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A B S T R A C T

Groundwater contamination poses significant challenges to public health and sustainable development in 
Malawi, where approximately 80 % of the population relies on groundwater sources for drinking water. This 
study investigates the presence and drivers of nitrate and E. coli contamination in groundwater used for drinking. 
Analysis was conducted on results from 3388 boreholes/tube wells for nitrate contamination and 2418 drinking 
water sources drawn from groundwater for E. coli contamination. Overall, 6.11 % and 57.2 % of water-points did 
not meet WHO guidelines for safe drinking water quality for nitrate and E. coli contamination, respectively. 
Through a mixed-method approach, utilizing generalised linear mixed models and random forest regression 
modelling, the study identifies factors relating to sanitation usage as critical drivers of both nitrate and E coli 
contamination. Pit-latrine usage was identified as a particularly important factor in contamination; accounting 
for pit latrine density specifically, rather than population density, resulted in better model prediction for both 
nitrate and high E. coli contamination indicating that consideration of the specific type of sanitation is important 
in predicting water quality. In addition, a stable isotope tracer analysis method to validate predictions and 
monitor nitrate in drinking water was piloted, identifying human waste as a likely source of nitrate 
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contamination. Overall, this study underscores the urgency of addressing sanitation-related contamination of 
drinking water sources to ensure access to safe drinking water in low-income settings.

1. Introduction

Groundwater is a critical resource, supplying safe and accessible 
drinking water for over 2 billion people internationally (Kundzewicz 
and Döll, 2009). Globally, 1.23 million deaths are attributed to unsafe 
water resources each year, with the burden of unsafe water twice as high 
in low-income countries (IHME, 2019). As a result, groundwater 
contamination poses an important concern for human health 
(Karunanidhi et al., 2021). Alongside human health repercussions, 
safeguarding groundwater quality is essential for environmental and 
ecosystem preservation (Li et al., 2021).

Contaminants are commonly categorised as deriving from natural or 
anthropogenic sources (Li et al., 2021). Anthropogenic sources of 
contamination, including agriculture and domestic wastewater (Li et al., 
2021), pose a particular concern as population growth, urbanisation, 
industrialisation, and agricultural intensification are resulting in 
increasing levels (Li et al., 2021). As contamination from anthropogenic 
sources continues to accelerate, protecting groundwater is becoming an 
ever-more pressing issue.

Nitrate is one contaminant of concern related to human activities. 
Whilst nitrate does naturally occur in the environment as part of the 
nitrogen cycle, anthropogenic sources, predominantly from agriculture 
and domestic wastewater but also from mining activity, are major causes 
of nitrate contamination in groundwater (Morrissy et al., 2021; Harper 
et al., 2017; Morin and Hutt, 2009). Alongside being an ecological 
contaminant of concern, particularly in contributing to eutrophication 
of water systems (Nyenje et al., 2010), high nitrate levels have been 
associated with health risks including increased infant methemoglobi
nemia ‘blue baby’ syndrome as well as some cancers (Puckett et al., 
2011; Rahman et al., 2021).

Emphasis is often placed on agricultural sources for nitrate 
contamination, with high nitrogen fertiliser application rates resulting 
in diffuse nitrate contamination of groundwater resources (Harper et al., 
2017; Wick et al., 2012). However, other sectors can be as significant on 
water contamination. An analysis of the sources of nitrate contamina
tion across Africa found that population density was a better indicator of 
groundwater nitrate contamination than fertiliser application on a 
continental level, with a lack of sanitation hypothesised to be the cause 
of elevated contamination in areas of high population density 
(Ouedraogo et al., 2019).The assessment of groundwater nitrate loads 
from human waste sources is thus essential in consideration of water 
contamination.

Alongside nitrate contamination, inadequate sanitation and domes
tic wastewater management has also been identified as a critical driver 
of microbial groundwater contamination (Back et al., 2018). A lack of 
sanitation infrastructure, resulting in open defecation, has been linked 
to contamination of groundwater used for drinking water in Asia and 
Africa (Kayembe et al., 2018; Okullo et al., 2017). However, poor 
sanitation can itself also cause groundwater contamination where 
wastewater is inappropriately discharged or leaked (Sridhar and Par
imalarenganayaki, 2024) or where there is direct contamination from 
the sanitation infrastructure itself. Pit-latrines provide one example of 
how sanitation can result in direct microbial groundwater contamina
tion. Serving as the primary source of sanitation for 1.8 billion people 
globally, pit-latrines are an integral component of sanitation interna
tionally (Gwenzi et al., 2023). However, unless safely managed, pit- 
latrines can result in groundwater contamination (Banks et al., 2007; 
Chidavaenzi et al., 2000; Dzwairo et al., 2006; Escamilla et al., 2013; 
Graham and Polizzotto, 2013; Gwenzi et al., 2023; Islam et al., 2016; 
Ndoziya et al., 2019; Tillett, 2013; Wright et al., 2013), a particular 
concern when they are used in contexts with a high reliance on 

groundwater sources of drinking water (Graham and Polizzotto, 2013).
As well as contributing anthropogenic \ contaminants to water sys

tems, human activities can also play a part in contamination pathways 
by influencing other components of the water cycle, such as climate- 
change related rainfall intensity (Adhikari and Nejadhashemi, 2016). 
In areas of high fertiliser application, heavy rainfall can result in 
groundwater contamination of nitrate through the leaching of nitrate 
from fertiliser (Bijay-Singh and Craswell, 2021). Heavy rainfall can also 
result in increased surface runoff, which may be contaminated with 
waste from pit latrines or open defecation, which can infiltrate boreholes 
and result in heightened microbial contamination (Aralu et al., 2022). In 
addition, the increased water table height following heavy rain can 
result in greater pit latrine effluent leaching into groundwater and 
contamination of boreholes (Rivett et al., 2022). Not only does this 
highlight the significance of a system's environmental context on 
anthropogenic contamination, but presents a potential growing chal
lenge due to increased extreme weather events under climate change. 
Building resilience to climatic extremes will require greater understanding of 
groundwater quality from human activities accounting for both sources of 
contamination and consequences of hydroclimatic extremes.

Malawi represents a particularly pertinent case study in the consid
eration of groundwater quality management with one of the lowest 
levels of access to safe drinking water globally (UNICEF and WHO, 
2024). Within Malawi, groundwater provides the main source of 
drinking water for almost 80 % of the population (NSO, 2021), making 
groundwater quality essential to providing safe drinking water provi
sion. Boreholes/tubewells provide the main points of access of drinking 
water and range from under 10 m to over 60 m deep, with most bore
holes 40-50 m deep (Kalin et al., 2019). Contamination is a major barrier 
to safe drinking water access; currently over 60 % of the population 
access drinking water from contaminated drinking water sources (NSO, 
2021). Poor quality water infrastructure worsens the contamination 
crisis; the infiltration of polluted surface run-off into boreholes is 
increased in damaged or poor-quality boreholes due to cracks in the 
concrete apron (Rivett et al., 2022). This is particularly concerning in 
Malawi due to high rates of borehole non-functionality and minimal 
borehole maintenance (Truslove et al., 2019, 2020; Kalin et al., 2019) 
placing water infrastructure itself at a greater risk of contamination.

The health consequences of groundwater contamination at drinking 
water sources are exacerbated by a low level of water treatment, which 
is practised by under 40 % of the population (NSO, 2021). Even where 
water treatment is conducted, it is largely through inefficient treatment 
processes such as bleach chlorination (Nielsen et al., 2022). This makes 
microbial contamination of groundwater sources likely to result in direct 
consumption of contaminated drinking water by the 60 % of the popu
lation accessing water from contaminated sources (NSO, 2021). As such, 
inadequate groundwater quality is undermining Malawi's aim to provide 
100 % of the population with clean water sources by 2030 (NPC, 2021).

The consequences of high levels of contamination of drinking water 
sources can be seen in the scale of waterborne disease challenges within 
Malawi, estimated to account for over half of the national disease 
burden (Chavula, 2021). Malawi's deadliest cholera outbreak on record 
occurred from 2022 to 2023 and was reported to be partially due to 
widespread drinking water contamination (Freeman et al., 2024). There 
have been growing concerns of faecal groundwater contamination from 
pit latrines as a factor in the high burden of waterborne disease 
(Pritchard et al., 2007, 2008). This is likely to worsen as, under current 
population growth scenarios, there is projected to be a three-fold in
crease in the number of water-points at high risk of pit latrine contam
ination due to proximity (Hinton et al., 2024b).

