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Abstract: 22 

Dissolved oxygen (DO) is a crucial element for both biotic and abiotic processes 23 

in marine ecosystems, but has declined globally in recent decades. Therefore, there is 24 

an urgent need for solid large-scale and continuous estimation of DO concentration in 25 

vital ecosystems, such as coastal areas. A random forest (RF) model for DO in South 26 

Yellow Sea (SYS) was developed by integrating satellite data and simulation data 27 

during 2011–2019. The root mean squared error (RMSE) for the training and test sets 28 

were 0.514 mg/L and 0.732 mg/L, respectively. Spatiotemporal distributions of DO of 29 

multiple layers in the study area during 2011–2019 were very well reproduced by the 30 

RF model and showed a slight decline trend in most SYS areas, while more intense 31 

decline occurred in the deep central SYS. The analysis of the mechanisms of DO 32 

decline in the South Yellow Sea cold water mass (SYSCWM), located in the deep 33 

central SYS, indicates that the deoxygenation here is largely due to biological activities. 34 

This finding may have implications for studies on drivers of deoxygenation in coastal 35 

areas. Furthermore, integrating satellite data with machine learning models can offer a 36 

powerful approach to capturing the continuous spatiotemporal characteristics of ocean 37 

parameters over large spatial scales. 38 

1. Introduction 39 

Dissolved oxygen (DO) concentration in seawater is a crucial parameter that 40 

impacts both biotic and abiotic processes. It influences the growth, reproduction, and 41 

feeding of organisms (Batziakas et al., 2020; Flint et al., 2015; Fock and Czudaj, 2019), 42 
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while also playing a crucial role in regulating biogeochemical cycles involving carbon, 43 

nitrogen, and many other elements (Banks et al., 2012; Codispoti et al., 2001; Levin, 44 

2018; Lonborg et al., 2020; Mathew et al., 2022). However, global warming has led to 45 

the heating of seawater and stronger stratification; in the meantime, rising nutrient loads 46 

resulted in increased productivity in the upper water column. All of this caused 47 

increased oxygen consumption, leading to “deoxygenation” in the ocean (Breitburg et 48 

al., 2018; Fennel and Testa, 2019; Keeling and Garcia, 2002). The DO content in the 49 

global ocean has declined by over 2% since 1960 (Schmidtko et al., 2017), with coastal 50 

waters experiencing worse deoxygenation than the open ocean in recent decades 51 

(Gilbert et al., 2010). This decline in DO at the coastal water poses a potential threat to 52 

marine ecosystem health, which could ultimately impact not only the well-being of 53 

marine life but also the livelihoods of approximately 10-12% of the global population 54 

who rely directly on marine resources for their survival and economic activities 55 

(Wenning, 2020). Despite growing attention to the issue, there is a strong lack of 56 

continuous dataset to help fully understand its underlying mechanisms and quantify its 57 

declining rates, especially in the marginal seas. 58 

Traditionally, DO concentrations have been measured using titration facilitated by 59 

cruises (Bushinsky et al., 2016; Edwards et al., 2010). However, this approach is labor-60 

intensive and costly, and is also subject to weather conditions. Even with improved 61 

accessibility, Argo floats face challenges in achieving large-scale, continuous 62 

observations. In this context, numerical simulations can be valuable, especially when a 63 

https://doi.org/10.1016/j.csr.2024.105348


This is the author accepted manuscript of: Liu, Q., Liu, C., Meng, Q., Su, B., Ye, H., Chen, B., Li, W., Cao, X., Nie, W., 
& Ma, N. (2024). Machine learning reveals biological activities as the dominant factor in controlling 
deoxygenation in the South Yellow Sea. Continental Shelf Research, 283, Article 105348. Advance online 
publication. https://doi.org/10.1016/j.csr.2024.105348 

 

