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ABSTRACT
Earth Observation (EO) data is large and often processed in
a very centralised manner. Through the decentralisation and
distribution of data processing, a more neutral and automated
system can be created, while incentivising a more diverse
set of data sources. This can help lower the initial barrier
for new data providers and help with decreasing the time it
takes for data to be created for systems such as Satellite-based
Emergency Mapping. Building such architecture on a decen-
tralised network comes with difficulties, such as merging cen-
tralised data sources together, building trust or reputation on
a trustless system, and building processes and methods that
require low enough computational cost to be executable on
distributed networks. This paper discusses how to offload
and on-load data onto a distributed network to overcome these
computational challenges.

Index Terms— EO Data, Data Merging, Reputation,
Consensus, Decentralised and Distributed Architecture

1. INTRODUCTION

Earth Observation (EO) data processing is a key step in the
EO data value chain, as it takes high density often noisy infor-
mation and converts it into usable data. These computations
can be simple such as merging data from different sources to
more expensive tasks such as teaching machine learning mod-
els. Due to the size of EO data, data processing is a compu-
tationally expensive process no matter the complexity of the
task itself. This brings with it considerations such as where
EO data should be processed, onboard satellites, or on the
ground, and who is allowed to process data as a single change
somewhere in the computation could drastically affect the end
result, allowing accidental or malicious change of the output
data.

Through decentralisation of EO data creation, process-
ing, and distribution, a fairer platform can be created with
a cheaper onboarding experience for any new resource
providers to join. This promotes, or incentivises, the cre-
ation of new, diverse, data and creates a more robust and
automated system increasing the reliability and speed of data

creation and access to such data. Without a central authority
managing such a system, an impartial, neutral, method of
communicating data, and data requirements, is created in a
sector that holds so many different geopolitically disinclined
organisations and nations.

To create a decentralised system, trust between separate
entities is required, or the distribution of infrastructure to
many people is required, creating consensus over a large
enough group, therefore creating a trustless system. Due to
the organisations and nations involved, the first method of
trust being held between entities is unlikely, therefore distri-
bution of the infrastructure is the most forthcoming option.
Trust can therefore be placed in the decentralised network,
through mathematical and cryptographic proofs, to prove
that a process is executed based on a set of predefined rules.
From this three fundamental stages in EO data processing,
to overcome the cost of large scale data storage and data
processing on a distributed network, appear. This paper dis-
cusses reputation and a method of overcoming difficulties of
large scale data and investigates a method of reducing the
cost of EO data processing on such a network. It does this by
selectively offloading and on-loading computations off and
on the distributed/decentralised network to allow minimise
difficulty while maximising security. Figure 1 shows the
basic architecture of the proposed solution.

1.1. Data Oraclisation

Oraclisation, the method of providing data to a decentralised
network from multiple centralised sources, allows for non-
distributed information to become distributed by creating con-
sensus through the use of redundancy as seen in figure 1.
By using an oracle, difficult computational problems can be
completed on a non-distributed computer/network (off-chain)
multiple times by multiple sources to provide secure provable
information. Through this technique, large scale EO data pro-
cessing can first be simplified off-chain, and then further pro-
cessing can be done on a distributed network (on-chain) with
the data that has been oraclised.
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Fig. 1. Basic architecture of data processing stages to dis-
tributed and what is not required to be distributed

1.2. Optimality Validation

Computing optimal solutions to optimisation problems, often
large in problem size, is another task that is usually unsuited
for distributed networks, again due to the computational cost.
To reduce this complexity, the more computationally intense
task (Optimisation Problem) can be completed off-chain and
then the result (Optimal Solution) can be validated on-chain.
To prove that this works, this paper looks at an example of
processing EO data and how the validation of the optimal so-
lution is cheaper than the Optimisation Problem.

1.3. Comparison of Root Mean Square Error

Root Mean Square Error (RMSE) is often used as the met-
ric for comparison of processed data to ground truth in many
fields such as aircraft roll detection in [5] to satellite data pro-
cessing [9]. Even with newer methods of satellite data pro-
cessing such as [7], RMSE is a core element. As it provides
a metric for difference between dataset it can also be used to
measure the accuracy between two datasets. Weighted aver-
ages, similar to those shown in [9] can be used to minimise
the RMSE as shown in 2.

