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A B S T R A C T

This paper presents a system of hybrid models that combine both mechanistic and data-driven approaches to 
predict physical powder blend properties from their raw component properties. Mechanistic, probabilistic 
models were developed to predict the particle size and shape, represented by aspect ratio, distributions of 
pharmaceutical blends using those of the raw components. Additionally, the accuracy of existing mixture rules 
for predicting the blend’s true density and bulk density was assessed. Two data-driven models were developed to 
estimate the mixture’s tapped density and flowability (represented by the flow function coefficient, FFC) using 
data from 86 mixtures, which utilized the principal components of predicted particle size and shape distributions 
in combination with the true density, and bulk density as input data, saving time and material by removing the 
need for resource-intensive shear testing for raw components. A model-based uncertainty quantification tech-
nique was designed to analyse the precision of model-predicted FFCs. The proposed particle size and shape 
mixture models outperformed the existing approach (weighted average of distribution percentiles) in terms of 
prediction accuracy while providing insights into the full distribution of the mixture. The presented hybrid 
system of models accurately predicts the mixture properties of different formulations and components with often 
R2 > 0.8, utilising raw material properties to reduce time and material resources on preparing and characterising 
blends.

1. Introduction

The development of a new drug product involves a series of critical 
decisions to transform an active pharmaceutical ingredient (API) into a 
formulated drug product. The extensive research and development 
process aims to generate the knowledge to make well-informed de-
cisions about process configuration, formulation, operational process 
conditions and quality control strategy (Kapoor et al., 2021). 

Traditionally, this process has been sequential, inflexible, and required 
time-consuming and resource-intensive experimental work to develop 
the understanding of interactions between raw material properties, 
process settings, product attributes and environmental factors and their 
impact on manufacturability, performance, and stability of the final 
product.

Developing an oral solid dosage form that meets the specifications 
and can be manufactured at scale requires an appropriate selection of 
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the formulation, manufacturing route and process conditions. In order to 
achieve manufacturability of the final dosage form, it is necessary for the 
raw materials to form uniform blends, which exhibit good flow prop-
erties without adhering to surfaces and segregation, and allow for 
compaction into tablets or filling into capsules (Leane et al., 2015). 
Hence, one crucial factor in the decision-making process is selecting the 
powder blend’s properties and quantifying its impact on manufactur-
ability and the final product quality (Bano et al., 2022a). Particle size 
and shape distribution, true density, bulk density, tapped density, and 
flowability are among the key physical powder characteristics that in-
fluence the overall process robustness and product quality (White et al., 
2022). These physical properties of blends are significantly impacted by 
the selection the type, grade, and concentrations of excipients, making 
the formulation design a critical factor.

Historically, formulation settings such as drug loading, excipient 
selection, and their concentrations have predominantly relied on for-
mulators’ experiential knowledge and a trial-and-error approach. This 
not only results in the consumption of a substantial amount of API, but 
also leads to prolonged development times and significant resource in-
vestment (Sun et al., 2009). The Quality-by-Design (QbD) initiative by 
the FDA emphasises the need for applying more scientific formulation 
development approaches, among which is the utilisation of computa-
tional models and simulation tools to realise a material-sparing and 
efficient selection of materials and optimisation of the composition 
(Lionberger, 2008; Ahmed et al., 2022; Food and Administration, 2004). 
Computational models present an opportunity to reduce the experi-
mental burden and increase the flexibility to adapt to changes in raw 
material properties, reducing production time, minimising waste, and 
enhancing the product consistency.

In recent years, there has been a growing interest in developing 
mixture models using mechanistic, data-driven, or hybrid approaches to 
predict blend characteristic (Wang et al., 2016; Reynolds et al., 2017; 
Moreno-Benito et al., 2022; Wadams et al., 2022; White et al., 2022; 
Matsunami et al., 2023). The modelling approaches used to predict 
particle size, shape, density, and flowability of mixtures can be cat-
egorised into multiple groups: numerical averages, data-driven (AI- 
based) modelling techniques, and hybrid models. Particle size and shape 
of raw materials and the mixtures are key parameters that create a 
significant impact on the physical properties of powders (Silva et al., 
2013; Alyami et al., 2017). The shape descriptor of particles, often 
described by the aspect ratio (AR), has a considerable influence on the 
surface energy, cohesion, and adhesion of powders, which individually 
and collectively impact the flowability of the powder. For example, 
needle-like structures typically show very poor flow properties whilst 
more spherical particles are commonly free-flowing (Swaminathan and 
Kildsig, 2002; Shekunov et al., 2007). Most modelling approaches have 
been developed to estimate characteristic particle size and shape prop-
erties of mixtures based on the raw material attributes. The most com-
mon approach is the use of numerical averaging to predict the particle 
size and shape percentiles based on those of the raw components and 
their concentrations, demonstrated in previous works using statistical 
scalars such as median (Van der Bilt et al., 1993) or percentiles (Hilden 
et al., 2012) of particle size distribution (PSD) and aspect ratio distri-
bution (ARD) of the mixtures. However, prediction of only single values 
such as D10, D50, and D90 of a distribution disregards the full range of 
particle properties that can be extracted from the whole particle popu-
lation (Gamble et al., 2023). The accurate measurement and/or pre-
diction of different types of densities are critical to monitor the physical 
properties of powders, their impact on the tablet mass and tensile 
strength, as well as dissolution performance (Stranzinger et al., 2021; 
Dhondt et al., 2022). The true, bulk and tapped densities are commonly 
considered as manufacturability-critical density values. Numerical av-
erages have been commonly used to predict true density and bulk den-
sity of powders. For example, the harmonic mean is widely used to 
predict the true density (Moreno-Benito et al., 2022) and bulk density 
(Robinson et al., 2022) of powder mixtures. In the study by Moreno- 

