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1  Introduction

Self-organization in granular materials is a fascinating and 
complex area of research within the more general field 
concerned with pattern formation in non-linear systems. It 
explores how ordered structures can emerge spontaneously 
when such materials are subjected to other external forces in 
addition to gravity. The response that they exhibit to exter-
nal stimuli of various kinds is not only intriguing from a 
scientific perspective but also finds practical applications in 
various fields, including geophysics, materials science and 
other industrial processes.

In such a context, in particular the “ensemble” dynam-
ics of solid particle systems are of great interest when the 
aforementioned mechanical stimuli are applied in the form 
of “vibrations” with well-defined frequency and amplitude 
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Abstract
Vibrofluidization in monodisperse granular materials is a hierarchical phenomenon involving different spatial and temporal 
behaviors, known to produce macroscopic structures with well-defined properties and high reproducibility. However, as 
witnessed by the paucity of relevant results in the literature, investigating the collective organization of particles across 
such different length and time scales becomes particularly challenging when multi-component systems are considered, 
i.e. if the considered vibrated material is not monodisperse. In this work, this problem is addressed through numerical 
simulation of the governing equations accounting for (dissipative) inelastic and frictional effects in the framework of a 
DEM (Discrete Element Method) method. Binary and ternary particle distributions are considered and, in order to filter out 
possible density-driven particle segregation or mixing mechanisms, particles are assumed to be iso-dense. The problem is 
initially analyzed through the coarse-grained lens of patterning behavior (supported by a Voronoi analysis for many rep-
resentative cases) and then from a micromechanical level in which statistical data based on particle collisions and related 
dissipative effects are used to gain additional insights into the observed macroscopic trends. It is found that, starting from 
the initial traditional monodisperse case, the addition of particles with smaller sizes (while keeping the overall mass and 
depth of the considered layer almost unchanged) generally leads to a corrugation in the otherwise perfect symmetry of 
the original patterns, which is similar to that already seen in companion situations related to viscoelastic fluids. Moreover, 
while in the case of an initially hexagonal pattern, this topology is generally retained, in other situations, the initial perfec-
tion is taken over by less regular waveforms. Specific circumstances also exist where the initial square symmetry is lost in 
favor of a triangular symmetry. In all cases, segregation effects simply manifest as a preferential concentration of particles 
with larger size in an intermediate layer, which apparently behaves as a cohesive entity during each vibration cycle.
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[1–3]. This interest essentially stems from the possibility 
to translate the fundamental information gained from these 
studies into useful knowledge. As an example, investigat-
ing the behavior of granular materials under vibration is 
crucial for understanding the mechanics of earthquakes and 
landslides [4]. Granular materials can replicate the behavior 
of fault lines and help researchers gain insights into seis-
mic activities [5]. Moreover, pattern formation in vibrated 
granular materials can shed light on other natural phenom-
ena, such as the formation of sand dunes [6], ripples in riv-
ers, soil erosion [7] and even space geology [8]. Related 
principles are also applied in the manufacturing industry to 
optimize processes like particle sorting and the formation 
and compaction of granular layers in products, especially 
in the pharmaceutical field [9, 10] and in powder metal-
lurgy applications [11, 12]. Furthermore, the study of these 
aspects helps in designing processes involving particulate 
or granular flows in mineral processing [13,–15], in min-
ing industries [16] and many other circumstances related 
to powder mixing and transport [17–19]. Other interesting 
links can also be found with regard to agriculture, where a 
proper knowledge of granular material behavior is instru-
mental in optimizing seed distribution systems and efficient 
planting [20] or it can support related food processing activ-
ities [21, 22].

As outlined at the beginning of this section, however, it 
is clear that, beyond practical applications, these subjects 
also exert an appeal to researchers and scientists because 
they are often regarded (or used) as paradigms to under-
stand the relationship between “order” and “chaos” and/
or between macroscopic and microscopic dynamics. These 
specific aspects often make this category of problems irre-
sistible to theoretical physicists and mathematicians. The 
crucial point is about understanding what provides these 
systems with their specific macroscopic properties, that is, 
what they can do as a result of the mutual interplay of the 
constitutive parts, which such parts would not able to do 
if considered separately. A related concept is that about the 
relationship between the considered system and its “envi-
ronment”, which brings in the role of “boundary conditions” 
as an additional factor influencing the possible behaviors, 
i.e. the system “function”.

In other words, studies of such a kind have often been 
conducted essentially in the attempt to distillate common 
trends out of seemingly disparate dynamics, that is, trying 
to discern the general laws or principles out of which similar 
patterning behaviors can be produced in different conditions 
or fields.

In this regard, it is worth mentioning that the behavior of 
granular materials shares many aspects with the companion 
field of “fluid-dynamics” [23–25]. Indeed, granular materi-
als are often regarded as a special category of “fluids” or 

even “gases” [26, 27], which in addition to frictional effects 
have a secondary dissipation mechanism strictly related to 
the inelastic nature of the collisions occurring among grains 
(and/or with the solid boundary of the related container). 
As the reader might have realized at this stage, both fluids 
and granular materials can be seen as specific examples of 
systems consisting of collections of sub-parts (molecules 
in the case of fluids, solid particles in the case of granu-
lar materials) for which related “dissipative effects” play a 
crucial role. It is just by virtue of such energy-degradation 
mechanisms that these systems are provided with the abil-
ity to develop a hierarchy of phenomena and ensuing col-
lective behaviors. Indeed, “self-organization” is a typical 
outcome of processes that are governed by a global driving 
force injecting energy into them at a “macroscopic” level 
and “local” forces able to dissipate it at a smaller scale.

The affinity with the behavior of fluids goes some way to 
explain why this subject has been largely studied resorting 
to typical concepts and tools traditionally used in the con-
text of fluid-dynamic analyses. Relevant examples of this 
modus operandi include the theory of bifurcations, whose 
typical jargon has been extensively applied to characterize 
phenomena in vibrated granular materials (in particular, 
the notions of wavelength, waveform, cellular pattern and 
“hierarchy of bifurcations”). “Amplitude equations” able to 
account for the weakly non-linear behavior of these systems 
not too far from bifurcation points have also been used to a 
certain extent (see, e.g [28]).

Although such concepts and tools have enjoyed quite a 
widespread use, it is worth recalling that, in general, granu-
lar materials do not obey the same equations or relationships 
that characterize fluids [29]. Although some valuable efforts 
in this direction exist, reliable and universally accepted 
models able to relate the macroscopic stresses at play in 
granular materials to the exchange of momentum occurring 
at a microphysical scale have not emerged yet. In general, 
the stress tensor for these materials consists of two distinct 
terms, one accounting for the contact forces existing within 
adjoining particles and a second contribution stemming 
from purely dynamic effects [25, 30, 31].

The differences existing between fluids and granular 
materials at a microscopic scale typically reverberate at 
larger scales, thereby setting some differences between 
these two categories of matter (at least in terms of non-lin-
ear behavior). Typically,, the dimensionality of the space of 
parameters is generally larger for granular material in com-
parison to the equivalent one in the case of fluids. Solid par-
ticles or grains constituting granular materials can exhibit a 
variety of shapes and sizes. Although, for simplicity, most 
existing studies have assumed spherical grains and mono-
disperse distributions (i.e. collection of spherical particles 
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all having the same size), these should be regarded as spe-
cial cases or particular realizations.

Owing to space limitations, obviously, we do not strive to 
review all the interdependences and aspects of this complex 
problem. Along these lines, what follows should be regarded 
as a focused review of existing studies on vertically vibrated 
monodisperse granular layers where the system response 
and patterning behavior have been investigated for increas-
ing values of the “forcing” (i.e. the amplitude of the vibra-
tionally induced acceleration) and the related frequency.

After the seminal work by Thomas et al. [32] and many 
other important papers, where a first categorization of the 
observed dynamics was introduced, relevant and valuable 
examples of this line of inquiry are the works by Melo et 
al. [33, 34], Umbanhowar et al. [35], Tsimring and Aran-
son [28] and Bizon et al. [36]. We apologize to all whose 
work is not included in this synthetic account. This list is 
not intended to be exhaustive, but rather to stimulate the 
interest of the reader in certain aspects, some longstanding, 
some new, where advances are needed. In particular, the 
greatest merit of these studies resides in having removed the 
constraint of narrow containers (i.e. having one horizontal 
dimension much smaller than the other). This simplification 
had been largely used in earlier investigations where the 
focus was on two-dimensional patterning behaviors rather 
than three-dimensional (3D) effects.

