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Abstract

We propose a stochastic HCV model with protection awareness and latency-acute-chronic phases in this study.
First of all, we show that the stochastic HCV model admits a unique global positive solution for any given positive
initial values. Then, we verify that HCV model has a unique stationary distribution under the sufficient criterion
Rs

0 > 1, which indicates that HCV transmission undergoes the persistence in the long term. Furthermore, we
derive the sufficient conditions for HCV extinction under the condition Re

0 < 1. As a consequence, we derive the
relationships among the stochastic persistence index Rs

0, the stochastic extinction index Re
0 and the threshold (the

basic reproduction number R0) of the model without fluctuations. The condition R0 > Rs
0 > 1 reveals that the

existence of the white noises triggers the less stochastic persistence index. While, the condition R0 < Re
0 < 1

reveals that, when the intensities of the white noises are controlled, the value Re
0 triggers the stochastic extinction.
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1. Introduction

Hepatitis C (HCV), caused by the hepatitis C virus, is an inflammation of the liver. The symptoms of HCV
range from moderate to severe and include fever, fatigue, loss of appetite, nausea, vomiting, abdominal pain,
dark urine and yellowing of the skin or eyes (jaundice) [1]. Although the deterministic models have been widely
used, they fail to describe the uncertainties that exist in the real world. Within the recent contributions, some
studies have introduced stochastic fluctuations into their models, including parameter fluctuations [2, 3, 4, 5, 6] and
environmental fluctuations [7, 8, 9, 10, 11, 12]. Therein, a noteworthy recent contribution was the work by Zhai
et al. [9], who focused on the susceptible population with protection awareness in a stochastic model and found
that detailed publicity was important for controlling the infection scale of HIV/AIDS. In the population level, the
recent contributions have explored HCV transmission dynamics with stochastic fluctuations. Alnafisah et al. [13]
conducted a stochastic model of HCV transmission across diverse viral genomes and concluded that smaller white
noise ensured HCV persistence, while the larger white noises led to its extinction. It was found by Rajasekar et
al. [14] that the persistence and extinction of HCV depended on the fluctuations in some key parameters of the
chronically infected population. Later, Qi et al. [15] took the latent period and nonlinear incidence rates into
account, and proposed an improved HCV stochastic model, motivating by Cui’s model [16].

In this study, we are motivated by the transmission mechanisms of SACTR models in [16, 17], the role of
the exposed population during the HCV spread in [15], the protection awareness of the susceptible population in
[9], and the environmental fluctuations in [7, 8], we now propose a new HCV transmission model with protection
awareness in the environmental fluctuations. Next, we assume that the total population of HCV is separated into
eight compartments: S u, the susceptible population without protection awareness; S a, the susceptible population
with protection awareness; E, the number of the exposed population; A and C, the numbers of the actively infected
population and the chronically infected population; T , the number of treated population; R1 and R2, the numbers
of self-cured population and cured population respectively. The equations for a new HCV transmission model with
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protection awareness in the environmental fluctuations are written as follows:

dS u(t) =
[
Λ − βeS u(t)E(t) − βaS u(t)A(t) − βcS u(t)C(t) − λS u(t) − µS u(t)

]
dt + σ1S u(t)dB1(t),

dS a(t) =
[
λS u(t) − β(E, A,C)S a(t) − µS a(t)

]
dt + σ2S a(t)dB2(t),

dE(t) =
[
β(E, A,C)S a(t) + (βeE(t) + +βaA(t) + βcC)S u(t) − νE(t) − ζE(t) − µE(t)

]
dt + σ3E(t)dB3(t),

dA(t) =
[
ζE(t) − δA(t) − µA(t)

]
dt + σ4A(t)dB4(t),

dC(t) =
[
αδA(t) − εC(t) − ηC(t) − µC(t)

]
dt + σ5C(t)dB5(t),

dT (t) =
[
εC(t) − γT (t) − µT (t)