Benito et al. (2022), a hybrid model was also proposed for mixture bulk 
density prediction using a geometric average followed by an artificial 
neural network (ANN). Alshafiee et al. (2019) used a data-driven model 
based on radial basis function (RBF) network to predict the bulk density 
of the mixtures. For the tapped density, however, no predictive model-
ling study has been conducted so far. In addition to the PSD, ARD, and 
densities, the flow of a powder is an essential consideration for ensuring 
robust manufacturing processes. Poor powder flowability can cause 
detrimental issues in powder transfer during downstream processing, 
arching in hoppers, and poor die fill during tabletting, often linked to the 
segregation of API and excipient particles, resulting in suboptimal 
content uniformity and process operation as well as out of specification 
drug products. One measure of powder flowability is the flow function 
coefficient (FFC), which can be obtained through shear cell measure-
ments. Several factors influence powder FFC, such as particle size, sur-
face area, surface energy, and electrostatic properties (Yu et al., 2011; Fu 
et al., 2012; Samiei et al., 2017). However, despite the complexity of 
prediction of mixture flowability, only a limited number of baseline 
models such as empirical equations (Barjat et al., 2021) or approaches 
based on granular Bond number (Giraud et al., 2021) have appeared in 
the literature (Bano et al., 2022b). Therefore, data-driven approaches 
are commonly employed to gain a deeper understanding of these factors 
and their inter-correlations (Fu et al., 2012; Alshafiee et al., 2019; Barjat 
et al., 2021; Pereira Diaz et al., 2023). Recently, White et al. (2022)
comparatively evaluated several numerical average mixture rules, 
including mass-weighted, particle volume-weighted, bulk volume- 
weighted, and surface area volume-weighted averages, to estimate the 
bulk density and flowability of mixtures.

Some mixture models, such as numerical averaging methods for true 
and bulk density prediction, have proved to work well across a number 
of materials and formulations. However, there are still gaps in predictive 
modelling of several other mixture properties: 1) there is a lack of 
models to predict full PSDs and ARDs of blends; 2) current models for 
flowability and tapped density have shown limited capabilities in the 
accurate prediction of mixture characteristics; 3) lack of uncertainty 
quantification when estimating powder flowability; and 4) limited 
consideration of domain knowledge in data-driven modelling ap-
proaches and taking combinational impact of multiple relevant prop-
erties of raw components into account, such as PSD and ARD of the 
powder. Hence, an integrated mixture modelling workflow does not 
exist that combines all influential raw component properties to predict 
blend properties to inform manufacturability assessment of a given 
formulation.

This paper presents a system of models to predict key mixture 
characteristics, including a hybrid of mechanistic and data-driven 
models for particle size, shape, density, and flowability of the mixture 
based on raw material properties, formulation settings, and testing 
conditions (Fig. 1). Hybrid modelling enables the incorporation of 
established, trustworthy models from existing literature while address-
ing modelling gaps through the development of new analytical and data- 
driven solutions. Hence, the proposed system of models is a combination 
of previous literature on true density and bulk density, and proposed 
models for particle size and shape distribution, tapped density, and 
flowability. Several numerical averaging methods for true density and 
bulk density prediction are implemented, compared, and validated 
against the experimental data. A mechanistic, probabilistic model is 
developed for particle size and shape distribution by defining the 
probability of the presence of each size class of a component in the 
mixture distribution. The proposed model is tested on number-based 
PSD and ARD and compared to the existing mass-weighted average of 
percentiles. Principal component analysis (PCA) (Abdi and Williams, 
2010) is employed to project the predicted PSDs and ARDs into a few 
principal components (i.e. PCA scores), the first three of each are 
selected to describe particle size and shape in lower dimension while 
preserving the important characteristics of full distributions.

The principal components, along with predicted mixture true and 
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bulk density, are then used in two regression data-driven models to 
predict tapped density and flowability of the mixture. A customised data 
pre-processing technique is used to incorporate the domain knowledge 
into the data-driven model to improve accuracy of prediction. Support 
Vector Regression (SVM), Random Forests (RF), Gradient Boosting 
Regression (GBR), and eXtreme Gradient Boosting (XGBoost) are 
investigated for regression capabilities and their prediction performance 
is evaluated. This UQ method not only provides a measure of confidence 
in the predictions but also contributes to the overall interpretability and 
robustness of the modelling framework.

A notable advantage of here-proposed hybrid modelling approach is 
its ability to provide meaningful insights to purely data-driven methods, 
enhancing model interpretability and robustness. By integrating the 
mechanistic understandings with data-driven techniques, we ensure that 
the models not only fit the data well but also adhere to established 
physical/experimental findings. This hybrid approach is a proof-of- 
concept towards more interpretable and reliable models, capable of 
addressing complex relationships in pharmaceutical powder character-
isation. Moreover, during the data collection, we adhered to FAIR 
(Findable, Accessible, Interoperable, and Reusable) data principles 

(Wise et al., 2019; Scheffler et al., 2022) to facilitate the compatibility 
and interoperability of datasets collected using different devices and 
across various organisations.

2. Materials and methods

2.1. Materials

Fifteen pharmaceutical materials that cover a range of excipients and 
APIs with a broad range of physical properties were studied (Table 1). 
The excipients used for the development, calibration and validation of 
the models are all commonly used direct compression and/or capsule 
filling excipients for oral solid dosage form drug product formulations 
(Chaudhari and Patil, 2012). The number of excipients gives a wide 
range of physical properties (Fig. S1 of the support information), chosen 
to challenge the models and explore a wide knowledge space. These 
were then blended into 86 different powder mixtures; the full list of 
these mixtures can be found in Table S1 of the Supporting Information. 
Each blend is described by a code which includes the abbreviation of 
individual components (“XXX” denotes either no-API or no second filler 

Fig. 1. Flow diagram of the proposed hybrid framework for mixture modelling. f(x) and AI symbols represent the mechanistic and data-driven models, respectively. 
The testing conditions refers to the consolidation pressure in the flowability measurement.

Table 1 
List of materials, suppliers, and abbreviations used in this study.

Material Grade Supplier Abbreviation Reference

Croscarmellose sodium AcDiSol FMC International CCS1 –
Croscarmellose sodium Solutab Roquette CCS2 –
Dicalcium phosphate anhydrous Anhydrous Emcompress® JRS Pharma DCPA –
Lactose monohydrate FastFlo® 316 Foremost Farms USA LAC1 –
Lactose monohydrate FastFlo® 316 Kerry, UK LAC2 Jolliffe et al. (2022)
Magnesium stearate Hyqual 5712 Mallinckrodt MgSt1 –
Magnesium stearate Ligamed MF-2 V Peter Greven MgSt2 Jolliffe et al. (2022)
Mannitol Pearlitol® 200 SD Roquette MAN –
Microctystalline cellulose Avicel® PH-102 FMC International MCC1 –
Microcrystalline cellulose Avicel® PH102 DuPont Nutrition MCC2 Jolliffe et al. (2022)
Calcium carbonate – Merck CAL Jolliffe et al. (2022)
Paracetamol Standard 6375 powder Mallinckrodt APAP Jolliffe et al. (2022)
Mefenamic Acid – Sigma Aldrich MFA Jolliffe et al. (2022)
Ibuprofen Ibuprofen 50 BASF IBU Jolliffe et al. (2022)
Griseofulvin – Molekula GRF –
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in a mixture code). Table 2 summarises the range of drug loadings and 
physical properties of mixtures based on their API and for all of them.

