 and F2 are all
undiagonalizable, and the generalized left eigenvectors of L1,
L2, F1 and F2 can be respectively calculated as


g1

11
= e3 − e4,

g2
11

= −e2 + e4,

g3
11

= e1 − e4,

g1
21

= e4,



h1
11

= e3 − e5,

h2
11

= −e2 + e3 + e4 − e5,

h3
11

= e1 − e2 + e4 − e5,

h1
21

= e4 + e5,

h1
31

= e4 − e5,

and


v1

11
= e3 − e4,

v2
11

= e2 − e4,

v3
11

= e1 − e4,

v1
21

= e4,



u1
11

= e3 − e5,

u2
11

= e2 − e3 − e4 + e5,

u3
11

= e1 − e2 + e4 − e5,

u1
21

= e4 + e5,

u1
31

= e4 − e5.

Furthermore,

ψ1
21

+ φ1
21

= 0,

ψ1
11

+ φ1
21

=ψ2
11

+φ1
21

=ψ3
11

+φ1
21

=ψ1
21

+φ1
11

=ψ1
21

+φ2
11

= ψ1
21

+ φ3
11

= 1,

ψ1
11

+ φ1
11

=ψ1
11

+φ1
12

=ψ1
11

+φ1
13

=ψ2
11

+φ2
11

=ψ2
11

+φ2
12

=ψ2
11

+φ2
13

=ψ3
11

+φ3
11

=ψ3
11

+φ3
12

=ψ3
11

+φ3
13

= ψ1
21

+ φ1
31

= 2,

ψ1
11

+ φ1
31

= ψ2
11

+ φ1
31

= ψ3
11

+ φ1
31

= 3,

1

2

3

4

a

b

c

d

4c

4b

2c

2a

4d

1a

1c

1d 3d

1e

e1b

2d

2e

3c

4a

3b

4e

2b

3a

3e

(1)

(2)

(3)

1 1

1

1

1

1

11 1

1

1
1

1

1

11

1

1

1

1

1
11

1

1

1

1

1

1

1 1

1

1

1

1 1

1

1

Control inputs

Control inputs

Control inputs

Control inputs

Control inputs

Control inputs

Control inputs

Control inputs

(a) Factor graphs G1 and G2 and their com-
posite graph G1�G2 of Example 3.

(b) A letter “Y” configuration for G1.

(c) A letter “K” configuration for G2.

(d) A letter “I” configuration for G.

Fig. 4: Topologies and the agents’ motion trajectories of Example 3,
where the corresponding matrices of left and right sub-figures are L
and F , respectively.
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

λ1
21

+ µ1
21

= 2,

λ1
11

+ µ1
21

=λ2
11

+µ1
21

=λ3
11

+µ1
21

=λ1
21

+µ1
11

=λ1
21

+µ2
11

= λ1
21

+ µ3
11

= 1,

λ1
11

+ µ1
11

=λ1
11

+µ1
12

=λ1
11

+µ1
13

=λ2
11

+µ2
11

=λ2
11

+µ2
12

=λ2
11

+µ2
13

=λ3
11

+µ3
11

=λ3
11

+µ3
12

=λ3
11

+µ3
13

= λ1
21

+ µ1
31

= 0,

λ1
11

+ µ1
31

= λ2
11

+ µ1
31

= λ3
11

+ µ1
31

= −1,

then for any [c1, c2] 6= 0, we can have
p̃1

2121
(B1 ⊗B2) = [0, 0, 0, 1] 6= 0,

(c1p̃
1
1121

+ c2p̃
1
2111

)(B1 ⊗B2) = [0, c1, c2,−c1 − c2] 6= 0,

p̃1
1131

(B1 ⊗B2) = [0,−1, 0, 1] 6= 0,
p1

2121
(B1 ⊗B2) = [0, 0, 0, 1] 6= 0,

(c1p
1
1121

+ c2p
1
2111

)(B1 ⊗B2) = [0, c1, c2,−c1 − c2] 6= 0,

p1
1131

(B1 ⊗B2) = [0,−1, 0, 1] 6= 0,

and for any [c1, c2, c3, c4] 6= 0, we can have

(c1p̃
1
1111

+ c2p̃
2
1111

+ c3p̃
3
1111

+ c4p̃
1
2131

)(B1 ⊗B2)

=[c1−c2,−c1+c2−c3,−c1+2c2−2c3,c1−2c2+3c3−c4] 6=0,

(c1p
1
1111

+ c2p
2
1111

+ c3p
3
1111

+ c4p
1
2131

)(B1 ⊗B2)

=[c1−c2,−c1+c2−c3,−c1+2c2−2c3,c1−2c2+3c3−c4] 6=0,

which is consistent with Theorem 1 (iv) and Theorem 2 (iv),
therefore, CPN (2) is controllable.