Taken together, all these analyses have revealed a vari-
ety of interesting 3D patterns obeying different symmetries 
and/or morphologies, enabled by different combinations of 
the considered influential patterns. The main motivation at 
the root of the present work is an extension of these earlier 
important findings to the fundamental situation, in which, 
although all the particles retain a spherical shape and are 
made of the same material, however, they are present with 
different radii at the same time. In order to support read-
er’s understanding of such dynamics, systems of growing 
complexity are treated as the discussion progresses, i.e., 
starting from well-established results in the monodisperse 
case, then situations are considered in which a bi-disperse 
(binary) or three-disperse (ternary) distribution of particles 
is involved. As we focus on either a fixed number of layers 
or a fixed amount of material, the problem is investigated in 
the framework of numerical simulations.

2  Mathematical Model

In particular, in the present study, the problem related to the 
evolution in time of the considered distribution of particles 
and ensuing patterning behavior under the effect of vibra-
tions is addressed in the framework of a DEM (Discrete Ele-
ment Method) strategy. Since, as outlined in the introduction, 

there are specific properties of granular media that prevent 
them from being properly described as a fluid or more gen-
erally as a “continuum”, this specific approach conveniently 
relies on a formulation where every particle present in the 
system is tracked separately, that is, a Lagrangian perspec-
tive is used. Put simply, when the particles move in the 
considered physical domain under the effect of the applied 
forces (gravity and acceleration induced by vibrations in the 
present case), particles undergo translational and rotational 
dynamics, which are properly modeled in the framework of 
classical Newtonian physics.

2.1  Governing equations

From a practical standpoint, two distinct vector equations 
are used to deal with the six degrees of freedom (3 transla-
tional and 3 rotational) of each particle (see, e.g., Guo and 
Curtis [37]; Kieckhefenet al. [38] and El Emam et al. [39]). 
In vector notation and in a laboratory reference system these 
equations simply read:

mi

d2ri

dτ2 = F g
i +

N∑
j=1

F c
ij � (1)

Ii

dωi

dτ
=

N∑
j=1

M c
ij � (2)

where τ is the physical time, mi is the generic particle mass, 
the vectors ri  and ωi  account for its position and angular 
velocity, respectively, F g

i  is the body force acting on each 
particle due to the effects of gravity, F c

ij is the contact force 
exerted by the generic particle j on the considered i particle, 
Ii is the moment of inertia of the particle i and, by anal-
ogy with F c

ij , M c
ij  is the moment that the particle j exerts 

on particle i (in this study no interstitial fluid is simulated, 
which explains why, no forces of fluid-dynamic nature are 
considered). 
The gravitational force can be expressed in a relatively sim-
ple way as:

F g
i = mig� (3)

where g is the gravity acceleration (9.81 ms− 2 on the sur-
face of Earth). The presence of vibrations can be taken into 
account by setting a time-periodic displacement for the 
physical boundary of the particle container, i.e.:

svibr = b sin(Ωτ)⌢
κ� (4)
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of two distinct contributions, one of elastic-plastic nature 
(F n

ij) and another one (F t
ij) essentially related to frictional 

effects:

F c
ij = F n

ij + F t
ij � (8)

A proper derivation of these forces requires recalling the 
distinction between the so-called hard-sphere and soft-
sphere models. With the former, particles are treated as 
rigid spheres, which means no deformation and/or overlap 
is allowed. As a natural consequence, contact forces along 
the direction passing through the centers of two interact-
ing particles (hereafter simply referred to as normal direc-
tion and identified using the “n” superscript) are generally 
implemented as “impulsive” forces (see, e.g., Stratton et 
al. [41]; Richardson et al. [42]). By contrast, with the soft-
sphere model, although particles are still assumed to be 
undeformable, a certain overlap is allowed (Fig.  1). This 
artifice leads to a straightforward derivation of the force F n

ij  
induced in the normal direction by the particle-to-particle 
interaction. Indeed, a precise relationship is generally intro-
duced between the intensity of such a force and the overlap 
extent (see, e.g., Schwartz et al. [43]; Murphy et al. [44]; El 
Emam et al. [39]). Put simply, DEM relies on virtual rigid 
springs, acting perpendicularly to the contact plane to calcu-
late such a force. This approach, in turn, stems from the so-
called Hertzian Model originally introduced by Hertz in the 
nineteenth century by which the normal force is evaluated 
by considering the response of two elastic spheres in contact 
over a small circular area, and a proper damping contribu-
tion is also introduced to account for dissipative effects. The 
model can therefore predict a normal force that is essentially 
repulsive, and it also allows energy dissipation. A notable 
extension of this strategy is due to Walton and Braun [45]. 
These authors adopted a different philosophy to properly 
take into account hysteretic effects, i.e. the asymmetry in 
the force evolution during the loading and unloading stages 
of the particle-to-particle interaction process, which is typi-
cally due to plastic (i.e. irreversible) phenomena. In place 
of using a complex elastic-damping spring model, with 
this alternate approach,  the shape of overlap-normal force 
is approximated by a linear law, however, different slopes 
are considered for the loading and the unloading stages, as 
shown in Fig. 2.
As evident in this figure, while the linear loading branch has 
a slope Kn

l , the slope Kn
u  of the unloading branch is steeper. 

This obviously results in a “residual displacement” (So) 
when in the unloading stage the normal force is reduced to 
zero (Walton [46]; see again Fig. 2), which can be regarded 
as a consequence of plastic effects. Notably, the area 
between the two branches represents the energy lost accord-
ingly. In other words, as explained before, although there is 

where b and Ω are the amplitude and the angular frequency 

of the imposed vibrations, respectively and ⌢κ is the unit vec-
tor along the direction of vibrations. In a particle-container 
based reference system, an acceleration is produced accord-
ingly, which can be cast in condensed form as:

aω(τ) = s̈(τ) = −aΩ sin(Ωτ)⌢
κ� (5)

where obviously aΩ = bΩ2 (resulting from two consecutive 
derivations in time of the original displacement function). 
This indicates that in a container based reference system, 
the effect of vibrations can be seen as a time-varying accel-
eration with amplitude given by the product of b and the 
square of the angular frequency Ω = 2πf. The overall accel-
eration acting on the particles can therefore be expressed as:

a(τ) = g − aΩ sin(Ωτ)⌢
κ� (6)

Equation (6) is instrumental in showing that vibrations do 
not contribute to any time-averaged acceleration or force, 
as mathematically demonstrated by the following identity 
[40]: 

aaverage = Ω
2π

2π/Ω∫

0

a(τ)dτ = Ω
2π

2π/Ω∫

0

gdτ+ Ω
2π

2π/Ω∫

0

aΩ sin(Ωτ)⌢
κdτ

= Ω
2π

g

2π/Ω∫

0

dτ+ Ω
2π

aΩ
⌢
κ

2π/Ω∫

0

sin(Ωτ)dτ = g − 1
2π

aΩ
⌢
κ[cos(Ωτ)]2π/Ω

0 = g

� (7)

2.2  Inelastic and frictional effects

The particle-to-particle and particle-to-boundary effects are 
accounted for by resorting to specific interaction models, as 
further illustrated in the following. The DEM generally cal-
culates this force for spherical particles as the combination 

Fig. 1  Sketch of interacting particles and related kinematic and 
dynamic quantities
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for the particle-to-particle (Eq.  (10a)) and particle-to-wall 
interaction (Eq. (10b)), respectively, where

Kn
li = Eidi� (11a)

Kn
lwall = Ewalldi� (11b)

and Ei and Ewall are the Young’s modulus of the particle and 
wall materials, respectively and di is the particle size. With 
such an approach, the coefficient of restitution ε, related 
from a physical standpoint to the dissipated energy shown 
in Fig. 2, can be expressed as:

ε2 = Kn
l

Kn
u

� (12)