2.2. Blends preparation

For each of the 86 formulations in this work, approximately 700 g of 
blend was prepared. The required weight fraction of disintegrant, filler 
(s) and API were added to the medium bin blender bucket and mixed for 
20 min in a bin blender (Pharmatech AB-015, Pharmatech, Warwick-
shire, UK), with a blend speed of 20 rpm and an agitator speed of 200 
rpm. The weight fraction of lubricant (i.e. magnesium stearate) was then 
added to the blend and the mixture was blended for a further 5 min 
under the same conditions. Note that the data used in this paper is 
generated only for the initial training and validation of the proposed 
models and does not reflect the deployment procedure.

The quality of the data was rigorously evaluated through several key 
aspects: 1) A comprehensive Standard Operating Procedure was pre-
pared for every instrument to provide a consistent practice of data 
collection, e.g. the methodology and measurement settings for particle 
size and shape distribution. 2) Data completeness was ensured using 
conventional data generation methods and classic Design of Experiment 
(DoE) approaches, such as full factorial design. 3) Adequate sample size 
and data distribution were validated by generating data from a diverse 
range of blends, illustrated by varying drug loadings and physical 
properties (Table 2 in the Supporting Information). 4) Data accuracy and 
consistency were verified through internal consistency checks of similar 
mixtures and comparisons with model predictions, with expert reviews 
by technicians, project scientists, and domain experts further ensuring 
data accuracy.

2.3. Characterisation methods

All measurements were carried out in a controlled laboratory at 
ambient temperatures of 20-25 ◦C and 40–60 % relative humidity (RH).

2.3.1. Densities
The bulk and tapped densities for all powders, raw or mixture, were 

determined using a tapping machine (Dual Autotap, Quantrochrome, 
Boynton Beach, US) following the British Pharmacopeial standard pro-
cedure outlined in Appendix XVII S. Known masses of the powders were 
placed inside a 100 mL and 250 mL graduated cylinder, either 40 g and 
100 g respectively or if the powders exceeded the graduation at these 
masses 20 g and 50 g were used instead. The volume of the powder was 
read to the nearest graduated unit and used to obtain the bulk density of 
the powder using the density equation, i.e. ρ = m

V, where m is mass (gr), 
and V is the volume (cm3).

The true density of the powders was measured using a nitrogen gas 
pycnometer (MicroUltrapyc 1200e, Quantachrome, Boynton Beach, 
UK). The gas pycnometer was attached to a controlled water bath to 
allow a steady temperature of 25 ◦C for the gas and internal chambers of 
the device to minimise any influence of temperature on the measure-
ments. Measurements were carried out following the standard proced-
ure outlined in the Appendix XVII K. of the British Pharmacopoeia. The 
measurements were taken six times and the average value is reported.

2.3.2. Particle size and Shape
The particle size and shape measurements of the powders were 

carried out using a light microscope that performed an automated raster 
scan (Morphologi G3 and G4, Malvern Panalytical, Malvern, UK). A dry 
powder sample was dispersed using the in-built dispersion unit onto a 
microscope slide, this sample was then raster scanned to measure a large 
particle population to gain a representative sample, the particle images 
were processed via the Morphologi Software.

The number-based, and volume-based PSD and ARD data were 
extracted in 1001 size classes (i.e. NB = 1001), while the number-based 
frequency distributions were used within the modelling algorithms. A 
population threshold of at least 20,000 particles measured was chosen. If 
a sample measurement was less than this number, then the measurement 
was repeated until the threshold was met. If multiple measurements 
were required for a sample the weighted average values for the fre-
quency distributions were used as the inputs to the models. Materials 
were dispersed using the dry dispersion method, however, dependent on 
the material, a reduced compressed air dispersal pressure was used to 
avoid any structural changes in the powders before measurement if 
powders were known to be sensitive to more energetic dispersal. The 
magnesium stearate sample population sizes (at least 20,000 particles) 
were such that any agglomerates captured would have a minimal impact 
of the overall measurements (Puckhaber et al., 2024). Moreover, using 
the number-based frequency distribution to develop the particle models 
minimised the potential impact of agglomeration on the accuracy of 
measurements.

2.3.3. Flowability
The flowability of the powders was measured experimentally using a 

ring shear cell test on a powder flow tester (Brookfield PFT, Brookfield 
Engineering Laboratories, Inc., Middleboro, USA). This test measures 
the flowability of a ring of powder of known mass based on Jenike’s 
method (Jenike, 1976). A vaned lid is used to test the ring of powder by 
introducing vertical consolidation pressure varying between 0.79 and 
13.26 kPa and then introducing axial shear stress, the torque force 
required to cause a shear is recorded. These stress recordings calculate a 
Mohr’s circle and the unconfined yield stress of the powder. This process 
is repeated five times with increasing consolidation pressures and ana-
lysed using the Powder Flow Pro software (Brookfield) which runs the 
equipment. The flow function coefficient (FFC) of the sample was 
calculated by dividing the unconfined yield stress by the major principal 
consolidating stress. The average values of three measurements were 
taken and used as inputs for the models.

2.4. Model development

This section describes the mathematical development of mixture 
models. First, a probabilistic model for PSDs and ARDs of the mixture is 
explained. Next, analytical mixture models for true density and bulk 
density of mixture are presented followed by data-driven, predictive 
models for mixture tapped density and flowability.

Table 2 
Summary of the range of drug loadings and blend properties based on the API.

Drug loading (− ) True density (g/cm3) Bulk density (g/cm3) D[v, 0.05] PSD (μm) S[v, 0.05] ARD (− )

API Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.

