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ABSTRACT Broadband sensor array problems can be formulated using parahermitian polynomial matrices,
and the optimal solution to these problems can be based on the eigenvalue decomposition (EVD) of these
matrices. An algorithm has been proposed in the past to extract analytic eigenvalues of parahermitian
matrices, but it does not scale well with the temporal and spatial dimensions of the parahermitian matrix.
This paper introduces a scalable analytical eigenvalue extraction algorithm for parahermitian polynomial
matrices. The proposed algorithm operates in the discrete Fourier transform (DFT) domain, where an
EVD is computed in each bin. Associations across bins are established based on properties of the analytic
eigenvectors. The need to avoid problems with non-trivial algebraic multiplicities and control time-domain
aliasing leads to an iterative algorithm that increases the DFT size until a suitable error criterion is satisfied.
The algorithm can be shown to converge. Benchmarked against the existing algorithm, it performs accurately
and with lower cost, and can successfully decompose matrices with dimensions much larger than previously
had been feasible.

INDEX TERMS Analytic functions, algebraic multiplicities, space-time covariance, discrete Fourier
transform, eigenvalue decomposition, parahermitian matrix, scalability.

I. INTRODUCTION
A parahermitian matrix R(z) : C→ CM×M arises for exam-
ple as a space-time covariancematrix that captures the second
order statistics in multichannel broadband problems [1].
It satisfies R(z) = RP(z), where the parahermitian operator
{·}

P implies a Hermitian transposition and time reversal, such
that RP(z) = {R(1/z∗)}H. In a number of applications [2], it is
important to diagonalise such a matrix by means of an EVD
of the type

R(z) = Q(z)333(z)QP(z), (1)

with a diagonal parahermitian matrix 333(z) containing the
eigenvalues and a paraunitary Q(z) such that Q−1(z) = QP(z).
If R(z) is analytic in z ∈ C, it has been proven that in almost
all cases it is possible to achieve the decomposition in (1)
with equality and with analytic factors Q(z) and 333(z) [3],
[5]. Further, analyticity implies smoothness and therefore can
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lead to factors withminimumorder, motivating algorithms for
such analytic decompositions.

While polynomial EVD algorithms [6], [7] will generally
pursue non-analytic factors and coarse approximations of
(1), methods specifically targetting smooth solutions have
been reported in [8] and [9]. The approach in [8] aims
for smoothness, without explicitly relying on or having
awareness of analyticity. It is a clever DFT domain approach,
but comes without adjustment of the DFT order, has no
convergence proof, and can fail in the case of overlapping
eigenvalues [9]. The approach in [9] and [10] has proven
convergence towards (1), but its cost for extracting analytic
eigenvalues grows factorially with the spatial dimension M ,
such that it is only viable for relatively small matrices, i.e. it
is not scalable.

Finding decompositions of the type in (1) is important
for a number of problems. This includes, for example,
beamforming [11], coding, compression, and denoising [12],
[13], angle of arrival estimation [14], [15], and subspace
decompositions for detection of weak transient signals [9]
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for voice activity detection of weak speakers [16], [17] or
for detecting primary users in a cognitive radio context [18].
These applications often require decompositions for spatial
dimensions M that are higher than is currently possible
with the algorithms in [9] and [10]. The feasibility of such
applications depends on the precision with which (1) is
approximated, the computational cost of the decomposition,
as well as the order of the factors in (1), which translates into
filter lengths and, therefore, the computational complexity
of, e.g., a subspace projection. While the time domain
approaches in [6], [7], and [12] are relatively low-cost,
their accuracy is limited. They also tend to converge to
spectrally majorised eigenvalues, which lead to a perturbation
of subspaces [3]. These can result in poor performance and
factors that require high approximation order.