As outlined before, the DEM approach can also take into 
account forces which are directed in a tangential direction 
(hereafter, simply identified using the “t” superscript) and 
are essentially induced by frictional effects. In this case, 
the software relies on the so-called linear elastic-frictional 
model [47–49]. With this paradigm, the evaluation of the 
force differs depending on whether sliding takes place dur-
ing the contact or not. Accordingly, the force can be cast in 
compact form as follows:

F
t,(τ)
ij = min

(
F

t,(τ−∆τ)
ij + Kn

l ∆St,µF
n,(τ)
ij

)
� (13)

where F
t,(τ)
ij and F

t,(τ−∆τ)
ij represent the tangential con-

tact force at the time (τ) and (τ-Δτ), respectively, ∆Stis the 
corresponding change in the tangential overlapping during 
the timeframe Δτ, and µ is the friction coefficient, which 
takes different values according to whether there is sliding 
between the particles or not, i.e.:

µ =
{

µs, if nosliding(static−coeffcient)
µd, if sliding(dynamic−coeffcient) � (14)

Put simply, when the tangential force becomes larger than 

µsF
n,(τ)
ij , sliding is enabled. As soon as the force becomes 

smaller than this threshold, the contact is assumed to come 
back to the non-sliding condition. 
In the DEM software [49] all the equations above are inte-
grated numerically using an explicit scheme in time. As 
each individual particle is tracked separately, the complete 
history of all particles inside the domain can be recon-
structed (this includes, for example, velocities, and contact 
data), thereby allowing the user to extract information that 
is hardly accessible when the same problem is addressed by 
experimental analysis.

no change of particle shape or size, the model assumes that 
some particle overlap is possible. Put simply, from a purely 
numerical point of view, the distance between the centers 
of two interacting spherical particles is allowed to become 
smaller than the summation of the two interacting particles 
radii. In this stage, particle kinetic energy can be dissipated 
(i.e. the algorithm based on the equations reported in the 
following allows degradation of particle kinetic energy, 
that is, a fraction of this energy is consumed in this process, 
the reader being referred to Sect. 2.3 for an expression for 
this fraction). From a purely mathematical point of view, 
the energy lost in this way depends on the particle physi-
cal properties and the related “restitution coefficient” (see 
Eqs. (9–12)). These are typically determined experimentally 
and used in the numerical simulations. From an algorithm 
standpoint, the Rocky software (used for this study) imple-
ments this model as follows [47–49]

F
n,(τ)
ij =




min
(

F
n,(τ−∆τ)
ij + Kn

u ∆Sn,Kn
l Sn,(τ)

)
if ∆Sn ⩾ 0

max
(

F
n,(τ−∆τ)
ij + Kn

u ∆Sn,Kn
l Sn,(τ)x10−3

)
if ∆Sn < 0 � (9a)

∆Sn = Sn,(τ) − Sn,(τ−∆τ)� (9b)

where F
n,(τ)
ij and F

n,(τ−∆τ)
ij represent the normal contact 

force at the time (τ) and (τ-Δτ), respectively and ∆Snis the 
corresponding variation undergone by the overlapping dur-
ing the timeframe Δτ. The scale factor 10− 3 appearing in 
Eq. (9a) is used to ensure that that the force becomes negli-
gible in the limit as the overlap tends to zero.
The loading and unloading stiffness appearing in Eq.  (9a) 
can be evaluated as:

1
Kn

l

= 1
Kn

li

+ 1
Kn

lj

→ Kn
l =

Kn
liK

n
lj

Kn
li + Kn

lj
� (10a)

1
Kn

l

= 1
Kn

li

+ 1
Kn

lwall

→ Kn
l = Kn

liK
n
lwall

Kn
li + Kn

lwall
� (10b)

Fig. 2  Sketch of particle loading-unloading asymmetry used to account 
for inelastic effects
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where Nk represents the collisions occurring over the entire 
surface of a particle p during a given time interval Δτ. Finally 
meaningful particle statistics can be obtained by taking the 
related “average”, defined as:

P diss
avg =

Np∑
p=1

P diss
p

Np

� (20)

P shear
avg =

Np∑
k=1

P shear
p

Np

� (21)

where Np is the total number of particles.

2.4  Non-dimensional governing parameters

The constant gravity acceleration g introduced in Sect. 2.1 
is generally used as a reference quantity to define relevant 
non-dimensional characteristic groups or “numbers”. As an 
example, the nondimensional vibration acceleration acting 
on grains (also known as “reduced dimensionless accelera-
tion”) is generally defined as:

Γ = bΩ2

g
� (22)

A consistently introduced non-dimensional vibration fre-
quency simply reads

f∗ = f
√

h/g� (23)

where h is the initial depth of the granular material, initially 
assumed to be accumulated at the bottom of the container 
and have a flat top surface [36]. This depth can be used to 
introduce another characteristic parameter, namely:

Ni = h

di
� (24)

which for a monodisperse material can be seen as the initial 
“number of particle layers”. In turn, the particle diameter 
di can be used to define another non-dimensional ratio in 
conjunction with the amplitude of vibrations b [40], namely:

ζ = di

b
� (25)

2.3  Integral based statistics

Most notably, the availability of the above-mentioned “his-
torical” data allows the straightforward determination of 
some characteristic quantities, which generally prove very 
useful when one has to cope with the possible interpretation 
of highly non-linear dynamics. These derived quantities are 
essentially energy terms, whose usefulness mainly resides 
in the quantitative information they provide about the dis-
sipative mechanisms at work in the considered system.

Put simply, these are: the dissipated energy and the shear 
energy, i.e. the mechanical energy transformed irreversibly 
into internal energy during a particle-to-particle collision 
essentially due to the inelastic nature of the collision itself 
and the work done by the tangential contact forces, respec-
tively. The former can be expressed from a purely math-
ematical point of view as:

W diss
ij =

∫
F c

ij · V rel
ij dτ � (15)

where V rel
ij  is the instantaneous relative velocity at the con-

tact point between the particles i and j. If a rolling model 
is also used in the simulation, this brings in an additional 
contribution of dissipative nature that can be evaluated as

W
diss(roll)
ij =

∫
M c

rel · ωreldτ � (16)

where M c
rel is the rolling resistance moment and ωrel is the 

relative angular velocity.
The shear energy simply reads:

W shear
ij =

∫ ∣∣F t
ij

∣∣dSt
� (17)

In the framework of the DEM software [49], these integrals 
are computed using the classical trapezoidal rule. These 
serve as a basis for the ensuing evaluation of the dissipative 
and shear powers, namely:

P diss
p =

Nk∑
k=1

W diss
k

∆τ

� (18)

P shear
p =

Nk∑
k=1

W shear
k

∆τ

� (19)
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distribution of peaks and valleys aligned with a well-defined 
direction (also simply referred to as “stripes”).

A relevant example of these behaviors can be gathered 
from Fig. 3, where we have summarized a number of numer-
ical results obtained with the approach described in Sect. 2 
for the same conditions that Melo et al. [34] originally con-
sidered for their experiments (the reader being referred to 
the data reported in Tables 1, 2, 3 and 4).

3  Results

3.1  Monodisperse case

As outlined in the introduction, for the specific case of a 
monodisperse layer of particles vibrated vertically, earlier 
experimental investigations have produced a trove of data 
that reveal transcending characteristics across a vast space 
of parameters. Relevant studies along these lines include the 
valuable contributions by [33–36]. In these studies shallow 
containers were used (base area much larger that the height), 
thereby allowing particles to produce fascinating collective 
behaviors in the three-dimensional space, manifesting them-
selves in the form of well-defined patterns or “waveforms”.