4 
 

significant amount of in-situ data have been collected. At present, numerical simulation 64 

methods used for DO estimation include process-based (mechanistic) models and data-65 

driven models. Process-based models, such as high-resolution numerical simulation 66 

models, can effectively reproduce real-world scenarios through extensive calculations 67 

across the entire spatial extent of the study area (Scully, 2013; Xu et al., 2011). Even 68 

though such models may provide higher accuracy, they demand extensive 69 

multidisciplinary knowledge of the specific study area and are not easily adjustable. By 70 

contrast, data-driven models have emerged as a promising approach. They demonstrate 71 

significant potential for high efficiency in various fields (Beyan and Browman, 2020; 72 

Chen et al., 2020; Goldstein et al., 2019; Malde et al., 2020; Pahlevan et al., 2022; 73 

Rubbens et al., 2023; Xiao et al., 2019). When combined with satellite data at high 74 

spatiotemporal resolution, these models have been proven effective in modeling DO 75 

concentrations (Sadaiappan et al., 2023). For example, Guo et al. (2021) used support 76 

vector regression (SVR) to predict DO concentration at the surface of lakes. Li et al. 77 

(2023b) employed multiple machine learning models to reproduce hypoxia events in 78 

the bottom of the Gulf of Mexico. All of this shows that machine learning performs 79 

well at DO simulation. If machine learning methods can be integrated with some 80 

marginal seas where DO is at risk of declining, it may offer enlightening information. 81 

The South Yellow Sea (SYS) is a significant marginal sea in the western Pacific 82 

Ocean, providing crucial ecological and economic services (Barbier et al., 2011; Dong, 83 

2019; Hou et al., 2020; Long et al., 2023; Yu et al., 2022). However, it is experiencing 84 

https://doi.org/10.1016/j.csr.2024.105348


This is the author accepted manuscript of: Liu, Q., Liu, C., Meng, Q., Su, B., Ye, H., Chen, B., Li, W., Cao, X., Nie, W., 
& Ma, N. (2024). Machine learning reveals biological activities as the dominant factor in controlling 
deoxygenation in the South Yellow Sea. Continental Shelf Research, 283, Article 105348. Advance online 
publication. https://doi.org/10.1016/j.csr.2024.105348 

 

5 
 

local deoxygenation (Lin et al., 2005; Wei et al., 2021), and this has a significant impact 85 

on the marine ecosystem. The South Yellow Sea Cold Water Mass (SYSCWM) in the 86 

SYS plays a vital role in its hydrodynamics and significantly affects its primary 87 

production (Guo et al., 2020a; Li et al., 2019), maintaining high DO concentration (> 6 88 

mg/L) year around (Xin et al., 2013; Zhang et al., 2008). Although recent reports 89 

suggest warming in the SYSCWM (Yang et al., 2023), the trend in DO concentration 90 

remains uncertain. Moreover, it is unknown whether deoxygenation is taking place in 91 

the entire SYS and what its driving mechanisms. Existing studies on deoxygenation 92 

mechanisms often focus on solubility changes, with less emphasis on the role of 93 

biological processes (Oschlies et al., 2018). Thus, we aim to gather large-scale DO data 94 

alongside biomass data from satellite observations to explore the mechanisms involved. 95 

Using machine learning to generate such DO data is a suitable choice. 96 

Therefore, we developed a machine learning model for reproducing DO 97 

concentration in the SYS during 2011–2019. We evaluated four models and 15 sets of 98 

inputs, identified the optimal model, and applied it to generate a high-resolution (1/12°) 99 

multi-layer map of DO concentration in the SYS. Through analyzing the model outputs, 100 

this study aims to determine the spatial and temporal distributions of DO in the SYS, 101 

assess whether DO levels are declining, especially in the SYSCWM region, and 102 

understand the roles of warming and biological activities in the DO change. This study 103 

may have implications for studies on drivers of deoxygenation in the SYS and other 104 

coastal areas. 105 
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2. Data and Methodology 106 

2.1 Study area 107 

The study area includes the SYS and parts of the north East China Sea, specifically 108 

ranging from the northern boundary of the SYS (marked by a black dashed line in Fig. 109 

1a) to 30°N. The SYS is a semi-enclosed marginal sea bordered by the North Yellow 110 