Yet despite the gross burden of groundwater contamination in 
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Malawi, no national level evaluation of the extent and sources of 
groundwater contaminants has been conducted. Previous studies 
exploring groundwater contamination in Malawi have been limited to 
sub-national scales (Rivett et al., 2022; Addison et al., 2020; Back et al., 
2018; Pritchard et al., 2007, 2008; Mussa and Kamoto, 2023; Dzinjala
mala et al., 2024; Mkandawire, 2008) and often do not empirically 
evaluate the sources of contamination (Pritchard et al., 2007, 2008; 
Mussa and Kamoto, 2023; Dzinjalamala et al., 2024; Mkandawire, 
2008). This limits current understanding on the extent, spatial distri
bution, and origins of contaminated groundwater, restricting appro
priate protection measures of groundwater. National level analysis of 
groundwater contamination is needed to develop a representative picture of 
the scale of challenge of groundwater contamination, studies that explore not 
only the level of sources but apply various methods to investigate likely 
sources will be critical in developing appropriate management measures 
(Kalin et al., 2022a).

Statistical models including Generalised Linear Mixed Modelling 
(GLMM) and Random Forest Regression (RF) can provide insight to the 
relationships between predictor variables and measured groundwater 
contamination. These models can be applied to enhance understanding 
of the sources of groundwater contamination (Ouedraogo et al., 2019) as 
well as predict areas likely to have high levels of contamination 
(Charulatha et al., 2017; He et al., 2022). Managing anthropogenic 
groundwater contamination requires both greater understanding of the 
sources of contamination as well as enhanced prediction of areas at risk 
of contamination requiring different statistical modelling techniques to 
achieve different goals. Both GLMM and RF models are particularly 
useful in their application to a broad range of data types and capacity to 
handle non-linear relationships (Liu, 2016; Louppe, 2014). GLMM 
models, alongside other linear regression models, have been used widely 
to explore sources of contamination of groundwater (Charulatha et al., 
2017; Nolan and Hitt, 2006). They have benefit in robustly exploring the 
relationship between a response variable and predictor variables 
particularly as GLMMs can account for random effects as well as fixed 
effects (Rabe-Hesketh and Skrondal, 2008; Muschelli et al., 2014). As 
such they have been widely used to explain patterns in data in multiple 
fields (Goldstein and de Valpine, 2022; Zhu et al., 2007). However, as 
with all linear regression models, GLMM models are held back by their 
limited capacity to handle collinearity of variables (Hendrickx and 
Nutricia, 2018). This is a common challenge when investigating 
anthropogenic sources where multiple variables, e.g. population density 
and sanitation usage, are highly correlated, reducing model efficiency 
and making them less useful for accurate prediction.

RF models provide another tool to analyse and predict contamination 
trends. They have high predictive performance power (Couronné et al., 
2018) particularly for spatial data (Hengl et al., 2018). The RF model 
functions as a combination of multiple decision trees with each tree 
applying a different subset of predictor variables to predict the response 
variable of the training dataset (Rokach and Maimon, 2015; Nath et al., 
2022). They are particularly useful for collinear variables (Louppe, 
2014). Whilst RFs indicate which predictor variables are most important 
in a specific model prediction (Ishwaran, 2007) variable importance 
must be interpreted with caution and cannot necessarily be used to 
indicate which are the most important predictor variables for the phe
nomena being studied (Louppe, 2014). As such, RFs have limited ca
pacity in analysis of sources of contamination but are valuable for 
efficient prediction. In recognition of their specific strengths and limi
tations, combinations of GLMM and RF models have been utilised to 
enhance analysis and prediction (Bernaisch, 2022) and have been 
applied to studies of groundwater contamination (Ouedraogo et al., 
2019; Charulatha et al., 2017; He et al., 2022; Nolan and Hitt, 2006).

Isotope hydrology is another commonly used method to evaluate 
groundwater contaminants and has been widely used for tracing sources 
of nitrate contamination which can be challenging to examine as they 
can be retained in groundwater for extended periods of time (Canter, 
1996; Kendall et al., 2007; Jung et al., 2020, Nikolenko et al., 2018). By 

analysing the relative abundance of nitrogen and oxygen isotopes, likely 
sources can be identified due to characteristic patterns of isotope 
abundance, developing ‘signatures’ of the source of contamination. 
Whilst this method is highly effective, the need for specialised analytical 
facilities, not normally available in low-income countries, often makes 
application of the method non-feasible. In addition, this method has 
limited capacity to identify whether sources are from animal manure or 
human faecal waste due to their similar isotopic signatures (Kendall 
et al., 2007). Applying mixed method analysis through the incorporation of 
statistical models alongside isotope hydrological analysis can enhance un
derstanding of the extent and sources of groundwater contamination, devel
oping understanding to enhance management approaches.

This study adopts a mixed method analysis, using both GLMM and RF 
models to explore national groundwater contamination from multiple 
anthropogenic sources; both exploring sources of contamination (using 
GLMM) and predicting areas at high risk of contamination (using RF). 
Both methods are applied to two examples of contamination that are of 
concern in Malawi, microbial contamination (E. coli groundwater 
contamination) and nutrient contamination (nitrate contamination). 
Analysis is further enhanced through a pilot isotope analysis study of the 
sources of high nitrate levels. Specifically, this work addresses the 
following research questions and objectives: (1) What are the primary 
sources of nitrate and microbial groundwater contamination in Malawi? 
(2) What areas are predicted to have highest nitrate and microbial 
contamination? (3) Evaluate the use of stable isotopes of nitrate as a tool 
for nitrate source evaluation and verification of the model results in 
Malawi. These inferences provide valuable insight into groundwater 
management, informing decision making on contamination sources as 
well as identifying areas of concern for contamination and guiding areas 
for future water quality testing.

2. Methodology

2.1. Context and study area

Malawi is a country in South-Eastern Africa which experiences a 
tropical-continental climate, with a wet season from November to April 
and a dry season from May to October (Kalin et al., 2022a,b) (Fig. 1). 
Malawi's water supplies are dominated by Lake Malawi, both in the 
proportion of the country's water resources contained in Lake Malawi 
and in narratives around national water security and water resource 
management. In contrast, despite providing 82 % of water abstracted for 
agricultural, domestic, and industrial purposes, groundwater is an often 
overlooked facet of water security in Malawi (Fraser et al., 2020). 
Alongside being the biggest source of water for abstraction, ground
water underpins much of surface water security with baseflow from 
groundwater central to maintaining river flows (Kelly et al., 2020). This 
is particularly true for the dry season where over 90 % of all river flow 
comes from groundwater discharge (Kelly et al., 2020). Agricultural 
intensification is impacting Malawi's land and water management. 
Currently, the majority (over 80 %) of the population are employed in 
rain-fed, subsistence farming (NPC, 2021), however, planned govern
mental economic and agricultural development involves increased irri
gation and fertiliser usage (MAIWD, 2018), placing growing pressure on 
water resources, notably groundwater.

Malawi is undergoing rapid demographic change with its current 
population of 21 million (World bank, 2024) anticipated to reach almost 
60 million by the end of the century (United Nations, 2024). Urbani
sation is also resulting in dramatic demographic shifts, with the 84 % of 
the population currently residing in rural areas anticipated to reduce to 
40 % by 2063 (NPC, 2021). Groundwater forms the main source of 
drinking water for 80 % of the population (Kalin et al., 2022a,b; NSO, 
2021) with water from boreholes/tubewells providing the main source 
of drinking water and used by 64 % of the population (NSO, 2021). 
Access to safely managed drinking water, defined as an ‘improved water 
source that is accessible on premises, available when needed, and free 
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from contamination’ (WHO and UNICEF, 2017) is low; only 18 % of 
Malawi's population meet international guidelines for a safely managed 
drinking water source (UNICEF and WHO, 2024). Contamination is one 
of the major barriers to access of safely managed drinking water access 
with over 60 % of the population's source of drinking water having 
measurable E. coli contamination (NSO, 2021).