In particular, three fundamental types of morphologies 
were revealed, namely, patterns satisfying a square symme-
try, a hexagonal symmetry or waveforms that can approxi-
mately be considered “two-dimensional” as they consist of a 

Table 1  Particle properties used for the numerical simulations
Particle properties Corresponding values
Particle Density (kg/m3) 8770
Youngs modulus (MPa) 100
Particle diameter d (m) d1 = 1.6 × 10− 4 (mono-

disp), d2 = 8 × 10− 5 
(binary), d3 = 
1.2 × 10− 4 (ternary)

Particle material Bronze
Poisson’s ratio 0.3

Table 2  Particle-particle coefficients used for the numerical simula-
tions
Particle-Particle coefficients Corresponding values
Static friction (-) 0.5
Dynamic friction (-) 0.45
Tangential stiffness ratio (-) 1
Coefficient of restitution (-) 0.9

Table 3  Boundary properties used for the numerical simulations
Boundary properties Corresponding values
Boundary Density (kg/m3) 7850
Youngs modulus (MPa) 100,000
Boundary material Aluminium
Poisson’s ratio 0.3

Table 4  Particle-boundary coefficients used for the numerical simula-
tions
Particle-wall coefficients Corresponding values
Static friction (-) 0.6
Dynamic friction (-) 0.55
Tangential stiffness ratio (-) 1
Coefficient of restitution (-) 0.9

Fig. 3  Location of the present 
numerical results in the space of 
parameters with respect to the 
regions of existence of the different 
patterns originally identified in the 
experimental work by Melo et al. 
[34]

 

1 3

Page 7 of 25     19 



P. Watson et al.

A sequence of N = 7 perfectly aligned and superimposed 
layers of particles has been assumed as the initial condition 
in all monodisperse cases. This specific choice in terms of 
initial conditions follows a precise rationale, which requires 
a brief excursus on the known properties of these systems.

More specifically, Melo et al. [33] reported that, in anal-
ogy with the properties of the Faraday waves in fluids, on 
increasing the depth of the monodisperse material, the mean 
wavelength λ of the pattern (close to the onset) first grows, 
but then it tends to a constant value (a condition that they 
called “saturated state”). Moreover, they found this value 
to be weakly dependent on the effective particle size (d) but 
to always correspond to a specific number of particle layers, 
i.e. N = 7.

This specific situation may therefore be regarded as 
a special condition for which the number of parameters 
affecting the system can be somehow minimized. Indeed, 
for N≥7, the pattern wavelength is weakly dependent on the 
particle size (see Fig. 3a in [33]), and can therefore be seen 
as a function of the frequency and the parameter Γ only.

That is why this specific configuration is considered in 
the present study as a relevant condition aiming at the iden-
tification of universality classes in the considered dynam-
ics (N = 7, h = 7d1 = 1.12 × 10− 5 m). Some of these can be 
directly gathered from Fig. 3 (a diagram with the frequency f 
as abscissa and Γ as ordinate). Several distinct sub-domains 
can be clearly discerned in this figure. The first one (lower 
part of the plot) is the region where no specific pattern is 
formed. However, as soon as Γ exceeds a given threshold 
(≅2.2), which slightly depends on the considered frequency, 
particle self-organization is enabled. In particular, two dif-
ferent topologies are possible according to the frequency. 
While for relatively small frequencies and a fixed Γ (e.g., 
Γ = 2.9), a pattern with the square symmetry is dominant, at 
larger frequencies, this morphology is taken over by a dif-
ferent waveform, consisting of an ordered series of aligned 
valleys and mountains, giving the observer the illusion of a 
series of “stripes”. As shown by the various insets included 

This figure is instructive as it provides a synthetic view of 
the possible patterning behaviors over a relatively extended 
range of the imposed shaking frequency and the vibra-
tionally-induced acceleration. Moreover, the large num-
ber of included cases also witness the excellent agreement 
between the present numerical and the earlier experimental 
results by [34]. Notably, apart from serving as a relevant 
validation of the overall theoretical-numerical architecture 
defined in Sect. 2, this preliminary study also represents a 
relevant basis for the ensuing analysis (Sect. 3.2 and 3.3) 
where the constraint of monodisperse distribution of par-
ticles is removed. Moreover, it confirms Melo and cowork-
ers’ deduction that interstitial gas does not play a significant 
role in the considered dynamics (as anticipated in Sect. 2, no 
interstitial gas has been assumed for the present simulations).

In the numerical simulation, the dimensions of the con-
tainer have been fixed to 2 cm x 2 cm along x and y, respec-
tively (a total area of 4 cm2), whereas a height of 12  cm 
has been considered (the z direction being parallel to grav-
ity). The same particles used in the experiments have been 
selected (the reader being referred again to Table 1).

In order to show that the results can be considered weakly 
dependent on the lateral wall-effect and domain extension, 
numerical simulations have been repeated for some repre-
sentative cases (the square and hexagonal patterns shown 
in Fig. 4) by doubling the domain size along the horizon-
tal direction (a bottom area of 16 cm2 in place of 4 cm2). 
Such extra computations have shown that while the domain 
has no impact on the emerging pattern when moving from 
the 16 cm2 to the 4 cm2 domain, it however can cause a 
minor change in the wavelength in the square symmetry 
case, i.e. ≅10% for Γ = 2.9 and f = 20 Hz (which however 
we consider acceptable given the notable savings in terms 
of computational time obtained with the 2 × 2 cm2 domain). 
As evident in Fig. 4b, the corresponding variations for Γ = 4 
and f = 40  Hz (hexagonal pattern) are hardly detectable 
(being < < 1%).

Fig. 4  Numerical simulations 
(monodisperse case with N = 7) 
for (a) Γ = 2.9 and f = 20 Hz and 
(b) Γ = 4 and f = 40 Hz. Domain 
size 4 × 4 cm2, the inset shows the 
corresponding results obtained for 
a 2 × 2 cm2 domain
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from Γ = 6 to Γ = 7.5 along this vertical path causes the tran-
sition from a regular pattern with the square topology to a 
much less regular solution, where no specific symmetry or 
waveform is recognizable.

Additional insights into these behaviors directly stem 
from an analysis of the pattern wavelength and the related 
“vertical amplitude” (i.e. the maximum vertical extension 
of the particle distribution in space). The wavelengths and 
other pattern-related geometrical details have been deter-
mined through a Voronoi analysis by using the “Ka-me” 
image analysis software [50, 51]. In qualitative agreement 
with earlier findings (see, e.g., Clément et al. [52]), the pres-
ent simulations have confirmed that for a fixed frequency, 
progressively higher values of Γ (or vice versa smaller val-
ues of the parameter ζ defined by Eq. (25)) produce larger 
wavelengths and vertical amplitudes. As an example, con-
sidering again a vertical transverse at f = 30 Hz, the increase 
in the pattern wavelength is evident when moving from the 
inset for Γ = 2.9 to that for Γ = 4. Notably, this variation is 
appreciable even if a change in the pattern topology occurs 
(e.g. from squares to hexagons).

Another key point concerns the dependence of the wave-
length on the frequency. Available experimental evidence 
indicates that for frequencies larger than a crossover value, 
the wavelength saturates at a value independent of the forc-
ing frequency (see, e.g., Clément and Labous [53]), whereas 
for smaller frequencies, the wavelength and pattern ampli-
tude essentially decrease as a function of f. In particular, 
Melo et al. [33] could show that for the square pattern and 
N = 7, the wavelength was inversely proportional to the fre-
quency of vibrations for different particle diameters.

Such trends can be qualitatively recognized in Fig. 3 for 
several values of Γ, e.g., Γ = 2.9 (squares f/2), Γ = 4 (hexa-
gons f/2) and Γ = 6 (squares, f/4). For more precise (quan-
titative) information about such dependencies, the reader 
is referred to Fig. 5. These figures show the pattern wave-
length (left panel) and the corresponding particle distribu-
tion vertical amplitude (right panel); both are measured at a 
specific time, i.e. the instant at which the falling set of par-
ticles “touches” the bottom of the container (as shown, e.g., 
by the inset contained in the right panel of Fig. 5a and c).

A quantitatively and qualitatively substantiated by these 
figures, an inverse relationship with respect to the frequency 
(i.e. a law ≅c/f where c is a constant) fits relatively well the 
numerically obtained data over a relatively wide range of 
frequencies and for different values of Γ. The tendency of the 
curves to attain an asymptotic regime where the considered 
quantity (wavelength or amplitude) becomes almost insen-
sitive to frequency variations (the aforementioned saturated 
state that is attained for frequencies larger than a crossover 
value) can also be recognized. Figure 5a shows that, how-
ever, for relatively small values of Γ (Γ = 2.9) and frequency 

in this figure, intermediate cases are also possible, where the 
material surface displays at the same time properties that are 
typical of both patterns.