Sea to the north and the East China Sea to the south, constituting a part of the Northwest 111 

Pacific Ocean. It has an average depth of 44 m (Liu et al., 2009). The coastal areas of 112 

Jiangsu and Shandong provinces are of great significance for coastal aquaculture, while 113 

most of the SYS shows potential for deep-sea aquaculture (Hou et al., 2020; Yu et al., 114 

2022). The prevailing ocean currents in this region follows a counterclockwise pattern. 115 

There is the strong northwestward YSWC in the central area and southward YSCC 116 

along the western coasts (Naimie et al., 2001). This circulation pattern results in 117 

relatively high temperature in the central SYS during winter. In the deep central SYS, 118 

the SYSCWM undergoes seasonal formation, weakening, and disappearance from 119 

summer to winter. 120 
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Fig. 1 (a) Geographic location and topography of the study area (NYS: North Yellow Sea; ECS: 121 

East China Sea; YSWC: Yellow Sea Warm Current; YSCC: Yellow Sea Coastal Current) and (b) 122 

Distribution of in-situ DO samples by horizontal location. 123 

2.2 Data 124 

2.2.1 In-situ data 125 

 The in-situ DO concentration data (3214 data points) used for modeling were 126 

compiled from previous studies, including some from the National Earth System 127 

Science Data Center (http://www.geodata.cn/index.html). Details about the data source 128 

can be found in Table S1. Data samples show a higher frequency in Jun and Aug 129 

(usually when DO is low) as shown in Fig. S1a. Spatially, the distribution of samples 130 

adequately covers the entire study area (Fig. 1b) and both above and below the mixed 131 

layer depth (MLD) (Fig. S1b). The climatological seawater temperature at the vertical 132 

profile relating to the DO in Section 4 was obtained from the Regional Climatological 133 

Dataset of East Asia (RCDEA; https://www.ncei.noaa.gov/products/regional-ocean-134 

(a) (b) 
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climatologies). 135 

2.2.2 Satellite data 136 

The 8-day sea surface temperature (SST) satellite data at a resolution of 4 km 137 

during 2011–2019 were extracted from level-3 product of MODIS Aqua Ocean Color 138 

Data, produced by NASA's Earth Observing System Data and Information System 139 

(EOSDIS; https://oceancolor.gsfc.nasa.gov/). The 8-day sea surface Chlorophyll-a 140 

(Chl-a) concentration data at 4 km resolution were obtained from Ocean Color-CCI 141 

(OC-CCI), which provides Chl-a multi-satellite fusion products from a blended 142 

combination of OCI, OCI2, OC2 and OCx algorithms (https://www. oceancolour. org/). 143 

To enhance the model's accuracy and validity, we conducted Data Interpolating 144 

Empirical Orthogonal Functions (DINEOF) interpolation(Li et al., 2023a; Niu et al., 145 

2021) to fill in missing pixels (caused by weather or technology) and aligned the DO 146 

samples with corresponding satellite observations from the same week (8 days). The 147 

coefficient of variation (CV) of the 3*3 window was restricted to within 20% to filter 148 

sensor and algorithm noises. Data that not meet this criterion were excluded (about 149 

3.76%). Additional details about the data can be found in Table 1. 150 

Table 1 Data sources used in this study. 151 

Variables Data Product Temporal Resolution Spatial Resolution 

In-situ DO (Present study) / / 

Modeling DO GOBH Daily 1/4° 

SST MODIS-Aqua 8-day 4km 

https://doi.org/10.1016/j.csr.2024.105348
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2.2.3 Simulated data acquisition and processing 152 

8-day composite MLD data at a resolution of 1/12° were derived from GLBu0.08 153 

from the Hybrid Coordinate Ocean Model (HYCOM; https://www.hycom.org/). The 154 

simulated DO concentration data were obtained from the Global Ocean 155 

Biogeochemistry Hindcast (GOBH) model, produced by the Copernicus Marine 156 

Environment Monitoring Service (CMEMS; http://marine.copernicus.eu/) and were 157 

used for comparison with our model. Monthly three-dimensional seawater temperature 158 

and salinity data were obtained from the Global Ocean Physics Reanalysis (GLORYS) 159 

product from the CMEMS and were used to define the SYSCWM region. This region 160 

was defined as areas within the 10 ℃ isotherm at the bottom layer for a given month.   161 