All the agents’ motion trajectories are exhibited in Figs.
4(b)–4(d) with final “Y”, “K” and “I” configuration corre-
sponding to matrices L (left sub-figures) and F = I − L
(right sub-figures) respectively, where arbitrary initial state
and final desired configuration are denoted by “?” and “∗”.
By respectively comparing the left and right sub-figures for
Figs. 4(b)–4(d), it is not difficult to find that for the same
initial state, the agents’ motion trajectories are different, but
eventually they all converge to the same final state for matrices
L and F = I − L.

V. CONCLUSION

We have studied the controllability of a discrete-time CPN
formed by smaller-scale factor networks. The algebra-theoretic
necessary and sufficient conditions for the controllability have
been obtained by the eigenvalues and (generalized) left eigen-
vectors of its factor networks, which provides insights into the
controllability of larger-scale composite control schemes.

The main theme in this study is to explore the controllability
of a large-scale MAN model generated by the Cartesian
product of smaller ones, which can effectively reduce the
complexity of the calculation and analysis to verify the con-
trollability of the MAN by checking some properties of the
smaller factor ones and has aroused great interest in generative
networks recently. It is not only important for building ‘large’
networks out of ‘small’ ones, but also useful to get insights
about the properties of ‘larger’ composite networks from
the ‘smaller’ factor ones. This would be a great hint and
insight into how to effectively generate a realistic network
with a mathematically tractable model, preserving some ideal

properties of the basic graphs and allowing for a rigorous
theoretical analysis of the network properties. Conversely, an
important inverse problem is whether a given network can
be decomposed in a product of two factor graphs and how
to decompose efficiently. Our current model is based on the
Kronecker product matrix operation for the Cartesian network,
which is not a specific matrix that can be decomposed. It
is very challenging for decomposing a specific matrix into
some lower-dimensional small matrices with good properties.
Indeed, to our knowledge, this issue is rarely reported in the
literature, which would be interesting to study in our future
work. In addition, the controllability of MANs with respect
to other types of graph products, such as the strong product,
direct product and Corona product, will be considered in
future research directions. Future work of particular interest
includes extending current results to matrix-weighted and / or
signed hybrid composite MANs containing continuous-time
and discrete-time dynamic agents.

APPENDIX. PROOF OF SOME TECHNICAL RESULTS

Proof of Proposition 1. Case (i). If A is diagonalizable,
then In −A is diagonalizable and σilA = ξiσil , and then

σil(In −A) = σil − σilA = σil − ξiσil = (1− ξi)σil ,

therefore, (1− ξi, σil) is th left eigenvalue-eigenvector pair of
In −A.

Case (ii). If A is non-diagonalizable, let λi and
δ1
il
, δ2
il
, · · · , δα

l
i

il
be the eigenvalues and corresponding gener-

alized left eigenvectors of In −A, from Definition 1, then{
σ1
il

(ξiIn −A) = 0,

δ1
il

[λiIn − (In −A)] = 0
⇒

{
δ1
il

= σ1
il
,

λi = 1− ξi,{
σ2
il

(ξiIn −A) = −σ1
il
,

δ2
il

[λiIn − (In −A)] = −δ1
il

⇒

{
δ2
il

= −σ2
il
,

λi = 1− ξi,{
σ3
il

(ξiIn −A) = −σ2
il
,

δ3
il

[λiIn − (In −A)] = −δ2
il

⇒

{
δ3
il

= σ3
il
,

λi = 1− ξi,

...σ
αl

i
il

(ξiIn −A) = −σα
l
i−1

il
,

δ
αl

i
il

[λiIn− (In−A)] = −δα
l
i−1

il

⇒

{
δ
αl

i
il

= (−1)α
l
i−1σ

αl
i

il
,

λi = 1− ξi.

Therefore, In − A is also non-diagonalizable, and (1 −
ξi, {σ1

il
, σ2
il
, · · · , σα

l
i

il
}) is the generalized left eigenvalue-

eigenvector pair. 2
Proof of Lemma 1. (i). Because L1 and L2 are both

diagonalizable, gilL1 = ψigil and hjwL2 = φjhjw , i ∈ s,
l ∈ ki, j ∈ t, w ∈ kj , then

p̃iljw(F1 ⊕ F2)

= (gil ⊗ hjw)(2In1 ⊗ In2 − L1 ⊗ In2 − In1 ⊗ L2)

= 2(gil ⊗ hjw)− (ψigil)⊗ hjw − gil ⊗ (φjhjw)

= (2− ψi − φj)(gil ⊗ hjw)

= (2− ψi − φj)p̃iljw .
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Thus, the left eigenvalue-eigenvector pair of F1 ⊕ F2 is (2−
ψi − φj , p̃iljw).