The emergence of all these states can be ascribed to a 
“period-doubling bifurcation” [33]. More specifically, while 
the square topology essentially stems from the superposi-
tion of two standing waves that have perpendicular wave 
vectors, the same amplitude and oscillate at half the driving 
frequency, the stripes reflect a single parametric standing 
wave [33]. In light of this interpretation, the intermediate 
states, obtained on moving (at a constant Γ) from the region 
where squares are dominant to that where stripes are the 
typical outcome, may be regarded as hybrid solutions where 
the aforementioned perpendicular wave vectors have differ-
ent amplitudes (one wave becoming progressively dominant 
with respect to the other as the frequency grows).

At this stage, a further characterization of the map shown 
in Fig. 3 can be obtained by moving in the (Γ-f) plane along 
a line of constant f (a vertical traverse, in place of a hori-
zontal line).

Let us consider for instance a traverse at f = 30 Hz. For 
this frequency, a hexagonal pattern arises spontaneously 
from the squares reported for Γ = 2.9 as soon as the con-
sidered vertical line intersects the next (red solid line) tran-
sition curve contained in this figure, i.e. if Γ is increased 
beyond Γ = 3.9. As originally reported by [34], like squares 
and stripes, the hexagons also recover their initial configura-
tion after two periods (which explains why the “f/2” condi-
tion also applies to them). However, unlike those patterns, 
they do not undergo a spatial shift of one-half wavelength 
after a forcing period. Rather if two consecutive forcing 
periods are considered, an observer would see a swap in the 
position of nodes and antinodes, i.e. a set of isolated peaks 
on a triangular lattice, which is turned during the next oscil-
lation into hexagonal cells, each one centered on a former 
peak location [34].

As Γ is further increased, a region is met where no defined 
patterning behaviors are possible. Nevertheless, squares and 
stripes re-enter the dynamics as soon as another threshold 
is exceeded (Γ≅5.9). For Γ overcoming this value, a new 
period-doubling bifurcation is enabled, thereby making the 
characteristic frequency of oscillation of the pattern f/4.

The dynamics in this situation are somehow similar to 
those already described for the case f/2. Patterns with the 
square topology are preferred for relatively small frequen-
cies, whereas stripes reappear as the dominant waveform 
for larger f. Most interestingly, another narrow region also 
exists, where the hexagonal symmetry is recovered for 
larger Γ and f > 60  Hz. However, for smaller frequencies 
(f < 60 Hz), only disordered states are possible. As an exam-
ple of this trend, the reader may consider a vertical trans-
verse at f = 60 Hz. An increase of the vibration amplitude 

1 3

Page 9 of 25     19 



P. Watson et al.

it is no longer evident in Fig. 5c, which indicates that this 
regime is progressively shifted towards smaller frequencies 
as Γ grows.

f ≤ 20 Hz, the agreement with the c/f law is poor as another 
regime is met where the wavelength weakly depends on the 
frequency. Notably, the same trend for decreasing values of 
the frequency can also be identified in Fig. 5b, left panel, but 

Fig. 5  Wavelength (left) and pattern amplitude (right) as a function of 
the imposed frequency for (a) Γ = 2.9, (b) Γ = 4, (c) Γ = 6 (solid sym-
bols are used to denote the numerically determined values, the solid 
spline is used to guide the eye, the curved dashed line indicates a c/f 

interpolating function where c is an ad-hoc constant, the uncertainties 
due to error measurements are as follows: 2% for panels (a) and (c), 
4% for panel (b))
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pattern, two different cases are analyzed, which relate to two 
different temporal responses of the system, i.e. f /2 and f /4.

Following a logical approach, we start with the case 
corresponding to a relatively small frequency and vibra-
tion amplitude, i.e. f = 20 Hz and Γ = 2.9 for which a well-
defined square pattern with the f/2 temporal response was 
shown in Sect. 3.1. For the convenience of the reader, the 
original pattern is reported again in the present section to 
allow direct comparison with the bi-disperse case (Fig. 6a 
and b, respectively).

As a fleeting glimpse into Fig.  6 would immediately 
confirm, the major effect of the considered binary distribu-
tion of particles is a dramatic change in the topology of the 
waveform, which loses its original regular square organi-
zation. Surprisingly, as evident in Fig. 7, a triangular sym-
metry emerges at a certain stage (first panel). In particular, 
two characteristics stand out from this figure. The lines 
bounding the nodes (red peaks in the first panel of Fig. 7) 
give the observer the illusion of a very well-defined net-
work resembling the typical architecture of reticular trusses. 
Moreover, a closer inspection of this figure reveals that 
most of these lines originate from a given point (highlighted 
using a black arrow). This point serves as a common vertex 
for many triangles. More specifically, it may be seen as the 
centre of a closed polygonal multi-cell structure having the 
shape of a “flower,” with each triangular cell representing a 
distinct “petal”. The above-mentioned special knot can be 
uniquely characterized through the topological order p of 
the radial spokes that originate from it (in practice it can be 
determined through analysis of the “angle” distribution as 
provided by the aforementioned Voronoi analysis [50, 51]). 
As evident in the first panel of Fig. 7, this topological order 
(pmax = maximum number of departing lines) is pmax = 6, 
whereas for the standard patterns with the classical hexago-
nal and square symmetry discussed in Sect. 3.1, pmax would 
take values pmax = 3 and pmax = 4, respectively.

3.2  Binary case

Having completed an analysis of the monodisperse case in 
terms of patterning behavior, wavelength and vertical exten-
sion, we turn now to the situation in which two different 
particle populations are present (that simply differ in regard 
to the diameters, namely, d1 = 1.6 × 10− 4 m and d2 = 8 × 10− 5 
m, as indicated in Table 1). Although all the considered par-
ticles are still spherical and all made of the same material, 
this situation brings in two new degrees of freedom, namely, 
the total number of initial layers pertaining to the two differ-
ent populations and the overall mass of the layer.

As a reduction in the number of parameters is always 
beneficial, in order to make a proper choice, in the following 
we rely on specific observations made by Bizon et al. [36].

These authors reported in the monodisperse case that 
the pattern wavelength is proportional to the layer depth, h 
and the effective driving frequency (which determines tran-
sitions between patterns at fixed Γ) is proportional to the 
square root of the layer depth [36]. Accordingly, in order 
to filter out possible effects due to variations induced by 
changes of h, we concentrate on a fundamental situation. 
More specifically, we examine circumstances for which the 
number of layers is such that the depth of the layer is the 
same and the total mass of the particles is approximately 
retained (this corresponding to a total of 9 layers, with 5 
layers made of the large particles and the remaining 4 lay-
ers consisting of the small particles, i.e. h = N1d1 + N2d2= 
5d1 + 4d2 = 1.12 × 10− 5 m).

At this stage, we wish to highlight that, for the sake of 
simplicity and brevity, although several simulations were 
conducted to investigate all these cases, in the follow-
ing we focus on 3 representative situations in the space of 
parameters (Γ,f) only, namely, conditions for which in the 
monodisperse case, well-defined patterns with the square 
and hexagonal symmetry emerge. Moreover, for the square 

Fig. 6  Snapshots of 3D particle distribution in space for Γ = 2.9 and f = 20 Hz: (a) Monodisperse case (N = 7, h = 7d1 = 1.12 × 10− 5 m), (b) bi-
disperse case (Ntot =9, h = 5d1 + 4d2 = 1.12 × 10− 5 m)
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vibration cycle, where the aforementioned point with topo-
logical order p = 6 is replaced by an antinode, i.e. the center 
of a hexagonal cell.

Figure 7 is complemented by Fig. 8 where the evolution 
of the pattern over one period of vibrations can be clearly 
discerned. Taken together, both figures indicate that the 
triangular morphology is just a transient state, with a hex-
agonal pattern (pmax = 3) being attained ad the end of the 

Fig. 8  Three-dimensional and top views of instantaneous particle distribution in space for Γ = 2.9 and f = 20 Hz in the bi-disperse case (Ntot =9, 
h = 5d1 + 4d2 = 1.12 × 10− 5 m) at t = t0, t0 + T/2, t0 + T, t0 + 3 T /2, t0 + 2 T, t0 + 5 T /2 where T is the period of externally imposed vibrations

 

Fig. 7  Three-dimensional view of instantaneous particle distribution in space for Γ = 2.9 and f = 20  Hz in the bi-disperse case (Ntot =9, 
h = 5d1 + 4d2 = 1.12 × 10− 5 m) at t = t0, t0 + T/2, t0 + T, t0 + 3 T /2, t0 + 2 T, t0 + 5 T /2 where T is the period of externally imposed vibrations
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monodisperse case. Direct comparison of the cases with 
equivalent depth (i.e. Figure 10a with respect to Fig. 10b) is 
meaningful as it shows that there is a tendency to replace an 
ordered arrangement of squares with a less regular pattern 
featuring stripes.