]
dt + σ6T (t)dB6(t),

dR1(t) =
[
νE(t) + (1 − α)δA(t) − µR1(t)

]
dt + σ7R1(t)dB7(t),

dR2(t) =
[
γT (t) − µR2(t)

]
dt + σ8R2(t)dB8(t),

(1)

with β(E, A,C) = (1 − ke)βeE(t) − (1 − ka)βaA(t) − (1 − kc)βcC(t). Here, Λ is the constant recruitment rate;
βi (i = e, a, c) are the contact rates of HCV infected populations (exposed population, acutely infected population,
and chronically infected population), respectively; λ is the conversion rate from S u to S a through education and
publicity; ki (i = e, a, c) are the protection efficiencies of S a for three HCV infected populations; ν is the rate
of self-healing for exposed population; 1/ζ represents the average time removing out from E; 1/δ represents the
average time removing out from A; α is the transfer proportion from acutely infected population to chronically
infected population; ε is the transfer proportion from chronically infected population to treated population; η is
the induced-death rate of the chronically infected population; 1/γ denotes the average treatment time; µ is the
natural death rate of the total population. Meanwhile, the protection efficiencies ki of S a towards three HCV
infected populations are described as three distinct values, which improves the same protection efficiencies in
[9]. Let Bi(t) (i = 1, 2, 3, 4, 5, 6, 7, 8) be mutually independent standard Brownian motions defined on a complete
probability space

{
Ω,F ,

{
Ft

}
t⩾0
,P

}
with a filtration

{
Ft

}
t⩾0

satisfying the usual conditions (i.e., it is increasing and

right continuous, while F0 contains all P-null sets). Let ⟨x(t)⟩ = 1
t

∫ t
0 x(s)ds.

2. Positive global solution of model (1)

Theorem 1. Model (1) has a unique global positive solution Z(t) = (S u(t), S a(t), E(t), A(t),C(t),T (t),R1(t),R2(t))⊤ ∈
R8
+ initiated with Z(0) ∈ R8

+ for any t ≥ 0.
Proof. It is obvious to verify that model (1) satisfy the local Lipschitz condition. There is a unique local solution
Z(t) for t ∈ [0, τe) .Next, we will prove that the τe = ∞ holds almost surely. Let, n0 > 1 be a sufficiently large
number such that each component of Z(t) all lying in

[
1
n0
, n0

]
. For each integer n ⩾ n0, define the stopping time

τn = inf
{

t ∈ [0, τe) : min {Zi(t)} ≤
1
n

or max {Zi(t)} ≥ n
}

for i = 1, 2, 3, 4, 5, 6, 7, 8,

where inf ∅ = ∞. Obviously, τn is monotonically increasing as n → ∞.We denote τ∞ = lim
n→∞
τn. If we show that

τ∞ = ∞ holds almost surely, then the proof is complete. By contradiction, there exits a pair of constants M > 0
and ε ∈ (0, 1) , such that P {τn ≤ M} ≥ ε for n ⩾ n0. Now, we define a C2-function V1 : R8

+ → R+ for m ∈ R+ as
follows:

V1 = S u − m − m ln
S u

m
+ S a − m − m ln

S a

m
+ E − 1 − ln E + A − 1 − ln A

+C − 1 − ln C + T − 1 − ln T + R1 − 1 − ln R1 + R2 − 1 − ln R2,

by the Itô formula, we derive

LV1 ≤ Λ + (mβ + m(1 − k)β − µ) (E + A +C) + 2mµ + 6µ + mλ + ν + ζ + δ + ε + η + γ

+
1
2

(mσ2
1 + mσ2

2 + σ
2
3 + σ

2
4 + σ

2
5 + σ

2
6 + σ

2
7 + σ

2
8)