Placebo 0 0 1.53 1.92 0.35 0.69 78.70 99.74 0.59 0.73
APAP 0.01 0.53 1.40 1.97 0.33 0.66 84.52 120.80 0.56 0.62
IBU 0.05 0.53 1.29 1.53 0.50 0.60 – – – –
MFA 0.05 0.46 1.36 1.50 0.47 0.57 – – – –
GRF 0.01 0.40 1.54 1.57 0.41 0.52 74.94 105 0.61 0.67
Total 0.00 0.53 1.29 1.97 0.33 0.69 74.94 10.80 0.56 0.73
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2.4.1. Particle size and shape

2.4.1.1. Particle size distribution. The number-based frequency distri-
bution of the powder mixture, nmix, can be represented by a finite 
parametric mixture model (Wraith et al., 2014): 

nmix,i =
∑K

j=1
λj × nj,i 

i = 1, 2,…,NB (1) 

where K is the number of components in the mixture, NB is the number 
of size classes, λj is the probability of membership of the jth component 
(
∑K

j=1λj = 1) in the mixture, and nj
i is the frequency of component j in 

size class i. The probability of membership of each component can be 
defined as the ratio of the number of particles of that component to the 
total number of particles in the mixture as follows: 

λj =

∑NB
i=1nj,i

∑K
k=1
∑NB

i=1nk,i
(2) 

The number-frequency of particles of component j in Eq. 2 is deter-
mined by diving the total volume of particles of component j (Vj) to the 
average volume of each particle of component j in size class i (Vj,i): 

∑NB

i=1
nj,i =

∑NB

i

Vj

Vj,i
=
∑NB

i

mj
/

ρt,j

φj × d3
j,i
=

Mj

ρjφj

∑NB

i

1
d3

j,i
(3) 

where ρt,j is the true density of component j, mj is the mass of component 
j,dj,i is the circular equivalent (CE) diameter of size class i in the distri-
bution of component j, and φj is a correction (shape) factor for compo-
nent j. The average volume of each particle is calculated assuming that 
all particles are spherical, however, φj is considered to mitigate this 
assumption by taking non-spherical shapes into account. Note that φj is 
an unknown fitting (tuning) parameter that is optimised by minimising 
the error between measured distributions and model predictions. 
Expanding Eq. 3 across all components leads to the total number of 
particles in the mixture: 

∑K

j

∑NB

i
nj =

∑K

j

∑NB

i

mj
/

ρt,j

φj × d3
j,i
=
∑K

j

Mj

ρt,j φj

∑NB

i

1
d3

j,i
(4) 

The mass of component j can be substituted by the mass fraction of 
component j (Cj) and the total mass of the powder mixture (mmix) as 
follows: 

mj = Cj ×mmix (5) 

Substituting Eq. 3 to 5 in Eq. 2 will give the formula for λj based on C,
ρ,φ,and d: 

λj =

Cj×mmix
ρt,j φj

∑NB
i

1
d3

j,i
∑K

k
Ck×mmix

ρt,k φk

∑NB
i

1
d3

k,i

=

Cj
ρt,j φj

∑NB
i

1
d3

j,i
∑K

k
Ck

ρt,k φk

∑NB
i

1
d3

k,i

(6) 

Replacing Eq. 6 in Eq. 1 will result in the probabilistic mixture 
model: 

nmix,i =
∑K

j=1

Cj
ρt,j φj

∑NB
i

1
d3

j,i
∑K

k
Ck

ρt,kφk

∑NB
i

1
d3

k,i

× nj,i (7) 

A reduced form of Eq. 7 can be obtained by assuming that all com-
ponents are of identical shape (φm = φn for m,n = 1,…,K): 

nmix,i =
∑k

j=1

Cj
ρt,j

∑NB
i

1
d3

j,i
∑K

k
Ck
ρt,k

∑NB
i

1
d3

k,i

× nj,i (8) 

The volume-based frequency distribution can be calculated as a 
product of number-based frequency distribution using the cubic 

function of size classes: 

vi =
ni × d3

i
∑NB

i ni × d3
i 

i = 1,2,…,NB (9) 

Particle shape distribution: The shape frequency distribution 
(represented by aspect ratio in this study) of the mixture can be repre-
sented by a similar parametric formulation to Eq. 1: 

ηmix,i =
∑K

j=1
λj × ηj,i 

i = 1,2,…,NB (10) 

where ηj,i denotes the aspect ratio of ith size class of component j, and 
other parameters are identical to those of Eq. 1. The probability of 
membership of each component (λj) is described by the ratio of mass 
concentration to the true density of the component (λj =

Cj
ρtrue,j

), resulting 

in the following equation: 

ηmix,i =
∑K

j=1

Cj

ρt,j
× ηj,i (11) 

The percentiles (D10, D50, D90) of the estimated PSDs and ARDs – 
using proposed probabilistic mixture models – are compared with the 
classic weighted average method, which is the mass-weighted average of 
percentiles of each component’s distribution (i.e. ηmix,i =

∑K
j=1Cj × nj,i 

and ηmix,i =
∑K

j=1Cj × ηj,i for PSD and AR, respectively), followed by 
Hilden et al. (2012).

The particle size and shape are often represented as high- 
dimensional distribution data, which can be computationally chal-
lenging. To simplify the modelling process, principal component anal-
ysis (PCA) is employed to reduce the dimensions of the predicted 
distributions while retaining the properties of the original data (Abdi 
and Williams, 2010; Bro and Smilde, 2014). By applying PCA to the 
estimated particle size and shape distributions of the available mixtures, 
principal scores are obtained and used to describe the particle size and 
shape of each mixture in subsequent modelling stages for tapped density 
and flowability prediction.

2.4.2. Densities

2.4.2.1. True density and bulk density. The mixture true density, ρt,mix,

and bulk density, ρb,mix, are estimated based on the components’ mass 
concentration Cj, true density ρtrue

j , and bulk density ρt,j of component 
j = 1,…,K. The following mass-weighted harmonic and arithmetic rules, 
respectively, is used in this study to estimate ρt,mix and ρb,mix following 
their reasonable accuracy shown by Moreno-Benito et al. (2022) and 
White et al. (2022): 

ρt,mix =

∑K
j Cj

∑K
j

Cj
ρt,j

(12) 

ρb,mix =

∑k
j Cjρb,j
∑k

j Cj
(13) 

The ρt,mix prediction performance of Eq. 12 is compared with those of 

the mass-weighted arithmetic mean (ρt,mix =

∑K
j

Cj ρt,j
∑K

j
Cj

) and mass 

weighted geometric mean (ρt,mix = exp

(∑K
j

Cj lnρt,j
∑K

j
Cj

)

), followed by a 

similar comparison for ρb,mix estimation between Eq. 13, mass and true 
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density weighted arithmetic mean (ρb,mix =

∑k
j
Cj ρt,jρb,j
∑k

j
Cjρt,j

) and particle vol-

ume weighted arithmetic mean (ρb,mix =

∑K
j

Cj ρb,j
ρt,j∑K

j
Cj

ρt,j

).