3.3  Ternary case

In this section, we lend our attention to the situation in 
which three distinct particle sizes are present at the same 
time, namely, 1.6 × 10− 4 m, 1.2 × 10− 4 m and 8 × 10− 5 m 
(see again Table 1). By analogy with the approach already 
undertaken in the bi-disperse case, we limit ourselves to 
considering a particle distribution for which the same layer 
depth is approximately retained (a condition achieved by 
assuming 3 layers for each particle size N1 = N2 = N3=3 → 
h = N1d1 + N2d2+N3d3= 1.08 × 10− 5 m, which differs by only 
3% with respect to the monodisperse case, Figs. 11, 12 and 
13).

The next figure of the sequence (Fig. 9) refers to the case 
Γ = 4 and f = 40 Hz for which the pattern in the monodis-
perse was formed by regular hexagons (Fig. 9a).

At first glance, the second panel for the binary case with 
Ntot= 9 (shown in Fig. 9b), indicates that a variation in the 
particle size distribution has no impact on the emerging 
waveform, which retains the hexagonal symmetry in all 
cases. The same concept applies to the wavelength (the vari-
ations are minimal). However, upon closer analysis, these 
cases have been found to display interesting differences in 
terms of micro-mechanical behaviors (we will discuss these 
aspects in Sect. 3.6).

Moving on to the case Γ = 6 and f = 60 Hz, Fig. 10 pro-
vides good impression of the three-dimensional motion 
once again in the two fundamental situations considered 
previously (monodisperse case with N = 7, binary case with 
Ntot =9, respectively).

By visual inspection of this figure, the reader will real-
ize that a binary distribution of particles can lead to a deg-
radation of the original perfect symmetry obtained in the 

Fig. 9  Instantaneous particle distribution for Γ = 4 and f = 40 Hz: (a) monodisperse case, (b) bi-disperse case with Ntot =9
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the pattern. While for Γ = 4 and f = 40 Hz, a disordered dis-
tribution of pentagons and four-side polygons was obtained, 
for Γ = 2.9 and f = 20 Hz, the perfectly square and triangu-
lar/hexagonal waveforms seen for monodisperse and two-
disperse particle distributions, respectively, are taken over 
by a set of irregular polygons with three or four sides. The 
modifications showing up for Γ = 6 and f = 60 are even more 
dramatic; the perfect arrangement of squares found in the 
monodisperse case, which for a binary distribution of par-
ticles was replaced by a combination of squares and stripes, 

The significance of these additional figures resides in 
their ability to make evident that an increase in the num-
ber of different sizes with which particles are present in the 
material yet adds complexity to the problem. It causes a 
variation in the patterning behavior and related quantitative 
metrics. Indeed, a consistent decrease can be spotted in the 
pattern wavelength, which displays in general a small but 
yet appreciable variation when moving from the situation 
with one particle size to those with two and three particle 
populations. Much more evident changes, however, concern 

Fig. 11  Three-dimensional (left) 
and top (right) views of instanta-
neous particle distribution in space 
for Γ = 2.9 and f = 20 Hz in the 
ternary case

 

Fig. 10  Instantaneous particle distribution for Γ = 6 and f = 60 Hz: (a) monodisperse case, (b) bi-disperse case with Ntot =9
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for which only square cells had been obtained in the mono-
disperse case.

3.5  Segregation effects

The results discussed in the preceding sections are further 
complemented by an analysis of segregation effects, as 
shown in Figs. 16, 17, 18, and 19, 20, 21 for the binary and 
ternary cases, respectively.

In these figures, different colors have been used to reveal 
the position of particles with different size throughout a 
vibration cycle. They are interesting as some commonali-
ties can be revealed for both the binary and ternary cases in 
terms of particle size distribution.

In particular, in the binary cases, regardless of the con-
sidered frequency, Γ and related emerging pattern, a kind of 
three-layered structure can be recognized, with an extremely 
thin layer of small particles (8 × 10− 5 m) located at the bot-
tom (blue color), an intermediate layer essentially made of 
larger particles (red color) and a top layer made again of 
small particles, but with particle volume fraction gradually 
decreasing towards the top (as opposed to the bottom layer 
where the transition from the granular material to underly-
ing space is abrupt).

When three particle populations are considered, the 
dynamics are essentially the same. A thin bottom and an 
upper layer of blue (small particles) can be still recognized. 
A central layer also exists, but no segregation seems to affect 

is taken over by a new configurations with a larger central 
feature, resembling a crater and having an incommensurable 
wavelength.

3.4  Voronoi Analysis for multi-disperse cases

In this section, the progressive corrugation of the pattern 
seen for Γ = 4 and f = 40  Hz (transitioning from a perfect 
distribution of hexagons to a disordered mixture of penta-
gons and four-side polygons) is further explored quantita-
tively by means of the aforementioned Voronoi analysis [50, 
51], by which a variety of details concerning the geometri-
cal nature of the pattern can be obtained. The outcomes of 
this analysis for such a representative case are summarized 
in Fig. 14; and Table 5.

Interestingly, it can be seen that on increasing the num-
ber of particle sizes, the average angle becomes progres-
sively higher, which indirectly witnesses the emergence of 
polygons with a smaller number of sides. As this occurs in 
conjunction with a small decrease in the pattern wavelength, 
this initially leads to an increase in the number of cells (17 
in the binary case as opposed to 13 in the monodisperse dis-
tribution). However, this tendency is mitigated by the emer-
gence of a larger number of squares and pentagons in the 
ternary case, which causes a decrease in the cell number.

For the sake of completeness, Fig. 15 shows the corre-
sponding analysis for the ternary system and Γ = 6, f = 60 Hz 

Fig. 13  Three-dimensional (left), 
top (right) views of instantaneous 
particle distribution in space for 
Γ = 6 and f = 60 Hz in the ternary 
case

 

Fig. 12  Three-dimensional (left), 
top (right) views of instantaneous 
particle distribution in space for 
Γ = 4 and f = 40 Hz in the ternary 
case
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phenomena would deserve a study on their own given 
the complexity and variety of phenomena that can cause 
layer stratification in vibrated isodense granular materi-
als [54–56], here we limit ourselves to mentioning that the 
inability of the ternary case to display further stratification 
(i.e. the formation of extra layers) should be sought in the 
reduced particle size difference in this case concerning the 
intermeadiate and larger particles (1.6 × 10− 4 / 1.2 × 10− 4 
=1.3 for the green and red particles in Figs. 19, 20 and 21 
as opposed to 1.6 × 10− 4 / 8 × 10− 5 =2 for the small and 
large particles in Figs. 16, 17 and 18). Indeed, a significant 
body of research supports the idea that a smaller difference 

the particles with intermediate and large sizes (1.2 × 10− 4 m 
and 1.6 × 10− 4 m). These cluster forming a band that con-
stitutes the “core” of the bed and retains an almost uniform 
degree of mixing throughout the process. Although these 

Table 5  Outcomes of Voronoi analysis for the Γ = 4 and f = 40 Hz in 
the monodisperse and polydisperse cases
Dispersity Total no. of 

angles
Mean angle size 
(°)

Total 
no. 
of 
cells

Mono 78 64.53 13
Bi 94 67.65 17
Tri 88 69.94 16

Fig. 14  Outcomes of Voronoi analysis for Γ = 4 and f = 40 Hz in the 
monodisperse (first column), binary (second column) and ternary 
(third column) case. The first row shows the node connecting lines as 

identified through the tessellation analysis, the second and third rows 
provide the related edge and angle distributions, respectively

 

1 3

   19   Page 16 of 25



3D waveforms and patterning behavior in thin monodisperse and multidisperse vertically-vibrated layers

Γ = 6, with the smallest particles only contributing to the 
formation of the nodes (peaks).