The aim of this paper is therefore to present a scalable
eigenvalue extraction approach based on a combination
of the DFT-domain methods in [8], [9], and [10]. The
challenge of operating in the DFT domain is to re-establish
coherence across frequency bins. To avoid the relatively
costly maximum likelihood sequence estimation in [9] based
on only the eigenvalues, we utilise the idea in [8] to exploit
the smoothness of the eigenvectors to align eigenvalues.
However, different from [8], we formally exploit analyticity
of the targeted solution for both an eigenvector-based
alignment as well as for an iterative adjustment of the DFT
length.

Below, Sec. II reviews the relation between the analytic
EVD and a bin-wise solution. Based on an eigenvector-based
bin-alignment in Sec. III, our proposed iterative scheme is
outlined in Sec. IV. Sec. V demonstrates and benchmarks the
algorithm, with conclusions being drawn in Sec. VI.

II. ANALYTIC VERSUS BIN-WISE EVD
For the analytic EVD in (1), the analytic eigenvalues λm(z),
m = 1, . . . ,M in 333(z) = diag{λ1(z), . . . , λM (z)} are
unique up to some arbitrary ordering [3]. Provided that
there are M distinct eigenvalues, then their corresponding
eigenvectors in Q(z) = [q1(z), . . . , qM (z)] are also unique up
to the multiplication by an arbitrary allpass φm(z), such that
φm(z)qm(z) would also be a valid mth analytic eigenvector.
Evaluating R(z) on the unit circle at K equispaced

frequency points yields Rk = R(z)
|z=ej�k , �k =

2πk
K , with

k = 0, . . . , (K − 1). Due to the parahermitian symmetry of
R(z), the resulting Rk is a Hermitian matrix whose EVD is
given as

Rk = Qk3kQH
k , for k = 0, . . . , (K − 1) . (2)

The diagonal matrix 3k = diag{d1,k , . . . , dM ,k} holds the
eigenvalues dm,k , m = 1, . . . ,M for the kth bin. The
corresponding eigenvectors qm,k can be selected to be
mutually orthogonal, such that Qk = [q1,k , . . . ,qM ,k ] is a
unitary matrix.

The EVD in (2) is not unique. There is an ambiguity with
respect to ordering of the eigenvalues and their corresponding
eigenvectors. Conventionally the eigenvalues in (2) are

assumed to be majorised such that di,k ≥ di+1,k , i =
1, . . . , (M − 1) [19]. In the case of a C-fold algebraic
multiplicity, where λi,k = λi+1,k = . . . = λi+C−1,k ,
if [qi,k , . . . ,qi+C−1,k ] are valid eigenvectors, then so are

[q′i,k , . . . ,q
′

i+C−1,k ] = [qi,k , . . . ,qi+C−1,k ]Vi,k , (3)

where Vi,k ∈ CC×C is an arbitrary unitary matrix, i.e. the
eigenvectors define a unique C-fold subspace but the basis
is arbitrary. In the case of a trivial multiplicity with C =
1, this reduces to the well-known phase ambiguity of
eigenvectors [19], such that ejφqm,k with an arbitrary phase
φ ∈ R would also be a valid mth eigenvector of Rk .
Based on the above ambiguities, the analytic EVD in (1)

with z = ej�k relates to the kth bin-wise EVD in (2) as

3k = Pk333(ej�k )PT
k , (4)

Qk = Q(ej�k )8kPT
kVk , (5)

wherePk is a permutationmatrix that reorders the eigenvalues
in 333(ej�k ) to match those of 3k . The block-diagonal unitary
matrixVk contains the termsVi,k of (3) as subblocks [9], and
aligns 1−dimensional subspaces across non-trivial algebraic
multiplicities; if 3k has no repeated eigenvalues, Vk is an
identity [9]. Finally, 8k is a diagonal matrix of phase shifts
that establishes phase coherence between adjacent bin-wise
eigenvectors [8], [9].