≤ Λ + 2mµ + 6µ + mλ + ν + ζ + δ + ε + η + γ +
1
2

(mσ2
1 + mσ2

2 + σ
2
3 + σ

2
4 + σ

2
5 + σ

2
6 + σ

2
7 + σ

2
8) := G,

where β = max {βe, βa, βc} , k = min{ke, ka, kc} and we let m = µ
β(2−k) , the remaining part of the proof follows the

approaches in [3, 9] and we omit them here.
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3. Stationary distribution

Theorem 2. Model (1) admits a unique stationary distribution, which has the ergodic property, if

Rs
0 = Rs−e

0 + Rs−a
0 + Rs−c

0 > 1,

holds, the expressions of Rs−e
0 ,Rs−a

0 ,Rs−c
0 are written as follows:

Rs−e
0 =

Λβe(µ + 1
2σ

2
2 + λ(1 − ke))

b1b2b3
,Rs−a

0 =
Λβaζ(µ + 1

2σ
2
2 + λ(1 − ka))

b1b2b3b4
,Rs−c

0 =
Λβcαδζ(µ + 1

2σ
2
2 + λ(1 − kc))

b1b2b3b4b5
,

with b1 = λ + µ +
1
2σ

2
1, b2 = µ +

1
2σ

2
2, b3 = ζ + ν + µ +

1
2σ

2
3, b4 = δ + µ +

1
2σ

2
4, b5 = ε + η + µ +

1
2σ

2
5.

Proof. The diffusion matrix of model (1) is re-organized as follows

A = diag{σ2
1S 2

u, σ
2
2S 2

a, σ
2
3E2, σ2

4A2, σ2
5C2, σ2

6T 2, σ2
7R2

1, σ
2
8R2

2},

we have that matrix A is positive definite. Now, we define a C2-function K such thatLK ≤ −1 for any Z(t) ∈ R8
+\D.

We find a C2-Lyapunov function K̃ : R8
+ → R+:

K̃ = FV2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + V10,

where

V2 = −(ln E + (c1 + c3 + c4 + c7 + c9 + c13) ln S u + (c2 + c6 + c12) ln S a + (c5 + c8 + c10 + c14) ln A

+(c11 + c15) ln C) +
Q3

ε + η + µ
C +

(
Q2 +

Q3αδ

ε + η + µ

) A
δ + µ

,

V3 = (S u + S a + E + A +C + T + R1 + R2)θ+1,V4 = − ln S u,V5 = − ln S a,V6 = − ln A,

V7 = − ln C,V8 = − ln T,V9 = − ln R1,V10 = − ln R2,

c1 =
Λβe

b2
1

, c2 =
Λλβe(1 − ke)

b1b2
2

, c3 =
Λλβe(1 − ke)

b2
1b2

, c4 =
Λβaζ

b2
1b4
, c5 =

Λβaζ

b1b2
4

, c6 =
Λλβaζ(1 − ka)

b1b2
2b4

,

c7 =
Λλβaζ(1 − ka)

b2
1b2b4

, c8 =
Λλβaζ(1 − ka)

b1b2b2
4

, c9 =
Λβcαδζ

b2
1b4b5

, c10 =
Λβcαδζ

b1b2
4b5
, c11 =

Λβcαδζ

b1b4b2
5

, c12 =
Λλβc(1 − kc)αδζ

b1b2
2b4b5

,

c13 =
Λλβc(1 − kc)αδζ

b2
1b2b4b5

, c14 =
Λλβc(1 − kc)αδζ

b1b2b2
4b5

, c15 =
Λλβc(1 − kc)αδζ

b1b2b4b2
5

.