3.6  Power Spectra, Dissipation and Collision 
statistics

This section is finally devoted to a discussion of the addi-
tional insights into these dynamics, which stem from an 
analysis of the additional quantities introduced in Sect. 2.3.

In particular, we start from a description of the number of 
collisions occurring among all involved particles as a func-
tion of time. In this regard, a first key observation stemming 
from Fig. 22 concerns the evident analogy existing between 
the different cases. Regardless of the considered values of 
frequency and Γ, a similar trend can be identified in terms of 

in particle size decreases the likelihood of stratification in 
granular materials [57].

Figures 19 and 20 are useful also for another reason. It is 
evident there that the vertical distance or separation of the 
nodes from the antinodes tends to decrease in the middle 
of a vibration cycle, with the particle size distribution stay-
ing relatively consistent throughout. Figure  21 however 
indicates that in the Γ = 6 and f = 60 Hz case, a well-defined 
pattern (with large vertical amplitude) is only effectively 
generated every two vibration periods (we will provide 
additional information about this behavior in Sect. 3.6). Fur-
ther assessment of Figs. 19 and 20 with respect to Fig. 21 
also leads to the conclusion that while the core layer made 
of medium and largest particles is deformed in correspon-
dence of the peaks for Γ = 2.9 and Γ = 4, it is flattened for 

Fig. 17  Side views of 3D particle size distribution in space for Γ = 4 and f = 40 Hz in the bi-disperse case at (a) t = t0, (b) t0 + T /2, (c) t0 + T. 

 

Fig. 16  Side views of 3D particle size distribution in space for Γ = 2.9 and f = 20 Hz in the bi-disperse case at (a) t = t0, (b) t0 + T/2, (c) t0 + T

 

Fig. 15  Outcomes of Voronoi analysis for Γ = 6 and f = 60 Hz in the ternary case
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being involved in the multi-disperse cases (One-size – nmono 
= 107632, d = 1.6 × 10− 4 m, Two-size N = 9 – ntotbinary = 
324844, daverage≅9.89 × 10− 5, 3size – ntotternary =314456, 
daverage≅1.02 × 10− 4), consideration of Figs.  22 and 23 

collision statistics. In particular, the highest number of col-
lisions occurs in the ternary and the binary cases.

Although a simplistic justification of this behavior could 
be directly routed in the higher number (ntot) of particles 

Fig. 20  Side views of 3D particle size distribution in space for Γ = 4 and f = 40 Hz in the ternary case at (a) t = t0, (b) t0 + T /2, (c) t0 + T

 

Fig. 19  Side views of 3D particle size distribution in space for Γ = 2.9 and f = 20 Hz in the ternary case at (a) t = t0, (b) t0 + T/2, (c) t0 + T

 

Fig. 18  side views of 3D particle size distribution in space for Γ = 6 and f = 60 Hz in the bi-disperse case at (a) t = t0, (b) t0 + T/2, (c) t0 + T, (d) 
t0 + 3T /2, (e) t0 + 2T
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relationships. Anyhow, in the following another attempt is 
made to distillate out some common trends by looking at 
quantities more directly involved in the pattern formation 
mechanisms.

4  Discussion

As already explained to a certain extent in the introduction, 
order in complex systems generally emerges essentially as 
a result of a mechanism by which the energy available at 
large scales is redistributed or reorganized over different 
spatial and/or temporal scales until it is “dissipated” at a 
microscopic level. By putting a limit to the minimum self-
organization scale in the system, dissipation is therefore 
expected to play an important role in such a process.

Once again, an analogy with corresponding fluid-
dynamic behaviors may help to present such concepts with 
a more clear perspective. As a term of comparison, in par-
ticular, we consider the development of fluid convection in 
fluids uniformly heated from below and cooled from above 
(the so-called Rayleigh-Bénard convection). This fluid-
dynamic problem has been extensively investigated in the 
literature given its fundamental nature and involvement in 
a number of natural and technological processes [25]. It is 
known that the dynamics of such systems are essentially 
driven by a balance of forces, namely, the buoyancy force 
produced by the thermal energy injected into the system at a 
large scale (due to the application of a temperature gradient 
and the presence of gravity) and the viscous forces opposing 

clearly indicates that the specific composition of the mixture 
and the topology of the pattern does also play a significant 
role.

In this regard first it is instructive to take a look at 
Fig. 23a where the percentage increase (delta with respect to 
the monodisperse case) of the average collision frequency 
peak has been plotted as a function of the total number of 
particles for the binary and ternary cases. This figure clearly 
shows that although an increase in the number of particles 
from the monodisperse (nmono) to the ternary distribution 
(nternary) obviously causes a large increase in the frequency 
peak (≅ 58%, 130% and 40% for Fig. 22a, b and c, respec-
tively), however, a further increase in the particle number 
(nbinary> nternary) does not produce higher peaks (as made 
evident by the decreasing trends shown in Fig. 23a).

As outlined above, the pattern does play an even more 
substantial role. When the original waveform in the mono-
disperse case consists of hexagons (Γ = 4 and f = 40 Hz) and, 
accordingly, the number of radial spokes originating from 
nodes is p = 3, a maximum is obtained in the percentage 
increase (the green line in Fig. 23 is always located above 
all the other lines). However, this percentage undergoes a 
notable decrease in the situations where the dominant pat-
tern is characterized by a topological order p > 3 (namely 
the patterns with the square, triangular or hybrid symmetry 
shown in Figs. 6a, 7 and 10, corresponding to the black and 
brown lines in Fig. 23).

Elaborating a physical interpretation for all these con-
nections is obviously a very difficult task due to the highly 
non-linear nature of the underlying cause-and-effect 

Fig. 21  side views of 3D particle size distribution in space for Γ = 6 and f = 60 Hz in the ternary case at (a) t = t0, (b) t0 + T/2, (c) t0 + T, (d) t0 + 3T 
/2, (e) t0 + 2T
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Fig. 22  Collision statistics for (a) Γ = 2.9 and f = 20 Hz, (b) Γ = 4 and f = 40 Hz, (c) Γ = 6 and f = 60 Hz (the dashed black line qualitatively indicates 
the forcing, i.e. the time-varying acceleration due to the imposed vibrations; ntot indicates the total number of particles in the domain)
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whereas in granular materials it also depends on the geomet-
rical compatibility of the strain with particle arrangements, 
as a matter of fact, granular flows often obey laws identical 
to that originally predicted by Kolmogorov [25].

Building on such analogy, the trends in terms of total dis-
sipated power recognizable in Fig. 24 (left panel) are there-
fore consistent with the small (but non-negligible) decrease 
in the pattern wavelength seen when the number of particle 
sizes is progressively increased from 1 to 3. The peaks of 
total dissipated power gradually increase on moving from 
the monodisperse case to those with two and three particle 
sizes and the same layer depth and, accordingly, the pattern 
wavelength undergoes an appreciable shrinkage.

Additional insights follow naturally from a compari-
son of the left (total) and right (average) power. All these 
plots account essentially for the power dissipated due to the 
inelastic nature of the collisions occurring between particles. 
When the average values defined through Eq. (20) are con-
sidered (right panels), it can be seen (as expected) that the 
maximum dissipation (per particle) is obtained in the mono-
disperse case for which all the particles have a relatively 
large size (and accordingly a larger volume from which the 
larger dissipation resulting from inelastic collisions). When 
smaller particles enter the dynamics (and the overall num-
ber of particles increases in order to retain the same sys-
tem mass), the average dissipation per particle undergoes 
a shrinkage owing to two concurrent effects, namely, the 
larger number of particles (leading to a higher value at the 
denominator of Eq. (20)) and the smaller volume that can 
contribute to inelastic dissipation according to the mecha-
nism described in Sect. 2.2.

As already noted for the collision statistics, the situ-
ation in which the dominant pattern is the hexagonal one 
(green lines in Fig. 24a) deserves some additional attention. 

motion. On increasing the former (or decreasing the latter), 
Rayleigh-Bénard convection generally evolves towards sit-
uations where the typical pattern wavelength decreases (i.e. 
higher wavenumbers are excited) because the scale at which 
the energy is completely dissipated becomes progressively 
smaller (under a slightly different perspective one may say, 
that on increasing the macroscopic energy level, energy is 
able to flow over a larger number of scales). No further flow 
spatial features can be produced for scales smaller than the 
dissipation scale, as no energy is available to do so.

