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Abstract: This study introduces an innovative deep-learning approach for fuel demand estimation
in maritime transportation, leveraging a novel convolutional neural network, bidirectional, and
long short-term memory attention as a deep learning model. The input variables studied include
vessel characteristics, weather conditions, sea states, the number of ships entering the port, and
navigation specifics. This study focused on the ports of Jazan in Saudi Arabia and Fujairah in the
United Arab Emirates, analyzing daily and monthly data to capture fuel consumption patterns. The
proposed model significantly improves prediction accuracy compared with traditional methods,
effectively accounting for the complex, nonlinear interactions influencing fuel demand. The results
showed that the proposed model has a mean square error of 0.0199 for the daily scale, which is a
significantly higher accuracy than the other models. The model could play an important role in
port management with a potential reduction in fuel consumption, enhancing port efficiency and
minimizing environmental impacts, such as preserving seawater quality. This advancement supports
sustainable development in maritime operations, offering a robust tool for operational cost reduction
and regulatory compliance.

Keywords: deep learning; maritime transportation; port logistics optimization; port water quality;
maritime fuel demand estimation; environmental impact mitigation; model evaluation; maritime
operations sustainability

1. Introduction

Trade and transportation are inextricably linked, as countries with a bilateral rela-
tionship with transportation experience increased economic growth [1,2]. The maritime
transportation sector plays a crucial role in global trade and economic development, facili-
tating the movement of goods across continents [3–6]. As the industry continues to expand,
the demand for efficient and sustainable practices becomes increasingly important [7–9].
The sea’s importance and role in economic issues cannot be overstated, and the interests
of sea-owning countries are inextricably linked to the needs and capabilities of maritime
countries. Indeed, the ability of these countries determines their maritime policy. Benefits
such as transportation in large volumes and the geographical scope of its performance, as
well as the use of containers for ease of transportation and maintenance of goods, have been
highly valued in intercontinental and intercontinental transport operations. The relative
advantage of maritime transport over other modes of transportation, particularly in terms
of volume and market, has resulted in the cargo arriving on time, at a low cost, and in good
physical condition [10,11].
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The availability of energy resources, the optimal utilization of these resources, the
utilization of new energies, and the development of the transportation sector, including
infrastructure and the transportation fleet, are indicators that directly influence maritime
transportation. The growth, independence, and advancement of a nation are all significant
factors [12]. Saudi Arabia and the United Arab Emirates possess a unique strategic posi-
tion and substantial oil and gas reserves, establishing them as key players in the energy
sector [13]. Consequently, it is imperative and irrefutable that precise and comprehensive
planning be implemented to ensure the preservation of energy reserves, access to new
energy sources, and the appropriate utilization of energy resources in order to promote
comprehensive economic development [14].

One of the critical challenges in this domain is accurately estimating fuel demand,
which has significant implications for operational costs, environmental impact, and regu-
latory compliance [15–17]. Traditional methods of fuel demand estimation often rely on
historical data and statistical models, which may not adequately capture the complexities
and dynamic nature of maritime operations [18–20]. Fuel consumption in maritime trans-
portation is influenced by a myriad of factors, including vessel characteristics, weather
conditions, sea currents, and route specifics [21–23]. Accurate fuel demand estimation
enables shipping companies to optimize voyage planning, reduce fuel consumption, and
minimize greenhouse gas emissions [24]. This aligns with global efforts to mitigate climate
change and promotes environmentally responsible practices toward seawater quality im-
provement [25,26]. Furthermore, improved fuel estimation can lead to cost savings and
enhanced competitiveness in the shipping market [27].

The availability and optimal utilization of energy resources, the adoption of new
energy sources, and the development of transportation infrastructure and fleets are critical
indicators that directly influence maritime transportation [25]. The growth, independence,
and advancement of a nation are all significant factors. Saudi Arabia and the United Arab
Emirates are among the countries that possess a unique strategic position and substantial
oil and gas reserves, which have made them unique in the energy sector [28]. Consequently,
it is imperative and irrefutable that precise and comprehensive planning be implemented
to ensure the preservation of energy reserves, access to new energy sources, and the
appropriate utilization of energy resources in order to promote comprehensive economic
development. One of the fields that significantly contributes to energy consumption and,
as a result, the environmental consequences of fuel consumption [29,30].