1.4. Reputation Management

Reputation or trust is quantification of the productivity of a
user towards the goal of a network or task. AS well as be-
ing used in everyday life it has become an important part of
the internet [8]. On decentralised/distributed systems, repu-
tation is often required in certain situations to allow for users
to interact. [4] and [6] both design systems for reputation
management across distributed systems (P2P network before
Web3). Although reputation management is often considered
as a metric of the network itself, such as in [4] and [6] with
many more in [1], social trust [3] can be produced from how
trustworthy the actors using the network are. From measuring

the consensus using RMSE, within both consensus on data
(data oraclisation) and optimality validation, a reputation or
measure of this social trust can be produced.

2. EXAMPLE PROBLEM DEFINITION

First the Optimisation Problem must be defined. For this ex-
ample, a method of measuring consensus across images from
multiple sources of a similar data set is undertaken to generate
a fused data set with increased accuracy than that of a single
input image. To find a merged output image a weighted aver-
age scaling is applied to each data set to reduce RMSE over
all cross comparisons. Weight averaging is used as it doesn’t
change the data given by each source, but just its contribu-
tion to the final output image. The following assumptions
are made about the input data for each source: i) the EO
data contains binary data, ii) the EO data from each source
are of the same resolution, iii) all EO data is of the same
area/region; are geographically aligned and data fusion oc-
curs synchronously when all data has been acquired, iv) all
EO data is of identical shape.

From these we can apply three conditions to the RMSE
calculation: i) accurate data is promoted, ii) inaccurate data
is penalised, iii) missing data is not penalised or promoted.
These conditions do not impose a strict penalty on lack of pre-
cision thereby encouraging newcomers with access to cheaper
satellite infrastructure to participate. True and false negatives
are ignored as this would be further penalisation with a simi-
lar impact.

2.1. Data Oraclisation Problem

We have a set of sources, L, with each source x ∈ L providing
a m × n data, AAAx. We represent the combined dataset from
all sources by AAA. We define ααα := {α1, . . . , αℓ} as the vector
of weights associated with each source, where ℓ = |L|. The
general equation for RMS disparity of two sources of data
x ∈ L and y ∈ L

RMS(AAAx,AAAy) =

√√√√ 1

m× n

m∑

i=1

n∑

j=1

(Ax
ij −Ay

ij) (1)

where Ax
ij is the data entry in row i and column j of data AAAx

coming from source x. Using the assumptions to achieve the
conditions set out we define the relative truth of source x with
respect to source y as:

Rx
y =

∑m
i=1

∑n
j=1 A

x
ijA

y
ij∑m

i=1

∑n
j=1 A

x
ij

(2)

We can now re-write the RMS function with respect to the
relative truths as follows:

RMS(AAAx,AAAy) =
√
(1−Rx

y)(αx)2 +Rx
y(αx − αy)2 (3)
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We define the asymmetric ℓ × ℓ square matrix of relative
truths by RRR, where the entry in row x and column y of the
matrix is, Rx

y , the relative truth of x with respect to y. Note
that we are now working with the compact relative informa-
tion data RRR, rather than the original m× n× ℓ data AAA, where
m,n >> ℓ.

This allows for the previous steps to be completed off-
chain and RRR to be produced on-chain from the data oraclisa-
tion. This means that the computationally difficult summation
can be done off-chain as well as the data storage requirements
on-chain being drastically reduced. Different methods can be
taken to compute theRRR, which may suit different types of data
sources.

2.2. Optimality Validation Problem

RMS of the cross comparison ofAAA can be calculated from the
RMS in equation 3 for all ordered pairs of sources (i, j) in L

f(ααα,RRR) =

√
1

ℓ(ℓ− 1)
(g(ααα,RRR) + h(ααα,RRR)) (4)

g(ααα,RRR) =

ℓ∑

i=0

ℓ∑

j=0

(
(1−Ri

j)(αi)
2
)

(5)

h(ααα,RRR) =

ℓ∑

i=0

ℓ∑

j=0

(
(Ri

j)(αi − αj)
2
)

(6)

To minimise f(ααα,RRR), ααα∗ is found to be given by equa-
tion 7 where i ̸= j, 0 ≤ i < ℓ, 0 ≤ j < ℓ and is repeated ℓ
times with unique i and j combinations.

df

dαi
=

df

dαj
, ∀i, j (7)

where df
dαx

is the derivative of f with respect to αx. Solving
for ααα satisfying (7) is equivalent to solving a system of linear
inequalities

BBBααα = 0 (8)

where the matrix BBB is determined by the relative truth matrix
RRR.