2.4.2.2. Tapped density. The tapped density of a mixture, ρtp,mix, is 
influenced by the bulk density, ρb,mix, changes during tapping causing a 
change in particle packing which is further influenced by particle size, 
shape, and cohesion. To account for these factors, a data-driven 
approach is used to predict mixture tapped density from material 
properties of the blend. In this case, the principal scores of mixture 
particle size and shape distribution (as explained in Section 2.4.1), 
mixture true density, and mixture bulk density are used as input pa-
rameters (also known as “features”) to develop the data-driven model. 
Four ML-based regression models (XGBoost, GBR, SVM, RF) are 
comparatively employed to investigate the prediction performance of 
mixture tapped density, followed by the relative feature importance 
analysis (Marcílio and Eler, 2020) using the best-performing model. 
These models are selected due to the simplicity of implementation, 
computational efficiency, and reasonable accuracy in similar problems 
(Friedman, 2002; Segal, 2004; Awad and Khanna, 2015; Chen et al., 
2015).

2.4.3. Flowability
Following a similar approach to predicting mixture tapped density in 

Section 2.4.2, four ML-based regression approaches (XGBoost, GBR, 
SVM, RF) are used to estimate the mixture flowability, which is repre-
sented by the FFC. The approach involves using the principal scores of 
the number-based PSD, mixture true density, mixture bulk density, and 
consolidation pressure applied to the powder, the latter taking the 
impact of testing condition into account. After performing feature en-
gineering (Zheng and Casari, 2018) and initial observation of the mar-
ginal impact of particle shape (i.e. principal scores of ηmix) on the 
estimated flowability, it was excluded from the input parameters. In this 
study, regression models are preferred over conventional classification 
approaches (Alshafiee et al., 2019; Valente et al., 2020; Bano et al., 
2022a) for one main reasons. A slight error in the prediction of flow-
ability could cause misclassification of the powder mixture, while a 
numerical prediction of FFC values provides more information on the 
proximity of each powder to each flow class, enabling a more trans-
parent analysis of the estimated values. The classification performance 
of the regression models will then be assessed based on the three ranges 
of interest provided in Table 3. To impose equal importance on cohesive 
and non-cohesive powders during the training process and consider the 
domain knowledge based on the powder flow classification, a new 
approach for transforming the input data is proposed: Eq. 14 is 
employed to scale the response y (i.e. FFC) from the original domain to 
[0,1] to improve the prediction by eliminating the problem of different 
ranges of response variables during the model training process. 

u = 1 − 2−
y
β (14) 

The threshold parameter β is set to 4 to scale the FFC < 4 values (i.e. 
cohesive powders as categorised in Table 3) to the lower half of the 
domain (i.e. 0 < u < 0.5) and the rest of data (i.e. FFC ≥ 4) to the higher 
half of the domain (i.e. 0.5 < u < 1).

3. Results and discussions

3.1. Particle size and aspect ratio distribution mixture model

PSD and ARD of 21 mixtures including both placebo (i.e. no API) and 
APAP mixtures with 5 different excipients (with NB = 1001) were used 
to validate the PSD and ARD mixture models. The probabilistic PSD 
model was applied to all mixtures, showing a reasonable quality of 
prediction as compared to the measured PSDs (Fig. 2 and Fig. S2 in the 
Supporting Information). This can be quantitatively demonstrated 
through the outperformance of the probabilistic mixture model against 
the classic weighted average method in predicting D10, D50, and D90 of 
mixture particle size (Fig. 3). For example, the probabilistic model 
predicted D50 of mixture particle size by 74% more accurate than the 
classic approach. The better prediction performance of the probabilistic 
approach is shown by its higher correlation of determination (R2) and 
lower root-mean-square error (RMSE) (see Table 4), although the ac-
curacy of both approaches decreased for D90 predictions.

A correction factor φ for lactose (φLAC) and dicalcium phosphate 
anhydrous (φDCPA) is considered to improve the quality of fit of the 
probabilistic model in Eq. 7. For all other components, φ = 1 was 
considered. The Levenberg-Marquardt algorithm (Roweis, 1996) was 
employed to optimise φLAC and φDCPA for each mixture – if it includes 
either or both components – through minimising the RMSE between 
model-predicted PSD and measured data. φLAC shows a linear correlation 
with lactose mass concentration, which indicates that the contribution 
of lactose to the mixture PSD increases with its concentration (Fig. 4a). 
For DCPA (Fig. 4b), φDCPA increases with its mass concentration, 
showing a lower impact on mixture PSD at higher concentrations. In this 
example, the correction factors are assumed to be independent of 
formulation to allow the standalone investigation of each component’s 
impact on the PSD of the mixture. The correction factors are calculated 
to address specific discrepancies between the model predictions and 
experimental measurements, reflecting the unique physical character-
istics of the powders. This has been observed for two excipients, i.e. 
DCPA and Lactose, that are available in the current dataset. A more in- 
depth understanding of the impact of physical characteristics of powders 
on the correction factor requires a multi-variate analysis on a larger 
dataset with various components. Hence, further studies on the pairwise 
dependency of components’ correction factors can improve the under-
standing of inter-component interactions.

Following a similar approach to PSD, the parametric ARD mixture 
model (Eq. 11) was applied to all mixtures and compared to the 
measured data (Fig. 5 and Fig. S3 in the Supporting Information). The 
parametric mixture model outperformed in the estimation of D10 and 
D50 of the mixture, whereas the weighted average model resulted in 
more accurate D90 predictions (Fig. 6). The R2 and RMSE of both ap-
proaches are provided in Table 5.

PCA was applied to the set of 35 mixture PSDs and ARDs to project 
the high dimensional data (35 × 1001 in this case) onto a few principal 
components. The explained variance per principal component is evalu-
ated to understand the relative importance of each component to pre-
serve the most important characteristics of the high dimensional data 
(Fig. S4 in Supporting Information). For PSD (Fig. S4-a) and ARD 
(Fig. S4-b), the first three components of the PCA models explain 82 % 
and 94 % of the original data, respectively. The diversity of formulations 
captured by the PC scores is shown in Fig. S5 in the Supporting Infor-
mation. To take the effect of particle size and shape into account, these 
principal components will be used as input features in the data-driven 
models to predict mixture tapped density and flowability.