Traditional methods fall short in capturing the nonlinear and complex interactions
between the various factors influencing fuel consumption in maritime transportation. This
gap presents an opportunity for leveraging deep learning techniques, which have demon-
strated exceptional performance in modeling complex patterns and dependencies in diverse
fields. This study addresses this challenge by introducing a novel deep-learning approach
that leverages advanced techniques to enhance prediction accuracy. The proposed model
integrates Convolutional Neural Networks (CNN), Bidirectional Long Short-Term Memory
(BiLSTM) layers, and an attention mechanism to create a robust framework for maritime
fuel demand estimation. This hybrid CNN-BiLSTM-attention model is designed to capture
both spatial and temporal dependencies, which are critical for accurately modeling fuel
consumption patterns impacted by vessel characteristics, weather conditions, sea states,
and navigation specifics. By incorporating a diverse set of influential variables, the model
offers a comprehensive understanding of fuel demand patterns, enhancing reliability and
precision. This study also emphasizes the importance of sustainable practices in maritime
operations. In addition to its methodological innovations, this study integrates a broad
array of input variables—including vessel characteristics, weather conditions, sea states,
and navigation specifics—allowing for a comprehensive analysis of factors affecting fuel
consumption. The model’s flexibility to operate on daily and monthly timescales further
enhances its utility for both short-term and long-term fuel management in ports, addressing
the dynamic needs of maritime operations. Focusing on Jazan Port in Saudi Arabia and
Fujairah Port in the United Arab Emirates, this research provides valuable insights into
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optimizing fuel usage in strategically significant, high-traffic ports. By improving fuel
estimation accuracy, the model contributes to sustainable maritime practices, supporting
reduced emissions, efficient resource use, and enhanced water quality in port environments.

The remainder of this paper is organized as follows. Section 2 provides a compre-
hensive literature review of existing methods for fuel demand estimation in maritime
transportation, highlighting gaps addressed by the proposed approach. Section 3 presents
a detailed description of the study areas, Jazan and Fujairah ports, and the relevant data
sources. Section 4 describes the methodology, including the structure and components
of the CNN-BiLSTM-attention model developed for fuel demand estimation. Section 5
discusses the results obtained from applying the proposed model to the datasets, along
with a performance comparison against traditional models. Finally, Section 6 concludes the
study, summarizing key findings, implications for sustainable maritime operations, and
potential directions for future research.

2. Literature Review

Previous research has used artificial intelligence models to estimate fuel consumption
in air, road, and land transportation. However, ship fuel consumption involves high
uncertainties and requires detailed evaluation for sustainability [31].

Veerachai Gosasang et al. [32] investigated the time series method, regression analysis,
and neural networks for predicting fuel consumption at Bangkok Port, Thailand. Export
volume, GDP, exchange rates, inflation, and interest rates were selected as variables to
represent port capacity. This method identified the factors affecting the port’s capacity
for goods and products, which were then used as input for neural network prediction.
The measurement results show that the squared error method predicts capacity more
accurately. The results showed a lower error percentage and higher prediction accuracy
compared with other methods. Abual-Foul [33] developed a model using four input
variables: GDP, population, export, and import. They used data from 1976 to 2008 in Jordan.
The results of energy forecasting revealed that accuracy was higher (with 2% error) than
other methods and produced more realistic energy forecasts. Oludolapo et al. [34] utilized
artificial intelligence algorithms based on Multi-Layer Perceptron (MLP) and Radial Basis
Function (RBF) neural networks that were used to calculate energy consumption in South
Africa’s industrial sector B between 1933 and 2000. In this study, GDP was chosen as
an input, and energy consumption in the industry sector as an output. In addition, the
GDP of 1995 was used as the baseline year. This neural network model predicts values
with less than 5% average absolute error, outperforming other models. Furthermore, the
beta results are based on the model’s correlation coefficient, which indicates that the RBF
model outperforms the MLP model, with the RBF model having the lowest prediction error.
Weather parameters have an effective role in the fuel consumption of ships. Bialystocki and
Konovessis [35] claimed that unfavorable weather and sea conditions resulted in increased
fuel consumption for car and truck carriers.

Yan et al. [36] developed a random forest regression model to precisely predict fuel
consumption and identify possible reductions. The model’s inputs included variables like
speed, total cargo weight, sea conditions, and weather conditions. After comparing five
different regression models, the authors concluded that the random forest model produced
the best results. Following this, they created a ship optimization model using random
forest regression, which incorporated data from two voyages. Le et al. [37] utilized real-
world operational data from 100–143 container ships to estimate fuel consumption for five
different size categories of container ships. A comparative analysis was performed between
two Artificial Neural Network (ANN) models and two multiple regression models. The
results revealed that the MLP-ANN model is effective in validating the energy efficiency
achieved through the slow-steaming technique. Işıklı et al. [38] examined various factors
contributing to fuel consumption in maritime transportation. The results suggest that speed
is the primary factor influencing fuel consumption. Conversely, their fuel consumption
decreases as ships accelerate to a specific limit. However, once this threshold is surpassed,
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fuel consumption starts to rise. Xie et al. [39] developed two models to predict ship fuel
consumption rates: a black-box model using machine learning and a white-box model
using mathematical techniques. The Kwon formula was used as a preprocessing step
to exclude data generated during acceleration and deceleration. The precision of these
models was evaluated using ship model test data and regression methods. Su et al. [40]
developed a forecasting model for ship fuel costs using a combination of statistical and
machine learning methods. Their analysis utilized a dataset from a major South Korean
shipping company, encompassing 16,189 observations collected between 2012 and 2021.

3. Study Area Description

Fujairah Port, located on the eastern coast of the United Arab Emirates and Jazan
Port, situated in the southwestern part of Saudi Arabia, are two strategically important
maritime hubs in the Middle East [41,42]. These ports play a critical role in regional and
global maritime transportation, serving as key nodes in the supply chain and facilitating
significant volumes of trade. The Fujairah and Jazan Ports’ locations are described in Table 1.