2.3 Models 162 

The model selection and development procedures are illustrated in Fig. 2a, with 163 

more detailed steps are shown in Fig. 2b. The model selection included 15*4*50 164 

independent simulations. The number 15 represents the number of input variable sets. 165 

Each set consists of SST, water depth, MLD, Chl-a, and time (coded by an integer). In 166 

every set, only the Chl-a varies while the other variables stay unchanged. We focused 167 

on the cumulative effect of surface Chl-a prior to in-situ DO. Subsequently, Chl-a from 168 

Seawater temperature 

RCDEA Monthly climatological 1/10° 

GLORYS Monthly 1/12° 

Chl-a OC-CCI 8-day 4 km 

MLD GLBu0.08 8-day 1/12° 

https://doi.org/10.1016/j.csr.2024.105348
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0 to 14 weeks before in-situ DO was extracted. Then, 15 means of Chl-a averaged over 169 

specific weeks were imputed for selection, as Chl-a has a delayed effect on DO with 170 

different time lags (Zheng and DiGiacomo, 2020). The number 4 represents four 171 

modeling methods, i.e., RF, SVR, Generalized Regression Neural Network (GRNN) 172 

and Stepwise Linear Regression (SR). These models have been demonstrated to be 173 

effective in predicting DO in multiple previous studies (Guo et al., 2021; Heddam, 2014; 174 

Ji et al., 2017; Li et al., 2023b; Valera et al., 2020). Detailed information about the 175 

structure and principles of the four models can be found in the supplementary materials.  176 

For each of the 15*4 choices, a model was developed and repeated 50 times. In 177 

each iteration, input and output variables were randomly divided into a training set (70% 178 

of data points) and a test set (30% of data points) using a hierarchical random sampling 179 

method. The data in the training set were used for modeling, while the data in the test 180 

set were employed for evaluation. The average root mean square error (RMSE, Eq. (S1)) 181 

and average correlation coefficient (R, Eq. (1)) of the test set from 50 simulations were 182 

calculated and recorded. 183 

R =
∑ (𝑦𝑖−�̅�𝑖)∗(�̂�𝑖−�̅̂�𝑖)
𝑁
𝑖=1

√∑ (𝑦𝑖−�̅�𝑖)
2∗(�̂�𝑖−�̅̂�𝑖)

2𝑁
𝑖=1

               (1) 184 

Where N represents the number of the match-up pairs, 𝑦𝑖, �̅�𝑖, �̂�𝑖, and �̅̂�𝑖 are the 185 

in-situ, mean in-situ, simulated, and mean simulated DO concentrations, respectively. 186 

https://doi.org/10.1016/j.csr.2024.105348
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Fig. 2 Sketch diagrams showing (a) overall procedures of model selection and (b) the detailed 187 

procedures of modeling.  188 

(a) 

(b) 
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3. Results 189 

3.1 Performance of models 190 

The RF model, which used the mean of 8 weeks’ Chl-a as one of the input variables, 191 

produces the lowest RMSE and highest R values. This indicates its superior 192 

performance compared to the other models (Fig. S2). The results predicted by the RF 193 

model closely match the in-situ DO observations (Fig.S2b), confirming its effectiveness. 194 

Hence, we selected the RF model with the 8 weeks mean Chl-a concentration as one 195 

input variable as our final model. However, when comparing its performance on the 196 

test set with training dataset, we observe slight overfitting of the RF model to the 197 

training data (Fig. 3). In Fig. 3b, some outliers appear in the low DO segment (< 4mg/L), 198 

indicating that the model overestimates DO in this range. Despite of this defect, the 199 

model demonstrates reliable performance in both the training and test sets, with RMSE 200 