Therefore, by using a provenααα, fromRRR given by data ora-
clisation with a high enough level of consensus to be assumed
to be true, the accuracy or consensus between each EO data
source is quantified in a provable manner on a decentralised
architecture.

3. OPTIMISATION PROBLEM CASE STUDY

3.1. Real Data Test

To test the system, and its optimality, three flood data sources
were merged and their accuracy quantified, the data com-

ing from a private company1, the local government database2

and an EU commision database3 in this case. This range of
sources gives varied data on what is considered flooded, with
different levels of accuracy. In figure 2, the inputs data can be
seen. This area of 3°to 2°West, 51°to 52°North was chosen
due to the high level of flooding that occurs in this area.

(1) (2) (3)

Fig. 2. Input images from varying sources, of coordinates
3°to 2°West, 51°to 52°North with a resolution of 4000x4000
pixels or a Ground Sample Distance (GSD) of 27.75m. (1.
Private Company Source, 2. Local Government Source, 3.
EU Commission Source)

From this, RRR andααα can be calculated from equation 2 and
equation 8 respectively.

RRR =




1 0.25613333 0.05081417
0.33729138 1 0.03541658
0.52717319 0.27902039 1


 (9)

ααα =
[
0.31327176 0.31492591 0.37180233

]
(10)

Fig. 3. The final output image with the given weights applied
to each input

1https://global-flood-database.cloudtostreet.ai/ Combined Specific Flood
Event Data

2https://www.data.gov.uk/ Historical Flood Data
3https://global-surface-water.appspot.com/ Source: EC JRC/Google

Maximum Water Extent Data
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Through data oraclisation, the storage requirements
on-chain for the input images change from 11.4MB (3
4000x4000 pixel images with a bit depth of 2) to 0.5625KB (9
256bit integers) reducing the positional data from the images
but storing the ratio of overlapping values, all that is required
for the Optimisation Problem. From figure 2 and the given
RRR in equation 9 determined for these inputs, the lack of data
provided by the third source can be easily seen by the values
in the 3rd column. However, the data it provides is accurate,
as seen by the large values reported in the 3rd row. This is
supported also by the values of ααα given in equation 10 where
the corresponding value (3rd value) is larger than the others.
In figure 3 the merged datasets with the weight averages ap-
plied can be seen. The darker areas show where the highest
consensus lies, while the lighter shades show where there is
lesser consensus. The white shows where no sources reported
any data.

3.2. Computational Requirements/Gas Measuring

To test the computational requirements of the optimality val-
idation vs the calculation of the Optimisation Problem, smart
contracts were designed for testing these algorithms on a
distributed network. The major blockchain network for dis-
tributed application development as of writing this paper is
Ethereum 4. The smart contracts are written in Solidity and
are openly accessible at this link 5. To test the computational
requirements, a measure of Gas (the metric for execution
difficulty on Ethereum) is used. Ethereum has a maximum
gas of 30 million and therefore a smart contract that requires
more than this to execute will never work 6. In figure 4 it
can be seen that Optimality Validation (Validate Alpha) uses
much less gas as well as handling a lot higher number of
sources before the maximum size of a block is reached, than
that of Opimisation Problem solution (Solve for Alpha).

4. CONCLUSION

This paper has discussed a methodology to reduce the com-
putational and storage cost on-chain by selectively offloading
certain tasks to be run off-chain while still remaining secure
by distribution. An example of reputation quantification on
a decentralised/distributed network architecture has also been
discussed as well as how consensus can be measured through
EO data. This decentralised data processing is the next step
towards collaborative efforts to provide data in a faster, fairer,
more neutral and scalable way while lowering the barrier for
EO data providers from all nations and organisations.

4 Ethereum https://ethereum.org/
5https://github.com/strath-ace/smart-contracts
6Ethereum creates a block approximately every 12 seconds

(https://ycharts.com/indicators/ethereum average block time)

Fig. 4. Gas Required for Solving Alpha vs Validating Alpha,
tested on a distributed network (Ethereum test-net 4)
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