Table 1. The studied destination port descriptions.

Port Longitude Latitude Size Reference

Jazan, KSA 42.53◦ 16.90◦ X-large [43]
Fujairah, UAE 56.36◦ 25.14◦ Large [44]

The operational dynamics and capacity of Fujairah and Jazan ports have direct im-
plications for fuel demand estimation in maritime transportation. The high volume of
vessel traffic and the diverse types of cargo handled at these ports necessitate accurate fuel
consumption predictions to optimize logistics and minimize operational costs. Given their
strategic importance and significant throughput, these ports present ideal case studies for
developing and validating advanced deep-learning models for fuel demand estimation.

The selection of Jazan Port and Fujairah Port as study areas is based on their strategic
significance in regional and global maritime logistics. Jazan Port, located on the Red Sea,
serves as a crucial gateway for trade among Saudi Arabia, Europe, Asia, and Africa. Its
strategic location near the Bab-el-Mandeb Strait positions it as a key trans-shipment hub,
providing vital access to international shipping routes. Similarly, Fujairah Port, situated
outside the Strait of Hormuz, is one of the largest bunkering hubs in the world and plays
a pivotal role in energy logistics and cargo movement across the Indian Ocean and the
Middle East.

Both ports face high traffic volumes and diverse operational conditions, making them
ideal for studying fuel demand estimation in complex maritime environments. By focusing
on these ports, the study provides valuable insights into optimizing fuel consumption
in major, high-traffic locations, with potential applications to other ports with similar
strategic roles. The variability in vessel types, sizes, and operational conditions at these
ports provides a rich dataset for modeling fuel consumption patterns. Factors such as
the frequency of port calls, duration of stay, and types of cargo handled can significantly
influence fuel demand. By integrating these variables into a comprehensive deep-learning
framework, this research aims to enhance the accuracy of fuel consumption predictions,
thereby supporting more efficient and sustainable maritime operations.

3.1. Jazan Port, Saudi Arabia

Jazan Port, located on the Red Sea coast of Saudi Arabia, serves as a crucial gateway for
trade between Saudi Arabia and the rest of the world. Positioned near the Bab-el-Mandeb
strait, Jazan Port is strategically located to facilitate trade routes connecting Europe, Asia,
and Africa [45]. The port’s geographical location provides a natural advantage for serving
as a trans-shipment hub and a point of entry for goods destined for the Arabian Peninsula
and beyond. Jazan Port’s capacity is designed to support a wide array of maritime activities,
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including the handling of bulk cargo, general cargo, and containers. The port is equipped
with modern infrastructure, including deep-water berths capable of accommodating large
vessels, extensive storage facilities, and advanced cargo handling equipment [46]. Recent
expansions and investments have further enhanced its capabilities, positioning it as a key
player in the region’s maritime logistics network. The port’s annual traffic includes a diverse
mix of cargo types, reflecting its role in supporting the region’s economic development and
its integration into the global trade network [47].

3.2. Fujairah Port, United Arab Emirates

Fujairah Port is uniquely positioned outside the Strait of Hormuz, providing it with a
strategic advantage as a key refueling and logistics hub for vessels transiting the Indian
Ocean. This strategic location not only enhances its accessibility but also reduces the risk of
congestion and geopolitical disruptions. The port boasts a deep-water harbor, allowing it to
accommodate some of the largest ships in the world, including Very Large Crude Carriers
(VLCCs) and Ultra Large Container Vessels (ULCVs). The port features state-of-the-art
facilities such as oil storage terminals, container terminals, and bulk handling equipment. It
is one of the world’s largest oil storage and bunkering facilities, making it a critical hub for
energy logistics [48]. The annual throughput of Fujairah Port is significant, with millions
of tons of cargo and thousands of vessel movements recorded each year, underscoring its
pivotal role in global maritime trade.

Figure 1 depicts the locations of the studied ports, as well as the volume of sea
transportation associated with these ports in 2022.
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4. Methodology

This section attempts to comprehensively explain the new algorithms proposed in this
research. Statistical and econometric methods have been effective in predicting time series
but have limitations. This includes the fact that in such methods, the dependent form of
independent and dependent variables may be incorrectly specified if there is insufficient
knowledge. Furthermore, outlier data can lead to biased estimation of model parameters.
Furthermore, the majority of time series models are linear and thus unable to describe
nonlinear behaviors.
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4.1. CNNs

CNNs are designed to process data with a grid-like topology, such as images or time-
series data. They are particularly effective at capturing local patterns through the use
of convolutional layers. Each convolutional layer consists of a set of learnable filters (or
kernels) that are convolved with the input data to produce feature maps [49–51]. For an
input X of size n× n and a filter W of size f × f , the convolution operation is defined as
Equation (1).

(X ∗W)i,j = ∑ f
k=1 ∑ f

l=1 Xi+k−1,j+l−1Wk,l , (1)

where
(
X ∗W)i,j is the output at position (i, j). After convolution, an activation function σ

(commonly ReLU) is applied (Equation (2)).