2.2. Water quality data collection

2.2.1. Nitrate analysis
Groundwater quality samples for nitrate analysis were collected from 

3717 boreholes across Malawi. Samples were collected by Government 
of Malawi water laboratory staff through borehole construction con
tractors after drilling of a new borehole/tubewell. Information on 
borehole depth was not available for all boreholes but most water-points 
in Malawi have a depth between 40 and 50 m (Kalin et al., 2019). 
Samples were collected between 2000 and 2022, with most data 
collection from 2015 to 2022 due to an increased drilling effort. Data 
was provided by the Government of Malawi, Ministry of Water and 
Sanitation for this study. Out of the collected samples, 3388 were chosen 
for analysis after removing duplicate responses.

Water samples for nitrate analysis were collected in polyethylene 
bottles that were rinsed with distilled water, un-acidified, and stored at 
4 ◦C during transportation to the government water laboratory in 
Malawi. The water samples were filtered through 0.45 μm Whatman 
filters prior NO3-N analysis and measured against known laboratory 
standards. Before 2019, the HACH Chromotropic acid method was used 
with a HACH spectrophotometer. After 2019, samples were analysed 
using Ion Chromatography (Ion Analyzer—Model: IA-300). The NO3-N 
analysis was performed following the International Standard Methods 
(APHA et al., 2005), and the accuracy of the results was confirmed 
through a series of quality assurance and control procedures specified in 
the International Standard Methods (APHA et al., 2005). The threshold 
of 50 mg NO3

− /l was considered high nitrate according to the Malawi 
Standard (MS733:2005) for drinking water from boreholes and pro
tected shallow wells as well as the WHO guideline standards (MBS, 
2017; WHO, 2017).

2.2.2. E. coli analysis
Water quality E. coli levels were obtained from the Multiple Indicator 

Cluster Surveys (MICS); a nationally representative survey between 
December 2019–August 2020 of 26,882 households in 1111 clusters. 
This survey was conducted by the Government of Malawi National 
Statistical Office in collaboration with UNICEF (UNICEF, 1995). The 
survey sample was based on the 2018 Population and housing Census 
designed to provide representative clusters across the country. These 
surveys gathered household level information on a range of topics 
relevant to child, maternal, and family well-being. In addition to 
household survey responses, the MICs survey conducted water quality 
testing data at households' sources of drinking water, evaluating E. coli 
levels in household and source drinking water (Bain et al., 2021; NSO, 
2021). Water quality testing was conducted at 2810 waterpoints within 
the 1111 clusters nationally. Georeferenced water quality data was 
provided by the Malawi National Statistical Office, UNICEF Malawi, and 
Global MICs team. Following data cleaning, 2801 complete and unique 
datapoints were selected. In this work, we evaluate only water-points 
drawn from groundwater, including boreholes/tubewells, dug wells, 
and protected springs. In total, water quality assessments for 2418 
water-points drawn from groundwater were analysed.

E. coli water quality analysis followed a protocol outlined in the 2016 
MICS Water Quality Testing Manual (UNICEF, 2016). A 100 ml water 
sample was obtained at sources of drinking water reported to be used by 
households. Prior to collection from the source, water was flushed for 30 
s. Water samples were collected in sterilized ‘Whirl Pak Bags’, the water 
sample was subsequently filtered through a filter which was placed on 
an agar growth medium and incubated for 24 to 48 h and bacterial 
colony growth counted and recorded (UNICEF, 2016). The number of 
E. coli in a 100 ml sample of water was evaluated with values between 
0 and 100 E. coli recorded as the number of E. coli and values exceeding 
>100 E. coli classed listed as 101 E. coli/100 ml.

As values exceeding 100 E. coli were not quantified, for the purposes 
of this study, binary classifications of E. coli contamination of water- 
points were created with water-points classified as any E. coli contami
nation (>0 E. coli/100 ml) and cases of very high E. coli contamination 
(≥100 E. coli/100 ml). Whilst E. coli contamination indicators were 

Fig. 1. Study location of Malawi showing major cities and rivers. Water quality data from across the country is analysed. Figure was produced in QGIS with Stamen 
Terrain background (QGIS, 2024).
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available for both source and household drinking water, we consider 
only source contamination as household drinking water is also signifi
cantly influenced by post-abstraction behavioural patterns such as water 
collection and storage methods as well as the types of containers being 
used for collection (Wright et al., 2004) and as such are not represen
tative of groundwater contamination itself.

2.3. Water quality data visualisation

For data visualisation, binary contamination data of the presence of 
nitrate and E. coli contamination was rasterized to 10 km resolution 
using the rasterize() function within the raster package, R (Hijmans, 
2024). The percentage of surveys conducted within each cell that 
exceeded given thresholds of contamination were calculated and 
summarized.

2.4. Statistical model variable selection

A range of socioeconomic and biophysical ‘core’ variables were 
selected for analysis within statistical models of groundwater contami
nation. Variables were selected based on the variables analysed in 
published methods (Ouedraogo et al., 2019; He et al., 2022) or where 
the literature suggested that greater exploration into specific variables 
(e.g. sanitation infrastructure) was needed (Ouedraogo et al., 2019).

The selected variables are summarized in Supplementary Informa
tion Table 2. Summary plots of spatial data used are shown in Supple
mentary Information Figs. 2 and 3.

The spatial distribution of different types of sanitation was identified 
as an area of interest. The types of sanitary facility provision considered 
were pit-latrine use, flush toilet use, and open defecation (no facility) as 
these make up the majority of sanitary access (Hinton et al., 2023). 
National spatial data regarding the type of sanitation was only available 
for pit-latrine usage.

For flush latrine usage and open defecation, spatial sanitation use 
data was produced following the methodology outlined in (Hinton et al., 
2024b). A high resolution, 100 m, gridded population distribution of 
Malawi obtained from WorldPop population distribution (Worldpop, 
2024) was defined as rural or urban areas based on the urban fraction 
outlined in (Hurtt et al., 2011). The rural and urban population for each 
district was multiplied by the respective level of sanitary facility use (or 
open defecation) for rural and urban populations as outlined in the 
2015/16 DHS survey (NSO and ICF, 2017). Population density 
(Worldpop, 2024) and deprivation index (CIESIN, 2022) were also 
included as socioeconomic variables.

Another variable of interest was flooding extent. The 2019 Cyclone 
Idai flood was taken as a flooding event of interest as it was represen
tative of other flooding events observed and was close to when most 
analysed data was collected. Flooding data was generated as a binary 
raster of areas impacted by flooding in 2018–2019, corresponding to the 
years leading up to water quality survey sampling. The raster was 
created in QGIS (QGIS, 2024), creating a map of flooded areas as re
ported in flooding report survey data (DoDMA, 2019; Scottish Govern
ment, 2019) and informed by stakeholder engagement (personal 
communication). In addition to flooding, the overall level of precipita
tion, precipitation trend, was obtained from the RCMRD Geoportal 
(RCMRD, 2015b).

Individual livestock distribution data was available from the gridded 
Livestock of the World (GLW 3) database (Gilbert et al., 2018). Total 
livestock data was calculated by summing the quantity of sheep, cows, 
pigs, and goats as these are the major mammalian livestock cultivated in 
Malawi. Cropland data was obtained from the HarvestPortal Database 
(FAO/NASA, 2024) and spatial data for both fertiliser and manure 
application was also included (Potter et al., 2010, 2012). In addition, 
anthropogenic biome was included as a measure of ‘wildness’ (RCMRD, 
2015a).

Water sample specific information including the type of water source 

(e.g. dug well, borehole/tubewell, or protected spring) and the date of 
collection (month and year) was also included in model generation, this 
was only available for water-samples for E. coli contamination data and 
was not given for nitrate contamination data (which only evaluated 
boreholes/tubewells).

2.5. Multiple linear regression model construction

This study employed generalised linear mixed model (GLMM) 
structures to explore the relationship between response and predictor 
variables, accommodating noncontinuous as well as continuous vari
ables with both fixed and random effects (Liu, 2016; Rabe-Hesketh and 
Skrondal, 2008). Three models of contamination were developed using 
binary response variables, the response variables in the respective 
models were the presence of high nitrate, any E. coli presence, and high 
E. coli. In each model, the response variable was modelled as a binary 
variable of whether contamination passed given thresholds.

For NO3, the threshold for ‘high nitrate’ was 50 mg/l, with values at 
or exceeding this considered as high contamination according to na
tional and WHO guidelines (MBS, 2017; WHO, 2017). For E. coli 
contamination, two GLMM models were constructed. The first E. coli 
GLMM model considered the presence of any E. coli contamination, 
therefore exceeding WHO specifications of safe drinking water (UNICEF 
and WHO, 2024). The second model considered high E. coli contami
nation, exceeding 100 E. coli/100 ml and considered as a ‘very high’ risk 
(NSO, 2021). All GLMM models used logistic regression as they applied 
continuous and categorical variables to a binary predictor.

