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A B S T R A C T

Context: Protection motivation theory (PMT) is the most frequently used theory in understanding cyber security 
behaviors. However, most studies have used a cross-sectional design with symmetrical analysis techniques such 
as structure equation modeling (SEM) and regression. A data-driven approach, such as predictive modeling, is 
lacking and can potentially evaluate and validate the predictive power of PMT for cybersecurity behaviors.
Objective: The objective of this study is to assess the explanatory and predictive power of PMT for cyber security 
behaviors related to computers and smartphone.
Method: An online survey was employed to collect data from 1027 participants. The relationship of security 
behaviors with threat appraisal (severity and vulnerability) and coping appraisal (response efficacy, self-efficacy and 
response cost) components were tested via explanatory and predictive modeling. Explanatory modeling was 
employed via SEM, whereas three machine learning algorithms, namely Decision Tree (DT), Support Vector 
Machine (SVM), and K Nearest Neighbor (KNN) were used for predictive modeling. Wrapper feature selection 
was employed to understand the most important factors of PMT in predictive modeling.
Results: The results revealed that the threat severity from the threat appraisal component of PMT significantly 
influenced computer security and smartphone security behaviors. From the coping appraisal, response efficacy and 
self-efficacy significantly influenced computer and smartphone security behaviors. The ML analysis showed that 
the highest predictive power of PMT for computer security was 76 % and for smartphone security 68 % by KNN 
algorithm. The wrapper feature selection approach revealed that the most important features in predicting security 
behaviors are self-efficacy, response efficacy and intention to secure devices. Thus, the findings indicate the 
complementarity of the cross-sectional and data driven methods.

1. Introduction

Cybersecurity has been an important area of research for the last two 
decades. With the notion of humans as the weakest link in cybersecurity, 
behavioral aspects have also been given due research diligence recently 
(Schneier, 2015). Several studies have highlighted the impact of human 
behavior in securing cyberspace. Various theoretical constructs and 
frameworks from fields such as social sciences, information systems, and 
psychology have been used to understand the influence of 
socio-technical variables on varied types of cybersecurity behaviors in 
organizational setups, such as policy compliance and non-compliance 
(Moody et al., 2018), and home-users contexts, such as general and 
specific security behaviors (Khan et al., 2022; Y. Li et al., 2021). 

Notwithstanding the context, one of the most frequently used theories in 
understanding cybersecurity behavior is Roger’s protection motivation 
theory (PMT) (Rogers, 1975) and has been reported consistently to be 
the most frequent by many systematic reviews (R. E. Crossler et al., 
2013; Haag et al., 2021; Mou et al., 2017; Siponen et al., 2024). While 
PMT has been used to understand user’s security behaviors in both 
organizational and home, it has been found more appropriate in un-
derstanding home-users motivations and behaviors in comparison to 
organizational ones because it deals with individual behaviors, and 
personal perceptions of risks and motivations instead of those related to 
the organization (Sommestad et al., 2015a). The individuals in 
home-user contexts can be students, children, adults and senior citizens 
(Farooq et al., 2015; Y. Li et al., 2021) who interact with cyberspace 
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devoid of organizational policies, rules and regulations, and their pro-
tective behavior is understood better by threat and coping appraisal as per 
PMT. Other the other hand, employees’ or adult workers’ security be-
haviors are govern by organizational policies, rules, and regulations in 
addition to their individual threat and coping appraisal (Sommestad 
et al., 2015a).

Studies addressing the effects of PMT’s constructs on cyber security 
behaviors are largely based on cross-sectional research design and 
symmetrical analysis techniques such as regression (multiple, hierar-
chical) and structural equation modeling (SEM), for example, (Farooq 
et al., 2019; Haag et al., 2021; Mou et al., 2017). At one end, the 
cross-section design inhibits researchers from examining the questions 
that implicitly or explicitly point toward temporal causality (Maier 
et al., 2023). On the other, both analysis techniques, which are 
explanatory in nature (Forster and Sober, 1994; Shmueli, 2010), aim to 
test the hypotheses and report on the strengths of interactions between 
the threat and coping appraisals of PMT and cybersecurity behavior. The 
premise of such modeling is based on the compensatory nature of in-
teractions where the shortfall of one antecedent’s influence in the PMT 
model is compensated by others’ influence (Alwabel and Zeng, 2021). 
However, regression and SEM assume a linear relationship between 
antecedents of cybersecurity behavior (Alwabel and Zeng, 2021), which 
sets both empirical and theoretical limitations to understanding the 
phenomenon.

To deal with the limitations of both research design and analysis 
methods, it is essential to consider alternative methods for under-
standing cybersecurity behaviors, for example, Maier et al. (2023) rec-
ommended studying casualty beyond symmetrical modeling. Existing 
information systems research proposes configurational and asymmet-
rical modeling techniques such as fuzzy-set qualitative comparative 
analysis (fsQCA) (Mithas et al., 2022), and neural networks (NN) 
(Tarhini et al., 2024) to overcome the limitations of symmetrical or 
explanatory modeling. The fsQCA approach complements the statistical 
modeling approaches by identifying sufficient causal configurations i.e. 
combination of factors for given behaviors (Dahabiyeh et al., 2023), or 
the sequence (Sun et al., 2020). fsQCA is helpful where the relationships 
are complex and multiple conditions hold with configurational de-
pendencies. fsQCA has been known to better address the problems 
related to small samples and qualitatively complements SEM by 
providing particular configurations and combinations. NN has been 
found better at studying non-linear relationships and gives greater 
predictive modeling power (Liébana-Cabanillas and Lara-Rubio, 2017; 
Shmueli, 2010). Unlike regression and SEM, this data-driven modeling 
seeks to identify the predictive power of the model and does not consider 
the correlations between the antecedents of the model (Alwabel and 
Zeng, 2021). Predictive modeling is specifically important for advancing 
and validating theories and for evaluating the predictive accuracy of 
models (Shmueli and Koppius, 2011). The use of non-symmetrical and 
predictive modeling with explanatory modeling is evident in other do-
mains, such as the adoption of technology (Alwabel and Zeng, 2021; 
Bahari et al., 2023), environment (Almheiri et al., 2024) and financial 
sustainability (Arpaci, 2023) and education (Alshurideh et al., 2023; 
Tarhini et al., 2024).

Despite their utilities, the configurational and predictive modeling in 
cybersecurity behavioral research is almost non-existent. Recent studies 
on cybersecurity behaviors have called for a better understanding of the 
interplay of explanatory and predictive modeling (Alassaf and Alkhali-
fah, 2021). Advancing the understanding of predictive modeling will not 
only diversify analysis techniques to overcome biases of cross-sectional 
research designs (Maier et al., 2023) but also will help with a better 
understanding of machine learning algorithms (Khan et al., 2021). The 
predictive power of the explanatory models ascertains the quantity of 
actual explanations (Maier et al., 2023). Moreover, the completeness of 
the explanatory models has been assessed via predictive models as 
benchmarks (Fudenberg et al., 2019) and sets precedence for complete 
explanations.

This study addresses the gaps identified in the use of PMT in 
cybersecurity behavioral research by diversifying analysis techniques to 
deal with both design and limitations of existing analysis methods 
(Alassaf and Alkhalifah, 2021; Maier et al., 2023). The overreaching aim 
of this study is to compare the explanatory and predictive modeling ap-
proaches to explain cybersecurity behaviors. This allows us to bridge the 
research gaps by augmenting SEM analysis with data-driven and 
machine-learning-based predictive analysis. This study compares the 
two different methods (explanatory vs. predictive) in the contexts of 
computer and smartphone security behaviors that have been previously 
indicated as two critical yet distinctive IT-specific settings to cyberse-
curity behaviors (Thompson et al., 2017). Specifically, this study ad-
dresses cybersecurity behavior in the home-user context to account for 
the predictive accuracy of the PMT on cybersecurity behavior. The 
explanatory modeling was accomplished with covariance-based struc-
tural equal modeling (CB-SEM) to gain insights into the explanatory 
power of PMT for computer security behavior (CSB) (Ng et al., 2009; 
Thompson et al., 2017) and smartphone security behavior (SSB) (Zhou 
et al., 2020). Then, a combination of linear and non-linear machine 
learning algorithms (ML) was used to understand the predictive power 
of PMT and to assess the protection motivation for cybersecurity be-
haviors. As a contribution, the study indicates the complementarity of 
the explanatory and predictive approaches to indicate similar findings 
and the distinctiveness of the predictive modeling to indicate more 
nuanced effects. This serves as a key step for Information Systems 
research to seek the potential of predictive modeling in behavioral 
research.

The paper is organized as follows. Section 2 presents the background 
and literature review on cybersecurity behavioral research in terms of 
computer security and smartphone security under the lens of PMT. The 
explanatory modeling and predictive modeling are explained in Sub-
sections 2.2 and 2.3 followed by key differences between the two in 
Subsection 2.4. Section 3 reports on the details of the proposed models 
and hypothesis development. The details about the research methodol-
ogy such as instruments used, sampling strategy and data collection 
procedure, are given in Section 4 and its subsequent Subsections. The 
results of explanatory and predictive modeling are discussed in Section 5
followed by discussion. The conclusion and future work is given in 
Section 6.

2. Background and literature review

2.1. Protection motivation theory

Protection Motivation Theory (PMT) was developed by Rogers 
(Rogers, 1975) in 1975 to help explain an individual’s engagement in 
protective behaviors by focusing on fear appeals. Later, the theory was 
revised to include cognitive factors for understanding protective be-
haviors (Rogers, 1983). PMT can and has been used in various situations 
involving any threat (Rogers and Prentice-Dunn, 1997). PMT has been 
used in health, medical, social, personal and economic domains (Farooq 
et al., 2020; Floyd et al., 2000). According to PMT, the manifestation of 
protective behavior is the outcome of cost-benefit analysis; the indi-
vidual compares risks and costs and decides whether to take protective 
actions to eliminate the risk (Rogers, 1983; Sommestad et al., 2015a). 
The cost-benefit analysis is carried out using two components of PMT: 
threat appraisal and coping appraisal. The threat appraisal appraises how 
likely an unwanted threat results in consequences while coping appraisal 
is the engagement in a protective behavior via the tradeoff between the 
effectiveness of the coping response and its costs (Rogers, 1983). This 
means that an individual should perceive that one is vulnerable to a 
threat and that the consequences of the threat are severe. At the same 
time, the individual should perceive that one can enact protective 
behavior that is effective for mitigating threats, and the cost of enact-
ment is compensated with its benefits (Rogers, 1983). Both threat and 
coping appraisals create motivation (intention) among the individuals, 
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further eliciting actual behavior. Threat appraisal is operationalized 
using two constructs: threat severity and threat vulnerability. The former is 
the perception of threat impact when it becomes real, and the latter is 
the likelihood of falling prey to a threat. A higher severity and vulner-
ability would create protection motivation and, thus behavior. Coping 
appraisal consists of three constructs: response efficacy, self-efficacy and 
response cost. Response efficacy, is one’s belief that an adaptive response 
is effective, self-efficacy is one’s belief about ability to successfully 
perform an adaptive response, and response cost is the psychological or 
physical cost associated with adopting a control measure. Fig. 1 shows 
the factors involved in PMT.