This process finds its ultimate verification in the so-
called Kolmogorov theory [58–61] for isotropic turbulence 
according to which, vortices present in the considered flow 
can contain vortices of smaller size, which in turn contain 
even smaller vortices and this process can be iterated in 
space until a scale is reached where the kinetic energy (con-
tinuously transferred from large scales to smaller scales) 
is finally dissipated (Kolmogorov length scale). The Kol-
mogorov length represents the size of the smallest “eddies” 
present in the flow.

Analogous arguments might be used for the problem con-
sidered in this work to interpret the observed trends in terms 
of wavelength. Obviously, some important differences exist 
with respect to the companion situation in which the consid-
ered material is a real fluid because solid particles or grains 
dissipate energy through other mechanisms. More specifi-
cally, in addition to dissipation due to frictional stresses, 
kinetic energy is transformed into internal energy due to the 
inelastic nature of the particles or grains themselves. Never-
theless, some consensus exists (see, e.g., Taguchi [62] and 
Radjai and Roux [63]) that arguments valid for fluids might 
be translated to granular materials because these have often 
been observed to follow the Kolmogorov theory. Although 
inertia governs the energy cascade in Newtonian fluids, 

Fig. 23  Percentage increase (delta with respect to the monodisperse 
case) of the average collision frequency peak for the same conditions 
considered in Fig. 22: (a) delta as a function of the total number of par-

ticles, (b) delta as a function of the average particle diameter defined as 
dmean = (n1d1 + n2d2 + n3d3)/ntot where ni indicates the number of par-
ticles for each size and ntot the total number of particles in the domain
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As already outlined in the introduction, the stress tensor for 
granular materials can be generally seen as the combination 
(mathematical summation) of two different contributions, 
one accounting for the stresses due to the contact forces 
represented by Eq. (8) and another term related to inertial 
effects (particle acceleration, which by means of mathemati-
cal manipulations can be expressed as a function of the par-
ticle translational and rotational velocity [25, 30, 31]).

Notably, while this part is similar to that for Newtonian 
liquids (as it involves kinematic quantities only), thereby 
setting an analogy between granular materials and New-
tonian liquids, the other contact-force-related term might 
be seen as an analogue (from a certain point of view) of 
the extra stress tensor for a viscoelastic fluid. This leads 
to another line of reasoning [67–69] in principle allowing 
additional insights into the considered phenomena to be 
sought through comparison with patterning behavior in vis-
coelastic fluids. As an example, referring for simplicity once 
again to the case of natural convection where the tempera-
ture gradient is vertical (just as vibrations considered in the 
present study), the reader may consider Lappa and Ferialdi 
[70]. These authors observed that, starting from a situation 
where the so-called Marangoni-Bénard convection displays 
a very regular pattern (Newtonian fluid case), a progres-
sive corrugation of the otherwise perfective arrangement of 
convective cells could be obtained by increasing the level 
of fluid elasticity, i.e. by making the relative importance of 
the additional stress due to elastic forces increasingly higher 
with respect to that related to the gradient of macroscopic 
velocity. Most remarkably, in perfect analogy with the pres-
ent findings, the corrugation showed up as a progressive 
increase in the number of pattern defects and an ensuing 
change in the shape of the convective cells (evolving from a 
set of identical items to a distribution of irregular polygons 

In this case, the increase in the peaks of dissipated power 
(with respect to the monodisperse situation) is the high-
est, which once again witnesses the inter-relatedness of 
the pattern specific topological configuration and the way 
by which the vibrational energy injected at large scale into 
the system is used to produce kinetic energy or dissipated. 
When the convective cells have the shape of hexagons, the 
binary and ternary granular materials display an increased 
ability to dissipate energy with respect to the corresponding 
monodisperse situation. Notably, this occurs in conjunction 
with the observed higher stability of the hexagonal pattern, 
which does not undergo significant topological modifica-
tions in the multi-disperse configurations. Interestingly, this 
may represent an additional hint for the elaboration of a 
relevant analogy with fluid-dynamic systems, in particular, 
again with the aforementioned Rayleigh-Bénard convection 
problem. Indeed, it is known that in specific conditions, this 
convective system, which in general displays simple two-
dimensional rolls as the preferred form of convection over a 
wide region of the space of parameters, can produce hexag-
onal cells. In particular, this happens when the reflectional 
symmetry is violated [64–66] i.e. when physical effects 
exist that break the up-down system invariance. As this also 
happens in the present case (see again Fig. 20) due to the 
tendency of the larger particles to form a (vertical-symme-
try-breaking) cohesive layer under the effect of vibrations, 
this might be seen as a clue for a possible role of such an 
effect in the present situation.

Although the arguments elaborated before about the 
increase in dissipation in certain cases align with the 
observed slight decrease in the wavelength of the pattern 
and might be used to infer a physical interpretation for such 
a trend, however, it should be pointed out that granular 
materials are not perfectly equivalent to Newtonian fluids. 

Fig. 24  Total (left) and average (right) dissipated power peaks versus the average particle size
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a topological order (pmax = maximum number of departing 
lines) as high as pmax = 6 in some regions of the domain at 
specific times during the vibrational cycle.

Critical comparison with existing knowledge indicates 
that while some features might be interpreted on the basis 
of energy considerations derived from theories valid in the 
case of Newtonian fluids, other aspects require microphysi-
cal reasoning about the specific stresses at play in the con-
sidered problem. Future work shall be devoted to delving 
into these mechanisms. Although adequate mathematical 
models are not available yet, and the exact processes driv-
ing pattern formation in granular materials still represent 
a conundrum, the results described in this work have been 
presented under the optimistic hope that the related trends 
may serve as a basis for future developments.
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with a varying non spatially-uniform number of sides). 
Oscillons were also found to emerge in specific situations.

Given the non-perfectly elastic behavior of such forces 
in the case of granular materials, pursuing further the anal-
ogy with viscoelastic fluids is not possible. Nevertheless, 
this line of thinking clearly points towards the potential role 
played by collisional stresses in determining the corrugation 
of the monodisperse pattern when multi-disperse distribu-
tions are considered. This argument is indeed supported by 
the realization that the peaks of total power globally dissi-
pated through inelastic collisions grows when moving from 
the monodisperse to multi-disperse situations (see again the 
left panel of Fig. 24).

5  Conclusions

The regular and less regular waveforms produced by the 
application of vertical vibrational forcing to a granular 
material have been investigated for increasing levels of 
complexity due to a systematic variation in the size of the 
particles. Starting from the canonical situation in which all 
the grains have the same size, the initial situation has been 
progressively perturbed by changing the size of a given per-
centage of particles while retaining the same layer depth.

The results have revealed a kaleidoscope of situations with 
patterns readily switching among multiple morphologies on 
changing the amplitude and/or frequency of imposed vibra-
tions. This process is mediated by the material composition. 
Even if all the particles have the same density and therefore 
no mixing can be induced due to density effects, an increase 
in the number of involved sizes generally leads to a cor-
rugation in the (otherwise) perfect topology of the pattern, 
which somehow resembles that observed in earlier studies 
dealing with natural convection in viscoelastic fluids. For a 
fixed initial mass, a reduction in the pattern wavelength can 
be generally induced by acting on three distinct parameters, 
namely, the frequency of vibrations, the amplitude of the 
ensuing acceleration and particle size distribution.

In terms of morphology, hexagonal patterns seem to be 
much more stable as they exist over a larger range of fre-
quencies and are weakly affected by a change in the par-
ticle-size distribution. In these conditions, the increase in 
the energy dissipated (peak) induced by the multi-disperse 
nature of the material attains a maximum with respect to 
other pattern morphologies. Patterns with the square sym-
metry are much more sensitive to a variation in the particle 
size distribution and are generally replaced by more cha-
otic configurations. However, specific circumstances also 
exist (Γ = 2.9, f = 20 Hz and binary case) where the initial 
square morphology evolves into a completely new, yet very 
regular, topology featuring triangular convective cells and 
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