< 0. 8 mg/L, R > 0. 95, and mean absolute error (Eq. S2) < 0. 5 mg/L. We also compared 201 

the model performances above and below the MLD. Both regions exhibit a similar 202 

ability to the overall model (Fig. S3), indicating consistent performance across different 203 

(a) (b) 
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water depths. 204 

Fig. 3 Scatter plots of results of the RF model alongside the in-situ data. (a) Training set, (b) Test 205 

set. 206 

3.2 Variation of Monthly DO during 2011–2019 207 

The monthly climatological DO derived from the model outputs during 2011–208 

2019 reveals that DO generally decreased from the inshore to the center of the SYS and 209 

from the upper layer to the deeper layer in most months (Fig. 4). However, above the 210 

10 m layer from Jun to Sep, DO increases from the inshore to the center of the SYS. In 211 

addition, both the surface and the 10 m layers show prominent bands of high DO 212 

inshore in most months, especially from Apr to Jun. Furthermore, from Jun to Aug, an 213 

area with DO higher than both the upper and deeper layers is displayed at the 30 m 214 

layer in the center of the SYS. 215 

The DO in the SYS also exhibits significant seasonal variations. Generally, DO 216 

exhibits a gradual decline from late winter (Jan, Feb) to midsummer (Aug), followed 217 

by a subsequent increase after early autumn (Sep, Oct). The lowest DO levels are 218 

observed in August, while the highest levels occur in Mar. However, the recovery of 219 

DO does not take place during autumn (Sep, Oct, and Nov) in the center of the SYS 220 

(SYSCWM region) at a depth of 60 m.221 
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Fig. 4 Simulated monthly climatological DO concentrations from Jan 2011-Dec 2019. The surface and bottom layers are defined as the layer with a depth of 1 m and 222 

the depth of the seabed topography, respectively.223 
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3.3 Long-term patterns of DO during 2011–2019 224 

The long-term temporal variations of DO across different layers were analyzed 225 

during 2011–2019. By using the slope coefficient of a linear regression model as an 226 

indicator of the change extent, the spatial trends in DO were determined. During 2011–227 

2019, DO in the SYS show a slight downward trend, ranging from 0.0712 to 0.277 228 

mg/L per year. A more profound decrease is observed at deeper layers compared to the 229 

surface (Fig. 5a). Particularly noteworthy is the significant downward trend below the 230 

60 m layer of the center of the SYS, where the seasonal SYSCWM typically forms. We 231 

further divided the water column above and below the MLD in the SYSCWM region 232 

using the simulated MLD data (the well-known SYSCWM is typically found below the 233 

MLD in this division). Then, the DO trends above and below the MLD in the SYSCWM 234 

region were analyzed, revealing a consistent decline in both regions, with a more 235 

pronounced decline in DO below the MLD (Fig. 5b). This suggests the possibility of 236 

different regulating mechanisms. 237 

(a) 

(c) 

(b) 
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Fig. 5 Long-term trend of DO. (a) Spatial patterns and (b, c) temporal evolutions of DO 238 

concentrations in the SYSCWM region (b) Above the MLD, (c) Below the MLD (the DO 239 

concentration from the model, with a vertical resolution of 1 m, was monthly averaged above and 240 

below the MLD). The period shown in (b, c) only includes the DO of Jun to Nov each year. During 241 

this period, a closure of the SYSCWM region can be identified in most of the years. In (b) and (c), 242 

missing values were replaced by interpolated values. 243 

4. Discussion 244 

4.1 Mechanisms underlying the spatiotemporal patterns of DO 245 

We observe close relationship between SST and DO, as evident from Figs. 4 and 246 

S4. DO shows a gradual decline from late winter (Jan, Feb) to midsummer, followed 247 

by an increase after early autumn (Sep, Oct). Meanwhile, SST increases from early 248 

spring (Mar) and declines after autumn (Sep). This negative correlation is mainly 249 

explained by the lower DO solubility in warmer seawater. In addition, enhanced 250 

stratification caused by high seawater temperature at the surface can also limit 251 

ventilation into deep water, leading to depletion of DO at the bottom. In Jan and Feb, 252 

the dominant current patterns of YSCC and YSWC result in high seawater temperature 253 

in the central region and low temperatures inshore. The spatial patterns of DO at surface, 254 