2.2. PMT and cybersecurity behavior

Almost two decades of behavioral cybersecurity research have 
repeatedly identified PMT as the most frequently used theory in un-
derstanding cybersecurity behaviors (Haag et al., 2021; Khan et al., 
2022; Lebek et al., 2014; Mou et al., 2017, 2022). The theory has been 
touted as an appropriate theory for studying cybersecurity behavior, 
with its components mapping well to the security concepts (Sommestad 
et al., 2015b).

In the cybersecurity behavior context, threat vulnerability has been 
defined as the likelihood of occurrence of a threat and that an individual 
is likely to be exposed to the threat (Haag et al., 2021; Johnston and 
Warkentin, 2010). Threat severity has been defined as the severity of the 
negative consequences that can occur due to the manifestation of that 
threat (Haag et al., 2021). It is the severity of the repercussions when a 
threat materializes. If an individual perceives that one is vulnerable to 
computer security or smartphone threats and that the consequences of 
such threats are harmful to him, it results in one’s adoption of computer 
and smartphone security behaviors. Coping appraisal is the cognitive 
process that allows individuals to engage in cybersecurity behaviors 
(Doane et al., 2016). Self-efficacy is the skills of an individual to enact a 
cybersecurity practice (Haag et al., 2021). Response efficacy in cyberse-
curity context is the perception that secure behavior benefits the indi-
vidual (Crossler and Bélanger, 2014) by mitigating cyber threats. 
Response cost is defined as any cost associated with performing cyber-
security behavior (Haag et al., 2021; Mou et al., 2017). The nature of 
cost can be financial or temporal, and it can also manifest in the effort 

required by an individual or inconvenience while performing a cyber-
security response. Individuals carry out a calculated decision to relin-
quish a cybersecurity response if the cost is higher than the severity of 
the cyber threat (R. Crossler and Bélanger, 2014).

2.3. Related work

Here, we report the latest studies that use PMT by consulting the 
latest systematic literature reviews and individual studies published at 
the time of the writing. Specifically, we utilized multiple databases (e.g., 
Google Scholar, Scopus, IEEE Xplore) to identify the literature, identify 
the relevant works, and gain a comprehensive understanding of the topic 
by going back and forth between the studies. The summary of related 
work is provided in Table 1.

A study by (Sharma and Aparicio, 2022) has extended protection 
motivation theory to include organizational and team culture to study 
their influence on threat and coping appraisal of PMT. They showed that 
threat appraisal and coping appraisals (except response cost) were influ-
enced by organizational and team cultures, which, in turn, explained the 
motivation to comply with organizational security policies. Another 
study (Ogbanufe et al., 2023) tested the PMT model to explain the 
intention to violate organizational security policies in three ways: 1) as a 
standalone PMT model, 2) as an integrated PMT model with stewardship 
theory, and 3) as a stand-along stewardship model. The results showed 
that PMT alone was able to explain the intention to violate security 
policies better than the stewardship model; however, the integrated 
model was slightly better. The coping appraisal (self-efficacy, response 
efficacy and response cost) had a significant association, while threat 
severity did not show a significant association. A recent study examining 
entrepreneurs’ security behavior employed PMT and extended it with 
subjective norms, threat awareness and affective response (Luuk et al., 
2023). The results showed that entrepreneurs with high threat severity 
and vulnerability perceptions had a higher intention to protect against 
ransom-ware, however, their perception of self-efficacy and the response 
efficacy had a negative significant influence on protection motivation. 
Similarly, another PMT model (L. Li et al., 2022) was extended with 
organizational effort and employees’ cybersecurity awareness; the two 
constructs were taken from organizational effort theory and the theory 
of planned behavior (TPB). The results of the study revealed that the 

Fig. 1. Protection motivation theory in general.
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threat appraisal (threat severity and vulnerability) had no significant in-
fluence on protective behavior while response efficacy and self-efficacy 
had a positive while response cost had a negative significant influence. 
PMT was integrated with TPB, general deterrence theory (GDT) and 
organizational theory to understand cybersecurity compliance’s influ-
encing factors in higher education institutes (Rajab and Eydgahi, 2019). 
The study found that PMT constructs were the best-explaining factors 
with perceived vulnerability, and response efficacy to have significant 
positive while response cost to have a negative significant effect on 
cybersecurity compliance. A survey conducted in Slovenian universities 
employed PMT to understand protection motivation and differentiated 
between threat appraisal towards an individual and an organization 
(Vrhovec and Mihelič, 2021). The results depicted that threat severity 
and threat vulnerability had an indirect effect on protection motivation 
mediated by fear. In coping appraisal, response efficacy had a significant 
positive effect on employees’ motivation to protect themselves while 
self-efficacy’s positive relationship was dampened by the fear of 
cyber-attacks.

There are a number of studies examining smartphone security 
behavior, and bring your own device (BYOD) in home contexts (Brodin 
and Rose, 2020; Butler, 2020; Palanisamy et al., 2020). Many re-
searchers have found low compliance towards the BYOD security pol-
icies in an organizational context while others have descriptively 
reported the low state of smartphone security practices among general 
users (Breitinger et al., 2020; Chin et al., 2020; Das and Khan, 2016; 
Harris et al., 2014; Jones and Chin, 2015; Khan et al., 2023, 2022; Mai 
and Tick, 2021; Nowrin and Bawden, 2018; Shah and Agarwal, 2020; 
Stylios et al., 2016; Zhang et al., 2017). Although the number of 
smartphone security studies employing theoretical underpinning is 
scarce, PMT has been reported to be one of the top theories employed to 
study smartphone security behavior (Palanisamy et al., 2020) (Dawie 
et al., 2022).

One of the earliest studies was by (R. E. Crossler et al., 2014), in 
which factors affecting the BYOD policy compliance were studied. The 
results revealed that self-efficacy and response efficacy were the dominant 
factors in explaining the motivation to comply with BYOD policies. 
Another study (Dang-Pham and Pittayachawan, 2015) was carried out to 
understand the malware avoidance behavior of the students and their 
compliance with the an Australian university’s BYOD policies. The study 
found that all the protection motivation elements had a significant in-
fluence on smartphone security intention in university settings though 
the differentiation of the effects sizes was not carried out. The PMT 
constructs were extended to include social influence and psychological 

ownership by (Thompson et al., 2017), in which it was found that 
perceived vulnerability, self-efficacy and response cost have a signifi-
cant influence on intention to comply with smartphone security 
behavioral intention. Similarly, Verkijika (2018) augmented the PMT 
model with anticipated regrets to understand the smartphone security 
behaviors of users in South Africa. The results revealed that self-efficacy 
had a direct effect on smartphone security intention while perceived 
vulnerability and severity were mediated by anticipated regret to 
explain the smartphone security intention and behavior. Another survey 
was conducted on 230 employees of an Indonesian organization by 
blending PMT with organizational justice theory (Hovav and Putri, 
2016). The study found that response efficacy and justice had a strong 
influence on employees’ intention towards BYOD policy compliance. On 
the other hand (Tu et al., 2019) leveraged PMT to understand the key 
factors responsible for employees’ compliance with BYOD policies. The 
results showed self-efficacy, perceived vulnerability, perceived severity 
and response efficacy to have a significant positive effect while response 
cost to have a significant negative influence on smartphone security 
intention. A recent study (Knapova et al., 2021) employed the health 
belief model along with PMT to understand the smartphone security 
determinants. The study employed a total of 331 participants from the 
Czech reported a positive influence of perceived severity and self-efficacy 
on smartphone security behavior along with other factors such as se-
curity orientation and personal experience with digital threats. A recent 
study (Ameen et al., 2021) made use of PMT along with general deter-
rence theory (GDT) and theory of reasoned action to understand the 
determinants of smartphone security more holistically by drawing 
samples from three countries (UK, USA and UAE). The results suggested 
mixed findings for UK, USA and UAE due to cultural differences.

The literature on adoption of protection motivation theory (Table 1) 
in cybersecurity domain shows that most of the research done is done by 
symmetric analysis i.e. explanatory modeling. Whereas the use of pre-
dictive modeling is almost nonexistent.

2.4. Explanatory and predictive modeling

Explanatory modeling is the use of statistical models that tests causal 
hypotheses. Both regression models and structural equation models fall 
under this, and they rely on observational data. The hypotheses are 
either tested based on association to test the causality or the strength of 
relationships R2 (Byrne, 2013). In regression models, association be-
tween the independent and dependent variables by understanding the 
change occurred in independent variables also changes the dependent 

Table 1 
Summary of the literature.

Study Context Sample size Country Research Design Analysis Technique

(Sharma and Aparicio, 2022) IT employees 341 USA Cross sectional PLS-SEM
(Ogbanufe et al., 2023) Employees 339 USA Cross sectional PLS-SEM
(Luuk et al., 2023) Entrepreneurs 1020 Netherlands Cross sectional SEM
(L. Li et al., 2022) Employees 387 USA Cross sectional SEM
(Rajab and Eydgahi, 2019) Employees 206 USA Cross sectional PLS-SEM
(Dang-Pham and Pittayachawan, 2015) Students 252 Australia Cross sectional Bayesian SEM
(Vrhovec and Mihelič, 2021) University Faculty 255 Slovenia Cross sectional SEM
(Mills and Sahi, 2019) Home users 72 Not specified Cross sectional PLS-SEM
(Thompson et al., 2017) General users 629 USA Cross sectional PLS-SEM
(Tsai et al., 2016) Employees 988 USA Cross sectional Regression
(Farooq et al., 2019) Students 125 Kenya Cross sectional SEM
Smartphone Security Studies
(R. E. Crossler et al., 2014) Employees and students 444  Cross sectional PLS-SEM
(Dang-Pham and Pittayachawan, 2015) Students 252 Australia Cross sectional Bayesian SEM
(Thompson et al., 2017) General users 629 USA Cross sectional PLS-SEM
(Hovav and Putri, 2016) Employees 230 Indonesia Cross sectional SEM
(Tu et al., 2019) Employees 122 America, Europe, Asia Cross sectional PLS-SEM
(Verkijika, 2018) General users 428 South Africa Cross sectional PLS-SEM
(Giwah et al., 2019) General users 390 USA Cross sectional PLS-SEM
(Knapova et al., 2021) General users 502 Czech Republic Cross sectional Regression
(Ameen et al., 2021) Employees 1735 USA, UK and UAE Cross sectional PLS-SEM
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variables (Panovska-Griffiths et al., 2021). It is achieved by fitting the 
best fit line and seeing the dispersion of data around it. Structural 
equation modeling is a multivariate technique that evaluates multivar-
iate causal relationships (Fan et al., 2016). In contrast to regression, SEM 
can show direct as well as indirect effects on causal relationship among 
variables. SEM does this by combining confirmatory factor analysis with 
path analysis (Fan et al., 2016). Both regression and SEM are widely 
used as a statistical modeling in behavioral research.