III. RESOLVING BIN-WISE PERMUTATIONS
A. CHALLENGE OUTLINE
In order to extract analytic eigenvalues, the task is to
determine the permutation matrices Pk , k = 0, . . . , (K − 1),
in (4) for a suitable DFT size K . We first illustrate how these
permutation matrices affect the smooth associations across
bins by way of an example.
Example 1: For the case of a simple R(z), Fig. 1(a)

shows the analytic eigenvalues λ1(ej� ) = 1 + 1
2 sin� and

λ2,3(ej� ) = 1
2 (1 ± cos�) evaluated at K = 16 equispaced

frequency points along the unit circle, i.e. λm(ej�k ) with m =
1, 2, 3, �k = 2πk/K , and k = 0, . . . , (K − 1). The bin-wise
majorised eigenvalues 3k = diag

{
d1,k , d2,k , d3,k

}
are

illustrated in Fig. 1(b). The Dirichlet interpolations dµ(ej�),
µ = 1, 2, 3, through these sample points, which provide the
shortest possible support [9], are also shown. Because of the
non-trivial algebraic multiplicities in bins k = {4, 8, 12} we
have incorrect permutations for various pairs of eigenvalues
w.r.t. analytic solution in bins k = {4, . . . , 16}, and the
functions dµ(ej�) lack the smoothness of the original analytic
eigenvalues λm(ej�) in Fig. 1(a). △

B. INNER PRODUCT OF EIGENVECTORS
For distinct analytic eigenvalues, the corresponding analytic
eigenvectors reside in one-dimensional eigenspaces which
must evolve smoothly [10]. This has consequence for the
inner product between analytic eigenvectors, which will aid
us in ordering the bin-wise eigenvalues to establish a smooth
association across frequency bins. With support from the
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FIGURE 1. (a) Analytic eigenvalues evaluated on the unit circle in
16 frequency bins, and (b) eigenvalues obtained from the bin-wise EVD
and their Dirichlet interpolations.

uniqueness theorem for analytic functions in [21], we state
the following lemma.
Lemma 1 (Inner Product of Analytic Eigenvectors): IfR(z)

possesses M distinct analytic eigenvalues, then their
corresponding analytic eigenvectors qHm(z) satisfy on the unit
circle

|qHm(e
j� )qm(e

j(�+1�))| > |qHm(e
j� )qn(e

j(�+1�))| , (6)

for m, n = 1, . . . ,M with n ̸= m and |1�|<1�max, where
1�max is some suitable upper limit.
Proof. Let us define

fm,n,1�(z) = qHm(z)qn(ze
j1�) , (7)

which, as a sum of products of analytic functions, is itself
analytic in �. For 1� = 0 we have fm,n,0(ej�) = δ[m −
n] independent of the allpass ambiguity of the analytic
eigenvectors. Hence for m ̸= n we have fm,n,0 = 0 but
fm,m,0 = 1 > fm,n,0. Because of analyticity, fm,n,1�(ej�)
must evolve smoothly with �; therefore in an interval [� −
1�; � + 1�] for a sufficiently small but non-vanishing
range |1�| < 1�max, the above inequality must be
satisfied. ■
To estimate the range of values 1� over which we can

apply Lemma 1, note that fm,n,1�(ej�) will change very little
for frequency shifts smaller than its coherence bandwidth
�c ≈

2π
Lf

[20], where Lf is the support of fm,n,1�[n] =
1
2π

∫ π

−π
fm,n,1�(ej�)ej�nd�.

Therefore, the coherence bandwidth forms an approximate
lower bound for 1�max, such that �c < 1�max Since
fm,n,1�[n] is the convolution of two eigenvectors of support
Lq, we have Lf ≤ 2Lq. To apply Lemma 1 in a K -point DFT
domain across neighbouring bins where 1� = 2π

K , we can
ensure that

1� =
2π
K
≤

2π
2Lq
≤

2π
Lf

< 1�max (8)

by setting K ≥ 2Lq, i.e. the DFT size should exceed twice
the support of the analytic eigenvectors. Due to the at least
exponential decay of the analytic eigenvectors [21], and for
practical purposes due to e.g. quantisation noise or finite word
length, there exists a finite Lq and therefore a finite K . Note
that Lq can exceed the support of R(z) [3], and is not known
a priori.
Theorem 1 (Inner Product of Bin-Wise Eigenvectors): Let

qm,k , m = 1, . . . ,M and k = 0, . . . , (K − 1), be the bin-
wise eigenvectors of R(z) with a sufficiently large DFT size
K , such that 2π