Here, F > 0 is a sufficiently large positive constant satisfying −F
(
ν + ζ + µ +

1
2
σ2

3

)
(Rs

0 − 1) +G ≤ −2, with

G = P + λ + δ + ε + η + γ + 7µ +
1
2

(
σ2

1 + σ
2
2 + σ

2
4 + σ

2
5 + σ

2
6 + σ

2
7 + σ

2
8

)
+ e1 + e2,

P = sup
N∈R+

{
(θ + 1)

(
NθΛ − 1

2
M̃Nθ+1

)}
< ∞,

e1 = sup
A∈R+

{
−1

2
(θ + 1)M̃Aθ+1 + (2 − ka)βaA

}
, e2 = sup

C∈R+

{
−1

2
(θ + 1)M̃Cθ+1 + (2 − kc)βcC

}
,

e3 = sup
E∈R+

{
−1

2
(θ + 1)M̃Eθ+1 + FQ4E + (2 − ke)βeE

}
, e4 = sup

E∈R+

{
−1

4
(θ + 1)M̃Eθ+1 + FQ4E + (2 − ke)βeE

}
,

and θ > 0 is a sufficiently small positive constant satisfying

M̃ = µ − θ
2

max{σ2
i } > 0 for i = 1, 2, 3, 4, 5, 6, 7, 8.

Obviously, K̃ is a continuous function and takes minimum at the point Z. We define a non-negative C2-function

K = K̃ − K̃(Z).
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Applying the Itô formula on V2 :

LV2 =

(
− βeS u − c1

Λ

S u

)
+ c1b1 +

(
− βe(1 − ke)S a − c2λ

S u

S a
− c3
Λ

S u

)
+ c2b2 + c3b1 +

(
− βa

S uA
E
− c4
Λ

S u
− c5ζ

E
A

)
+c4b1 + c5b4 +

(
− βa(1 − ka)

S aA
E
− c6λ

S u

S a
− c7
Λ

S u
− c8ζ

E
A

)
+ c6b2 + c7b1 + c8b4

+

(
− βc

S uC
E
− c9
Λ

S u
− c10ζ

E
A
− c11αδ

A
C

)
+ c9b1 + c10b4 + c11b5 +

(
− βc(1 − kc)

S aC
E
− c12λ

S u

S a
− c13

Λ

S u

−c14ζ
E
A
− c15αδ

A
C

)
+ c12b2 + c13b1 + c14b4 + c15b5 + b3 + QE

≤ −2(c1Λβe)
1
2 + c1b1 − 3(c2c3Λλβe(1 − ke))

1
3 + c2b2 + c3b1 − 3(c4c5Λζβa)

1
3 + c4b1 + c5b4

−4(c6c7c8Λλζβa(1 − ka))
1
4 + c6b2 + c7b1 + c8b4 − 4(c9c10c11Λαδζβc)

1
4 + c9b1 + c10b4 + c11b5

−5(c12c13c14c15Λαδζβc(1 − kc))
1
5 + c12b2 + c13b1 + c14b4 + c15b5 + b3 + QE

= −b3(Rs−e
0 + Rs−a

0 + Rs−c
0 − 1) + QE,

where
Qi = (c1 + c2(1 − ki) + c3 + c4 + c6(1 − ki) + c7 + c9 + c12(1 − ki) + c13) βi for i = E, A,C,

Q = QE +

(
QA +

QCαδ

ε + η + µ

)
ζ

δ + µ
.

Similarly, we obtain that

LK ≤ −Fb3(Rs
0 − 1) + (FQ + (2 − ke)βe)E + λ + δ + ε + η + γ + 7µ +

1
2

(σ2
1 + σ

2
2 + σ

2
4 + σ

2
5 + σ

2
6 + σ

2
7 + σ

2
8)

+P − 1
2

(θ + 1) M̃(S θ+1
u + S θ+1

a + Eθ+1 + Aθ+1 +Cθ+1 + T θ+1 + Rθ+1
1 + Rθ+1

2 ) − Λ
S u
+ βaA + βcC

−λS u

S a
+ (1 − ka)βaA + (1 − kc)βcC − ζ

E
A
− αδA

C
− εC

T
− (1 − α) δ

A
R1
− ν E

R1
− γ T

R2
,

(2)
Now we construct a bounded set D as follows:

D =
{
ε1 ≤ S u ≤

1
ε1
, ε2

1 ≤ S a ≤
1
ε2

1

, ε1 ≤ E ≤ 1
ε1
, ε2

1 ≤ A ≤ 1
ε2

1

,

ε3
1 ≤ C ≤ 1

ε3
1

, ε4
1 ≤ T ≤ 1

ε4
1

, ε3
1 ≤ R1 ≤

1
ε3

1

, ε5
1 ≤ R2 ≤

1
ε5

1

}
,

where ε1 is a sufficiently small constant satisfying the following conditions:

−H
ε1
+ e3 +G ≤ −1 with H = min{Λ, λ, ζ, αδ, ε, (1 − α)δ + ν, γ}, (3)

−F
(
ζ + k + µ +

1
2
σ2

3

)
(Rs

0 − 1) + (FQ4 + βe + (1 − k)βe)ε1 +G ≤ −1, (4)

−1
2

(θ + 1)M̃
1

εi(θ+1)
1

+ e3 +G ≤ −1 for i = 1, 2, 3, 4, 5, (5)

−1
4

(θ + 1)M̃
1
εθ+1

1

+ e4 +G ≤ −1. (6)

Next, we define sixteen bounded subregions to prove the assertion LK ≤ −1 as follows:

D1 =
{
Z(t) ∈ R8

+, 0 < S u < ε1

}
, D2 =

{
Z(t) ∈ R8

+, 0 < S a < ε
2
1, S u > ε1

}
,D3 =

{
Z(t) ∈ R8

+, 0 < E < ε1

}
,

D4 =
{
Z(t) ∈ R8

+, 0 < A < ε2
1, E > ε1

}
,D5 =

{
Z(t) ∈ R8

+, 0 < C < ε3
1, A > ε2

1

}
,D6 =

{
Z(t) ∈ R8

+, 0 < T < ε4
1,C > ε

3
1

}
,

D7 =
{
Z(t) ∈ R8

+, 0 < R1 < ε
3
1, E > ε1, A > ε2

1,
}
,D8 =

{
Z(t) ∈ R8

+, 0 < R2 < ε
5
1,T > ε

4
1

}
, D9 =

{
Z(t) ∈ R8

+, S u >
1
ε1

}
,

D10 =

{
Z(t) ∈ R8

+, S a >
1
ε2

1

}
,D11 =

{
Z(t) ∈ R8

+, E >
1
ε1

}
, D12 =

{
Z(t) ∈ R8

+, A >
1
ε2

1

}
,D13 =

{
Z(t) ∈ R8

+,C >
1
ε3

1

}
,

D14 =

{
Z(t) ∈ R8

+,T >
1
ε4

1

}
,D15 =

{
Z(t) ∈ R8

+,R1 >
1
ε3

1

}
, D16 =

{
Z(t) ∈ R8

+,R2 >
1
ε5

1

}
.
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Case 1. When Z(t) ∈ D1,D2,D4,D5,D6,D7,D8 by (2), (3), we obtain that LK ≤ −1.
Case 2. When Z(t) ∈ D3, by (2), (4), we derive that LK ≤ −1.
Case 3. When Z(t) ∈ D9,D10,D12,D13,D14,D15,D16 by (2), (5), one finds that LK ≤ −1.
Case 4. When Z(t) ∈ D11 by (2), (6), one can derive that LK ≤ −1.

Remark 1. It is easy to check that model (1) without white noises admits the basic reproduction number R0. Let
σi = 0 (i = 1, 2, 3, 4, 5, 6, 7, 8). Then,

Rs
0 = R0 =

Λβe(µ + λ(1 − ke))
(λ + µ)µ(ζ + ν + µ)

+
Λβaζ(µ + λ(1 − ka))

(λ + µ)µ(ζ + ν + µ)(δ + µ)
+

Λβcαδζ(µ + λ(1 − kc))
(λ + µ)µ(ζ + ν + µ)(δ + µ)(ε + η + µ)

.