Predictive modeling is based on machine learning, which is a subset 
of artificial intelligence (AI). Different mathematical based algorithms 
are employed on the given data to learn and formulate an understanding 
of a given phenomenon (Murphy, 2012). The goal of ML is to predict the 
target output based on a selected number of features hence it provides 
empirical evidence via data driven methodology (Alwabel and Zeng, 
2021). The prediction can be done either by supervised, unsupervised or 
reinforcement learning. In supervised learning, the target output is 
already known (Murphy, 2012). In unsupervised learning, the target 
output is not known and the focus is on organization of the data based on 
similarities known as cluster (Alwabel and Zeng, 2021). Whereas in 
reinforcement learning; the focus is developing a solution via hit and 
trial that is achieved by doing multiple iterations. A number of different 
types of machine learning algorithms are present to predict the target 
outcome and they are either linear, non-linear or hybrid in nature 
(Alwabel and Zeng, 2021). The linear algorithms assumes a linear 
relationship between the input and output variables while the non-linear 
algorithms are able to capture complex relationships between the two 
foregoing the linear relationship. They hybrid ML algorithms on the 
other hand, leverage the simplicity of linear algorithms with the flexi-
bility of non-linear ones. The algorithms work by computing the mean 
difference of unobserved data and predicted data and measure the 
predictive power of the model (Murphy, 2012).

2.5. Differences in explanatory and predictive modeling approaches

Explanatory modeling provides information about the direction and 
strength of the relationship between independent and dependent vari-
ables (Forster and Sober, 1994), and statistical techniques are used for 
testing causal theory (Shmueli, 2010). It helps to understand the un-
derlying structure of data and can identify if a causal relationship exists 
between the variables (Shmueli and Koppius, 2011). The explanatory 
modeling however, takes into account assumptions about the data that 
should be met before analysis is carried out. These assumptions are that 
the variables should be normally distributed, the relationship between 
the variables should be linear, the model should have unique informa-
tion for parameter estimation, and the measurement should be devoid of 
errors. These assumptions limit the explanatory analysis to accurately 
estimate the relationships between variables, due to which the results 
can be inaccurate or biased. Predictive modeling is the application of the 
algorithm to data to predict future observations given the historical data 
(Geisser, 1993). It does not consider the same assumptions required in 
explanatory modeling and is trained on a wide range of data (Table 2). 
Prediction allows for the identification of patterns and non-linear re-
lationships that may not be brought to light by explanatory modeling 
(Shmueli, 2010). It does not necessarily require a theoretical foundation, 
thereby treating the model as a black box (Shmueli and Koppius, 2011). 
The understanding of the phenomenon is then gained by the data which 
is collected from the environment (Alwabel and Zeng, 2021).

The field of behavioral cybersecurity is dominated by explanatory 
models, while predictive models are poorly understood and not given 
their due place (Alassaf and Alkhalifah, 2021; Khan et al., 2022). Pre-
dictive modeling offers improvements to existing explanatory models by 
capturing complex relationships and pattern (Shmueli, 2010). It should 
be noted that both explanatory and predictive modeling play various 
roles in the generation and testing of theories (Shmueli and Koppius, 
2011). In fact, it bridges the gap between theory and practice by offering 
predictive power which is different from the explanatory power (Forster 

and Sober, 1994). By quantifying the predictability level of the phe-
nomenon of interest, it creates predictive accuracy benchmarks. Since 
the predictive power is more accurate in prediction than explanation, 
adding predictive analysis can improve the accuracy and reliability of a 
causal inference (Alwabel and Zeng, 2021). Hence combination of pre-
diction and explanation has multiple benefits. Prediction can be used to 
test the validity of results derived from explanatory modeling. This can 
be done by measuring the accuracy of the predicted target outcome; the 
greater the accuracy, the more confidence in the validity of explanatory 
modeling. Researchers can improve the reliability of the causal infer-
ence by adding predictive analysis. Apart from its practical usefulness, it 
can be used in building and testing theories (Dubin, 1969).

3. Hypothesis development and research models

In this study, we propose two models based on PMT to understand its 
explanatory and predictive power for computer security and smart-
phone security. Below, we describe hypotheses related to computer se-
curity and smartphone security and the two research models (Fig. 2) that 
will be further examined with the explanatory and predictive methods.

3.1. Threat appraisal

Previous literature on computer security has found a significant 
positive association of threat vulnerability and intention to secure com-
puter devices (Hina et al., 2019). Similarly, threat severity has been found 
to be significant in influencing the intention to secure computer devices 
(Ifinedo, 2012; Posey et al., 2011; Vance et al., 2012). The hypothesis 
related to threat appraisal in computer security behavior (CSB) are 
described below (H1- H2) 

• H1a: Perceived threat vulnerability has a positive influence on inten-
tion to secure computer device.

• H2a: Perceived threat severity has a positive influence on intention to 
secure computer device.

The positive association of threat vulnerability on intention to secure 
smartphone security devices has been reported by a number studies 
(Dang-Pham and Pittayachawan, 2015; Thompson et al., 2017; Verki-
jika, 2018). Previous literature on smartphone (Hovav and Putri, 2016; 
Knapova et al., 2021; Thompson et al., 2017; Verkijika, 2018) has re-
ported a significant positive relationship between threat severity and 
smartphone security intention. The hypotheses H1b-H2b are related to 

Table 2 
Differences in explanation and prediction.

Consideration Explanation Prediction

Main Purpose Used for understanding the 
relationship between 
independent variables and 
dependent variable.

Used for prediction of future 
outcomes by learning on 
historical data irrespective of 
the distribution or 
relationship between the 
variables

Mechanism Takes into consideration the 
co-relation between different 
variables.

Computes the average 
difference between the 
unknown data and predicted 
data

Black box vs 
White box

Takes into consideration the 
verification of theoretical 
assumptions after data is 
collected, modelled and 
verified.

Takes into consideration the 
relationship between 
variables as a black box which 
may be conceived by the 
environment

Deductive vs 
inductive

Heavy reliance on theory. Reliance on data

Underlying 
assumptions

Makes several assumptions 
such as multivariate normal, 
linearity of model, model 
identification and free of error.

Does not make assumptions 
about the data and the model
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threat appraisal in smartphone security (SSB). 

• H1b: Perceived threat vulnerability has a positive influence on inten-
tion to secure smartphone device.

• H2b: Perceived threat severity has a positive influence on intention to 
secure smartphone device.

3.2. Coping appraisal

Self-efficacy has been regarded as a highly significant predictor of 
protective intent (L. Li et al., 2019), the best measure of intent (Posey 
et al., 2015) and the most direct determinant (Johnston and Warkentin, 
2010). Response efficacy has been found to have a comparatively stron-
ger effect on the protection motivation than the threat appraisal 
dimension of PMT (Posey et al., 2015) and positive association with 
intention to comply with (Johnston and Warkentin, 2010). Various 
studies have found a negative influence of response cost on cybersecurity 
practices (Posey et al., 2015; Tsai et al., 2016; Vance et al., 2012).

The hypotheses H3(a) – H5(a) are related to coping appraisal in 
computer security. 

• H3a: Perceived response efficacy associated with enactment of 
cybersecurity coping mechanisms has a positive influence on inten-
tion to secure computer device.

• H4a: Perceived self-efficacy associated with enactment of cyberse-
curity coping mechanisms has a positive influence on intention to 
secure computer device.

• H5a: Perceived response cost (RC) associated with cybersecurity 
coping mechanism has a negative influence on intention to secure 
computer device.

Smartphone Self-efficacy has been positively associated with the 
intention to secure smartphone device in (Dang-Pham and Pittayacha-
wan, 2015; Giwah et al., 2019; Knapova et al., 2021; Thompson et al., 
2017; Verkijika, 2018). For response efficacy in smartphone security, 
studies have found (Dang-Pham and Pittayachawan, 2015; Giwah et al., 
2019) significant positive associations between the two. The literature 
on smartphone security has reported a negative impact of response cost 
on the intention to secure smartphone devices (Dang-Pham and Pit-
tayachawan, 2015; Hovav and Putri, 2016; Thompson et al., 2017; Tu 
et al., 2019; Verkijika, 2018). The following hypotheses are posed for 

smartphone security; 

• H3b: Perceived response efficacy associated with enactment of 
smartphone security coping mechanism has a positive influence on 
intention to secure smartphone device.

• H4b: Perceived self-efficacy associated with enactment of smart-
phone security coping mechanism has a positive influence on 
intention to secure smartphone device.

• H5b: Perceived response cost associated with smartphone security 
coping mechanism has a negative influence on intention to secure 
smartphone device.

3.3. From intention to behavior

PMT takes into account the security behavior that is mediated by 
security intention. The premise is that individuals’ intentions to secure 
their devices will eventually be translated into behaviors. Studies have 
found a significant positive influence of cybersecurity intentions on 
computer and smartphone security behaviors (Giwah et al., 2019; 
Thompson et al., 2017; Verkijika, 2018). The hypotheses H6 (a) and H6 
(b) are related to computer security and smartphone security behaviors 
respectively. 

• H6a: The intention to secure computer device has a significant pos-
itive influence on computer security behavior.

• H6b: The intention to secure smartphone device has a significant 
positive influence on smartphone security behavior.

4. Research methodology

A quantitative methodology was employed to carry out this research. 
The next Subsections discuss the instruments employed, sampling, and 
data collection procedure.

4.1. Measures

The measures used in this study are adopted from previous literature. 
The instruments’ items or their response types were not changed to 
ensure their reliability and validity. This study makes use of the security 
behavior intention scale (SeBIS) scale to capture computer security 
behavior which was adopted from a previous study (Egelman et al., 

Fig. 2. PMT-based computer security and smartphone security models to be examined with explanatory and predictive approaches.
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2016; Egelman and Peer, 2015). SeBIS is a validated scale consisting of 
four dimensions and has 16 items. These four dimensions are: Device 
Security (DS), Password Generation (PG), Proactive Awareness (PA) and 
Updating (UP). Although SeBIS had a measurement scale more suitable 
for behavior (never to always), the authors suggested it as an intention 
scale as real behaviors are hard to record through a self-reported design. 
However, the scale has been found to correlate significantly with actual 
behavior measured objectively and should be considered sufficient for 
measuring self-reported behavior (Egelman et al., 2016). It measures 
device securement, updating behavior, password protection and pro-
active awareness. The items are measured on a 5-point Likert scale with 
1 as ‘Never’ and 5 as ‘Always’. It has a high internal consistency with 
Cronbach’s alpha = 0.81 in the original study. It also has an established 
criterion validity, showing high correlations with actual security 
behaviors.

The scale employed for smartphone security was adopted from a 
previous study (Huang et al., 2020). It is also a 5-point Likert scale, with 
responses measuring from 1 as Never to 5 as always. It consists of two 
dimensions, namely technical security and social security. The scale has 
been developed by item collection and expert evaluation by carrying out 
exploratory factor analysis and confirmatory factor analysis. The scale 
has been validated for its convergent validity by correlating it with the 
SeBIS scale. The Cronbach’s alpha = 0.79 shows internal consistency 
and shows that it is a reliable instrument in the original study.

The PMT elements were adopted from previous studies (Thompson 
et al., 2017). Self-efficacy, response efficacy, response cost, threat vulnera-
bility, and threat severity are measured on a 7-point Likert scale (1 =
strongly disagree to 7 = strongly agree). The responses range from 
‘strongly disagree’ coded as 1, to ‘strongly agree’ coded as 7, with 
‘neutral’ in the middle coded as 4. For self-efficacy, response efficacy, 
threat vulnerability, and threat severity, a higher score depicts a higher 
perception of the coping appraisal and threat appraisal respectively. For 
response cost, high scores mean a low perception of coping appraisal. The 
motivation to protect one’s devices is also taken from the previous 
studies which is measured as security intention. The items for PMT el-
ements are given in detail in Appendix 1.