All models were produced using the feGLM function in the fixest 
package (Bergé et al., 2023) in R (R Core Team, 2023), as this enabled 
GLMM generation with and without fixed effects (Bergé, 2018). For NO3 
contamination, a GLMM model with no fixed effects was constructed 
with continuous and categorical predictor variables and a binary NO3 
response variable. For E coli contamination, consistent data was avail
able on the water source type and date of collection and were used as 
fixed effects. Within the E. coli contamination GLMM water source and 
date (year and month) were included as fixed effects. The number of 
levels for each fixed effect is summarized in the model structure in the 
Supplementary Information, Tables 9 and 12. Both E. coli contamination 
models therefore had a binary contaminant response variable with 
categorical and continuous predictor variables with fixed and random 
effects.

GLMM probabilistic assumptions of linearity, response distribution, 
independence and multicollinearity were confirmed using the R func
tions lm and the Variance Inflation Factor (VIF) (Chambers, 1992; R 
Core Team, 2023; Wilkinson and Rogers, 1973). Diagnostic plots and 
VIF factors are provided in Supplementary Information, Figs. 4–6 and 
Tables 4–6.

Where there was high multicollinearity between the predictor vari
ables, two GLMMs were generated for each contaminant model con
taining all variables without high multicollinearity as well as one of the 
identified variables with high multicollinearity. The model performance 
of the two GLMMs, each containing one of the highly collinear variables, 
was evaluated and the model with best overall performance, for each 
contaminant, is summarized within the results.

Data was subset into training and testing data, using 60 % training to 
40 % testing data. The GLMM model was applied to predict testing data 
outcomes using the R predict function (R Core Team, 2023), predicted 
contamination was compared to measured data and a confusion matrix 
produced. Metrics for model evaluation are summarized in Eqs. (1)–(4). 
Model performance metrics are accuracy (proportion of cases correctly 
categorised) (Eq. 1), precision (proportion of positive cases identified) 
(Eq. 2), sensitivity (proportion of predicted positives that were true 
positives) (Eq. 3), and specificity (proportion of negatives that were true 
negatives) (Eq. 4). Model fit was also evaluated using the McFadden 
pseudo R2 (McFadden, 1974) (Eq. 5), calculated within the feGLM 
function, fixest package (Bergé et al., 2023), R. For McFadden pseudo R2 
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values between 0.2 and 0.4 represent an ‘excellent fit’(McFadden, 
1977). 

Accuracy = (TP+TN)/(TP+TN+ FP+FN) (1) 

Precision = TP/(TP+ FP) (2) 

Sensitivity = TP/(TP+FN) (3) 

Specificity = TN/(TN+FP) (4) 

R2
McF = 1 − ln(LM)

/
ln(L0) (5) 

where TP is true positive (the number of cases correctly predicted as 
positive), TN is true negative (the number of cases correctly predicted as 
negative), FP is false positive (the number of cases incorrectly predicted 
as positive), and FN is false negative (the number of cases incorrectly 
predicted as negative). R2

McF is the McFadden pseudo R2, LM is the like
lihood of the fitted model and L0 is the likelihood of the null model.

For the models of NO3 contamination and high E. coli contamination 
presence, there was imbalance in the dataset with only a small per
centage of samples exceeding the given thresholds. To improve model 
development, the minority class was upsampled using the upsample() 
function under the caret package in R (Kuhn, 2008) to make class dis
tributions equal.

2.6. Random Forest model construction

For spatial prediction of areas of contamination, random forest 
modelling was applied using the package randomForest in R (Breiman, 
2001; Liaw and Wiener, 2002). The number of decision trees was set as 
500, considered to be an appropriate balance to limit overfitting. All 
given spatial predictor variables were included in the model for both 
NO3 and E. coli level. For NO3 contamination, a continuous response 
variable for NO3 was predicted, therefore a regression random forest 
model was generated. For E. coli contamination, two binary models of 
E. coli contamination were produced: presence of any E. coli contami
nation and E. coli contamination of 100 E. coli/100 ml and above. For the 
generation of these random forest models, unsupervised random forest 
models were produced.

Data was split into training and testing datasets, using 70 % for 
model training and 30 % for testing. Model performance was evaluated 
by calculating the Root Mean Square Error (RMSE), summarized in Eq. 
(6), and R2 coefficient for the continuous, regression model, of NO3, Eq. 
(7). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(yi − ŷ)2

√
√
√
√ (6) 

R2 = 1 −

∑
(yi − ŷ)2

∑
(yi − y)2 (7) 

where N is the number of data points, yi is the given value of y, ŷ is the 
predicted value of y, and y is the mean value of y.

For categorical model prediction of E. coli contamination, model 
performance was evaluated using a confusion matrix to calculate model 
accuracy, precision, sensitivity, and specificity (Eqs. 1–4). Feature 
importance was evaluated by calculating Shapley values of variables in 
the Random Forest Model, comparing model predictions with and 
without features being included, model simulations were iteratively run 
to give different feature orders. Shapley values were calculated using a 
randomly assigned 5 % subset of the data due their computationally 
intensive nature. The kernelshap() function, within the kernelshap 
package in R (Mayer et al., 2023), was used to calculate Shapley values. 
Shapley values were visualized as a beeswarm plot using the shapviz() 
and sv_importance() functions within the shapviz package, R (Mayer and 

Stando, 2024).
For visualisation of predicted contamination, the random forest 

models were applied to create a raster of predicted contamination. The 
NO3 model generated a predicted NO3 concentration raster for the 
average level value of NO3 contamination for a water-point within a 
given 10 km cell. For the E. coli models, the percent for waterpoints 
within a given 10 km cell that would exceed thresholds of E. coli was 
predicted. Predicted rasters were produced by applying the random 
forest model to a raster stack of all predictor variables using the predict() 
function under the raster package in R (Hijmans, 2024). Maps of pre
dicted contamination were produced in QGIS for visualisation (QGIS, 
2024).

2.7. Isotope analysis

A pilot study using nitrate isotope analysis was undertaken within 
the Linthipe river sub-catchment (Kalin et al., 2022b) in the central 
region of Malawi. The dominant aquifer type within the Linthipe sub- 
catchment is a colluvium overlying weathered and fractured basement 
(Kalin et al., 2022b) with extensive groundwater-surface water con
nections within the region. Pilot samples were collected as part of an 
International Atomic Energy Agency (IAEA) national project (MWL- 
7002 TC project). Targeted groundwater and surface water samples 
were collected at 15 locations suspected of high nitrate concentrations 
between May and June 2015 and shipped to the IAEA (Vienna) for 
analysis of δ15N and δ18O of NO3

− .
Water samples were collected in 60 ml HDPE bottles tapped tightly to 

prevent evaporation and exchange with atmospheric water vapor and 
stored in cool conditions (4 ◦C) during transportation and holding at the 
Isotope Hydrology Laboratory of the IAEA (Vienna, Austria). The δ15N- 
NO3

− and δ18O-NO3
− were measured using dual isotope approach and 

results were reported in per mil (‰) relative to atmospheric air (N2) and 
Vienna Standard Mean Ocean Water (VSMOW) standards for nitrogen 
and oxygen, respectively. International reference materials (IAEA-NO3

− , 
USGS34 and USGS35) were used for data calibration and instrumental 
monitoring. Analytical precision was less than ±0.2 ‰ for δ15N- NO3

− , 
and ±0.5 ‰ for δ18O-NO3

− , respectively.

3. Results

3.1. Spatial distribution of groundwater contaminants

Fig. 2 summarises the percent of water quality surveys conducted 
within 10 × 10 km grid cells which surpassed water quality thresholds. 
A map of surveying intensity is provided in the Supplementary Infor
mation, Fig. 2.