K is smaller than the coherence bandwidth.
Then qm′,k is associated with the same analytic eigenvector
as qm,k−1 via

m′ = argmax
n
|qHn,kqm,k−1| , (9)

as long as bins k − 1 and k only contain eigenvalues with
trivial algebraic multiplicities.
Proof. Assuming that eigenvalues only possess trivial alge-
braic multiplicities ensures that according to (5) with Vk =

I, the bin-wise eigenvectors are, up to permutations and
phase shifts, identical to the analytic eigenvectors. Due to the
modulus operation in (9), the phase ambiguity is eliminated,
and the reasoning in (8) ensures Lemma 1 applies. Hence (9)
will retrieve the permutation between bin (k−1) and bin k .■

In the case that the eigenvalues have a C-fold algebraic
multiplicity in a bin, the bin-wise eigenvectors can form
an arbitrary basis within a C-dimensional subspace, and
the simple equivalence exploited in Theorem 1 between the
analytic and bin-wise eigenvectors is lost. Thus, in order to
apply Theorem 1, we need to find a way to avoid bins that
contain non-trivial algebraic multiplicities of eigenvalues.

C. AVOIDING BINS WITH NON-TRIVIAL ALGEBRAIC
MULTIPLICITIES
In order to be able to use Theorem 1 we have to sample the
analytic eigenvalues and eigenvectors at frequencies where
there are no non-trivial algebraic multiplicities. Up to now
we have assumed the sampling has been done via the DFT as
this is computationally efficient. Since two distinct analytic
functions can only have the same value at a finite number of
points [21] it is likely that there are only a few frequencies
where non-trivial algebraic multiplicities exist. Thus we can
retain the computational efficiency of the DFT provided we
deal with the set of problematic DFT bins, which we here
accomplish by shifting the frequencies of these bins. This of
course leads to a nonuniform DFT (NDFT) [22] albeit with a
lot of uniformly distributed bins.

Let S be the set of bin indices where the eigenvalues
possess a non-trivial algebraic multiplicity. Then for k ∈ S,
we find offsets 0 < qk ≪ 1— iteratively by small increments
— such that for the evaluation of the cross-spectral density
matrix at the modified frequency,

R(ej(2π(k+qk )/K )) = Qk3kQH
k (10)

possesses sufficiently distinct eigenvalues in 3k .
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With | · | the cardinality of a set, we have |S| sample points
off the usual uniform grid yielded by a DFT matrix WK ∈

CK×K . Let W̄K be the NDFT matrix that contains in its rows
sampled complex exponentials at frequencies corresponding
to allK bins. Then to reconstruct time domain quantities from
such non-uniform sample points requires a inverse NDFT
(INDFT) matrix W̄−1K as opposed to a standard inverse DFT
matrixWH

K . Such an INDFTmatrix allows a reconstruction as
long as W̄K includes K distinct frequencies [22], [23], which
is guaranteed by the condition 0 < qk ≪ 1.

Although fast Fourier transform-related algorithms
exist [22] for the efficient implementation of the NIDFT, we
take a different approach. Since in practice, |S| ≪ K , we
suggest the following method. Introducing a nugatory term
WH

KWK = I, we have

W̄−1K =
(
W̄KWH

KWK

)−1
=WH

K

(
W̄KWH

K

)−1
. (11)

By introducing a permutationmatrixP that can subdivide W̄K
andWK such that

PW̄K =

[
Wu
Wn

]
, PWK =

[
Wu
Wu,⊥

]
, (12)

with Wn containing rows corresponding to bins with non-
uniform spacing whose indices belong to S, andWu retaining
rows of unmodified bin frequencies of W̄k that match an
ordinary, uniformDFT. The matrixWu,⊥ contains those rows
of a uniform DFT whose frequencies have been shifted with
respect to W̄K . Inserted into (11), we obtain