4.2. Data collection

The data for the study was collected via survey. We designed the 
survey in Google Forms to measure protection motivation, computer 
security and smartphone security behaviors. Since the focus was on the 
home-users, we opted to collect data from university students who 
represent a sub-set of home-users. The survey was carried out in 
Pakistan. We opted for a diverse sample (Table 3) by recruiting students 
from multiple universities. For this purpose, the first author of the study 
contacted several instructors employed in different universities and 
requested to share an online survey link with their students.

The survey was translated into Urdu – the national language of 
Pakistan. The English version was first translated into Urdu by a pro-
fessional who had Master’s degree in English. The translated Urdu 
version was then backwards translated into English by a second pro-
fessional with similar qualifications. No discrepancies were found in the 

forward-backward translation of the survey, which enabled us to pro-
ceed with the data collection.

The survey consisted of four parts. The first part consisted of de-
mographic questions followed by questions related to PMT constructs. 
The third part consisted of computer security behavior questions fol-
lowed by smartphone security behavior questions. It should be noted 
that the survey questions were posed in such a way that both English and 
Urdu translations of each question were visible.

The research proposal for this study underwent scrutiny by the 
university’s IRB. The minimum age of the participants who took part 
was 18 years of age, and it was ensured that they were not harmed 
physically, mentally, or psychologically while attempting the survey 
questionnaire. To ensure the anonymity and confidentiality of the par-
ticipants, no personally identifiable information was collected. The 
students were given a consent form, which they undertook to voluntarily 
take part in the survey, and were given the option to withdraw any time 
they wanted.

A pilot study was conducted prior to the actual execution of the 
survey on a total of 50 participants. The first author of this study 
requested undergraduate students to take part in the pilot test. The 
students were contacted via email, and a lab was reserved for them, 
which had an Internet connection. The students were asked to fill out the 
questionnaire and ask any questions that they deemed incomprehen-
sible. The first author of the study diligently observed the participants 
and noted down their queries. After the pilot test, the translation of a few 
of the questions was changed in such a way that it became easy for the 
students to understand.

The actual data were collected from April 2022 to December 2022. A 
total of seven universities took part in the survey. After the data 
collection, the responses were collected in the Excel sheet and under-
went screening and cleaning, thereby reducing the sample size to 1027, 
which was subsequently used for final analysis. Table 1 presents the 
sample characteristics. As seen, a total of 59 % of participants were fe-
male with the majority of them (75 %) between the age group of 18-22 
years old and studying at undergraduate level.

4.3. Data analysis

IBM SPSS V21 and covariance based – structural equation modeling 
(CB-SEM) in IBM AMOS version 21 was used for the explanatory 
modeling. CB-SEM is an appropriate technique when the aim of the 
research is theory testing (Kline, 2015). Further skewness and kurtosis 
was also performed on the data to check normality for ascertaining the 
appropriateness of SEM as analysis techniques. The skewness for SSB 
was -.049, indicating a nearly symmetric distribution. Similarly, the 
skewness for CSB was -.126, suggesting a slight negative skew but still 
approximating a normal distribution. These values are within acceptable 
ranges, and thus the data for both variables were considered to meet the 
assumption of normality. The distribution of both dependent variables 
(CSB and SSB) was assessed for normality using kurtosis. The kurtosis for 
Smartphone Security Behavior was 0.10, indicating a distribution that is 
nearly normal but with a slight tendency toward heavier tails and a 
sharper peak. The kurtosis for Computer Security Behavior was 0.018, 
suggesting a distribution that is essentially mesokurtic with a peak and 
tail shape close to that of a normal distribution. These values indicate 
that both variables approximate normal distributions. Therefore SEM 
was appropriate for carrying out data analysis. Structural Equation 
Modeling (SEM) is a robust data analysis technique utilized across 
various fields, offering benefits such as error control, mediation variable 
incorporation, and theoretical model evaluation.

CB-SEM is effective for testing theories, examining relationships 
between observed and latent variables (Anderson and Gerbing, 1988). 
We employed maximum likelihood estimation, which estimates pa-
rameters to produce a covariance matrix close to the observed covari-
ance matrix. Goodness-of-fit evaluation is crucial, using indices like 
maximum likelihood estimation to assess model fit reliability.

Table 3 
Sample characteristics.

Items Frequency Percentage

Gender  
Male 424 41.2 %
Female 603 59.0 %

Age  
18-22 778 75 %
23-29 249 25 %

Study Level  
Undergraduate 766 74.6 %
Graduate 255 24.8 %

U. Kiran et al.                                                                                                                                                                                                                                   Computers & Security 149 (2025) 104204 

7 



Predictive modeling was carried out by using three machine learning 
(ML) algorithms in Python. Decision Trees (DT), K Nearest Neighbor 
(KNN) and Support Vector Machine (SVM). Decision Trees (DT) is a non- 
parametric supervised learning method used for classification and 
regression tasks. It creates a tree-like structure where each internal node 
represents a decision based on input features, and each leaf node rep-
resents an output value (Osisanwo et al., 2017). DTs are easy to interpret 
and handle categorical and numerical data well; hence, in our case, we 
used DT to identify the PMT constructs that significantly affect devel-
oping security intention. We also used KNN and SVM in our study. KNN 
is a simple and effective algorithm used for classification and regression 
tasks. It classifies data points based on the majority class of their nearest 
neighbors. KNN is easy to implement and can handle multi-class prob-
lems. Similarly, Support Vector Machine (SVM) constructs a hyperplane 
in a high-dimensional space to separate data points into different classes. 
SVM works well for both linear and non-linear data and is effective in 
high-dimensional spaces. SVM aims to maximize the margin between 
classes, which often leads to better generalization. However, SVM can be 
sensitive to the choice of the kernel and regularization parameters. In 
this case, ‘poly’ was used as a kernel along with the regularization 
parameter of 1 because it maps the data into a higher-dimensional space 
using polynomial functions and is effective for capturing nonlinear re-
lationships. The advantages and disadvantages (Almazroi et al., 2020) of 
the three ML algorithms are given in Table 4.

We also investigated the significance of the PMT constructs using the 
wrapper feature selection approach to identify the top constructs that 
contributed the most towards correct prediction for computer and 
smartphone security behaviors (Kohavi and John, 1998) . The wrapper 
method iteratively trains a model on systematically chosen feature 
subsets and identifies the most significant features for accurate pre-
dictions. We also made use of principal component analysis (PCA) to 
facilitate the visualization of our data by mapping the multiple di-
mensions into two-dimensional space. PCA is a dimensionality reduction 
technique that projects high dimensional data into a lower dimensional 
space while retaining the most important patterns which simplifies the 
visualization and interpretation of complex datasets (Jolliffe, 2005).

5. Result and discussion

In this section, we present the results of the study. The explanatory 
modeling is reported in Section 5.1 whereas the results of predictive 
modeling are discussed in Section 5.2. The discussion is reported in 
Section 5.3 which includes the contribution of this study and implica-
tions for research.

5.1. Explanatory modeling

The explanatory modeling steps involve gauging the reliability and 
validity of the constructs which are given in Section 5.1.1. The 

measurement and structural model test were done by measuring the fit 
indices and is reported in Subsection 5.1.2. The third step is path anal-
ysis; which is explained in Subsection 5.1.3 for computer security and 
Subsection 5.1.4 for smartphone security.

5.1.1. Reliability and validity
The factor loadings (Table 5) evaluate the correlation between the 

observed variables that define the same latent variable in order to 
determine whether or not the measurement model has convergent val-
idity. In general, values of at least 0.3 and greater than 0.5 are consid-
ered to be satisfactory – (for computer security and smartphone 
measurement models are in Table 5) while values of more than 0.7 are 
considered to be very satisfactory (Hair et al., 2010). The measurement 
model’s SMC (R2) indicates the magnitude of the observed variable’s 
variation that can be explained by the latent variables, according to 
(Sarstedt et al., 2016) items with a R2 of less than 0.25 are likely to be 
removed, but in our case, there is no such item whose R2 value is less 
than 0.25. The reliability and validity of the models were measured by 
Cronbach’s alpha, average variance extracted (AVE) and composite 
reliability (CR), as shown in Table 6. The Cronbach’s alpha or CR values 
greater than 0.7 are deemed appropriate, while AVE should be greater 
than 0.5 (Taber, 2018). As shown in Table 6, Cronbach’s alpha and CR of 
the variables for both models (computer security and smartphone se-
curity) is greater than or equal to 0.7, which is consistent with the 
guidelines for instrument validation (Hair et al., 2010). The AVE values 
in this study are appropriate except for RC with AVE = 0.43 for com-
puter security and AVE = 0.42 for the smartphone security model. The 
low AVE values show that almost 56 % of the variance for response cost 
is due to measurement error. However, the composite reliability being 
greater than 0.7 shows the reliability is intact (Fornell and Larcker, 
1981).

5.1.2. Test of measurement and structural model
The measurement models for CSB and SSB were tested using fit 

statistics. This study reports absolute fit measures (AFM), parsimonious 
fit measures (PFM) and incremental fit measures (IFM) (Cheng, 2011; 
Hina et al., 2019), as shown in Table 7. The values of the goodness of fit 
index (GFI), comparative fit index (CFI), and tucker-lewis index (TLI) for 
smartphone security and computer security measurement models were 
greater than 0.9. The root mean square error (RMSEA) for both models is 
less than 0.08 which is also acceptable (Kline, 2015). There is no stan-
dard cutoff point for parsimony normed fit Index (PNFI) and parsimo-
nious comparative fit index (PCFI) for determining a good fit, though 
(Cheng, 2011; Hina et al., 2019) state that an acceptable model is one 
with a value above 0.50. For this study, the PNFI was .798, and PCFI 
were .821, greater than the acceptable value of 0.5. The structural model 
test also shows a good fit. As shown in Table 7, the model fit indices for 
the computer security structural model were acceptable with [χ2/df =
1778.45/474, GFI = .899, CFI = .916, TLI = .906]. The REMSEA for 
computer security is .052, and that of smartphone security is .051. The 
model fit indices for the smartphone security structural model were also 
acceptable with [χ2/df = 1870.45/474, GFI = .904, CFI = .924, TLI =
.914].

5.1.3. Explanatory analysis of computer security
As shown in Table 8, PMT was able to explain computer security 

behaviors The path coefficients show that in threat appraisal component 
of PMT, threat severity had a significant positive relationship with com-
puter security intention (β = 0.139) with p < .001. This supports H2 (a). 
The threat vulnerability on the other hand did not show any significant 
relationship with computer security intention (t = 1.766, p = 0.077). In 
the coping appraisal component of PMT, response efficacy (β = 0.221), (p 
< 0.001) and self-efficacy (β = 0.508), (p < 0.001) were shown to have a 
significant positive relationship with computer security intention. 
Therefore, H3 (a) and H4 (a) are also supported. Response cost, on the 
other hand, had a negative relationship with computer security 

Table 4 
ML algorithm used in predictive analysis.