10 m and 30 m layers in these months closely match the patterns of SST (Fig. S4), with 255 

high DO inshore and low DO in the center of the SYS. This indicates that DO in these 256 

months is primarily driven by seawater temperature. This is likely due to the well-mixed 257 

water column in winter (Fig. S5), leading to sufficient replenishment of DO, thus 258 

https://doi.org/10.1016/j.csr.2024.105348
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following the oxygen solubility (Wei et al., 2021). From Jun to Sep, there is a reversal 259 

in the trend in the upper layers, with lower DO inshore. This can be attributed to the 260 

shallow water depth in the Subei Shoal, resulting in elevated seawater temperatures. 261 

The strong correlation of SST and DO is further supported by the fact that SST emerges 262 

as a significant factor among all variables considered in our model (Fig. S6). 263 

DO concentrations are significantly influenced by biological activities such as 264 

photosynthesis and respiration. The presence of a high DO band inshore at the surface 265 

and 10 m layers is evident from Apr to Jun. This can be attributed to phytoplankton 266 

blooms, which is supported by the frequent observation of green tides in Subei Shoal 267 

from May to Jul (Hu et al., 2010; Wei et al., 2018). In early spring, phytoplankton 268 

growth is stimulated by favorable seawater temperature and light. At the same time, 269 

nutrient supplies are enhanced by stronger vertical mixing. This leads to subsequent 270 

DO production through photosynthesis (Niu et al., 2021). During summer, the 271 

maximum DO is found in the middle depth of the SYS, particularly from Jul to Sep as 272 

shown in Fig. 4. The maximum DO concentration is typically found at around 30 m in 273 

the center of the SYS during summer (Wei et al., 2010). At this depth, cold water exists 274 

due to strong stratification (Fig. S7), which prevents mixing with the adjacent upper 275 

and lower layers. In addition, higher Chl-a levels are also found at this depth, suggesting 276 

that phytoplankton may contribute to the high DO levels in this region (Zheng et al., 277 

2006). However, this phenomenon gradually diminished as the MLD became deeper 278 

(Fig. S5). A sustained low DO concentration in the deep central SYS is observed under 279 
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the 60 m layer in the following months. This can be attributed to the persistence of the 280 

stratification until Nov (Fig. S7). In the absence of sufficient ventilation, DO in deep 281 

water is depleted by the remineralization of sinking organic particles. 282 

4.2 Mechanisms of DO decline in the SYSCWM 283 

Even though our results suggest that seasonal DO variations are highly correlated 284 

with seasonal seawater temperature changes in Section 4.1, the long-term downward 285 

trend in the center of the SYS is not solely caused by rising temperature. Thus, we used 286 

a computational method to separate the effect of biological activities and warming on 287 

deoxygenation. The details of this method are described in the supplementary materials.  288 

In the SYSCWM region, either above or below the MLD, the primary factor 289 

accounting for decline in DO is the biological activity (Table S2). These could be 290 

interpreted as either a decline in oxygen production or an increase in oxygen 291 

consumption. Above the MLD in the water column, DO often appears oversaturated as 292 

phytoplankton thrives under optimal temperature and light conditions (Wei et al., 2021). 293 

This suggests that the decline in DO above the MLD can be attributed to a decrease in 294 

oxygen production during photosynthesis. Below the MLD in the water column, the 295 

decline in DO may be attributed to the more intense oxygen consumption of sinking 296 

organic particles through respiration. To see if phytoplankton biomass is changing as 297 

expected, the trends of sea surface Chl-a at the annual and monthly scales were plotted 298 

respectively (Fig. 6, S8). 299 

 After examining the trend of the sea surface Chl-a, a declining trend was found 300 
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during 2011–2019 in the central SYS both in annual scale and most month (Fig. S8), 301 