3.2. True density

Three true density mixture models described in Section 2.4.2 were 
compared using 86 mixtures (Fig. 7 – a, b, c), the true density of the 

Table 3 
The number of FFC measurements in each range of interest.

FFC Powder behaviour Number of FFC measurements

FFC < 4 Cohesive 84
4 ≤ FFC < 10 Easy-flowing 85
FFC ≥ 10 Free-flowing 66
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mixtures varies between 1.11 g/cm3 and 1.98 g/cm3. The harmonic 
mean shows the highest accuracy with R2 = 0.98 while the arithmetic 
and geometric means overestimate mixture true densities above 
1.6 g/cm3. The outperformance of harmonic mean stems from the mass 
balance between raw material components and the powder mixture, 
which requires the reciprocal conversion of true density and using mass 
fraction to calculate the volume of each component (Eq. 12). Results are 
in line with the conclusions drawn by Moreno-Benito et al. (2022). A 
summary of the prediction performance of true density mixture models 
is provided in Table 6.

Fig. 2. Number-based PSD of mixtures predicted by the probabilistic model vs. experimental measurements for selected formulations. The “XXX” in the blend name 
denotes no API or no second excipient. Comparisons of other formulations can be found in Fig. S2 in the Supporting Information.

Fig. 3. D10, D50, and D90 values of number-based PSDs predicted by probabilistic and weighted average mixture models vs. experimental measurements.

Table 4 
Prediction performance of probabilistic and weighted average mixture models 
for D10, D50, and D90 of number-based PSDs.

Mixture model R2 RMSE

D10 D50 D90 D10 D50 D90

Probabilistic model 0.82 0.78 0.51 0.19 1.75 13.20
Weighted average model − 0.99 − 2.32 − 2.91 0.65 6.74 4.67
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3.3. Bulk density

Similar to Section 3.2, the validity of three bulk density models was 
assessed using 86 mixture data ranging from 0.22 and 0.87 g/cm3. All 
models displayed similar prediction performance; however, the mass- 
weighted mixture model exhibited a slightly higher quality of fit (R2 =

0.95) as compared to the mass and true density-weighted and particle 
volume-weighted approaches (Fig. 7 – d, e, f). Table 7 summarises the 
prediction performance of mixture rules. In a similar study, White et al. 
(2022) investigated the accuracy of bulk density mixture models with a 
dataset varying between 0.1 and 0.4 g/cm3 and showed the decrease in 
models’ prediction accuracies for the mixtures with low API bulk den-
sities. This prediction performance degradation, however, was not 

observed in this study as the dataset here had a wider range of bulk 
densities.

3.4. Tapped density

The scores of the first three principal components (PC1, PC2, PC3) of 
mixture PSD, ASD, true density ρt,mix, and bulk density ρb,mix are used as 
input parameters to train and validate the data-driven tapped density 
model. These features are used to represent the key material properties 
and formulation of the mixture, while the model is compatible with 
other sets of input parameters subject to data availability. This 
sequential use of the previously developed mixture models’ predictions 
for tapped density estimation preserves the capability of the system 

Fig. 4. Correction factor of (a) lactose (φLAC) and (b) dicalcium phosphate anhydrous (φDCPA) in probabilistic mixture model vs. their mass concentrations.

Fig. 5. ARDs of mixtures predicted by probabilistic model vs. experimental measurements. The “XXX” in the blend name denotes no API or no second excipient. 
Comparisons of other formulations can be found in Fig. S3 in the Supporting Information.
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model to predict mixture properties using raw material and formulation 
data. The model was initially trained with 67 training data points, while 
30 test data points were kept “unseen” to verify the applicability of the 
model to new data. For a consistent comparison, the same training and 
testing procedure was considered for XGBoost, GBR, SVR, and RF. The 
XGBoost performed slightly better than GBR and RF, while SVR failed to 
provide a satisfactory prediction performance (Fig. 8). A summary of the 
prediction performance of tapped density models is provided in Table 8. 
The feature importance analysis based on XGBoost shows the strong 
impact of bulk density and particle size on the tapped density of the 
mixture (Fig. S6 in Supporting Information), corroborating Saw et al. 
(2013)’s findings on the influence of particle size distribution and tap-
ped density on the bulk density and packing efficiency of milled lactose 
powders.

3.5. Flowability

Following a similar approach to tapped density model development 
(Section 3.4), the first three principal scores (PC1, PC2, PC3) of mixture 
PSD, mixture true density ρt,mix, mixture bulk density ρb,mix (all 
describing the material properties of the mixture and predicted by 
developed models), and consolidation pressure Pc (accounting for the 
process conditions in flowability measurement) are used as input pa-
rameters of the data-driven model to predict the FFC of powder mixture. 
The dataset includes 47 different mixtures, the FFC of which measured 
under five consolidation pressures, resulting in 235 data points. The 
train/test splitting was performed based on the mixture formulations to 
assess the models’ capability in estimating new formulations’ flow-
abilities. Four models (as described in Section 2.4.3) were initially 
trained with 35 mixture data (i.e. 175 data points) while 12 mixtures (i. 
e. 60 data points) were kept as the test dataset to validate the prediction 
accuracy of models.