(ii). Because L2 is not necessarily diagonalizable, we can
know that h1

jw
L2 = φjh

1
jw

, j ∈ t, w ∈ kj . From Definition
(1) and the fact that L1 is diagonalizable, then for i ∈ n1,

p̃1
ijw(F1 ⊕ F2)

= (gi ⊗ h1
jw)(2In1 ⊗ In2 − L1 ⊗ In2 − In1 ⊗ L2)

= 2(gi ⊗ h1
jw)− (ψigi)⊗ h1

jw − gi ⊗ (φjh
1
jw)

= (2− ψi − φj)(gi ⊗ h1
jw)

= (2− ψi − φj)p̃1
ijw .

Thus, the left eigenvalue-eigenvector pair of F1 ⊕ F2 is (2−
ψi − φj , p̃1

ijw
).

(iii). From Definition (1), we can have that gilL1 = ψigil
and h1

jw
L2 = φjh

1
jw

, i ∈ s, l ∈ ki, j ∈ t, w ∈ kj , then

p̃1
iljw

(F1 ⊕ F2)

= (gil ⊗ h1
jw)(2In1

⊗ In2
− L1 ⊗ In2

− In1
⊗ L2)

= 2(gil ⊗ h1
jw)− (ψigil)⊗ h1

jw − gil ⊗ (φjh
1
jw)

= (2− ψi − φj)(gil ⊗ h1
jw)

= (2− ψi − φj)p̃1
iljw

.

Thus, the left eigenvalue-eigenvector pair of F1 ⊕ F2 is (2−
ψi − φj , p̃1

iljw
).

(iv). From Definition (1), as i ∈ s, l ∈ ki, j ∈ t, w ∈ kj ,
r = r(i, l, j, w) = min{αli, αwj }, then

p̃riljw(F1 ⊕ F2)

= (−1)r−1{gril ⊗ h
1
jw − g

r−1
il
⊗ h2

jw + · · ·+
(−1)r−1g1

il
⊗ hrjw}(2In1 ⊗ In2 − L1 ⊗ In2 − In1 ⊗ L2)

= (−1)r−1{(gril ⊗ h
1
jw)(2In1

⊗In2
)−(gril ⊗ h

1
jw)(L1⊗In2

)

−(gril⊗h
1
jw)(In1

⊗L2)}−(−1)r−1{(gr−1
il
⊗h2

jw)(2In1
⊗In2

)

− (gr−1
il
⊗ h2

jw)(L1 ⊗ In2
)−(gr−1

il
⊗ h2

jw)(In1
⊗ L2)}

+· · ·+(−1)r−1(−1)r−1{(g1
il
⊗hrjw)(2In1⊗In2)

−(g1
il
⊗hrjw)(L1⊗In2

)− (g1
il
⊗ hrjw)(In1

⊗ L2)}
= (−1)r−1{2(grilIn1)⊗ (h1

jwIn2)− (grilL1)⊗ (h1
jwIn2)

− (grilIn1)⊗ (h1
jwL2)}−(−1)r−1{2(gr−1

il
In1)⊗(h2

jwIn2)

− (gr−1
il

L1)⊗ (h2
jwIn2)− (gr−1

il
In1)⊗ (h2

jwL2)}+ · · ·
+(−1)2(r−1){2(g1

il
In1)⊗(hrjwIn2)−(g1

il
L1)⊗(hrjwIn2)

− (g1
il
In1

)⊗ (hrjwL2)}
= (−1)r−1{2(gril⊗h

1
jw)−(grilL1)⊗h1

jw−g
r
il
⊗(h1

jwL2)}−
(−1)r−1{2(gr−1

il
⊗h2

jw)−(gr−1
il
L1)⊗h2

jw−g
r−1
il
⊗(h2

jwL2)}
+ · · ·+(−1)2(r−1){2(g1

il
⊗hrjw)− (g1

il
L1)⊗hrjw−

g1
il
⊗ (hrjwL2)}

= (−1)r−1{2(gril ⊗ h
1
jw)− ψi(gril ⊗ h

1
jw)− gr−1

il
⊗ h1

jw

− φj(gril ⊗ h
1
jw)} − (−1)r−1{2(gr−1

il
⊗h2

jw)−ψi(gr−1
il
⊗h2

jw)