W̄−1K =WH
K

(
PT
[
Wu
Wn

]
·
[
WH

u WH
u,⊥

]
P
)−1

(13)

=WH
KP

T
[
I 0
A B

]−1
P (14)

=WH
KP

T
[

I 0
−B−1A B−1

]
P =WH

KC , (15)

withA =WnWH
u and B =WnWH

u,⊥. For the inversion of the
matrix in (14), see Theorem 1.1 (p. 106) in [24]. Note that B
is only |S| × |S| and hence relatively small; it is invertible if
the shifted sample points are distinct.

When applying the INDFT operation in (15) to unequally
spaced Fourier coefficients in some vector f ∈ CK ,
i.e. WH

k Cf, the operation Cf only affects coefficients of bins
whose indices belong to S, and finds interpolations at the uni-
formly spaced bin frequencies. The subsequentmultiplication
with the standard IDFT matrix WH

K , implementable via an
inverse fast Fourier transform, then returns the time domain
equivalent of f.

D. DETERMINING BIN-WISE EIGENVALUE
PERMUTATIONS
Using the approach of Sec. III-C to exclude non-trivial
algebraic multiplicities and assuming a sufficiently large
DFT length K , we are now free to apply Theorem 1 and
in particular (9) in order to determine the permutation

FIGURE 2. Permuted bin-wise eigenvalues of Example 1 (a) with
non-trivial algebraic multiplicities in DFT bins, and (b) avoiding non-trivial
algebraic multiplicities (marked as •) in modified DFT bins.

matrices Pk in (4) and (5). This is accomplished by
initialising P0 = I for bin k = 0, and then recursively
applying (9) for all subsequent bins k = 1, . . . , (K − 1). The
resulting permutations Pk can then be applied to the bin-wise
eigenvalues according to (4). For illustration purposes, the
outcome of this scheme is provided in the following example
with and without avoiding bins that contain eigenvalues with
non-trivial algebraic multiplicities.
Example 2: For R(z) in Example 1, the bin-wise eigenval-

ues are permuted in each bin at a DFT size of K = 16 via
the bin-wise inner product approach in (9). If only a uniform
DFT is used, which is equivalent to the approach in [8], the
premise of Theorem 1 is violated due to three bins containing
non-trivial algebraic multiplicities. Subsequently, the method
fails to extract the correct eigenvalues as seen in Fig. 2(a),
due to an incorrect permutation at bin k = 12. Subsequently
a discontinuity arises between bin k = 15 and k = 16 which
is the same as k = 0 due to the 2π periodicity, with
resulting oscillations in the Dirichlet interpolation for the
shortest time-domain equivalent [9]. If the bins are modified
to avoid non-trivial multiplicities via (9), the resulting re-
ordered bin-wise eigenvalues λ̂

(16)
m,k , shown in Fig. 2(b), are

correctly permuted, and the Dirichlet interpolations λ̂
(16)
m (ej�)

based on K = 16 sample points match the exact eigenvalues
λm(ej�) from Example 1. △

IV. ITERATIVE DFT ADJUSTMENT
A. SUFFICIENT DFT SIZE
A DFT size K might be sufficient to accurately approximate
an analytic eigenvalue with a minimum amount of time
domain aliasing, but may not result in a sufficient frequency
resolution 1� = 2π/K for Theorem 1 to hold and vice
versa. To satisfies both conditions, for an initial value of K ,
we compare Dirichlet interpolations based on two sets of bin-
wise eigenvalues at DFT sizes K/2 and K ordered according
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to (9). If the two interpolations are not sufficiently similar,
we increase K and repeat similar to [9].