Of the 3388 complete water quality tests surveying NO3, 207 (6.11 
%) exceeded the WHO threshold of 50 mg/l (WHO, 2017) with an 
average NO3 level of 3.1 mg/l. There were 322 cases of contamination 
over 10 mg/l, exceeding historic Malawi Standards guidelines 
(Pullanikkatil et al., 2015; MBS, 2017), and 212 cases exceeding the 
current Malawi standards guidelines of 45 mg/l (Chidya et al., 2016; 
MBS, 3017). Overall, of the 2418 MICs water quality surveys, 1383 
(57.2 %) water-points had E. coli contamination surpassing WHO 
guidelines of 0 E. coli/100 ml (NSO, 2021) and. 361 (14.9 %) water- 
points had 100 or more E. coli/100 ml.

3.2. Multiple linear regression contamination model selection

There was high multicollinearity between population density and 
(pit) latrine density for all models. To meet the assumption of collin
earity, one of the variables with high multicollinearity (latrines and 
population) was removed. For NO3, there was also high multi
collinearity between the predictor variables flush toilet use and open 
defecation. To resolve this case, flush toilet use was removed, VIF values 
before and after the removal of flush toilet usage are shown in the 
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appendix. Flush toilet use did not have high multicollinearity in the 
E. coli contamination model and therefore was included. Following the 
removal of variables with high multi-collinearity, all VIF values were 
below 3 and met the assumption of collinearity (James et al., 2013). For 
each contamination model, models were produced for all variables 
excluding latrines and another model with all variables excluding pop
ulation. Model fit was evaluated and is summarized in Table 1. The 
model with the highest model accuracy was selected as the GLMM model 
used for further analysis.

For nitrate above 50 mg/l and high E. coli contamination (≥100 
E. coli/100 ml), the models including latrine density as a predictor 
variable had higher accuracy than the model including population 
density; nitrate dependent variable models had 70.92 % and 68.23 % 
accuracy where population and latrine density were dependent vari
ables respectively, models with high E. coli as the dependent variable 
had 80.97 % and 78.52 % accuracy for models with population and 
latrines as dependent variables respectively. For E. coli presence (>0 
E. coli/100 ml) the model with population density as a predictor variable 
resulted in higher accuracy (57.98 % accuracy) than the model with 
latrine density (56.02 % accuracy). All diagnostic plots and assumptions 
for the selected GLMM for each contaminant are provided in the Sup
plementary Information Tables 4–6 and Figs. 4–6.

3.3. NO3 contamination GLMM

The binomial GLMM (with no fixed effects) for NO3 contamination 

had good model performance with a McFadden Pseudo R2 value of 0.329 
(considered excellent fit), 70.9 % overall model accuracy, 50 % sensi
tivity and 71.3 % specificity.

Predictor variable estimates are presented in Fig. 3. Precipitation was 
the significant predictor variable with the highest estimate, with areas 
with higher precipitation reporting a lower chance of high NO3 
contamination (≥50 mg NO3/l). A similar effect was also observed for 
flooding, areas with high flooding had a lower chance of having high 
NO3. Areas with higher anthropogenic biome, a measure of ‘wildness’, 
with high anthropogenic biome values being further away from both 
urbanised areas and intensive cropping, had more NO3 contamination. 
This was also seen in that cropping intensity, pit-latrine density, and 
livestock density were negatively correlated with the presence of high 
NO3 contamination. Water points in areas with high poverty were also 
less likely to report high nitrate levels. Areas with a high catchment level 
density of pit-latrine users (WRU Latrine User Density) had more 
waterpoints with nitrate values exceeding safe limits. This was the only 
factor to have a significant positive correlation with the presence of high 
NO3 contamination.

3.4. E. coli contamination GLMM

Two binomial GLMM (fixed effects of date and water source) were 
produced for E. coli contamination, the results are summarized in Fig. 4. 
For the presence of E. coli contamination (>0 E. coli/100 ml), the GLMM 
model had a McFadden R2 value of 0.08 and 58.0 % accuracy indicating 

Fig. 2. The percent of groundwater samples within a 10 × 10 km grid exceeding thresholds of drinking water quality for nitrate and E. coli. Figure produced in QGIS 
(QGIS, 2024).

Table 1 
Model performance for the contaminant models containing either latrine density or population density. Multiple metrics are shown. The highest value for each metric is 
highlighted in bold. Core variables are Anthropogenic Biome, Cropping Intensity, Fertiliser, Flooding, Manure, Pit-Latrine Density, WRU Pit-latrine density, Livestock, 
Open Defecation, Poverty, and Precipitation. The fixed effects on sample source and month of collection were included for the E. coli models. McFadden Pseudo R2 

values between 0.2 and 0.4 are considered an excellent fit.

Contaminant model Variables included in model McFadden Pseudo R2 Accuracy Precision Sensitivity Specificity

≥50 mg NO3/l
Core Variables + Population 0.306 70.92 % 3.209 % 50.00 % 71.32 %
Core Variables þ Pit-latrines 0.329 68.23 % 3.421 % 54.17 % 68.52 %

>0 E. coli/100 ml

Core Variables þ Fixed effects þ Flush Toilet þ Population 0.0790 57.98 % 72.17 % 57.58 % 58.72 %
Core Variables + Fixed effects + Flush Toilet + Pit-latrines 0.0775 56.02 % 75.35 % 47.93 % 71.00 %

≥100 E. coli/100 ml

Core Variables + Fixed effects + Flush Toilet + Population 0.2075 80.97 % 41.67 % 57.25 % 85.31 %
Core Variables þ Fixed effects þ Flush Toilet þ Pit-latrines 0.2404 78.52 % 39.07 % 61.31 % 81.70 %
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moderate performance. The area being impacted by 2019 flooding and 
the density of people practising open defecation were significantly 
correlated with an increased presence of E. coli contamination. Areas 
with a high density of flush toilet usage were significantly less likely to 
have some E. coli contamination.

For high E. coli contamination (≥100 E. coli/100 ml), the model had 
an ‘excellent fit’ with a McFadden R2 of 0.24 and a high accuracy of 78.5 
%. Precipitation and pit-latrine density significantly resulted in an 
increased risk of high E. coli contamination. Livestock density and the 
area being impacted by 2019 flooding were significantly negative 
drivers of high E. coli.

3.5. Random Forest prediction of contamination

A regression RF model for NO3 contamination was generated for 
continuous data of NO3 levels. Overall, the RF model had good model 
performance with a RMSE of 10.6 and a R2 fit of 0.87. The plot of pre
dicted vs measured nitrate contamination is shown in the Supplemen
tary Information Fig. 8. Overall, the model underestimated nitrate 
contamination, particularly in cases where there was very high 
contamination.

As E. coli contamination was predicted as a binary variable (whether 
contamination was above set thresholds) the E. coli contamination RF 
model was evaluated by confusion matrix model performance metrics 
(Eqs. 1–4). For predictions of where there was some E. coli contamina
tion, the random forest model had an average error rate of 30.0 % (70.0 
% accuracy). The model performed better than the multiple linear 
regression model for all metrics.

For high E. coli contamination (≥100 E. coli/100 ml) the model had a 

19.1 % error rate (81 % accuracy). The model performed better than the 
multiple linear regression model for accuracy and specificity, as it per
formed well at identifying areas without high E. coli contamination. 
However, the model failed to identify some of the cases of high 
contamination and performed worse for precision and sensitivity. 
Confusion matrices for both E. coli models are provided Supplementary 
Information Tables 7 and 9. The spatial distribution of areas of predicted 
contamination is summarized in Fig. 5.

The RF model of NO3 contamination underpredicted some areas with 
high contamination but had good performance (R2 0.87). Areas with 
predicted high levels of nitrate contamination were predominantly 
surrounding the cities of Blantyre and Mzuzu (Water Resource Areas 1 
and 7). For the presence of some E. coli contamination, rural areas as 
well as areas in the north (surrounding Karonga), along the Shire River, 
and peri-urban areas outside of the major cities were predicted to have 
high levels of some E. coli contamination. The model of whether a water- 
point had ≥100 E. coli/100 ml predicted similar spatial distribution to 
the presence of any E. coli but with regions in the north (surrounding 
Karonga) as well as areas close to major cities, predicted to have high 
levels of high E. coli contamination. Areas of high NO3 were typically 
surrounding population centres with NO3 levels reducing further away 
from the population centre. In comparison, E. coli contamination was 
typically more restricted in location with a less clear gradient sur
rounding population centres and instead regions of high E. coli found 
generally along rounds and the outskirts of major population centres. 
This is likely due to E. coli contamination being highly localised to 
contamination sources as it cannot survive for extended periods of time 
in groundwater systems whilst nitrate contamination can travel large 
distances in groundwater (Canter, 1996).