4. Extinction

Theorem 3. For any initial value Z(0) ∈ R8
+, if

Re
0 = (βe + βa + βc)

(
Λ

λ + µ
+

(1 − k)λΛ
µ(λ + µ)

)(
σ̌

3
+ µ

)−1

< 1 and max{σ2
i } < 2µ for i = 1, 2, 3, 4, 5, 6, 7, 8

are valid, then HCV undergoes the extinction with probability one, and the solution of model (1) has the following
property:

lim
t→∞

E(t) = 0, lim
t→∞

A(t) = 0, lim
t→∞

C(t) = 0, lim
t→∞

T (t) = 0, lim
t→∞

R1(t) = 0, lim
t→∞

R2(t) = 0 a.s..

Proof. Integrating the first and second equations of model (1) from 0 to t, and then divided by t, we give

lim
t→∞
⟨S u(t)⟩ ≤ Λ

λ + µ
, lim

t→∞
⟨S a(t)⟩ ≤ λΛ

µ(λ + µ)
a.s..

We continue the proof using W = E + A +C, by the generalized Itô formula on W, we obtain

L ln W =
1
W

(βeE(S u + (1 − ke)S a) + βaA(S u + (1 − ka)S a) + βcC(S u + (1 − kc)S a)

−νE − (1 − α)δA − εC − ηC − µW) − 1
2W2 (σ2

3E2 + σ2
4A2 + σ2

5C2)

≤ (βe + βa + βc)(S u + (1 − k)S a) − µ − 1
W2

(
νE2 + (1 − α)δA2 + (ε + η)C2 +

σ2
3

2
E2 +

σ2
4

2
A2 +

σ2
5

2
C2

)
≤ (βe + βa + βc)(S u + (1 − k)S a) − µ − σ̌

3
,

where k = min{ke, ka, kc}, σ̌ = min
{
ν +

σ2
3

2 , (1 − α)δ + σ
2
4

2 , ε + η +
σ2

5
2
}
, therefore, we have

1
t

(ln W(t) − ln W(0)) ≤ (βe + βa + βc)[ ⟨S u(t)⟩ + (1 − k)⟨S a(t)⟩ ] − µ − σ̌
3
+

M1

t
+

M2

t
+

M3

t
,

an application of strong law of large numbers for local martingale [18], we derive

lim
t→∞

Mi(t)
t
= 0 for i = 1, 2, 3 a.s.,

where M1 = σ3
∫ t

0
E(s)
W(s) dB3(s),M2 = σ4

∫ t
0

A(s)
W(s) dB4(s),M3 = σ5

∫ t
0

C(s)
W(s) dB5(s). Taking the upper limit, by Re

0 < 1,
we gain

lim sup
t→∞

ln W(t)
t
≤ (βe + βa + βc)

(
Λ

λ + µ
+ (1 − k)

λΛ

µ(λ + µ)

)
− µ − σ̌

3
=

(
Re

0 − 1
) (
µ +

1
3
σ̌

)
< 0 a.s..

Hence,
lim
t→∞

E(t) = 0, lim
t→∞

A(t) = 0, lim
t→∞

C(t) = 0 a.s..

Then, we also get
lim
t→∞

T (t) = 0, lim
t→∞

R1(t) = 0, lim
t→∞

R2(t) = 0 a.s..

Remark 2. In this study, we identify that the following relationships hold:

Re
0 > Rs

0, R0 > Rs
0.

Moreover, we have Re
0 > R0 when σ̌ < 3 min{ν, (1− α)δ, ε+ η} is valid. If R0 > Rs

0 > 1 holds, then model (1) has a
unique ergodic stationary distribution. If the intensity of white noise is enough large, then the value of Re

0 is below
one, further the extinction of HCV might occur.
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