Let λ̂
(K )
m,k be the eigenvalues in the kth bin permuted

according to (9) obtained from a bin-wise EVD of a K -point
DFT of R(z). Assuming that K is even, the pth derivative of
the Dirichlet interpolation can be determined via [9] as

∂p

∂�p λ̂(K )
m (ej�) =

1
√
K
eHK (e

j�)Dp
KOKTKW̄−1K λ(K )

m , (16)

where

eHK (e
j�) = [ej�

K
2 , ej�(K2 −1), . . . , e−j�

K
2 ] ,

DK = diag
{
−jK2 , . . . , 0, . . . , jK2

}
,

OK = diag{ 12 , 1, . . . , 1︸ ︷︷ ︸
K−1

, 1
2 } ,

TK =
[
0K/2×K/2 IK/2
IK/2+1 0(K/2+1)×(K/2−1)

]
,

λ(K )
m = [λm,0, . . . , λm,(K−1)]T .

Note the formulation from [9] is altered to include the INDFT
W̄−1k from (15). Based on the power in the pth derivative
of the difference between Dirichlet interpolations with DFT
sizes K and K/2, the metric is

ξp =
1
2π

M∑
m=1

π∫
−π

∣∣∣∣∣ ∂p

∂�p

(
λ̂(K )
m (ej�)− λ̂

(K2 )
m (ej�)

)∣∣∣∣∣ d�. (17)

With (17), we can state the following theorem:
Theorem 2 (Convergence): The permutations according to

Theorem 1will be correct iff ξp, for p→∞ and a sufficiently
large K , falls below some sufficiently small threshold ϵξ .
Proof. Please see the proof to Theorem 4 in [9], which is not
affected by the introduction of the INDFT. ■

Intuitively, pursuing analytic functions that are thus
infinitely differentiable motivates the inclusion of higher
order derivatives. Reconsidering Example 2, derivatives will
emphasise oscillations such as in Fig. 2 that occur due to
incorrect bin-wise permutations. Theorem 2 guarantees that
the sample points of analytic eigenvalues have been correctly
assigned, and that time domain aliasing, when reconstructing
a time domain solution via an INDFT, falls below the
threshold ϵξ [9]. The practical calculation of (17) reduces
to the evaluation of a simple vector norm by exploiting
Parseval’s theorem [9], [10].

B. ITERATIVE PROCEDURE
The overall eigenvalue extraction can now be based on an
iteration that grows the DFT length until a sufficient value of
K is reached. Given the order of R(z), O{R(z)}, we start with
an initial value K such that log2 K = ⌈log2O{R(z)}⌉ + 1.
At each iteration, we perform a bin-wise EVD according
to (2), and amend the bin frequency using (10) to ensure
sufficiently distinct eigenvalues by increments of a small
quantity q, 0 < q ≪ 2π

K , such that the minimum eigenvalue
distance is at least ϵλ. Permutations are evaluated via (9)
in subsequent bins. At the end of each iteration, we can

Algorithm 1 Extraction of Analytic Eigenvalues
Input: R(z), p, Kmax, ϵλ, ϵξ , q;
initialisation: K = 2⌈log2(O[R(z)])⌉+1, P0 = I ;
determine EVDs in K/2 even bins with modified bin
frequency if minm |dm,k − dm+1,k | < ϵλ ;
repeat

determine EVDs in K/2 odd bins with modified bin
frequency if minm |dm,k − dm+1,k | < ϵλ ;
for k = 1 : (K − 1)
determine permutation Pk via (9);
end
calculate ξp for permuted eigenvalues via (17) ;
K ← 2K ;

until (ξp < ϵξ ) ∨ (K > Kmax);
Output: eigenvalues via INDFT of {PT

k3kPk}.

determine via (17) if a further iteration is required. The
algorithm terminates once ξp < ϵ, or if a maximum DFT
size Kmax has been reached. This extraction procedure
is summarised in Algorithm 1. Note that it is efficient to
avoid recalculating an EVD in bins where one already has
been evaluated previously. Hence after the first iteration and
K being powers of two, bin-wise EVDs only need to be
calculated in odd-indexed bins.