Fig. 3. GLMM model for the presence of high nitrate contamination (≥50 mg NO3/L) of water-points. Coefficient estimate is shown on the x axis. Significant 
variables are highlighted in red and pink. Non-significant variables are shown in blue.
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Fig. 6 shows Shapley values, showing the contribution of each 
feature within the random forest model produced for each contaminant 
considered. Variables are ordered by their mean feature Shapley value, 
indicating feature importance. Each point represents the influence of a 
variable on a given model simulation. For all cases, flooding was the 
feature with least contribution. For NO3 and high E. coli contamination 
(≥100 E. coli/100 ml), sanitation related variables were the two 

variables with the highest contributions (WRU latrine user density and 
latrine density for NO3 and flush toilet and open defecation for E. coli). 
For E. coli presence (>0 E. coli/100 ml), cropping and anthropogenic 
biome had the highest contribution.

Fig. 4. Fixed effect GLMM models for the presence of any (>0 E coli/100 ml) and high contamination (≥100 E. coli/100 ml) E. coli of water-points. Coefficient 
estimate is shown on the x axis. Significant variables are highlighted in red and pink. Non-significant variables are shown in blue.

Fig. 5. Predicted contamination from random forest models of NO3 and E. coli. NO3 contamination was modelled as a continuous response variable with the 
predicted amount of nitrate contamination given as NO3 mg/l. The model underpredicted some of the areas with highest contamination but had overall good 
performance with an R2 of 0.87. The presence of >0 E. coli/100 ml and ≥100 E. coli/100 ml were modelled as binary variables with discrete response variables. The 
model of whether a given water-point had >0 E. coli/100 ml had 70 % accuracy. The model of whether a water-point had ≥100 E. coli/100 ml had 81 % accuracy. 
Figure produced in QGIS (QGIS, 2024).
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3.6. Pilot isotope study

Stable isotope hydrology was introduced in Malawi by the IAEA to 
enhance monitoring and management of water resources. This pilot 
study was part of a wider application of stable isotopes across the 
country (Banda et al., 2019; Banda et al., 2021; Banda et al., 2024). 
Stable isotopes of nitrate have the potential to validate the sources of 
nitrogen compounds in the water environment. Of the 15 groundwater 
and surface water samples collected within the pilot, 40 % (6) had 
concentrations of NO3

—N at or above 0.1 mg/l concentration which 
warrants measurement of δ15N-NO3

− and δ18O-NO3
− . Samples were 

analysed in triplicate, the δ15N-NO3
− ranged from − 1.9 (±1.7) to 27.7 

(±1.3)‰ with a mean of 11.4 (±0.6), whilst the δ18O-NO3
− ranged from 

0.0 (±1.0) to 16.3 (±0.3)‰, with a mean of 8.6 (±1), values are shown 
in Supplementary Information Table 19.

Whilst the dataset is limited, the results hint that the most likely 
source of nitrate in surface water and groundwater originated as 

oxidised ammonia (NH4
+), Fig. 7. The results also suggest that manure or 

human waste is a likely source of the ammonia (Kendall et al., 2007), 
Fig. 7. The dataset is not sufficient to track source terms and dynamics 
(Minet et al., 2017), but it does support the findings of this paper, 
pointing to pit-latrine derived nitrate in groundwater being a concern, 
and clearly shows a strong potential for further study to validate the 
predictions put forward in this paper.

4. Discussion

4.1. Sources of contamination

Nitrate and E. coli are two contaminants of concern for Malawi's 
water provision. Nitrate pollution is a public health concern and has 
been a growing concern in water quality in Malawi (Chidya et al., 2016; 
Chimphamba and Phiri, 2014; Nkwanda et al., 2021; Pullanikkatil et al., 
2015; von Hellens, 2013.,) with high levels reported in both surface 

Fig. 6. Shapley values of variables within the Random Forest Regression model. The colour gives feature values with low feature values in blue/purple and high 
feature values in yellow/orange. SHAP values show the impacts of each feature on the model in each observation run, positive SHAP values indicate that the feature 
resulted in positive contribution to the chance of contamination whilst negative values respond to a negative contribution of the contamination. Features are ordered 
by the feature's mean Shapley value (an indicator of feature importance).
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water (Nkwanda et al., 2021; Pullanikkatil et al., 2015; Sajidu et al., 
2007) and groundwater sources (Chidya et al., 2016; Chimphamba and 
Phiri, 2014; von Hellens, 2013). High groundwater nitrate pollution has 
been linked to contamination from sanitation sources, both within 
Malawi (von Hellens, 2013; Back et al., 2018) and beyond (Templeton 
et al., 2015; Ouedraogo et al., 2019; Rahman et al., 2021). Increasing 
loading of nitrate to groundwater is a particular concern for safe
guarding water quality; nitrate does not undergo reduction in aerobic 
environments and therefore remains in groundwater for extended pe
riods. When nitrate does not undergo reduction and remains in 
groundwater it can be transported over large distances, making sources 
of contamination hard to trace (Canter, 1996).

A GLMM was generated to explore sources of nitrate contamination 
of over 3000 water sources nationally with 70.9 % accuracy, catchment 
level density of pit-latrine usage (modelled density of pit-latrine users 
within WRU) was identified as the only significant positive driver of 
high nitrate levels. This suggests that there may be a high degree of 
transport of nitrate from domestic wastewater occurring in ground
water, at catchment levels, in Malawi. Areas with high densities of pit- 
latrines themselves were significantly less likely to have high levels of 
nitrate groundwater contamination. High pit-latrine density is mostly 
found in areas of high population density in which high concentrations 
of leachate will more likely result in anaerobic conditions in ground
water, enabling denitrification and therefore not resulting in high levels 
of nitrate. Pit-latrine related variables (WRU pit-latrine user density and 
pit-latrine density) were also identified as the features with the greatest 
contributions within the continuous RF model of nitrate contamination 
(R2 0.87). As in the case of the GLMM, a high density of pit-latrine users 
per WRU increased the likelihood of high nitrate in groundwater whilst 
higher densities of pit-latrines themselves were negatively correlated 
with nitrate contamination within the model, although care should be 
taken in interpretation of RF variable importance. The relationship be
tween population density/pit latrines and nitrate in groundwater was 
validated via the results of the pilot study of δ15N-NO3

− and δ18O-NO3
− in 

groundwater and surface water samples that indicates manure and/or 
pit-latrines present the major source of nitrate contamination.

Collectively considering these results, our findings strongly support 
previous examinations of nitrate contamination sources which identified 
sanitation sources as key drivers of nitrate pollution (Chidya et al., 2016; 
Chimphamba and Phiri, 2014; Ouedraogo et al., 2019; von Hellens, 
2013). Ouedraogo et al., 2019, found that population density was a 
better predictor of pan-African nitrate levels than fertiliser, suggesting 
that the lack of sanitation in large areas of the African continent may be 
the reason for population density resulting in greater nitrate contami
nation (Ouedraogo et al., 2019). We build upon this inference, sug
gesting that pit-latrines themselves, more specifically pit-latrine density 

on a catchment/sub-catchment scale, is a major source of groundwater 
nitrate contamination. A nation-wide study that monitors nitrate and 
stable isotopes is recommended to monitor the projected growth of pit- 
latrine usage within Malawi (Hinton et al., 2023) and consequent 
growing risk of high densities of faecal waste loading (Hinton et al., 
2024b).

In addition to anthropogenic factors, nitrate concentration was also 
significantly influenced by precipitation and flooding events, with lower 
nitrate concentrations reported in areas with high precipitation and 
being impacted by flooding, as shown in Fig. 3. This is likely due to high 
precipitation resulting in dilution of groundwater nitrate, as has been 
widely recorded (Wick et al., 2012; Nakagawa et al., 2021; Boumans and 
Fraters, 2010; Mas-Pla and Menció, 2019). Alternative studies have 
identified instances of high precipitation increasing nitrate concentra
tions where precipitation events have been suggested to enhance 
leaching of nitrate from soils (Liu et al., 2024), the absence of an 
apparent increase in soil nitrate leaching with precipitation perhaps 
further points to soil nitrate not being a major source of nitrate within 
this case study.