which aligns with our inferences above the MLD. But this trend seems to contradict the 302 

decline in DO below the MLD. However, from the monthly Chl-a trend, we find that it 303 

has an upward trend in spring. Fig. 6 shows a clear increasing trend in Chl-a in the 304 

center of the SYS (the SYSCWM region) in Feb and Mar, especially in Mar. This 305 

indicates that particles formed from a luxuriant phytoplankton bloom in early spring 306 

may sink and consume DO below the MLD, thereby reducing DO in the deep water in 307 

next several months. Some studies show a similar phenomenon that organic particles 308 

produced from the phytoplankton blooms in spring may exacerbate depletion of DO at 309 

the bottom, and the oxygen consuming effect may continue from spring into summer 310 

(Zheng and DiGiacomo, 2020). Notably, there is also a significant increase in Chl-a in 311 

some months near the Subei shoal (e.g. June). Although the increase in Chl-a in this 312 

part may have an effect on the DO below it and, therefore, on the DO in SYSCWM, 313 

this effect may be limited by the presence of a seawater temperature front that surrounds 314 
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the SYSCWM region (Chen, 2009; Hickox et al., 2000). 315 

Fig. 6 Long-term monthly variations of Chl-a concentration during 2011–2019. 316 

To investigate whether the biological contribution to the decline in DO in the 317 

SYSCWM (i.e., below the MLD in the SYSCWM region) can be attributed to the 318 

stronger early spring bloom, we plotted the Chl-a in Mar and the DO in Aug in the 319 

SYSCWM region (blow the MLD). These months were chosen because they denoted 320 

the increase in phytoplankton bloom in early spring and the peak phase of the 321 

SYSCWM, respectively. The correlation between them is -0.772 (P < 0.05), indicating 322 

a plausible link between stronger early spring phytoplankton blooms and reduced DO 323 

in the SYSCWM (Fig. S9). We also calculated the correlation between DO in Jun in the 324 

SYSCWM and that in Aug (P < 0.05). The strong correlation suggests that the low DO 325 

Chl-a (mg/m3 per month) 
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in Aug may be due to that in Jun. Similarly, we investigated whether the Chl-a in the 326 

southern part of the study area in Jun was related to the DO of the SYSCWM. The 327 

results showed that there was no significant correlation between them (p > 0.05), 328 

suggesting the effect of the seawater temperature fronts as a barriers. Collectively, our 329 

hypothesis that the organic particles formed in spring may account for the decline in 330 

DO in the SYSCWM remains valid. The proposed mechanism is visually represented 331 

in Fig. 7. 332 

In addition, physical processes also play a role in this process. For instance, the 333 

process illustrated in Fig. 7 may be augmented by the mixed layer pump (MLP) 334 

observed in many studies. That is, in regions with significant seasonal variation in the 335 

MLD, surface organic particles are pushed into deeper waters by intensified wind 336 

mixing during the colder seasons (Lacour et al., 2019; Xing et al., 2020). Stronger 337 

stratification due to warming can reduce nutrient supply to the surface, subsequently 338 

decreasing primary production (Dave and Lozier, 2013). It can also limit the extent of 339 

ventilation from the surface to the deep water. In essence, warming and biological 340 

activities can sometimes interact. Aside from directly affecting the DO content entering 341 

the ocean (through air-sea exchange), warming can also change DO content by 342 

influencing ocean hydrology which then regulates the biological activities. 343 
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Fig.7 Schematic of the mechanisms of deoxygenation explained by biological activities in the 344 

SYSCWM. In spring, stronger phytoplankton blooms formed more sinking particles, while the 345 

mixing gradually weakened and the water column gradually stratified in the following months. Then 346 

these particles continued to sink and gradually consumed more DO below the MLD through 347 

respiration. In summer, or the SYSCWM period, lower DO is present and it is difficult to be 348 

replenished from the upper layers of the stratified water column. 349 

In addition to the overall downward trend, there are some details worth our 350 

attention in Fig.5, such as DO in the year 2013 is considerably lower than any other 351 

years. After plotting the interannual variation of SST in Aug and Chl-a in Feb and Mar, 352 

we found that 2013 had a higher SST than most years and the highest spring Chl-a (Fig. 353 