Ai,j = σ
((

X ∗W)i,j + b
)
, (2)

where b is the bias term. Pooling reduces the spatial dimensions of the feature maps. The
most common pooling method is max pooling (Equation (3)).

Pi,j = max
k,l∈ pool

Ai+k,j+l , (3)

4.2. Bi-LSTM

Bi-LSTM networks are a type of RNN that can capture dependencies in both forward
and backward directions in the sequence data [52]. This is achieved by having two LSTM
layers: one processes the input sequence from start to end, and the other processes it from
end to start [53]. An LSTM cell consists of a forget gate ft, an input gate it, an output gate
ot, and a cell state Ct (Equations (4)–(9)).

ft = σ
(

W f · [ht−1, xt] + b f

)
; (4)

it = σ(Wi · [ht−1, xt] + bi); (5)

C̃t = tanh(WC · [ht−1, xt] + bC); (6)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t; (7)

ot = σ(Wo · [ht−1, xt] + bo); (8)

ht = ot ⊙ tanh(Ct), (9)

where xt is the input at time step tt, ht is the hidden state, σ is the sigmoid function, and ⊙
denotes element-wise multiplication.

In Bi-LSTM, the forward hidden state
→
ht and backward hidden state

←
ht are concatenated

as Equation (10).

ht =

[→
ht;
←
ht

]
, (10)

where
→
ht is computed from t = 1 to T, and

←
ht is computed from t = T to 1.

4.3. Proposed Model

The proposed methodology involves the development and implementation of a hybrid
deep-learning model for fuel demand estimation in maritime transportation. This model
integrates CNN Bi-LSTM networks and an attention mechanism to capture both spatial and
temporal dependencies in the data (Figure 2). The combination of CNN, LSTM, and the
attention mechanism was employed in this study to effectively capture both the spatial and
temporal dependencies inherent in the fuel consumption data. Each of these components
was selected for its ability to handle different aspects of the complex relationships present in
the input variables. CNNs were used to extract spatial features from vessel characteristics,
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environmental conditions, and navigation specifics [54]. It is common to use the features
of the CNN model in problems related to vehicle pathways [55–57]. The ship’s path
can be represented in three dimensions, longitude, latitude, and depth. These spatial
dimensions interact with fuel consumption patterns, and CNNs are particularly suited
for identifying and capturing such spatial dependencies. By using CNNs, the model
can effectively process the spatial information from the ship’s route and vessel-specific
parameters. The LSTM component was included to model the sequential nature of time-
series data, such as daily fuel consumption over time. LSTMs are well-suited for handling
temporal dependencies, ensuring that patterns in the data related to past fuel consumption
or environmental conditions are captured and utilized to predict future consumption. This
is crucial for a predictive task where historical fuel usage and conditions affect future
outcomes. The attention mechanism was integrated to enhance the model’s ability to focus
on the most critical features at each time step, ensuring that the most relevant parts of the
data are given priority in the prediction process. This mechanism addresses the challenge of
balancing multiple variables, such as vessel characteristics and varying weather conditions,
by allowing the model to dynamically adjust its focus, thereby improving accuracy.
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The fuel demand estimation problem can be formulated as a time-series prediction
task. Xt represents the input features at time step t, which include vessel characteristics,
weather conditions, sea currents, and route specifics. The objective is to predict the fuel
consumption yt at the same time step. The input data are represented as a sequence of
multivariate time-series data (Equation (11)). The input data include various factors that
influence fuel consumption:

Vessel Characteristics: type, size, weight, and engine specifications.
Weather Conditions: wind speed and temperature.
Sea states: wave height, current speed and direction.
Navigation Specifics: distance traveled, speed, and port stay durations.

X = {X1, X2, . . . , XT}, (11)
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where Xt ∈ Rn is an n-dimensional vector of input features at time step t. The CNN is
applied to capture spatial correlations in the input data. The output of the CNN layer is a
feature map F (Equation (12)).

F = CNN(X), (12)

where F ∈ RT×m, and m is the number of filters in the CNN layer. The feature map F is fed
into a Bi-LSTM to capture temporal dependencies (Equation (13)).

H = BiLSTM(F), (13)

where H ∈ RT×h, and h is the number of hidden units in the LSTM layer. An attention
mechanism is applied to focus on the most relevant features in H (Equation (14)).

αt =
exp(et)

∑T
i=1 exp(ei)

, (14)

where et is the attention score for time step t. The context vector C is then computed as
Equation (15).

C = ∑T
t=1 αtHt. (15)

The attention output ot combines the context vector ct, with the hidden state ht, as in
Equation (16) [58].

ot = tanh(Wc[ct; ht]). (16)

The context vector C is passed through a dense layer to produce the final fuel con-
sumption prediction (Equation (17)).

ŷ = Dense(C). (17)

The model is trained using backpropagation and optimized using the Adam optimizer,
which adapts the learning rate for each parameter. The loss function used is the Mean
Squared Error (MSE), defined as Equation (18).