E. coli contamination is a significant barrier to achieving access to 
safe drinking water within Malawi (NSO, 2021; Mkandawire, 2008; 
Dzinjalamala et al., 2024; Mussa and Kamoto, 2023). Nationally, 57.2 % 
of drinking water sources drawn from groundwater were found to have 
some presence of E. coli and therefore not meet WHO guidelines for safe 
drinking water. Of particular concern were the 14.9 % of drinking water 
sources drawn from groundwater that show exceptionally high levels of 
E. coli contamination with 100 or more E. coli in a 100 ml sample. To 
evaluate drivers and provide spatial prediction of E. coli contamination 
in drinking water sources drawn from groundwater, we applied cate
gorical GLMM and RFR models. We considered two cases of E. coli 
contamination, evaluating both the presence of any E. coli in drinking 
water (exceeding WHO guidelines) and another model evaluating very 
high levels of E. coli contamination (≥100 E. coli/100 ml). Both cases 
were modelled as binary variables of the presence/absence of any/very 
high E. coli contamination.

For the presence of both any and high E. coli contamination, sani
tation related variables were identified as critical drivers. A high density 
of people practising open defecation was a significant positive indicator 
of the presence of any E. coli contamination whilst flush toilet usage was 
negatively correlated with the presence of any E. coli within the GLMM. 
In areas where there is a high level of open defecation, environmental 
contamination because of open defecation may result in contamination 
of drinking water sources drawn from groundwater. Such environmental 
contamination by open defecation can result in contamination of 
groundwater water-points through contaminated surface water and 
runoff (Rivett et al., 2022). Water-point contamination from contami
nated surface runoff alongside an elevated groundwater table promoting 
increased pit-latrine groundwater contamination has also been reported 
during flooding (Rivett et al., 2022). The geographic areas most 
impacted by heavy flooding in 2019 typically in the south of the country 
near the Shire River (approximately 1 year prior to water quality 
testing), were more likely to have evidence of E. coli contamination. 
Conversely, areas impacted by 2019 flooding, were significantly less 
likely to have very high E. coli contamination. This may be due to the 
flooded areas having been impacted by floods a year prior to the water 
quality tests being conducted and cases of exceptionally high E. coli may 
have undergone intervention over this time.

These findings underline the importance of community wide ap
proaches in ending open defecation to prevent drinking water contam
ination (Hinton et al., 2024b). Unless safe sanitation for all is provided 
(as outlined in SDG 6.2), safe drinking water provision may be under
mined. Water-points which are damaged or partially functional are more 
vulnerable to contamination from contaminated surface water (Rivett 
et al., 2022); a particular concern in Malawi due to limited maintenance 
and high non-functionality of water-points (Kalin et al., 2019; Kalin 
et al., 2022a,b). Combating groundwater E. coli contamination should 

Fig. 7. Results of δ15N-NO3
− and δ18O-NO3

− plotted with the likely source of N 
species and trends added after Kendall et al., 2007.
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involve not only sustainable progress towards ending open defecation 
but also ensuring improved borehole maintenance and functionality 
(Kalin et al., 2019) such as promoting community-led solutions to 
borehole functionality alongside ending open defecation (Hinton et al., 
2021).

4.2. Predicted spatial distribution of contamination

Prediction of the distribution of nitrate and E. coli contamination 
using RFR models enabled greater spatial investigation of areas at high 
risk of contamination. Spatial prediction of areas susceptible to nitrate 
contamination identified water-points within water resource areas 
(WRA) 1 and 7, around the cities of Mzuzu and Blantyre, to be more 
likely to have high nitrate contamination. These areas have a high 
density of pit-latrine users within these catchments and also have 
limited precipitation. Spatial prediction of areas with any E. coli 
contamination (70 % accuracy) predicted that areas with any E. coli 
contamination were more likely to be in rural or peri-urban areas with a 
high density of people practising open defecation and susceptible to 
flooding. Spatial prediction of the highest contamination cases, where 
there were 100 or more E. coli per 100 ml, had 81 % accuracy. Cases of 
high contamination were mostly predicted in densely populated, non- 
urban areas with high pit-latrine density and high precipitation, typi
cally in peri-urban towns or along roads.

4.3. Study limitations

Samples used for statistical analysis of nitrate contamination were 
gathered through the Government of Malawi when new boreholes were 
established. Overall, a national dataset of 3388 boreholes was analysed. 
To gather such an extensive dataset, samples collected over a 22-year 
period were analysed, although most samples were collected after 
2015. For statistical analyses, spatial rasters of given predictor variables 
were used, these were typically circa 2020, although ranged from circa 
2010. Selecting only samples taken within a smaller time window would 
have resulted in smaller sample sizes as well as samples that were not 
nationally representative thereby reducing the statistical power of the 
analysis. This limitation was deemed appropriate considering that 
spatial patterns of predictor variables were consistent over time. Future 
campaigns gathering national, extensive samples of nitrate contamina
tion, as was seen for microbial contamination in the 2019/20 MICs 
survey, should be prioritised to enable increased analysis.

The level of E. coli contamination was provided as a binary variable 
for samples up to and including 100 E. coli/100 ml, however, when 
contamination was >100 E. coli/100 ml, this was marked as a binary 
measure. As such, for the purposes of this analysis, E. coli contamination 
was considered as a binary (presence of any E. coli contamination, and 
100 or more E. coli/100 ml). This limitation was a result of the sampling 
method used for which it is hard to count >100 E. coli within a sample. 
This restricted analysis to binary methods or to only considering cases 
below 100 E. coli/100 ml. As this work was particularly interested in 
high contamination, binary analysis was completed. Further insights 
could be facilitated, including providing a better prediction of the level 
of E. coli contamination, through analyses with continuous variables. 
Considering the high number of water-points with exceptionally high 
E. coli contamination, alternative sampling methods enabling high E. coli 
concentrations to be measured, should be explored. The binary dis
cretisation of the presence or absence of E. coli may also be a reason for 
the relatively poor model performance for the presence of any E. coli 
contamination.

Here we present a pilot study of isotopic analysis of nitrate 
contamination sources of a sample region in the Linthipe river sub- 
catchment. Whilst the results do indicate nitrate sources from manure 
and domestic wastewater, only 6 samples underwent isotopic analysis. 
This limitation was due largely to resources, with the isotopic analysis 
unable to be conducted in Malawi and having to be conducted at the 

IAEA in Vienna, Austria. As such, only 15 samples were considered for 
isotopic analysis. Of those samples, only 6 had nitrate levels with suf
ficient nitrate to conduct the analysis. To not further restrict the results, 
2 of the 6 samples were surface water, this was considered relevant for 
inclusion due to the high connectivity observed in Malawi between 
groundwater and surface water (Kelly et al., 2020).

4.4. Policy recommendations and future work

This study supports previous findings within Malawi, and on a con
tinental scale, that sanitation infrastructure is a critical consideration for 
both nitrate (Templeton et al., 2015; Ouedraogo et al., 2019; Rahman 
et al., 2021) and microbial (Pritchard et al., 2007, 2008) groundwater 
contamination. The study emphasises the importance of community 
wide improvements in sanitation access as open defecation and poor 
sanitation infrastructure can result in contamination of community- 
based water resources. This echoes the ethos of programmes such as 
Community Led Total Sanitation (CLTS) which emphasise the environ
mental health component of enhanced sanitation provision (Chambers 
and Kar, 2008; Hinton et al., 2024a). However, whilst these initiatives 
push to end open defecation at the community level this work highlights 
the importance of community wide changes in sanitation not only 
focusing on eliminating open defecation but also on evaluating appro
priate pit-latrine usage and management (Hinton et al., 2024a). Ending 
open defecation on a community level is important but environmental health 
perspectives of inappropriate sanitation should also be emphasised.

This work highlights a paradox in Malawi's progress in sanitation and 
water; open defecation must be eliminated to improve sanitation and 
water access but pit-latrines, which often form ‘starter sanitation’ 
(UNICEF, 2018) may cause contamination themselves unless appropri
ately managed. Appropriate pit-latrine use will be important in ensuring an 
end to open defecation without resulting in widespread water contamination. 
To ensure progress in both spheres of water and sanitation, enhanced 
policy frameworks to foster cooperation between stakeholders should be 
promoted. Sanitation infrastructure development must consider 
groundwater contamination consequences. Critically, this involves 
guiding long-term investment into higher quality waste management 
that minimizes contamination considering future projections of high 
population growth and increasing pit-latrine usage (Hinton et al., 
2024b).