V. SIMULATIONS AND RESULTS
A. NUMERICAL EXAMPLE
In order to demonstrate the failings of existing time domain
algorithms for the problems mentioned in the introduction,
we first provide a numerical subspace decomposition exam-
ple for a relatively simple R(z) : C → C4×4. We consider
a parahermitian matrix that is constructed from a diagonal
matrix of eigenvalues 6(z) = blockdiag

{
6′(z), 0

}
+ σ 2

v I4,
where 6′(z) contains the three eigenvalues of Example 1 as
characterised in Figure 1(a), and σ 2

v =
1
4 is a small noise

variance term. Further, a fourth order random paraunitary
matrix Q(z) assembled from random first order elementary
paraunitary matrices [1] is used to construct R(z) =
Q(z)6(z)QP(z) : C→ C4×4.

As a benchmark, we utilise the sequential best rotation
(SMD) algorithm [7], which yields a decomposition R(z) =
U(z)D(z)UP(z) with a paraunitary U(z) and eigenvalues
estimates in the approximately diagonal matrix D(z) ≈
diag{d1(z), . . . , d4(z)}. Another time domain method, the
second order sequential best rotation (SBR2) algorithm, has
been proven to converge to a spectrally majorised solu-
tion [25]; while no such proof currently exists for the more
advanced SMD algorithm, it is well-known to encourage
spectral majorisation such that dm(ej�) ≥ dm+1(ej�), ∀�
and m = 1, . . . , 3, as evident from the extracted eigenvalues
shown in Fig. 3(a). In contrast, the proposed method yields
the exact, spectrally unmajorised eigenvalues. This solution
is the same as the one obtained using [9], but is achieved with
significantly fewer computations, which we will quantify
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FIGURE 3. (a) Spectrally majorised eigenvalues approximated by the SMD
algorithm [7], and (b) subspace leakage incurred by SMD and by the
proposed algorithm with a subsequent eigenvector extraction according
to [10].

in a subsequent simulation. Here, in terms of the extracted
eigenvalues, the SMD algorithm’s result D(z) has order 24,
while proposed method yields the polynomial order 2 of the
ground truth. The difference stems from the SMD in Fig. 3(a)
approximating a piece-wise analytic solution. Where the
joints between the segments are non-differentiable, SMD has
to use a much higher order polynomial to achieve a good
approximation.

To illustrate the impact of extracting spectrally majorised
versus analytic eigenvalues for applications, we consider the
effect of subspace leakage. For the above example, we define
a subspace decomposition

R(z) =
[
Q||(z)Q⊥(z)

] [6′(z)+ σ 2
v I3

σ 2
v

] [
QP
||
(z)

QP
⊥(z)

]
(18)

where with the subspace partitioning, Q||(z) : C → C4×3

and Q⊥(z) : C → C4×1. While QP
||(z)Q⊥(z) = 0, with

SMD we find that η(ej�) = ∥UP
||(ej�)Q⊥(e

j�)∥2 ̸= 0.
The subspace mismatch or subspace leakage η(ej�) for the
SMD algorithm is characterised in Fig. 3(b). The piece-wise
analytic solution to which SMD converges means that
eigenvectors aim to approximate discontinuous functions,
leading to a high approximation order of 1070 despite
trimming [26] and to large subspace leakage, which
peaks at frequencies where a small eigenvalue distance
can cause large subspace perturbations [27]. In contrast,
feeding the eigenvalues extracted with the proposed method
into an eigenvector extraction algorithm [10] yields very
close approximations Q̂(z) of the eigenvector matrices
with the correct ground-truth order of 4. In this case,
the leakage error e(ej�) = ∥Q̂

P
||(ej�)Q⊥(e

j�)∥2 ̸=

0 is much smaller and controlled by algorithm-internal
thresholds [10].
Both in terms of accuracy and computational complexity

of an implementation, where SMD yields an order forU(z) of
1070 while the proposed method gives an order of 4 for Q̂(z),

the analytic eigenvalue extraction as in [9] and the proposed
approach significantly outperform time domainmethods such
as SMD. Thus, DFT domain methods are better suited where
subspace-based applications such as [9], [17], and [18] rely
on a precise identification of signal or noise subspaces.
For this reason, in the following, we drop comparisons to
time domain methods and will restrict our comparison of
the proposed method to the analytic eigenvalue extraction
in [9].