Algorithms Advantages Rationale for choosing

Decision 
Trees

The decision process is 
interpretable. 
The outcome can be traced back 
for better explainability

The visualization of the 
decision tree provides an easy 
explanation of the outcomes 
and can potentially reveal new 
insights into the data

K Nearest 
Neighbor

Best suited to numerical data 
Decisions are based on the 
proximity of the data points. 
Inherent support for non-linear 
decision boundaries

The proximity of data points is 
the basis for the initial 
clustering and labeling of the 
dataset hence KNN is expected 
to perform well on this data

Support 
Vector 
Machine

SVM provide better 
generalizability compared to 
other classifiers and more 
resilient to overfitting

SVM is known to work well in 
limited data scenarios while 
still providing strong accuracy
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intention which was insignificant (p = 0.137). However, the low AVE 
value of RC should be noted, with almost 57 % of the variance being 
attributed to measurement error. The coefficient of determination R2 for 
computer security intention is 0.73, and it shows that 73 % of the 
variation can be explained by threat severity, response efficacy and self- 

efficacy. The intention to secure computer device also had a strong sig-
nificant relationship with computer security behavior with (β = 0.590), 
(p < 0.001) supporting H6 (a). The R2 for computer security behavior is 
0.168, depicting 16 % of the variance in computer security behavior, 
which is to be explained by computer security intention. The full 

Table 5 
Variables, items and their loadings.

Computer Security Measurement variables1 Item Loadings Smartphone Security Measurement variables Item Loadings

Threat severity

PS1 0.74

Threat severity

PS1 0.70
PS2 0.84 PS2 0.81
PS3 0.83 PS3 0.84
PS4 0.77 PS4 0.77
PS5 0.69 PS5 0.70
PS6 0.79 PS6 0.78

Threat Susceptibility

PV6 0.55

Threat Susceptibility

PV6 0.78
PV5 0.77 PV5 0.79
PV4 0.79 PV4 0.76
PV3 0.77 PV3 0.67
PV2 0.67 PV2 0.63
PV1 0.62 PV1 1.17

Response cost

RC6 0.64

Response cost

RC6 0.62
RC5 0.59 RC5 0.65
RC4 0.66 RC4 0.66
RC3 0.68 RC3 0.74
RC2 0.72 RC2 0.63
RC1 0.62 RC1 0.78

Response efficacy

RE4 0.66

Response efficacy

RE4 0.65
RE3 0.79 RE3 0.79
RE2 0.81 RE2 0.81
RE1 0.61 RE1 0.62

Self-efficacy

SE6 0.76

Self-efficacy

SE6 0.70
SE5 0.64 SE5 0.69
SE4 0.69 SE4 0.70
SE3 0.69 SE3 0.61
SE2 0.64 SE2 0.53
SE1 0.59 SE1 0.68

Security Intention

SI4 0.69

Security Intention

SI4 0.75
SI3 0.76 SI3 0.73
SI2 0.73 SI2 0.72
SI1 0.72 SI1 0.63

1 for item description, please consult Appendix.

Table 6 
Reliability and validity of both models.

Computer Security Model Smartphone Security Model

Items Cronbach’s alpha CR AVE Items Cronbach’s alpha CR AVE

TS 6 0.90 0.90 0.59 6 0.89 0.89 0.59
TV 6 0.90 0.85 0.50 6 0.85 0.85 0.50
RC 6 0.83 0.82 0.43 6 0.84 0.82 0.43
RE 4 0.80 0.81 0.52 4 0.81 0.82 0.52
SE 6 0.83 0.83 0.50 6 0.84 0.84 0.50
SI 4 0.81 0.81 0.52 4 0.82 0.82 0.51
Scale 16 0.83 0.81 - 14 0.87 0.86 -

Note: CR: Composite Reliability, AVE: Average Variance Extracted.

Table 7 
Fit indices for measurement and structural model.

AFM IFM PFM

χ2/df GFI AGFI RMSEA CFI TLI PNFI PCFI

Measurement Models
CSB 1648.097/442 0.90 0.88 0.05 0.92 0.91 0.80 0.82
SSB 1606.978/442 0.90 0.89 0.05 0.92 0.92 0.80 0.82
Structural Models
CSB 1778.454/474 0.90 0.88 0.05 0.92 0.91 0.80 0.82
SSB 1870.950/474 0.90 0.89 0.05 0.92 0.91 0.80 0.82

Note: AFM: absolute fit measures, IFM: incremental fit measures, PFM: parsimonious fit measures, PFI: parsimonious fit index, GFI: goodness of fit index, RMSEA: root 
mean square error, CFI: comparative fit index, TLI: tucker-lewis index, PNFI: parsimony normed fit Index, PCFI: parsimonious comparative fit index, CSB: computer 
security behavior, SSB: smartphone security behavior.
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regression model is presented below;
Intention to Secure Device = 0.05 X Threat vulnerability + 0.14 X Threat 

severity + 0.51 X Self-efficacy + 0.22 X Response efficacy – 0.04 X Response 
cost

5.1.4. Explanatory analysis of smartphone security
As shown in Table 9, PMT was able to explain smartphone security 

behaviors. In the same vein as the computer security PMT model, the 
path coefficients for smartphone security show that the threat appraisal 
component of PMT threat severity ad a significant positive relationship 
with smartphone security intention (β = 0.102) with p < 0.001. 
Therefore, H2 (b) is supported. The threat vulnerability, on the other 
hand, did not show any significant relationship with smartphone secu-
rity intention (t = 1.837, p = 0.066). In the coping appraisal component 
of PMT, response efficacy (β = 0.196), (p < 0.001) and self-efficacy (β =
0.562), (p < 0.001) were shown to have a significant positive relation-
ship with smartphone security intention. Therefore, H3 (b) and H4 (b) 

are supported. Response cost, on the other hand, had a negative rela-
tionship with smartphone security intention, which was insignificant (p 
= 0.225). Here, too, the low AVE value of RC should be noted, with 
almost 57 % of the variance being attributed towards measurement 
error. The coefficient of determination R2 for smartphone security 
intention is 0.89, showing that 89 % of the variation can be explained by 
threat severity, response efficacy and self-efficacy. The intention to 
secure smartphone device also had a strong significant relationship with 
smartphone security behavior with (β = 0.528), (p < 0.001), thereby H6 
(b) is also supported. The R2 for smartphone security behavior is 0.13, 
depicting 13 % of the variance in smartphone security behavior to be 
explained by smartphone security intention. The full regression model is 
presented below;

Intention to Secure Device = 0.06 X Threat vulnerability + 0.10 X Threat 
severity + 0.56 X Self-efficacy + 0.20 X Response efficacy – 0.03 X Response 
cost

5.2. Predictive modeling

The predictive modeling was done at two levels – macro and micro. 
The macro level predictive modeling was done to understand the pre-
dictive power of PMT for complete computer security and smartphone 
security behaviors. The micro level predictive modeling was done to 
understand the predictive power of PMT for the dimensions of computer 
and smartphone security behaviors. To get a more nuanced under-
standing, the micro level involved the prediction of four types of com-
puter behavior, i.e. device security, updating behavior, proactive 
awareness and password protection, and two types of smartphone se-
curity behavior, i.e. technical Security and social security. Clustering 
each dimension separately allows us to explore specific patterns within 
individual aspects, highlighting areas where security practices differ 
significantly or remain consistent across the dataset. At the macro level, 
the prediction of computer security behavior was made by making use of 
the Computer Security instrument - SeBISs’16 items (Subsection 5.2.1) - 
and smartphone security instrument SSBSs’ 14 items (Subsection 5.2.2). 
Our dual macro and micro predictive modeling enables us to both drill 
down into specific security practices and understand the broader secu-
rity landscape, ensuring that our analysis is comprehensive and 
actionable.

5.2.1. Computer security predictive modeling
For macro level predictive analysis, we pre-processed the data to 

discretize the computer security behavior. This was done by finding 
clusters, as the literature on cybersecurity does not provide any guide-
lines for the classification. This led us to find a natural grouping in the 
data based on the security behavior of the respondents. We employed 
the K-means clustering algorithm to discover the hidden clusters in our 
data as a basis for class labeling. Since the number of these groups was 
not known initially, the elbow method yielded two as the optimal 
number of clusters (depicted in Fig. 3). We utilized the elbow method in 
our study because it is a well-established and widely accepted strategy 
for determining the optimal number of clusters (Hamka and Ramdhoni, 
2022). The elbow method balances model complexity against explained 
variance and provides a clear visual indication of where adding more 
clusters yields diminishing returns. This approach ensures that we cap-
ture the most meaningful structure in the data while avoiding over-
fitting. Although the Pareto principle could simplify the model by 
focusing on clusters that explain the majority of variance, the elbow 
method provides a more data-driven approach, aligning well with our 
goal of identifying natural groupings based on the overall data distri-
bution. The initial clustering was based on all 16 items embodying 
different aspects of security behavior taken as features. For the sake of 
visualization, the 16-dimensional data was transformed into 
two-dimensions using principal component analysis and is shown in 
Fig. 3. The two clusters exist in close proximity with some overlapping at 
the inner boundary but greater scatter at the farther ends. The dataset 

Table 8 
Hypothesis testing of computer security behavior.

Hypothesis Path Path 
Coefficients 
(β)

t- 
value

p-value Supported

H1(a) Threat 
vulnerability ->
Intention to 
Secure Device

0.05 1.77 0.08 No

H2(a) Threat severity ->
Intention to 
Secure Device

0.14 5.01 <0.001 Yes

H3(a) Response efficacy 
-> Intention to 
Secure Device

0.22 5.76 <0.001 Yes

H4(a) Self-efficacy ->
Intention to 
Secure Device

0.51 14.89 <0.001 Yes

H5(a) Response cost ->
Intention to 
Secure Device

-0.04 -1.49 0.14 No

H6(a) Intention to 
Secure Device ->
Computer 
Security 
Behavior

0.59 12.03 <0.001 Yes

Table 9 
Hypothesis testing of smartphone security behavior.

Hypothesis Path Path 
Coefficients 
(β)

t- 
value

p-value Supported

H1(b) Threat 
vulnerability ->
Intention to 
Secure Device

0.06 1.84 0.07 No

H2(b) Threat severity ->
Intention to 
Secure Device

0.10 3.78 <0.001 Yes

H3(b) Response efficacy 
-> Intention to 
Secure Device

0.20 5.19 <0.001 Yes

H4(b) Self-efficacy ->
Intention to 
Secure Device

0.56 15.13 <0.001 Yes

H5(b) Response cost ->
Intention to 
Secure Device

-0.03 -1.22 0.22 No

H6(b) Intention to 
Secure Device ->
Smartphone 
Security 
Behavior

0.53 10.38 <0.001 Yes
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was labeled according to the cluster membership as 0 for Red and 1 for 
blue (Table 10). After clustering, the protection motivation theory’s 
components were employed to predict the cybersecurity practices. We 
argue that if the components of PMT can predict the correct class label 
for instance, then it confirms the relationship between PMT and com-
puter security behavior, as the theory predicts.