−gr−2
il
⊗h2

jw−φj(g
r−1
il
⊗h2

jw)−gr−1
il
⊗h1

jw}+· · ·+(−1)2(r−1)

{2(g1
il
⊗hrjw)−ψi(g1

il
⊗hrjw)−φj(g1

il
⊗hrjw)− g1

il
⊗hr−1

jw
}

= (−1)r−1(2− ψi − φj)(gril⊗h
1
jw)−(−1)r−1(2−ψi−φj)

(gr−1
il
⊗h2

jw) +· · ·+(−1)r−1(2−ψi−φj)(g1
il
⊗hrjw)

= (−1)r−1(2− ψi − φj){(gril ⊗ h
1
jw)− (gr−1

il
⊗ h2

jw)

+ · · ·+ (g1
il
⊗ hrjw)}

= (−1)r−1(2− ψi − φj)p̃riljw .

Thus, the left eigenvalue-eigenvector pair of F1⊕F2 are (2−
ψi − φj , p̃qiljw) for q ∈ {1, 2, · · · , r}. 2

Proof of Theorem 1. (Sufficiency): (i). Consider the case
that L1 and L2 are diagonalizable. According to PBH test and
Lemma 1(i), and ∑

(̂i,ĵ)∈Ωij

kî∑
l=1

kĵ∑
w=1

cîl ĵw p̃îl ĵw

 (B1 ⊗B2) 6= 0

holds, for {cîl ĵw} (not all zero), therefore, CPN (2) is control-
lable.

(ii). Consider the case that L1 is diagonalizable without

repeated roots, and ψî + φ1
ĵ1

= · · · = ψî + φ
α1

ĵ

ĵ1
= · · · =

ψî + φ
α

k
ĵ

ĵ

ĵk
ĵ

. From PBH test and Lemma 1(ii), and

 ∑
(̂i,ĵ)∈Ωij

kĵ∑
w=1

cîĵw p̃
1
îĵw

 (B1 ⊗B2) 6= 0

holds, for {cîĵw} (not all zero), therefore, CPN (2) is control-
lable.

(iii). Consider the case that L1 is diagonalizable with
repeated roots (i.e., ψî1 = ψî2 = · · · = ψîk

î

) and ψî1 + φ1
ĵ1

=

· · · = ψî1 + φ
α1

ĵ

ĵ1
= · · · = ψî1 + φ

α
k
ĵ

ĵ

ĵk
ĵ

= · · · = ψîk
î

+ φ
α

k
ĵ

ĵ

ĵk
ĵ

,

where ψi, ψî ∈ Ψ, φj , φĵ ∈ Φ. From PBH test and Lemma
1(iii), and ∑

(̂i,ĵ)∈Ωij

kî∑
l=1

kĵ∑
w=1

cîl ĵw p̃
1
îl ĵw

 (B1 ⊗B2) 6= 0

holds, for {cîl ĵw} (not all zero), therefore, CPN (2) is control-
lable.

(iv). Consider the case that L1 and L2 are non-
diagonalizable, ψ1

î1
+ φ1

ĵ1
= · · · =

r(̂i,1,ĵ,1)

î1
+ φ

r(̂i,1,ĵ,1)

ĵ1
=

· · · = ψ1
îl

+φ1
ĵw

= ψ2
îl

+φ2
ĵw

= · · · = r(̂i,l,ĵ,w)

îl
+φ

r(̂i,l,ĵ,w)

ĵw
, for

i, î ∈ s, l ∈ kî, j, ĵ ∈ t, w ∈ kĵ , q ∈ {1, 2, · · · , r(̂i, l, ĵ, w)},
r(̂i, l, ĵ, w) = min{αl

î
, αw

ĵ
}. From PBH test and Lemma

1(iv), and ∑
(̂i,ĵ)∈Ωij

kî∑
l=1

kĵ∑
w=1

r(̂i,l,ĵ,w)∑
q=1

cq
îl ĵw

p̃q
îl ĵw

 (B1 ⊗B2) 6= 0

holds, for {cq
îl ĵw
} (not all zero), therefore, CPN (2) is control-

lable.
(Necessity): The controllability of CPN (2) together with

Lemma 1 implies that the linear span of left eigenvectors
associated with the given eigenvalue of L(G1) ⊕ L(G2) and
B1 ⊗B2 are un-orthogonal. 2
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