MSE =
1
N ∑N

i=1 (yi − ŷi)
2 (18)

where N is the number of samples, yi is the actual fuel consumption, and ŷi is the predicted
fuel consumption. The main model is any network with the lowest MSE value. It is
important to remember that following the training of each network, you should also focus
on getting the network outputs to differ as little as possible from the intended outputs.

In this study, weather data from various stages of the ship’s route were utilized as
time series data. It should be noted that the weather data utilized in this study were not
limited to conditions at the port. This approach ensured that environmental influences
throughout the journey were considered in the fuel consumption estimation. Additionally,
the large volume of data was simplified by converting hourly time-series data into daily
averages. This step was taken to reduce computational complexity while maintaining the
integrity of the key variables. Similar simplification techniques have been employed in
previous studies, such as Yan et al. [36], and have proven effective in large-scale prediction
models. The data used for training should be sufficiently large to cover all aspects of the
problem domain. To build a deep learning model, the data were first separated into two
sets: training data and test data.

5. Results and Discussion

Figures 3 and 4 present histograms illustrating the distribution of key input variables
for the ports of Jazan and Fujairah, respectively. These figures provide critical insights into
the data characteristics essential for the deep-learning model. In Figure 3, the histogram
for vessel size at Jazan Port reveals a higher frequency of smaller vessels. This pattern
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suggests that the port predominantly accommodates vessels within a limited size range,
which directly affects fuel consumption patterns and underscores the need for tailored fuel
estimation models. The weather condition histograms, particularly wind speed, exhibit
a normal distribution, while temperature data reflects the typical regional climate. Such
climatic factors are crucial as they influence sea conditions and, subsequently, fuel efficiency.
The wave height histogram shows data concentrated around lower values, indicating
generally calm sea states that can enhance fuel efficiency and impact operational strategies.

In Figure 4, the vessel characteristics at Fujairah Port also show a concentration of
smaller vessels, with occasional outliers representing larger ships. The environmental con-
dition histograms for wind speed display a broader spread, capturing seasonal variations
and their implications on navigation and fuel requirements. Additionally, the navigation
specifics, such as distance traveled and vessel speed, exhibit a bimodal distribution. This
indicates two predominant operational patterns, likely due to differing shipping routes or
strategies, which must be considered for accurate fuel demand modeling.

The estimation process results are assessed daily and monthly to validate the suitability
of the suggested model for accurately estimating fuel requests from ships entering the
port. The findings indicate that the supply and demand of fuel consumption in ports can
be effectively managed so that the supply chain can progress toward productivity and
sustainability. The data used to assess the fuel demand of ships in the ports of Jazan and
Fujairah are for the years 2020 to 2023. As a result, the model’s output included 1459 daily
data and 48 monthly data on fuel consumption in the studied ports.
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Table 2 presents the specifications of the proposed CNN–bidirectional LSTM–attention
model and details of its training. The training parameters include various hyperparameters,
such as learning rate, batch size, number of epochs, and optimization algorithms. The
parameters and input details provided in the table offer a comprehensive overview of the
model configuration and dataset, ensuring methodological transparency and replicability.
As shown in Table 2, distinct activation functions were applied for the CNN and LSTM
components. ReLU was used for CNN layers, while tanh and sigmoid were used for
LSTM layers.

Table 2. Specifications and training parameters of the proposed model.

Parameter Value/Range

Learning Rate 0.001–0.01
Batch Size 32–128

Number of Epochs 50–200
Optimization Algorithm Adam, SGD, RMSprop

Activation Function (CNN) ReLU
Activation Function (LSTM) tanh, sigmoid

Loss Function MSE

The machine learning models in this study were developed and trained using the
TensorFlow framework, a widely recognized platform for building deep learning models.
TensorFlow’s capability to efficiently handle large datasets and complex neural network
architectures made it ideal for training and evaluating the CNN, LSTM, and attention-based
models. For the evaluation, the dataset was split into training and testing sets, with 70%
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of the data used for training 15% for testing and 15% for validation. Cross-validation was
performed to ensure that the model generalized well to unseen data and to minimize the
risk of overfitting.

Several machine learning frameworks were employed to train the CNN-Bi-LSTM-
attention model to determine the most efficient platform in terms of training time, model
convergence, and performance at the first step of the model development. As detailed
in Table 3, TensorFlow was found to be the most appropriate framework for this study.
The TensorFlow framework provided the shortest training time (42 h) and achieved model
convergence within 100 epochs. Furthermore, TensorFlow’s allows for faster training and
better scalability, making it the ideal choice for handling complex architectures like CNN,
LSTM, and the attention mechanism. Although PyTorch and Keras showed competitive
performance, their training times were slightly longer.

Table 3. Comparison of machine learning frameworks for training the CNN-Bi-LSTM-attention
model.

Framework Training Time (hours) Convergence (Epochs)

TensorFlow 42 100
PyTorch 48 120

Keras 45 100
Scikit-Learn 65 150

Theano 58 130

Table 4 shows the independence analysis of the input features used in the proposed
model. Ensuring the independence of input features is crucial so that the model does not
rely on redundant or highly correlated data, which can affect prediction performance and
accuracy. The analysis calculates correlation coefficients among features, with low values
indicating independence.

Table 4. Independence analysis of input features.