S10) High seawater temperatures and strong stratification, combined with enough 354 

sinking particles produced by phytoplankton, contributed to the low DO in summer 355 
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2013. 356 

4.3 Advantages and drawbacks of the study 357 

Based on extensive previous studies, our modelling study provides distribution 358 

and trends of DO with higher spatial-temporal resolution, thus highlighting locations 359 

of more intense deoxygenation. The spatial patterns of DO exhibited by our model 360 

aligns closely with a substantial body of empirical studies (Guo et al., 2020b; Guo et 361 

al., 2020c; Li et al., 2015; Lu et al., 2017; Luo et al., 2018; Qu et al., 2015; Xiong et 362 

al., 2020; Zhu et al., 2017). Besides, the declining DO observed by our model in the 363 

SYS is consistent with previous findings (Wei et al., 2021), which also show a more 364 

significant decline in DO in the deeper layers of the SYS. This further substantiates 365 

the reliability of modeling as an approach to comprehensively capture spatiotemporal 366 

patterns despite limited in-situ data availability. Although global model data with 367 

similar functions are available, our model exhibited higher accuracy and higher 368 

resolution in comparison to the global model in our study area (Fig. S11). Moreover, 369 

the error observed in our study is considered acceptable compared to similar studies, 370 

which achieved an RMSE of approximately 1 mg/L (Guo et al., 2021; Kim et al., 2020; 371 

Li et al., 2023b; Ross and Stock, 2019). 372 

This study not only captures the spatial and temporal characteristics of DO, but 373 

also demonstrates the feasibility of machine learning combined with satellite data to 374 

predict the DO concentration in the SYS. This approach would reduce the cost of 375 

instruments and labor. However, narrowing down the error caused by potential 376 
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inaccuracies in satellite data as well as the inherent limitations of the model itself 377 

remains a challenging task. Our model may not fully capture the actual variations in 378 

extremely low DO conditions (e.g., < 4 mg/L). This can be attributed to the involvement 379 

of more intricate processes in DO dynamics in these cases, such as sediment 380 

consumption and advection transport. There are also other challenges that remain to be 381 

further addressed. For example, the precision of input data and the comprehensiveness 382 

of in-situ data need improvement. In the future, we anticipate that more in-situ data will 383 

be collected, satellite data will be accurately calibrated, and additional variables will be 384 

incorporated to enhance the precision of the model. Moreover, due to the introduction 385 

of the time variable into the model and its significant contribution to the result (Fig. S6), 386 

the accuracy of dissolved oxygen simulation beyond the time range cannot be 387 

guaranteed. It is expected that the model's time variable will be adjusted or deleted in 388 

the future to enhance the usability of the model in forecasting. More discussions on the 389 

time variable and the partial correlation curves (Fig. S12) can be found in the 390 

supplementary material. Additionally, the potential of the proposed approach for 391 

achieving similar performance in other waters remains to be tested. 392 

5. Conclusion 393 

In this study, an RF model was presented to efficiently and accurately simulate the 394 

DO conditions of multiple layers in the SYS during 2011–2019. This provided a 395 

comprehensive spatiotemporal distribution of DO within the SYS. The model has 396 

achieved good accuracy and effectively captures a declining trend of DO in the SYS, 397 
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with a more significant decline at the deep layers compared to the shallower ones. The 398 

decline in DO in the SYSCWM region above and below the MLD was regulated by 399 

decreased surface Chl-a and stronger early spring phytoplankton blooms, respectively. 400 

Although this study focuses on DO in the SYS, the proposed framework and 401 

methodology can be readily applied to other coastal systems lacking sufficient in-situ 402 

data. The findings of the model may serve as a valuable reference for high-resolution 403 

modeling studies and other related investigations. Additionally, it can aid in the 404 

development of appropriate frameworks for deep-sea aquaculture activities and cruise 405 

survey planning.  406 
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