XGBoost and RF both showed higher prediction accuracies (R2 =

0.91) while GBR and SVR, respectively, performed reasonably accurate 
(R2 = 0.86) and worst (R2 = 0.65), as shown in Table 9 and Fig. S7 in 

Supporting Information). The powder mixtures were categorised into 
three groups based on their FFC values (see the highlighted regions in 
Error! Reference source not found. Based on Table 3) to analyse the 
classification accuracy of the regression models, improving the under-
standing of predictive models by incorporating the domain knowledge 
about the often-used flowability classifications (Van Snick et al., 2018; 
Alshafiee et al., 2019; Valente et al., 2020; Lagare et al., 2023). RF model 
was selected as the best-performing model due to its high accuracy and 
general robustness in noisy data as compared to XGBoost (Kirasich et al., 
2018). The RF model showed high classification performance with 92% 
accuracies on test data points (i.e. correct classification of 55 powders 
out of 60 data points). The model managed to correctly classify all 
cohesive powders, which possess substantial risk in the manufactur-
ability of the drug product. The confusion matrix in Fig. 10-bottom 
summarises the overall classification performance of the RF model. To 
perform further evaluation of the model’s predictive performance, the 
RF model was tested cross-validated using the leave-API-out approach. 
For each individual APIs that are used in the blend dataset (i.e. 5-fold 
cross validation based on 5 APIs: placebo, APAP, IBU, MFA, and GRF), 
a RF model was trained using no instances of the selected API while 
retraining based on the rest of dataset, and the predictive performance of 
the trained model for the excluded API was assessed. The RMSEs for the 
5-fold cross validated models ranged from 0.098 to 0.196 with an 
average RMSE of 0.14. As expected, the difference in RMSEs stems from 
the variability of model’s accuracy in predicting the flowability of 
blends with different APIs. However, the RMSEs from leave-API-out 
cross-validation are generally lower than the one achieved by the sin-
gle train-test-split validation (Table 9), showing the robustness of the RF 
model in predicting the flowability of new APIs. The RF model was also 
used to predict the FFC of raw material components directly from its raw 
material characteristics, reducing the need for material to perform 
flowability measurements (Fig. S8 in Supporting Information).

The mean SHAP values in the RF model were calculated to analyse 
the predictions from the test dataset (Fig. 9), enhancing the interpret-
ability of the data-driven models and understanding the relative 
importance of input features. The true density of the mixture, repre-
senting the inherent physical property of the material, showed the 
greatest impact on the predicted FFC, while the high mean SHAP value 
of consolidation pressure indicates that the model has learned the 
importance of measurement conditions on mixture flowability. The bulk 
density is shown to have a minimal impact, which is due to its de-
pendency on particle size, the effect of which is captured by the model. 
Note that there is an unquantified, yet potentially important effect of 
uncertainty of the training data on their SHAP relative importance due 
to the absence of standard deviation measurements in this work. This 

Fig. 6. D10, D50, and D90 values of ARDs predicted by probabilistic and weighted average mixture models vs. experimental measurements.

Table 5 
Prediction performance of probabilistic and weighted average mixture models 
for D10, D50, and D90 of number-based ARDs.

Mixture model R2 RMSE

D10 D50 D90 D10 D50 D90

Probabilistic model 0.54 0.20 0.20 0.03 0.04 0.03
Weighted average model − 0.08 0.19 0.44 0.05 0.04 0.02
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can be addressed by incorporating the distribution of the input param-
eters into the training process, such as by including their variance and 
expected value in the loss function (Shahvandi and Soja, 2022), which is 
beyond the scope of the current work.

Uncertainty Quantification (UQ) of FFC predictions: Flowability 
characteristics of the powder are crucial in assessing manufacturability 
of a given drug blend and formulation, impacting on formulation and 
process decisions. It is therefore important to determine the precision of 
powder flow measurements and predictions, particularly when dealing 

with high FFC values where it is inherently difficult to accurately 
quantify flow characteristics (Leung et al., 2016). Prediction intervals 
provide a measure of the uncertainty associated with a predicted value 
and are used in regression analysis to estimate the range of values within 
which a future response is expected to fall. Bootstrapping is a statistical 
resampling technique that is often used as a means of quantifying the 
uncertainty associated with a machine learning model(Efron, 1992). 
Classic bootstrapping entails the creation of multiple new datasets by 
repeatedly sampling, with replacement, from the original training 
dataset. Each resulting bootstrap sample is subsequently used to train 
individual regression models. By analysing the variability in their pre-
dictions, one can assess confidence intervals and estimate prediction 
error. An alternative, model-specific approach for estimating prediction 
error in a RF model leverages the variability in predictions of its con-
stituent decision trees, which are inherently built on resampled datasets 
derived from the original data. This method capitalises on the intrinsic 
resampling within the RF algorithm to provide robust error estimates. 
The prediction error can be calculated based on the assumption that the 
errors of the regression model are normally distributed. Mathematically, 
given a new input data point X, the prediction interval (γ) of the pre-
dicted response ŷ can be obtained as follows: 

γ = ŷ ± Zscore × Es (15) 

where Zscore corresponds to the desired level of confidence, and the Es is 
the standard error calculated as the square root of the sum of the vari-

Fig. 7. a-c: Predicted mixture true density using (a) mass weight harmonic mean (b) mass weighted arithmetic mean (c) mass weighted geometric mean vs. 
experimental (true) measurements of blends; d-f: Predicted mixture bulk density using (d) mass-weighted arithmetic mean (e) mass and true density weighted 
arithmetic mean (f) particle volume weighted arithmetic mean vs. experimental (true) measurements of blends.

Table 6 
Prediction performance of mixture true density using three mixture rules.

Mixture model R2 RMSE

Harmonic mean 0.98 0.03
Arithmetic mean 0.91 0.08
Geometric mean 0.96 0.05

Table 7 
Prediction performance of mixture bulk density using three mixture rules.

Mixture model R2 RMSE

Mass weighted mean 0.89 0.04
Mass and true density-weighted mean 0.84 0.05
Particle volume weighted mean 0.86 0.04
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ance of the predicted value and the variance of the residuals. In the case 
of RF regression, the predicted value is obtained as the mean of the 
predictions of all trees in the forest (Coulston et al., 2016), and the 
variance of the predicted value is calculated as the variance of the 
predictions of all trees in the forest. The variance of the residuals, on the 
other hand, is estimated as the mean squared error (MSE) of the forest. 
To obtain Zscore, we use the inverse of the cumulative distribution 
function (CDF) of the standard normal distribution, evaluated at 
(

1 − α
2

)
, where α is the significance level of the confidence interval. In 

this study, for a 95% prediction interval, α = 0.05, and Zscore is the in-
verse CDF of the standard normal distribution evaluated at Zscore =

0.975. Given a RF regression model that takes in an input feature vector 
X and predicts a response value y with a set of n test samples (n = 60 in 
this work), where each sample i has an input feature vector Xi and a true 
response value yi. The 95% prediction interval for the predicted 
response value ŷi of a new input feature vector X can be calculated as 
follows: 

ŷi ± t
(α

2
, n − 1

)
× S×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
1
n
+ (X − X) × Sinv

XX × (X − X)T
√

(16) 

Fig. 8. Predicted mixture tapped density using four data-driven models vs. experimental (true) measurements of blends.