Input Feature

V
esselSize

V
esselW

eight

Engine
Specs

W
ind

Speed

Tem
perature

W
ave

H
eight

C
urrentSpeed

C
urrentD

irection

D
istance

Traveled

V
esselSpeed

Stay
in

PortD
urations

Vessel Size 1 0.45 0.5 0.13 0.18 0.09 0.22 0.05 0.33 0.27 0.15
Vessel Weight 0.45 1 0.42 0.2 0.23 0.12 0.29 0.1 0.37 0.31 0.18
Engine Specs 0.5 0.42 1 0.09 0.17 0.06 0.25 0.07 0.24 0.21 0.12
Wind Speed 0.13 0.2 0.09 1 0.55 0.43 0.5 0.33 0.28 0.3 0.2
Temperature 0.18 0.23 0.17 0.55 1 0.47 0.48 0.3 0.25 0.29 0.22
Wave Height 0.09 0.12 0.06 0.43 0.47 1 0.37 0.35 0.22 0.21 0.19

Current Speed 0.22 0.29 0.25 0.5 0.48 0.37 1 0.32 0.41 0.33 0.28
Current Direction 0.05 0.1 0.07 0.33 0.3 0.35 0.32 1 0.16 0.18 0.14
Distance Traveled 0.33 0.37 0.24 0.28 0.25 0.22 0.41 0.16 1 0.6 0.45

Vessel Speed 0.27 0.31 0.21 0.3 0.29 0.21 0.33 0.18 0.6 1 0.55
Stay in Port Durations 0.15 0.18 0.12 0.2 0.22 0.19 0.28 0.14 0.45 0.55 1

Figure 5 presents the model efficiency curves for Jazan Port and Fujairah Port, dis-
playing the loss function (MSE) against the number of epochs for training, testing, and
validation datasets. The curves illustrate the performance and convergence behavior of the
proposed model during the training process.



Water 2024, 16, 3325 13 of 21

Water 2024, 16, x FOR PEER REVIEW 13 of 22 
 

 

Table 4. Independence analysis of input features. 

Input Feature 

V
essel Size 

V
essel W

eight 

Engine Specs 

W
ind Speed 

Tem
perature 

W
ave H

eight 

C
urrent Speed 

C
urrent D

irection 

D
istance Traveled 

V
essel Speed 

Stay in Port D
urations 

Vessel Size 1 0.45 0.5 0.13 0.18 0.09 0.22 0.05 0.33 0.27 0.15 
Vessel Weight 0.45 1 0.42 0.2 0.23 0.12 0.29 0.1 0.37 0.31 0.18 
Engine Specs 0.5 0.42 1 0.09 0.17 0.06 0.25 0.07 0.24 0.21 0.12 
Wind Speed 0.13 0.2 0.09 1 0.55 0.43 0.5 0.33 0.28 0.3 0.2 
Temperature 0.18 0.23 0.17 0.55 1 0.47 0.48 0.3 0.25 0.29 0.22 
Wave Height 0.09 0.12 0.06 0.43 0.47 1 0.37 0.35 0.22 0.21 0.19 

Current Speed 0.22 0.29 0.25 0.5 0.48 0.37 1 0.32 0.41 0.33 0.28 
Current Direction 0.05 0.1 0.07 0.33 0.3 0.35 0.32 1 0.16 0.18 0.14 
Distance Traveled 0.33 0.37 0.24 0.28 0.25 0.22 0.41 0.16 1 0.6 0.45 

Vessel Speed 0.27 0.31 0.21 0.3 0.29 0.21 0.33 0.18 0.6 1 0.55 
Stay in Port Durations 0.15 0.18 0.12 0.2 0.22 0.19 0.28 0.14 0.45 0.55 1 

Figure 5 presents the model efficiency curves for Jazan Port and Fujairah Port, dis-
playing the loss function (MSE) against the number of epochs for training, testing, and 
validation datasets. The curves illustrate the performance and convergence behavior of 
the proposed model during the training process. 

 
Figure 5. Model efficiency curve for (a) Jazan Port and (b) Fujairah Port data. 

In the case of Jazan Port (Figure 5a), at the beginning of the training process, the loss 
function values for the training, testing, and validation datasets are relatively high. This 
indicates that the model initially has a significant error in predicting fuel consumption. 
As the number of epochs increases, a rapid decline in the loss function is observed for the 
training and validation datasets. This suggests that the model is effectively learning from 
the data and reducing the prediction error. 

The training loss and validation loss converge to very low values, indicating that the 
model generalizes well to unseen data. The validation loss remains close to the training 
loss throughout the epochs, demonstrating minimal overfitting. The test loss, however, 
remains relatively high compared to the training and validation losses. This discrepancy 
suggests that there may be some degree of overfitting to the training data or that the test 

Figure 5. Model efficiency curve for (a) Jazan Port and (b) Fujairah Port data.

In the case of Jazan Port (Figure 5a), at the beginning of the training process, the loss
function values for the training, testing, and validation datasets are relatively high. This
indicates that the model initially has a significant error in predicting fuel consumption.
As the number of epochs increases, a rapid decline in the loss function is observed for the
training and validation datasets. This suggests that the model is effectively learning from
the data and reducing the prediction error.