Three machine learning algorithms were used to see the predictive 
accuracy of protection motivation in predicting the correct class labels 
for the behavior of an individual. The three classifiers – decision tree 
(DT), K nearest neighbor (KNN) and support vector machine (SVM) – 
predicted the computer security behavior and an accuracy measure was 
used to gauge the predictability power. As can be seen from Table 11, 
the highest accuracy of 76 % was achieved by KNN followed by SVM (71 
%) and DT (65 %). The average accuracy from the three classifiers 
remained 70 % which depicts the significant predictive power of PMT in 
identifying the correct class label of computer security behavior. To see 
detailed prediction and accuracy of classification, confusion matrices 
are used which are shown in Fig. 4. The confusion matrix is the sum-
marized detail of prediction results showing the total counts of a specific 

class (Ling et al., 2003).
We extended our analysis to understand the predictability for spe-

cific types of computer security behavior at a micro level. As has been 
discussed there are four dimensions of computer security instrument 
SeBIS namely Device security, Upgrading, Proactive Awareness, and 
Password Generation – each of which was taken as a specific computer 
security behavior in micro level predictive analysis. Therefore, the 
dataset was broken down into four datasets, with each data set only 
containing computer security items relevant to the specific security 
behavior which is also called dimension. For instance, the dataset rele-
vant to the device security dimension contained only 4 items of SeBIS, 
whereas that of proactive awareness dimension contained 6 items. As a 
first step, k- means clustering algorithm was employed to find clusters 
for each type of computer security behavior. It should be noted that the 
clustering algorithm was run 4 times on the respective (DS, UP, PA, PG) 
dimensions’ data set. The results of dimension-based clustering are 
shown in Fig. 5 which exhibit noticeable differences in the grouping and 
patterns. Clusters based on devise security behavior (Fig. 5 a) reveal the 
presence of micro clusters fairly evenly distributed across the range. This 
is an indicator of unique security personas relative to device security 
behavior. The personas appear even more distinctive in case of updating 
behavior-based clustering (Fig. 5 d) but relatively cluttered with pass-
word generation-based behavior (Fig. 5 b). The proactive awareness 
behavior (Fig. 5 c) yields clusters very similar to those with the complete 
computer security feature set including all behaviors. This suggests 
higher weightage of this type of behavior (PA) by the clustering algo-
rithm. Table 10 presents numerical summaries of the clusters formed for 
each dimension of computer security behavior as well as the complete 
SeBIS dataset. We also show the probability distribution graphs of the 
clusters for a quick visual comparison of the central tendency, spread, 
and likelihood of different scores between the two clusters. The proba-
bility density graph (PDG) of the mean scores of the clusters (Figs. 6 d, 7
d, 8 d, 9 d) show significant overlapping in all the clusters except the one 
with complete SeBIS (Fig. 4 d). This is a clear indication of the fact that 
the clustering algorithm segregated the instances based on similarities in 
the behavior and not the aggregate score of an individual.

After the careful clustering of the four datasets, three machine 
learning algorithms were used to see the predictive accuracy of pro-
tection motivation in forecasting the correct class labels for four types of 
computer security behavior of an individual. It should be noted that the 
algorithm was run four times on each data set (each dataset of a specific 
dimension of SeBIS). The highest accuracy (78.38 %) was observed for 
device security (DS) behavior by KNN classifier followed PG dataset at 
75.89 %, as shown in Table 11. KNN consistently performed better for all 
five datasets of computer security behavior compared to other classi-
fiers. From the dataset perspective, the highest average accuracy was 

Fig. 3. Computer security behavior (a) elbow method, (b) clusters.

Table 10 
Statistics for clusters formed for each computer security behavior.

Dataset Numerical 
statistic

Red cluster Blue cluster

Complete SeBIS

Mean Aggregate 3.94 2.87
Std Aggregate 0.38 0.44
Max Aggregate 4.71 3.47
Min Aggregate 3.24 1.00
Count 466 561

Device Security dimension

Mean Aggregate 3.62 2.88
Std Aggregate 0.59 0.55
Max Aggregate 4.71 4.47
Min Aggregate 1.94 1.00
Count 646 381

Password Generation 
dimension

Mean Aggregate 3.81 2.97
Std Aggregate 0.51 0.55
Max Aggregate 4.71 4.29
Min Aggregate 2.29 1.00
Count 469 558

Proactive Awareness dimension

Mean Aggregate 3.80 2.89
Std Aggregate 0.49 0.50
Max Aggregate 4.71 4.17
Min Aggregate 2.29 1.00
Count 521 506

Updating dimension

Mean Aggregate 2.91 3.77
Std Aggregate 0.56 0.56
Max Aggregate 4.41 4.76
Min Aggregate 0.94 2.17
Count 494 533
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70.96 for complete SeBIS dataset, followed by 71.14 % for DS dimen-
sion. The average prediction accuracy was also calculated for the three 
ML algorithms. The highest average accuracy was that of KNN (74.38 
%), followed by SVM (67 %) and DT (62 %). Moreover, average accuracy 
was also computed (by taking means of DT, KNN and SVMs predictive 

accuracy) for findings on the predictive power of PMT in predicting 
computer security behaviors. As seen in Table 11, the average predictive 
accuracy of PMT for complete computer security behavior is 70.96 %. 
The overall predictive accuracy of PMT for device security is 70.14 % 
while for updating behavior is 65.42 %. The average accuracy from all 

Table 11 
Prediction accuracy of computer security behaviors.

DT KNN SVM Mean

Dataset Accuracy (%) Features Accuracy (%) Features Accuracy (%) Features

Complete SeBIS 65.78 [’TV’ ’RC’ ’SI’] 76.00 [’RC’ ’SE’ ’SI’] 71.11 [’RC’ ’SE’ ’SI’] 70.96
DS 61.00 [’RE’ ’SE’ ’SI’] 78.38 [’TS’ ’RE’ ’SI’] 71.04 [’TS’ ’RE’ ’SI’] 70.14
PG 63.84 [’TS’ ’RC’ ’SE’] 75.89 [’TV’ ’RC’ ’SI’] 69.64 [’TV ’RC’ ’SI’] 69.79
PA 59.81 [’TS’ ’RE’ ’SE’] 69.86 [’TS’ ’TV’ ’SE’] 65.07 [’TS’ ’RC’ ’SE’] 64.91
UP 59.81 [’TS’ ’SE’ ’SI’] 73.36 [’TS’ ’SE’ ’SI’] 63.08 [’RE’ ’SE’ ’SI’] 65.42
Mean 62.05  74.70  67.99  68.24

NOTE: DS: Device Security, PG: Password Generation, PA: Proactive Awareness, UP: Updating, TV: Threat vulnerability, TS: Threat severity, RE: response efficacy, RC: 
Response cost, SI: Intention to secure devic, DT: Decision Tree, KNN: K nearest neighbor, SVM: Support vector machine.

Fig. 4. Confusion matrix for complete computer security behavior for (a) DT, (b) KNN, (c) SVM; (d) PDG of principal components.
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classifiers against all datasets remained above 60 % which depicts 
substantial predictive power of PMTs components in identifying the 
correct class label for different types of computer security behavior. That 
means, since the average accuracy was significantly higher than the 
baseline accuracy of 50 % (chance outcome for binary classification), it 
signifies the reliability and stability of the features to classify the com-
puter security model in an independent manner. The confusion matrices 
for DS dataset at shown in Fig. 6; for PG dataset in Fig. 7; for PA dataset 
in Fig. 8 and for UP dataset in Fig. 9.

We also investigated the feature significance using the wrapper 
feature selection approach to identify top 3 PMT features that contrib-
uted significantly towards the correct prediction from the classifier in 
computer security behavior. This was done to study how well the pre-
dictive models aligned with SEM explanatory modeling results. The 
selected features are shown in Table 11 against each dataset of computer 
security behavior for respective classifiers. The self-efficacy and security 
intention features were selected most frequently by the classifiers as 
significant, however, the overall ranking of features showed significant 
variation between different datasets and classifier combinations.

5.2.2. Smartphone security predictive modeling
For smartphone security predictive modeling, we employed the same 

approach as computer security predictive modeling i.e. macro level and 
micro level ML analysis. At macro level, pre-processing of data was done 
to discretize the complete smartphone security behavior (containing all 

14 items). Elbow method was used to find the number of clusters (Fig. 10
a) that were naturally occurring in the data. K-mean clustering algo-
rithm applied on all 14 items yielded 2 clusters (Fig. 10 b) and the 
dataset was labeled as per the cluster membership 0 for red and 1 for 
blue. Three machine learning algorithms (DT, SVM and KNN) were then 
employed to find the predictive accuracy of PMT in forecasting correct 
class labels for smartphone security behavior (Table 12). The highest 
accuracy was achieved by KNN (68 %) followed by SVM (63 %). The 
average accuracy for the three classifiers was 62.14 %. The confusion 
matrices for complete smartphone security behavior are given in Fig. 11.

At micro level, each dimension of smartphone security behavior was 
taken as a specific smartphone security behavior. There are two di-
mensions of smartphone security behavior scale namely Technical 
Dimension and Social Dimension. The dataset was broken down into two 
datasets containing relevant items for technical and social dimensions of 
smartphone security behavior. Each dataset underwent K-mean clus-
tering algorithm to ascertain clusters for each type of smartphone se-
curity behavior. The results of dimension based smartphone security 
clustering are shown in Fig. 12. After clustering of the two datasets, 
machine learning algorithms were employed for the predictive accuracy 
of PMT in predicting correct class labels. The highest accuracy of 75 % 
was observed for the social dimension of the smartphone security 
behavior by KNN classifier, and it consistently performed better for all 
three datasets (complete smartphone security, T and S dimension of 
smartphone security) in smartphone security prediction. The average 

Fig. 5. Clusters for (a) device security, (b) password generation, (c) proactive awareness, (d) updating behaviors.
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accuracy for the ML algorithm was calculated, and again, the highest 
was that of KNN (71.85 %). The average accuracy of the three algo-
rithms for predicting smartphone security behavior was 62 %. Whereas 
the average accuracy values for the technical smartphone security 
dimension and social smartphone security dimension were 67 % and 70 
%, respectively. Again, since the average accuracy was significantly 
higher than the baseline accuracy of 50 % (chance outcome for binary 
classification), it signifies the reliability and stability of the features to 
classify the smartphone security models in an independent manner. 
Nevertheless the lowest average accuracy against the three datasets was 
at least 60 %, ruling out the case of chance random predictions. The 
confusion matrices for the Technical Dimension dataset are given in Fig. 13, 
while those of the S dataset are given in Fig. 14. The probability density 
graphs (PDG) of the mean scores of the clusters for smartphone security 
behavior are shown in Figs 11 d, 13 d and 14 d.

We also investigated the feature significance using the wrapper 
feature selection approach to identify the top three PMT features that 
contributed significantly towards the correct prediction from the 

classifier in smartphone security. This was done to study how well the 
predictive models aligned with SEM explanatory modeling results of 
smartphone security PMT models. The selected features are shown in 
Table 12 against each dataset for respective classifiers. The SE and SI 
features were selected most frequently by the classifiers as significant in 
smartphone security behavior, however, the overall ranking of features 
showed slight variation between different datasets (complete, T and S 
smartphone security behaviors) and classifier combinations.