B. ENSEMBLE TEST
We evaluate the proposed algorithm using parahermitian
matrices of dimensions M = {22, . . . , 27}. These are
constructed via a source model discussed in [10], which
consists of eigenvalues of order O{333(z)} = {21, · · · , 26}
that are spectrally unmajorised and based on innovation
filters [28], and of random paraunitary matrices [1] that
match the order of the innovation filters. By constructing
R(z) via (1), we know its ground truth analytic EVD. For
each parameter setting, we generate 100 randomised para-
Hermitian matrices, and, where possible, compare the results
against the state-of-the-art algorithm in [9] as a benchmark.
The proposed approach adjusts bin frequencies to satisfy a
minimum eigenvalue distance ϵλ = 10−6. In all cases, both
algorithms were terminated by the precision criterion, i.e. by
ξp in (17) or by its uniform DFT-based equivalent in [9],
falling below a threshold of ϵξ = 10−5 for p = 3; a maximum
DFT size of Kmax = 211 was not reached due to the finite
support of both R(z) and 3(z). The accuracy of the extracted
eigenvalues was measured through

ζ =
∑
τ

∥3[τ ]− 3̂[τ ]∥2F/
∑
τ

∥3[τ ]∥2F .

For every set of parameters i.e. M and O{333(z)}, we observe
a mean ζ̄ < 10−30 which indicates that both algorithms
produce the correct eigenvalues.

In terms of scalability, we measure the execution time
under Matlab R2024a on an Intel Core i5-8250U CPU @
1.60GHz, with results shown in Fig. 4. For the benchmark
approach in [9], where the algorithm’s complexity grows
with M !, it is only practical to evaluate matrices of spatial
dimension M = 4. Fitting a straight line to the curve (as
underlaid in grey) suggests a proportionality to (O{333(z)})1.5.
In contrast, the execution time of the proposed method,
despite operating with much higher values of M , is much
lower compared to the benchmark [9]. The straight line fits,
underlaid in grey in Fig. 4, possess a slope equivalent to
a proportionality to O{333(z)}. Since in terms of the spatial
dimension the complexity of the proposed algorithm will be
dominated by EVD calculations of the order of M3 for large
values of M , overall our method seems to have a complexity
proportionate to M3(O{333(z)}), whereas the benchmark
is approximately proportionate to M !(O{333(z)})1.5. Hence
compared to the benchmark, without sacrificing accuracy,
the computational cost of the proposed method scales much
slower in terms of both spatial and temporal dimensions.
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FIGURE 4. Execution time statistics for matrices with various spatial dimensions M and polynomial orders of ground truth eigenvalues for the method
and the benchmark [9].

VI. CONCLUSION
The current state-of-the-art algorithm for extracting ana-
lytic eigenvalues scales poorly particularly with the spatial
dimension of the matrix to be factorised, hence limiting its
applicability to systems of very modest dimensions. We have
therefore proposed a new, efficient analytic eigenvalue
extraction algorithm that scales well in relation to both
the spatial and temporal dimensions of the parahermitian
matrix to be factorised. Our proposed method operates
in the DFT domain, whereby bin frequencies are shifted
if eigenvalues are not sufficiently separated. In the —
potentially non-equispaced — resulting bins, any ambiguity
in the bin-wise eigenvectors is reduced to a permutation
which can be resolved based on the the analyticity of
the pursued solution. This then drives an algorithm that
iteratively increases the DFT size until a criterion on the
difference between subsequent extractions is sufficiently
minimised. This method has been proven to converge to the
analytic eigenvalues, and in simulations has demonstrated
a significant reduction in execution time and scalability to
previously unfeasible matrix dimensions.
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