The training loss and validation loss converge to very low values, indicating that the
model generalizes well to unseen data. The validation loss remains close to the training
loss throughout the epochs, demonstrating minimal overfitting. The test loss, however,
remains relatively high compared to the training and validation losses. This discrepancy
suggests that there may be some degree of overfitting to the training data or that the
test dataset contains more variability or noise that the model did not capture effectively
during training.

For Fujairah Port (Figure 5b), like the Jazan Port analysis, the initial loss values for the
training, test, and validation datasets are high, reflecting initial prediction errors. The loss
function for the training and validation datasets decreases rapidly as the number of epochs
increases, indicating effective learning and reduction of prediction errors.

The training and validation losses converge to 10−12, suggesting excellent generaliza-
tion and minimal overfitting. The model performs exceptionally well on both the training
and validation datasets. The test loss also shows a significant reduction, aligning closely
with the training and validation losses after approximately 100 epochs. This indicates that
the model for Fujairah Port achieves better generalization and lower overfitting compared
with the Jazan Port model.

The efficiency curves indicate that the proposed model can effectively learn and
minimize the loss function for both ports. The training and validation losses converge
to very low values, demonstrating that the model generalizes effectively to unseen data.
However, the higher test loss for Jazan Port suggests potential overfitting or data vari-
ability issues. Conversely, the model for Fujairah Port shows a more consistent perfor-
mance across training, validation, and test datasets, highlighting better robustness and
generalization capabilities.

Figures 6 and 7 compare the daily fuel demand forecast results from Jazan and Fujairah
ports. Figure 6a illustrates the daily fuel consumption comparison between real data and
the predicted results from the proposed Jazan Port, Saudi Arabia model. It can be observed
that the predicted data generally follow the trend of the real data, indicating that the
model is capable of capturing the overall pattern of fuel consumption. However, there
are noticeable discrepancies at various points, which suggest areas where the model’s
predictive accuracy could be improved. Figure 6b displays the error evaluation of the
predicted results in comparison to the real data. The error is presented as a percentage,
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with values fluctuating between −20% and 30%. This variability indicates the degree of
deviation between the predicted and actual fuel consumption values. The presence of
both positive and negative errors suggests that the model sometimes overestimates and
sometimes underestimates fuel consumption.
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Figure 7a depicts the daily fuel consumption comparison between real data and the
predicted results from the proposed model for Fujairah Port, United Arab Emirates. The
alignment between the real and predicted data suggests that the model performs well in
capturing the general trend of fuel consumption. Figure 7b presents the error evaluation
of the predicted results compared to the real data for Fujairah Port. The error percentages
range between −20% and 20%, demonstrating both underestimation and overestimation
by the model. The spread of errors indicates variability in the model’s performance, which
might be influenced by factors such as differences in operational practices that were not
fully integrated into the model.

The analysis of both figures shows that while the proposed model is effective in pre-
dicting the general trend of fuel consumption, there are areas where accuracy could be
improved. The error evaluations highlight the need for further optimization and incorpora-
tion of additional influencing factors to enhance the model’s predictive capabilities.

Figures 8 and 9 show the scatter plot of the monthly forecast of fuel demand in the
studied ports. Figure 8a illustrates the comparison between the predicted results from
the proposed model and the real data for monthly fuel consumption at Jazan Port, Saudi
Arabia. It is observed that the predicted data closely follow the trend of the real data, with
slight deviations at several data points. The model demonstrates a robust ability to replicate
the cyclic nature of the actual fuel consumption patterns, indicating the effectiveness of
the CNN Bi-LSTM networks combined with the attention mechanism in forecasting fuel
demand accurately.
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Figure 8. A comparison between the predicted result from the proposed model and real data:
(a) monthly fuel consumption and (b) Error evaluation in Jazan Port, Saudi Arabia.

Figure 8b presents the error evaluation, expressed as a percentage, between the pre-
dicted and actual fuel consumption data. The error oscillates around zero, with peaks
and troughs indicating periods of overestimation and underestimation by the model. The
error magnitude generally remains within a ±10% range, illustrating the model’s reliability
in maintaining a low prediction error. These findings highlight the proposed model’s
proficiency in minimizing discrepancies and ensuring high accuracy in fuel consumption
prediction for Jazan Port.
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Figure 9a depicts the comparison between the predicted results from the proposed
model and the real data for monthly fuel consumption at Fujairah Port, United Arab
Emirates. The model effectively predicts the peaks and troughs observed in the actual
data, demonstrating its capability to generalize well across different ports with varying
consumption behaviors. This alignment underscores the robustness and adaptability of the
CNN Bi-LSTM networks and attention mechanism in accurately forecasting fuel demands
in diverse maritime environments.
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The error evaluation for Fujairah Port, shown in Figure 9b, indicates the percentage
error between the predicted and actual fuel consumption. The error curve oscillates around
the zero line, with the error magnitude mostly contained within a ±5% range. This
consistent performance in error minimization reflects the model’s accuracy and reliability
in different operational contexts.