NOTE: DS: Device Security, PG: Password Generation, PA: Proactive 
Awareness, UP: Updating, TV: Threat vulnerability, TS: Threat severity, RE: 
response efficacy, RC: Response cost, SI: Intention to secure devic, DT: De-
cision Tree, KNN: K nearest neighbor, SVM: Support vector machine.

6. Discussion

In the current study, predictive modeling is employed following a 
data-driven approach using ML algorithms to augment the results of 
explanatory modeling of PMT. This is distinctive as it reflects the 

Fig. 6. Confusion matrices for device security (a) DT, (b) KNN, (c) SVM; (d) PDG principal components of device security.
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underlying data without taking into consideration the assumptions in 
explanatory modeling. To ascertain the optimal performance of the PMT 
models for computer and smartphone security, a combination of linear 
and nonlinear ML algorithms are utilized. The combination of SEM and 
prediction analyses bridges the theory-practice gap and answers the 
research call of (Alassaf and Alkhalifah, 2021).

6.1. Overview of the findings

The explanatory modeling results of our study related to TV are in 
contrast to (Dang-Pham and Pittayachawan, 2015; Haag et al., 2021; 
Posey et al., 2015; Rajab and Eydgahi, 2019; Thompson et al., 2017), 
whereas the results of TS in our study are in line with (Hovav and Putri, 
2016; Knapova et al., 2021; Thompson et al., 2017; Verkijika, 2018). 
The results related to Response efficacy in our study are in line with (Haag 
et al., 2021; Ifinedo, 2012; Rajab and Eydgahi, 2019; Vance et al., 2012; 
Vrhovec and Mihelič, 2021) (Dang-Pham and Pittayachawan, 2015; 
Giwah et al., 2019) while that of self-efficacy of our study are in line with 
(Dang-Pham and Pittayachawan, 2015; Giwah et al., 2019; Knapova 

et al., 2021; L. Li et al., 2019; Posey et al., 2015; Thompson et al., 2017; 
Verkijika, 2018). The results of response cost in our study are in contrast 
to that of (Dang-Pham and Pittayachawan, 2015; Hovav and Putri, 2016; 
Posey et al., 2015; Thompson et al., 2017; Tsai et al., 2016; Vance et al., 
2012; Verkijika, 2018) and may be attributed towards the low AVE 
value of the response cost in our models. The explanatory power of PMT 
for computer security intention is 73 % and for security behavior is 16 % 
while for smartphone security intention is 89 % and for smartphone 
security behavior is 13 %, as ascertained by R2.

The predictive modeling results reveal that the predictive accuracy 
for computer security behavior is 70 % as we averaged out the predictive 
accuracy for the three algorithms employed. For different types of 
computer security behavior, the accuracy is approximately between the 
range of 65 % - 70 % for device security, proactive awareness, password 
generation and updating behavior. This shows that there is little varia-
tion in predicting different types of computer security behaviors using 
PMT. On the other hand, the predictive accuracy is 62 % for smartphone 
security. However, the accuracy for different types of smartphone se-
curity behaviors is higher with 67 % for technical security for 

Fig. 7. Confusion matrices for password generation (a) DT, (b) KNN, (c) SVM; (d) PDG principal components of password generation.
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smartphone and 70 % for social security for smartphone. The best per-
forming algorithm for both computer and smartphone security is KNN, 
however the predictive accuracy does not vary drastically across 
different ML algorithms. These results also highlight that the interaction 
between PMT elements are not linear and PMT model is best estimated 
by the application of linear as well as nonlinear algorithms. The pre-
dictive power of PMT models for cyber security behaviors reveal that our 
understanding of the phenomenon under the lens of PMT is limited and 
other factors such as fear appeals, need to be incorporated.

These limitations of the PMT explanatory modeling is shown in the 
results from the wrapper method. On one hand it was consistently shown 
that perceived threat severity, self-efficacy and response efficacy were to be 
the most important features in prediction of security behaviors. These 
findings echo the observations made by the previous studies that the 
coping appraisal dimension is the most significant predictor of computer 
security behavior when compared to the threat appraisal. However, the 
inclusion of response cost and perceived vulnerability by some ML al-
gorithms for various cybersecurity behaviors highlight the overall 
importance of PMT constructs. As observed in previous literature, the 
self confidence in the effective usage of security controls minimizes the 
perceived severity of the threats. According to the previous literature 

(Boss et al., 2015; Posey et al., 2015), the coping appraisal process of the 
protection motivation theory works when the self-efficacy and response 
efficacy are higher as compared to the response cost (RC) for the in-
dividuals to have intention to secure themselves. This study echoes this 
observation that response efficacy (RE) and self-efficacy may render the 
RC associated with protecting the devices insignificant. Nevertheless, it 
should also be noted that the AVE for response efficacy was below the 
accepted value of 0.5 that could potentially introduce measurement 
errors. Moreover, the study population being university students also 
play role in insignificant influence of response cost due to their reckless 
attitude (Arnett, 1996). Our results are also corroborated by a recent 
meta-analytical based theory testing of PMT (Mou et al., 2022) in which 
the coping-appraisal component had stronger influence than the 
threat-appraisal.

The response cost and perceived vulnerability to be the antecedents 
by some ML algorithms shows the importance of all the PMT constructs. 
This shows that the antecedents in PMT models are not compensatory in 
nature rather the theory is sound for its coping as well as threat appraisal. 
As shown by our analysis the non-existence influence of response cost and 
perceived vulnerability is not compensated by the significant influence 
of threat severity, self-efficacy, response efficacy and security intentions in 

Fig. 8. Confusion matrices for proactive awareness (a) DT, (b) KNN, (c) SVM; (d) PDG principal components of proactive awareness.
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Fig. 9. Confusion matrices for updating (a) DT, (b) KNN, (c) SVM; (d) PDG principal components of updating.

Fig. 10. Smartphone security behavior (a) elbow method, (b) Clusters.
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both computer and smartphone security models. Nevertheless, the fea-
tures that were the most important in PMT models were self-efficacy, 
security intention and response efficacy. These were the antecedents that 
were considered most important by that ML algorithms more frequently 
than the others. This as a result validates the protection motivation 
theory in explaining and predicting cybersecurity behaviors. One thing 
to note here is that, the 70 % predictive accuracy of PMT shows that 
there is still a need for carrying out more research by adding additional 
factors to the PMT model as has been argued by (Shmueli and Koppius, 
2011).

6.2. Synthesis of the two methods

This study reveals the importance of two methods in understanding 
cyber security behavior phenomenon. The explanatory modeling is 
limited to overfitting of data due to fitting the data to explain past 
events, incorrect inferences due to correlational assumptions between 
variables, parsimony principles upholding and inability to predict future 
events and hence are not suitable for predictive validation of theories 
(Shmueli and Koppius, 2011). On the other hand, predictive modeling is 
limited in terms of offering causal insights and relationship between the 
variables causing inability for supporting or refuting claims about cau-
sality in theory testing (Shmueli, 2010). Moreover, the sole emphasis is 

Table 12 
Prediction accuracy of smartphone security behavior.

DT KNN SVM Mean

Dataset Accuracy (%) Features Accuracy (%) Features Accuracy (%) Features

Complete 54.37 [’RC’ ’SE’ ’SI’] 68.45 [’TV’ ’RC’ ’SI’] 63.59 [’TS’ ’RE’ ’SI’] 62.14
Technical Dimension 61.68 [’RC’ ’SE’ ’SI’] 71.84 [’TS’ ’TV’ ’SE’] 68.47 [’RC’ ’SE’ ’SI’] 67.33
Social Dimension 67.96 [’TV’ ’RE’ ’SI’] 75.27 [’TS’ ’RE’ ’SI’] 69.42 [’TS’ ’RE’ ’SI’] 70.88
Mean 61.34 - 71.85 - 67.16 - 66.78

Fig. 11. Confusion matrices for smartphone security behavior (a) DT, (b) KNN, (c) SVM; (d) PDG principal components of smartphone security behavior.
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on accuracy and high values of this measure alone does not necessarily 
means theory being tested is a valid theory. That is to say the two ap-
proaches complement each other by offering insights that are present in 

one. The explanatory modeling allows to understand the relationship 
between variables while predictive modeling help in providing the 
predictive accuracy of the models. In this study, the employment of SEM 

Fig. 12. Clusters for (a) T data set of smartphone security, (b) S data set of smartphone security.

Fig. 13. Confusion matrices for technical dimension of smartphone security (a) DT, (b) KNN, (c) SVM; (d) PDG principal components of Technical dimension of 
smartphone security.
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and ML algorithms have validated the PMT for Cybersecurity behaviors. 
While exclusively the explanatory modeling contributes towards the 
understanding of the cybersecurity behaviors, these claims have been 
evaluated in terms of predictive modeling. The complementarity of the 
two modeling approaches has given a more holistic understanding of the 
construct under study. Not only the data reflect the consistency with the 
theory as was gleaned from SEM, but the accuracy of around 63 % (a 
number not impressive in prediction) showed limitations in our under-
standing of cybersecurity PMT models. That is to say, forcing prediction 
of the explanatory model has revealed that it explains less than expected 
as reasoned in (Salganik et al., 2020; Ward et al., 2010) and opens av-
enues for findings and more complete explanations as argued in 
(Fudenberg et al., 2019).

The meta-level statistical analysis of cyber security behavior studies 
depicts that the self-efficacy is consistent in explanations of these models 
which was also found in this study’s results. However, the predictive 
modeling revealed other PMT elements – threat severity, response cost, 
and threat vulnerability – to be important along with self-efficacy with 
average predictive accuracy above 60 % for both computer and smart-
phone security. As reasoned (Hofman et al., 2021), this predictive ac-
curacy has set the baseline for cybersecurity studies employing PMT – i. 
e. any additional factors in the model is given importance not merely on 
its absolute performance but should be compared with the baseline 

accuracy of this study. That is to say, simply focusing on the increase in 
variance in performance with additional factors, the predictive accuracy 
benchmark of this study has to be taken into account.

6.3. Implications for research

The study has multiple key takeaways; 

1. We have shown the complementarity of the explanatory and pre-
dictive modeling approaches to indicate similar findings in terms of 
PMTs antecedents. The distinctiveness of the predictive modeling has 
indicated predictive accuracy benchmarks for computer and smart-
phone security behaviors.

2. We have augmented SEM with predictive modeling to get the pre-
dictive power of PMT model in the answer to research call of (Alassaf 
and Alkhalifah, 2021).

3. We have made use of three ML algorithms for analysis thereby 
addressing the biases of cross-sectional research designs.

4. We have empirically tested the predictive power of PMT for two 
cyber security behaviors – computer security and smart phone 
security.

Fig. 14. Confusion matrices for S dimension of smartphone security (a) DT, (b) KNN, (c) SVM; (d) PDG principal components of Social dimension of smart-
phone security.
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5. We have elaborated on micro and macro predictive modeling for 
security behaviors (smartphone and computer) to get a more 
nuanced insights.