Our findings support initiatives to target water quality monitoring in 
areas of concern. Further expansion of isotope analysis may facilitate 
tracing of groundwater contaminant sources and develop evidence for 
source contamination management. Further understanding of contami
nation, both nitrate and microbial contamination, is needed to guide 
intervention. Understanding sanitation use will be critical (pit-latrine 
density was a better predictor of contamination of nitrate and high E. coli 
contamination than population density). Future work and modelling 
efforts should account for additional factors such as soil type (He et al., 
2022) and permeability, as well as localised groundwater dynamics to 
enhance understanding of areas at high risk of contamination.

5. Conclusion

We apply a mixed method approach to identify drivers of microbial 
and nitrate contamination of groundwater drinking sources in Malawi. A 
pilot application of isotope hydrology was used to validate likely sources 
of nitrate contamination of groundwater. Statistical analysis was used to 
further enhance understanding of sources of nitrate contamination with 
catchment level pit-latrine usage identified as a significant driver of 
areas with high nitrate groundwater contamination. These findings 
support previous analyses of groundwater in Malawi and across Africa of 
sanitation sources being a major driver of groundwater nitrate 
contamination (Templeton et al., 2015; Ouedraogo et al., 2019; Rahman 
et al., 2021). Pit latrines were noted as a specific concern, highlighting 
the need for understanding of how sanitation derived contamination 
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occurs. The results raise concerns for future groundwater contamination 
with projected increases of pit-latrine usage in Malawi driven by a move 
to end open defecation alongside high population growth (Hinton et al., 
2021).

Sanitation related factors were significant considerations for micro
bial groundwater contamination. The density of open defecation was 
found to be a significant driver in cases of any E. coli contamination 
whilst in areas with very high E. coli contamination, pit-latrines are most 
likely the source of contamination. Policy and research efforts need to 
navigate how appropriate sanitation can be provided to ensure an end to 
open defecation without coming at the cost of groundwater quality. We 
also found that flooding risk is an important predictor of microbial 
borehole contamination, however, more research with higher quality 
flood risk predictive data would enhance understanding of the future 
risks of water-point contamination due to climate-change enhanced 
flooding.
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Couronné, R., Probst, P., Boulesteix, A.L., 2018. Random forest versus logistic regression: 
a large-scale benchmark experiment. BMC Bioinformatics 19. https://doi.org/ 
10.1186/s12859-018-2264-5.

Department of Disaster Management Affairs (DoDMA) of Malawi, 2019. Malawi Floods: 
Situation Report 27th April 2019. United Nations Office of the Resident Coordinator 
in Malawi.

R.G.K. Hinton et al.                                                                                                                                                                                                                            Science of the Total Environment 957 (2024) 177418 

13 

https://doi.org/10.1016/j.scitotenv.2024.177418
https://doi.org/10.1016/j.scitotenv.2024.177418
https://doi.org/10.1016/j.scitotenv.2019.136260
https://doi.org/10.1016/j.scitotenv.2019.136260
https://doi.org/10.1061/(asce)he.1943-5584.0001436
https://doi.org/10.1061/(asce)he.1943-5584.0001436
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0015
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0015
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0015
https://doi.org/10.1007/s43832-022-00023-9
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0025
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0025
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0025
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0025
https://doi.org/10.1289/EHP8459
https://doi.org/10.3390/w11122600
https://doi.org/10.3390/w11122600
https://doi.org/10.3390/w13141927
https://doi.org/10.3390/w16111587
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0050
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0050
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0050
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0055
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0055
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0055
https://github.com/lrberge/fixest/blob/master/_DOCS/FENmlm_paper.pdf
https://doi.org/10.1017/9781108589314.007
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0070
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0070
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0075
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0075
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0075
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0075
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1201/9780203745793
https://doi.org/10.1201/9780203745793
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0090
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0090
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0090
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0095
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0095
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0100
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0100
https://doi.org/10.1007/s12517-017-2867-6
https://doi.org/10.1007/s12517-017-2867-6
https://www.unicef.org/malawi/stories/food-nothing-without-hygiene
https://www.unicef.org/malawi/stories/food-nothing-without-hygiene
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0115
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0115
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0115
https://doi.org/10.1016/j.pce.2016.03.013
https://doi.org/10.1016/j.pce.2016.03.013
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0125
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0125
https://doi.org/10.1186/s12859-018-2264-5
https://doi.org/10.1186/s12859-018-2264-5
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0135
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0135
http://refhub.elsevier.com/S0048-9697(24)07575-2/rf0135


Dzinjalamala, G.D., Kaonga, C.C., Kumwenda, S., et al., 2024. Human health risk 
assessment of microbial contamina- tion and trace metals in water and soils of 
Chileka Township, Blantyre, Malawi. Discov. Environ. 2, 62. https://doi.org/ 
10.1007/s44274-024-00096-4.

Dzwairo, B., Hoko, Z., Love, D., Guzha, E., 2006. Assessment of the impacts of pit-latrines 
on groundwater quality in rural areas: a case study from Marondera district, 
Zimbabwe. Phys. Chem. Earth A/B/C 31, 15–16.

Escamilla, V., Knappett, P.S.K., Mohammad Yunus, P.K.S., Emch, M., 2013. Influence of 
latrine proximity and type on tubewell water quality and diarrheal disease in 
Bangladesh. Ann. Assoc. Am. Geogr. 103, 299–308.

FAO/NASA, 2024. Malawi Cropland 2020/2021. https://data.harvestportal.org/dataset 
/. (Accessed 1 April 2024).

Fraser, C.M., Kalin, R.M., Kanjaye, M., Uka, Z., 2020. A methodology to identify 
vulnerable transboundary aquifer hotspots for multi-scale groundwater 
management. Water Int. 45, 865–883. https://doi.org/10.1080/ 
02508060.2020.1832747.

Freeman, A.Y.S., Ganizani, A., Mwale, A.C., Manda, I.K., Chitete, J., Phiri, G., 
Stambuli, B., Chimulambe, E., Koslengar, M., Kimambo, N.R., Bita, A., Apolot, R.R., 
Mponda, H., Mungwira, R.G., Chapotera, G., Yur, C.T., Yatich, N.J., Totah, T., 
Mantchombe, F., et al., 2024. Analyses of drinking water quality during a pro-tracted 
cholera epidemic in Malawi – a cross-sectional study of key physicochemical and 
microbiological pa-rameters. J. Water Health 22 (3), 510–521.

Gilbert, M., Nicolas, G., Cinardi, G., Van Boeckel, T.P., Vanwambeke, S.O., Wint, G.R.W., 
Robinson, T.P., 2018. Global distribution data for cattle, buffaloes, horses, sheep, 
goats, pigs, chickens and ducks in 2010. Sci. Data 5, 180227. https://doi.org/ 
10.1038/sdata.2018.227.

Goldstein, B.R., de Valpine, P., 2022. Comparing N-mixture models and GLMMs for 
relative abundance estimation in a citizen science dataset. Sci. Rep. 12. https://doi. 
org/10.1038/s41598-022-16368-z.

Graham, J.P., Polizzotto, M.L., 2013. Pit latrines and their impacts on groundwater 
quality: a systematic review. Environ. Health Perspect. 121 (5), 521–530.

Gwenzi, W., Marumure, J., Makuvara, Z., Simbanegavi, T.T., Njomou-Ngounou, E.L., 
Nya, E.L., Kaetzl, K., Noubactep, C., Rzymski, P., 2023. The pit latrine paradox in 
low-income settings: A sanitation technology of choice or a pollution hotspot? Sci. 
Total Environ. 879. Preprint at doi:10.1016/j.scitotenv.2023. 163179. 

Harper, C., Keith, S.M., Todd, G.D., Williams, M., Wohlers, D.W., Diamond, G.L., 
Coley, C., Citra, M.J., 2017. Toxicological Profile for Nitrate and Nitrite.

He, S., Wu, J., Wang, D., He, X., 2022. Predictive modeling of groundwater nitrate 
pollution and evaluating its main impact factors using random forest. Chemosphere 
290. https://doi.org/10.1016/j.chemosphere.2021.133388.

Hendrickx, J., Nutricia, D., 2018. Collinearity in mixed models. In: Paper AS03. PhUSE 
EU Connect.

Hengl, T., Nussbaum, M., Wright, M.N., Heuvelink, G.B.M., Gräler, B., 2018. Random 
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