Table 8 
Prediction performance of mixture tapped density using different data- 
driven models.

Model R2 RMSE

XGBoost 0.80 0.23
GBR 0.78 0.23
SVR 0.51 0.29
RF 0.81 0.22

Table 9 
Prediction performance of mixture FFC using four data-driven models.

Model R2 RMSE

XGBoost 0.91 0.19
GBR 0.86 0.22
SVR 0.65 0.28
RF 0.91 0.18
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where: 

• ŷi is the predicted response value for the input feature vector Xi

• t
(

α
2, n − 1

)
is the critical value of the t-distribution with n − 1 de-

grees of freedom and a significance level of α2. In this work, for a 95% 
prediction interval and n = 10, t(0.025,59) = 2.001 (Dodge, 2008)

• S is the standard deviation of the residuals of the random forest 
model on the training set

• X is the mean of the input feature vectors in the training set
• Sinv

XX is the inverse of the covariance matrix of the input feature 
vectors in the dataset.

The term t
(

α
2, n − 1

)
× S in Eq. 16 accounts for the variability of the 

Fig. 9. Feature importance analysis for the XGBoost flowability (FFC) mixture model. The features are ranked based on their mean SHAP value.

Fig. 10. (top) Prediction performance of RF model and the associated uncertainty in predicted FFC values. The colour bar shows the RSD of the predicted data points. 
(bottom) RF model confusion matrix evaluated on the test dataset.
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model predictions, while the term 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 1
n + (X − X) × Sinv

XX × (X − X)T
√

is 
a measure of the variability of the data. The two terms are combined to 
calculate a prediction interval that captures the uncertainty in both the 
model and the data. The relative standard deviation (RSD) of the model 
prediction can be calculated by dividing the prediction interval over the 
mean predicted response value: 

RSD =
2 × t

(
α
2, n − 1

)
× S ×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 1
n + (X − X) × Sinv

XX × (X − X)T
√

ŷi
(17) 

The uncertainty associated with the input data (X) can be incorpo-
rated into the calculation of RSD by modifying Sinv

XX . This modification, 
upon the availability of a statistical variance associated with different 
measurements, allows for the investigation of how the statistical vari-
ance of input features impacts the model’s prediction uncertainty. Re-
sults show that higher RSD, i.e. greater uncertainty, is associated with 
the prediction of free-flowing powders with high FFC values (Fig. 10- 
top). This agrees with the experimental observations of Kuentz and 
Schirg (2013) and the mathematical description of Leung et al. (2016)
who found that the precision of FFC measurement is often compromised 
by powders with inherently low cohesion values. From the mathemat-
ical point of view, the uncertainty of a future prediction is an indicator of 
the knowledge of the model around that specific data point (Salehian 
et al., 2022), which explains the higher uncertainty in free-flowing 
powders of which fewer data points are available in the train/test 
dataset, i.e. the model has been trained less around the region of feature 
space with high FFC powder data points. This can be used to modify the 
target (i.e. objective) function to inform a model-based design of ex-
periments (MBDoE) or model-based optimisation (MBO) approaches, 
where higher uncertainty of prediction in a single point indicates that 
the next experiment is likely to be conducted adjacent to that point. It is 
important to note that data quality has a crucial impact on efficiently 
achieving the target confidence interval. The quantitative assessment of 
the relative importance of data quality against the number of data points 
using various statistical methods, such as sensitivity analysis or Monte 
Carlo simulation techniques, could be useful.

4. Conclusions

A hybrid system of mixture models was presented to predict the key 
characteristics of pharmaceutical powder blends – focusing on particle 
size, particle shape, true density, bulk density, tapped density, and 
flowability – from raw material properties. The proposed system model 
is built on existing analytical knowledge and complemented with data 
driven approaches to improve the predictive models’ accuracy and shed 
light on the relationships between blend characteristics and raw mate-
rial properties. The data-driven models were designed to utilise the 
outputs from mechanistic models to account for the interplay between 
material properties while preserving the predictability of the proposed 
system of models to estimate powder mixture characteristics from raw 
material properties, hence reducing the cost and material waste during 
blend preparation and characterisation. The developed ML-based flow-
ability model is of special advantage in predicting the FFC in a fraction 
of time using a blend’s physical properties (e.g. density and particle 
size/shape), saving material by avoiding the need for comprehensive 
shear testing of raw materials for flowability measurement. Moreover, 
the feature importance analysis of the data-driven models showed the 
agreement between the quantitative (model) and qualitative (domain 
knowledge) understanding of the influential parameters in the tapped 
density and flowability of powder mixtures. A new model-based UQ 
technique was presented to specifically capture the uncertainty associ-
ated with the flowability predictions. The proposed model-based UQ 
strategy can be used for precision analysis of future predictions in 
development processes and systematic MBDoE.

The models were tested using the experimental data and their ac-

curacy was evaluated across a wide range of formulations from FFC 
(approximately between 2 and 35), PSD (D50 approximately between 15 
and 35), ARD (D50 approximately between 0.55 and 0.75). The results 
demonstrate the reliability of the developed system of models in pre-
dicting pharmaceutical mixture properties, with their accuracy assessed 
using several metrics throughout the paper. This system of models holds 
the potential to accelerate drug product development processes 
involving new APIs by predicting powder mixture properties, thereby 
informing formulation and process decisions within a model-based 
optimisation framework. The leave-API-out cross-validation of the 
flowability mixture model was performed to prove this potential and 
assess its predictive performance for new APIs. Future improvements to 
the robustness of models could include considering further materials (e. 
g. APIs and excipients with different physical properties), additional 
important properties of pharmaceutical powders as input parameters (e. 
g. crystal structure and particle informatics), and expanding the 
framework by developing new models to predict other characteristics, 
such as hygroscopicity, permeability, and the effective angle of internal 
friction. Moreover, the machine learning approaches used in this study 
can capture the nonlinear behaviour of blend properties at different API 
concentrations, enabling the investigation of sudden changes of blend 
properties beyond an API concentration percolation threshold. 
Acquiring reliable training data, developing and deploying models 
consistent with mathematical programming and machine learning 
principles, and regularly maintaining computational frameworks to 
incorporate new data and enhance their capabilities over time remain as 
crucial tasks throughout the lifecycle of computational models.
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