A number of research implications can be garnered from this study. 
First of all, this is one of the first studies that present the explanatory and 
predictive power of PMT for cybersecurity behaviors and hence offers a 
predictive benchmark for further studies. The identification of non- 
significant antecedents (found in SEM analysis) as important features 
in predictive analysis allows for understanding cybersecurity behaviors 
without the assumptions of linearity relationship between data. More-
over, the identification of the most important antecedents in predicting 
cybersecurity behaviors has given ample evidence for improving 
cybersecurity training and education. The predictive modeling results 
imply that the predictive accuracy benchmark of PMT for cyber security 
behaviors is approximately 70 % which is a fair threshold. As has been 
argued (Shmueli, 2010) that higher accuracy benchmarks depict the 
sufficiency of the theoretical model, 70 % cyber security behavior ac-
curacy shows PMT to be an appropriate theory in understanding 
smartphone security behavior of the university-going students. Never-
theless the predictive benchmark of 70 % calls for future studies by 
interested researchers to consider other factors such as fear appeal (Boss 
et al., 2015) and testing of different nomology of PMT models (Haag 
et al., 2021). The explanatory modeling complemented by predictive 
modeling has implications for PMT theory’s validation in which the 
internal mechanism of interplay between the antecedent variables and 
the dependent variables has been explained and validation has been 
done via future outcome prediction.

6.4. Practical implications

From a practical point of view, the results of this study show the 
suitability of protection motivation theory in development of cyberse-
curity educational programs in higher education institutes. The dimen-
sion wise predictive analysis allowed for identification of critical drivers 
of overall security performance. Notably, proactive awareness emerged 
as the most influential factor in the all-inclusive clustering. This can be 
used in future focused analyses to measure the polarity or consistency of 
security behaviors, helping design more effective interventions. From 
PMT’s perspective, the cybersecurity educational programs should 
emphasize on self-efficacy, threat severity and response efficacy related 
content of computer and smartphone security devices. Special care 
should be given to the participants who do not have IT-related back-
ground. Such students should be briefed on various security controls 
available on computer and smartphone devices and on the knowledge 
that how enabling security controls will build their smartphone self-ef-
ficacy. To cater for the evolving cyber threat landscape and the evolving 
nature of computer and security devices, the training content should be 
regularly updated and imparted to the target participants. Doing so will 
result in a cybersecurity eco system that will maintain safe and secure 
usage of the cyberspace for the tertiary institutes.

6.5. Limitations and future research directions

There are a number of limitations in this study. The use of self-report 
data may constitute social desirability biases. However, the provision of 
assurance of confidentiality and anonymity by the researchers may 
minimize situational and dispositional characteristic biases. The 
generalizability of the findings is another limitation which is limited to 
students’ population. The students are the early adopter of the tech-
nology and are frequent users of smartphones and computers therefore, 
the results are generalizable to that population. Surveys based on stu-
dent populations are from a narrow age range and may not generalize to 
other demographic groups, such as older adults and working pro-
fessionals. Similarly, students are typically from same socioeconomic 
backgrounds and hence the perspectives from different socioeconomic 

classes is limited in this study. Yet another concern is the change of 
habits over time for students’ population and the results of this study 
may not extend over time. Nevertheless, we plan to gather more data 
from faculty, staff and IT staff specifically digital natives from univer-
sities in the future. The socioeconomic background of the participants is 
also been reported to have influence on the cybersecurity behaviors 
(Mohammad et al., 2022). Therefore, we also plan to incorporate so-
cioeconomic and digital divide variables in the future studies in the 
same vein as that of (Khan et al., 2023; 2022) which is key in under-
standing cybersecurity for non-WEIRD populations. Further extending 
the variables in the PMT models, the future studies may also include 
cross cultural populations to understand the explanatory and predictive 
power with respect to collectivism and power distance dimensions of 
Hofsted model (Hofstede, 2011). The elements of PMT that were 
considered in the models of this study are threat appraisal and coping 
appraisal. In the future studies, it would be important to incorporate fear 
appeals to test the PMT model for adaptive and maladaptive behaviors 
for computer security and smartphone security. From machine learning 
perspective, the future studies will incorporate the use of Pareto prin-
ciple before clustering that will yield the most important factors thereby 
improving the clustering outcomes by making them distinct.

6.6. Conclusion

This study reported on explanatory modeling via SEM and predictive 
modeling via ML for protection motivation theoretical models of com-
puter security and smartphone security. Three ML algorithms – DT, SVM 
and KNN were employed to ascertain the predictive accuracy of the two 
models. Furthermore, different types of computer security behaviors and 
smartphone security behaviors also underwent ML analysis to find the 
predictive power of PMT for these specific behaviors. Wrapper feature 
selection approach was also employed to find out the elements of PMT 
which were the most important predictors of cybersecurity behaviors. 
The SEM results revealed that perceived severity, self-efficacy and 
response efficacy influence computer and smartphone security behaviors 
which is consistent with the prior literature reviewed. The intention to 
secure devices is also positively associated with cyber security behav-
iors. The predictive accuracy for computer security PMT model is 73 % 
while that for smartphone security PMT model is 68 %. For specific 
computer security behaviors of device security, proactive awareness, 
password generation and updating are 78 %, 69 %, 75 % and 73 % 
respectively. The predictive accuracy for Technical smartphone security 
behavior was 71 % while that for social smartphone security behavior 
was 75 %. The highest accuracy was achieved by the KNN algorithm. 
The most important features for computer and smartphone security 
behavior as found by the wrapper feature selection method were self- 
efficacy, response efficacy and intention to secure device which were also 
consistent with the previous results found for explanatory modeling. The 
predictive modeling results validated the SEM results for PMT models of 
computer and smartphone security behaviors.
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Appendix

Construct Items
Perceived Severity (Thompson et al., 2017) PS1. A security breach on my device would be a serious problem for me. 

PS2. A loss of information resulting from hacking would be a serious problem for me 
PS3. Having my confidential information on my device accessed by someone without my consent or knowledge would be a serious 
problem for me. 
PS4. Having someone successfully attack and damage my device would be very problematic for me. 
PS5. I view information security attacks on me as harmful. 
PS6. I believe that protecting the information on my device is important.

Perceived vulnerability (Thompson et al., 2017) PV1. I could be subject to a serious information security threat. 
PV2. I am facing more and more information security threats. 
PV3. I feel that my device could be vulnerable to a security threat. 
PV4. It is likely that my device will be compromised in the future. 
PV5. My information and data is vulnerable to security breaches. 
PV6. I could fall victim to a malicious attack if I fail to follow good security practices.

Response cost (Thompson et al., 2017) RC1. Taking security measures inconveniences me. 
RC2. There are too many overheads associated with taking security measures to protect my device. 
RC3. Taking security measures would require considerable investment of effort. 
RC4. Implementing security measures on my device would be time consuming. 
RC5. The cost of implementing recommended security measures exceeds the benefits. 
RC6. The impact of security measures on my productivity exceeds the benefits.

Response efficacy (Thompson et al., 2017) RE1. Enabling security measures on my device will prevent security breaches. 
RE2. Implementing security measures on my device is an effective way to prevent hackers. 
RE3. Enabling security measures on my device will prevent hackers from stealing my identity. 
RE4. The preventative measures available to stop people from getting confidential personal or financial information on my device 
are effective.

Self-efficacy (Thompson et al., 2017) SE1. I feel comfortable taking measures to secure my device. 
SE2. Taking the necessary security measures is directly under my control. 
SE3. I have the resources and the knowledge to take the necessary security measures. 
SE4. Taking the necessary security measures in easy. 
SE5. I can protect my device by myself, I can enable security measures on my device.

Security Intentions (Thompson et al., 2017) SI1. I am likely to take security measures on my devices (smartphone, computer/laptop). 
SI2. I will take security measures to protect my devices (smartphone, computer/laptop). 
SI3. It is my intention to take measures to protect my devices (smartphone, computer/laptop).

Smartphone Security Behavior (Huang et al., 
2020)

SS1. I reset my Advertising ID on my smartphone. 
SS2. I hide device in my smartphone’s Bluetooth settings. 
SS3. I change my passcode/PIN for my smartphone’s screen lock at a regular basis. 
SS4. I manually cover my smartphone’s screen when using it in the public area (e.g., bus or subway). 
SS5. I use an adblocker on my smartphone. 
SS6. I use an anti-virus app. 
SS7. I use a Virtual Private Network (VPN) app while connected to a public network. 
SS8. I turn off WiFi on my smartphone when not actively using it. 
SS9. I care about the source of the app when performing financial and/or shopping tasks on that app. 
SS10. I take care of the source of the app when performing financial and / or 
purchasing work on this app. 
SS11. When downloading an app, I check that the app is from the official/expected source. 
SS12. I verify the recipient/sender before sharing text messages or other information using smartphone apps. 
SS13. I delete any online communications (i.e. texts, emails, social media posts) that look suspicious. 
SS14. I pay attention to the pop-ups on my smartphone when connecting it to another device (e.g. laptop, desktop).

Computer Security Behavior (Egelman and Peer, 
2015)

CS1. I set my computer screen to automatically lock if I don’t use it for a prolonged period of time. 
CS2. I use a password/passcode to unlock my laptop or tablet. 
CS3. I manually lock my computer screen when I step away from it. 
CS4. I use a PIN or passcode to unlock my mobile phone. 
CS5. I change my passwords even if it is not needed. 
CS6. I use different passwords for different accounts that I have. 
CS7. When I create a new online account, I try to use a password that goes beyond the site’s minimum requirements. 
CS8. I include special characters in my password even if it’s not required. 
CS9. When someone sends me a link, I open it only after verifying where it goes. 
CS10. I know what website I’m visiting by looking at the URL bar, rather than by the website’s look and feel. 
CS11. I verify that information will be sent securely (e.g. SSL, https://, a lock icon) before I submit it to websites. 
CS12. When browsing websites, I mouseover links to see where they go, before clicking them. 
CS13. If I discover a security problem, I fix or report it rather than assuming somebody else will. 
CS14. When I’m prompted about a software update, I install it right away. 
CS15. I try to make sure that the programs I use are up-to-date. 
CS16. I verify that my anti-virus software has been regularly updating itself.

Acronym List:
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AI - Artificial intelligence 
AFM - Absolute fit measure 
AVE - Average variance extracted 
BYOD - Bring your own device 
CB-SEM - Covariance based structure equation modeling 
CFI - Comparative fit index 
CR - Composite reliability 
CSB - Computer security behavior 
DS - Device security 
DT - Decision Tree 
fsQCA - Fuzzy-set qualitative comparative analysis 
GDT - general deterrence theory 
GFI - Goodness of fit index 
IFM - Incremental fit measure 
KNN - K nearest neighbor 
ML - Machine learning 
NN - Neural network 
PG - Password generation 
PA - Proactive awareness

PFM - Parsimonious fit measure 
PMT - Protection motivation theory 
PNFI - Parsimony normed fit index 
PCA – Principal component analysis 
PCFI - Parsimonious comparative fit index 
PDG - Probability density graph 
RC - Perceived response cost 
RE - Perceived response efficacy 
RMSEA - Root mean square error 
SE - Perceived self-efficacy 
SeBIS - Security behavior intention scale 
SI - Intention to secure computer device 
SSB - Smartphone security behavior 
SVM - Support vector machine 
TLI - Tucker-lewis index 
TPB - Theory of planned behavior 
TS - Perceived threat severity 
TV - Perceived threat vulnerability 
UP - Updating 
WEIRD - Western, educated, industrialized, rich and democratic

Data availability

Data will be made available on request. 
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