The analyses of Figures 8 and 9 demonstrate that the proposed CNN Bi-LSTM net-
works, augmented with an attention mechanism, provide accurate and reliable predictions
of fuel consumption in maritime transportation. The low error margins and close alignment
with real data underscore the model’s potential to significantly contribute to sustainable
development and environmental impact mitigation in the maritime industry.

Figures 10 and 11 show the scatter plot of the daily and monthly prediction of fuel
demand in the studied ports.

Regarding Figures 6 and 7, while the error margins approach ±10%, such errors are
to be expected given the inherent complexity of predicting fuel consumption, which is
influenced by a range of dynamic factors including vessel characteristics, weather condi-
tions, and operational specifics. These results are consistent with similar studies in the
field, where machine learning models have reported comparable errors [59]. Despite the
observed error, the model effectively captures the overall trends and fluctuations in fuel
consumption, and its predictive capability remains robust. As shown in Figures 8 and 9,
the error percentage decreases on different time scales, offering further insights into the
model’s performance. Additionally, the model’s ability to accurately capture peak points
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in both daily and monthly time scales demonstrates its utility as a forecasting tool for
port management.
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Table 5 provides a comparison of MSE values for different models used for fuel
consumption prediction in maritime transportation. Each model’s performance is evaluated
based on its MSE, where a lower MSE indicates a better predictive accuracy.

Table 5. Proposed model performance comparison.

Model MSE Reference/Description

ANN 0.0274 [60]
LSTM 0.0240 [59]
SVR 0.0264 [61]

Bi-LSTM with attention 0.0204 [21]
Proposed model 0.0199 Daily scale
Proposed model 0.0213 Monthly scale

The ANN model shows a MSE of 0.0274, indicating it performs relatively well in
predicting fuel consumption. The LSTM model demonstrates a slightly lower MSE of 0.024
compared to the ANN model, suggesting better performance. This is expected as LSTM
networks are more capable of handling sequential data and temporal dependencies, which
are crucial in maritime fuel consumption prediction. The Support Vector Regression (SVR)
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model has an MSE of 0.0264, which is lower than the ANN but higher than the LSTM
model. This indicates that while SVR is effective, it is not as proficient as LSTM in capturing
the intricacies of the data. The Bi-LSTM with attention model shows the lowest MSE of
0.0204 among the models listed, highlighting its superior performance. The addition of
the attention mechanism allows the model to focus on the most relevant parts of the input
sequence, thereby improving prediction accuracy.

The proposed model has an MSE of 0.0199 for the daily scale, which is significantly
higher than the other models. Further investigation and tuning would be required
to enhance the performance of the proposed model and make it competitive with the
established methods.

6. Conclusions

An innovative deep-learning approach for estimating fuel demand in maritime trans-
portation was introduced, utilizing a CNN–bidirectional LSTM–attention model. It was
demonstrated that this model significantly enhances prediction accuracy over traditional
methods by capturing complex, nonlinear interactions among variables such as vessel
characteristics, weather conditions, and sea states.

The application of this model to the ports of Jazan and Fujairah resulted in a no-
table mean square error reduction to 0.0199 for daily predictions, indicating a substantial
improvement in accuracy. This enhanced precision allows for more reliable fuel consump-
tion optimization, contributing to potential operational cost reductions and minimized
environmental impacts.

The findings demonstrate that the CNN–bidirectional LSTM–attention model effec-
tively enhances the accuracy of fuel demand estimation in maritime transportation. This
model overcomes the limitations of traditional methods by capturing the complex and
nonlinear interactions among various influencing factors. By effectively integrating spatial
and temporal features, the model’s robustness and adaptability were underscored, support-
ing sustainable development in maritime operations. The ability to accurately predict fuel
demand can facilitate better voyage planning and regulatory compliance, aligning with
global efforts to reduce greenhouse gas emissions.

Furthermore, the model’s daily and monthly scale analysis provides comprehensive
insights into fuel consumption patterns, supporting more informed decision-making and
optimization in maritime operations. Despite the promising results of this study, several
limitations should be considered. First, the model’s reliance on historical data may limit its
ability to adapt to real-time variations in fuel consumption due to unpredictable environ-
mental or operational changes. The availability and quality of high-resolution, real-time
data could impact the model’s generalizability. Additionally, the complex architecture
of the CNN-Bi-LSTM-attention model requires significant computational resources, po-
tentially limiting its practical implementation in resource-constrained settings. Moreover,
although the model includes factors like vessel characteristics and weather conditions,
certain external influences, such as fuel price fluctuations, regulatory changes, and specific
operational practices at ports, are not integrated, which may affect prediction accuracy.
The study’s focus on Jazan and Fujairah ports also means the findings may not directly
apply to other ports with differing operational environments or climate conditions. Lastly,
the interpretability of the deep-learning model remains a challenge, as its hybrid structure
may be viewed as a black box, making it difficult for industry practitioners to understand
how individual factors influence predictions. Future work could focus on addressing these
limitations by incorporating more diverse data sources, refining model interpretability, and
expanding the study’s scope to other ports.
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